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ABSTRACT

The CHEOPS space mission dedicated to exoplanet follow-up was launched in December 2019, equipped with the capacity to perform
photometric measurements at the 20 ppm level. As CHEOPS carries out its observations in a broad optical passband, it can provide
insights into the reflected light from exoplanets and constrain the short-wavelength thermal emission for the hottest of planets by
observing occultations and phase curves. Here, we report the first CHEOPS observation of an occultation, namely, that of the hot
Jupiter WASP-189 b, a MP ≈ 2MJ planet orbiting an A-type star. We detected the occultation of WASP-189 b at high significance in
individual measurements and derived an occultation depth of dF = 87.9 ± 4.3 ppm based on four occultations. We compared these
measurements to model predictions and we find that they are consistent with an unreflective atmosphere heated to a temperature of
3435±27 K, when assuming inefficient heat redistribution. Furthermore, we present two transits of WASP-189 b observed by CHEOPS.
These transits have an asymmetric shape that we attribute to gravity darkening of the host star caused by its high rotation rate. We used
these measurements to refine the planetary parameters, finding a ∼25% deeper transit compared to the discovery paper and updating
the radius of WASP-189 b to 1.619± 0.021RJ. We further measured the projected orbital obliquity to be λ = 86.4+2.9

−4.4
◦, a value that is

in good agreement with a previous measurement from spectroscopic observations, and derived a true obliquity of Ψ = 85.4 ± 4.3◦.
Finally, we provide reference values for the photometric precision attained by the CHEOPS satellite: for the V = 6.6 mag star, and
using a 1-h binning, we obtain a residual RMS between 10 and 17 ppm on the individual light curves, and 5.7 ppm when combining
the four visits.

Key words. techniques: photometric – planets and satellites: atmospheres – planets and satellites: individual: WASP-189 b

1. Introduction

The Characterising Exoplanets Satellite (CHEOPS) is the first
European space mission dedicated primarily to the study of
known extrasolar planets. It consists of a 30 cm (effective)
aperture telescope collecting ultra-high precision time-series
photometry of exoplanetary systems in a broad optical passband
(Benz et al. 2020). Unlike the previous space observatories dedi-
cated to exoplanets, CoRoT (Baglin et al. 2006), Kepler (Borucki
et al. 2010), K2 (Howell et al. 2014), and the ongoing TESS

? The photometric time series data are only available at the CDS
via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via
http://cdsarc.u-strasbg.fr/viz-bin/cat/J/A+A/643/A94

mission (Ricker et al. 2014), CHEOPS is a pointed mission, opti-
mised to obtain high-cadence photometric observations at the
20 ppm level for a single star at a time. CHEOPS was launched
successfully into a 700 km altitude Sun-synchronous polar orbit
on 18 December 2019 and its first science observations were
obtained in late March 2020.

As one of its first scientific targets, CHEOPS observed the
ultra-hot Jupiter WASP-189 b (Anderson et al. 2018), a gas
giant transiting the bright (V = 6.6 mag) A-type star HD 133112.
WASP-189 b is one of the most highly irradiated planets known
thus far, with a dayside equilibrium temperature of ∼3400 K
(Anderson et al. 2018). It orbits an early-type star similarly to the
extreme object KELT-9b (Gaudi et al. 2017), but with a longer
orbital period of 2.7 days, placing it closer, in temperature, to
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Fig. 1. Individual CHEOPS observations of four WASP-189 b occultations. In both panels, visits are shown chronologically from top to bottom,
occurring on 19, 27, and 30 March and 7 April 2020, respectively. Left: uncorrected observations (black points) together with their full (baseline
and occultation, red line) light-curve models. Blue vertical dash-dotted lines indicate the beginning and end of occultation. Right: data (black
points) corrected for the instrumental and stellar trends, together with the occultation model (red line).

ultra-short period planets orbiting F and G stars. As such, this
object allows us to comparatively probe the impact of differ-
ent stellar spectral energy distributions and, in particular, strong
short-wavelength irradiation on planetary atmospheres. As it is
orbiting around an A-type star, the system is also relatively young
(730 ± 130 Myr, see Sect. 2.2), providing us with a window into
the atmospheric evolution of close-in gas giants.

In this paper, we report on CHEOPS observations of four
occultations and two transits of WASP-189 b. We use the occulta-
tions to constrain the planet’s temperature and reflective proper-
ties and the transits to revise the planetary radius and determine
the system’s orbital obliquity from the gravity darkening of the
host star and the associated light curve asymmetry. We describe
the observations and data reduction in Sect. 2, discuss the results
in Sect. 3, and present a brief conclusion in Sect. 4.

2. Observations, data reduction, and analysis

2.1. CHEOPS observations of WASP-189 b

We observed four occultations of WASP-189 b between 19
March and 7 April 2020. The individual observations lasted
between 12.4 and 13 h, distributed over either seven or eight
spacecraft orbits of 98.77 min, thus covering the 3.35 h occul-
tation, together with substantial out-of-eclipse baseline. Dur-
ing the analysis of the occultation data, we obtained further

observations of two transits of WASP-189 b with CHEOPS on 15
and 18 June 2020, which we subsequently included in the final
analysis. The transit observations covered the transit, together
with a total of six CHEOPS orbits obtained outside of it. The
observations were interrupted for up to 41 and up to 17 min
per orbit due to Earth occultations or passages through the
South Atlantic Anomaly (SAA), respectively. These instances
can be seen as gaps in the light curves displayed in Figs. 1
and 2. We used exposure times of 4.8 s and co-added, on board,
seven individual exposures of the G = 6.55 mag star, result-
ing in an effective cadence of 33.4 s. A full description of the
CHEOPS telescope and the technical details of its observations
is presented in Benz et al. (2020).

The data were processed with the CHEOPS data reduction
pipeline (DRP, Hoyer et al. 2020), which performs image cor-
rection and uses aperture photometry to extract target fluxes for
various apertures. The CHEOPS DRP was thoroughly tested,
both using the CHEOPS data simulator (Futyan et al. 2020) and
data obtained during commissioning. Using simulated data, we
performed a series of injection and retrieval tests covering a
range of planetary transit scenarios and levels of field crowd-
ing. The data obtained during the commissioning consisted of
observations of stable stars that confirmed the stability of the
photometry in the presence of interruptions due to SAA cross-
ings and Earth occultations. During commissioning, we also
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Fig. 2. Uncorrected CHEOPS observations of two transits of WASP-
189 b (black points), together with their full (baseline and transit) light-
curve models (red lines). The upper light curve was observed on 15 June
2020 and the bottom light curve on 18 June 2020.

carried out transit observations and verified that the retrieved
transit parameters were in good agreement with literature values
(see e.g. Benz et al. 2020). For the occultations and the transits,
versions 11 and 12 of the DRP were used, respectively. We found
a minimal light curve RMS for the default aperture of 25 pixels.

Owing to the extended and irregular shape of CHEOPS’
point spread function (PSF) and the fact that the field rotates
around the target along the satellite’s orbit, nearby stars produce
a time-variable flux contamination in the photometric aperture,
in phase with the spacecraft’s roll angle. As explained in Hoyer
et al. (2020), the DRP automatically determines the level of such
contamination in the target’s aperture for each exposure. The
contamination is estimated from simulated images (Futyan et al.
2020) that are based on the CHEOPS PSF, the roll angle of each
image. and the Gaia DR2 (Gaia Collaboration 2018) coordinates
and magnitudes of all the stars with G < 19.5 mag in the field
of view. In order to determine the level of contamination, our
simulations were created both with and without the target. Due
to its brightness, WASP-189 appears to be well-isolated in the
observed data, but the simulations show two faint contaminat-
ing sources located inside the aperture, with Gaia G magnitudes
of 14.4 and 18.9 and distances of 9 and 19 arcsec from the
target, respectively. Figure 3 shows a typical observation, as
well as the corresponding simulated image containing only the
background sources. We used these simulations to compute the
time-variable contamination in the photometric aperture, finding
that it is in excellent agreement with the observed flux variations
on the CHEOPS orbital time scale. This allowed us to correct our
photometric measurements for contamination (see Sect. 2.3).

2.2. Host star properties

To assist in our analysis of the WASP-189 system, we derived
fundamental stellar parameters via spectral line and spectral
energy distribution (SED) fitting, along with stellar evolution
modelling. We estimated the stellar atmospheric parameters
by comparing an average of 17 archival HARPS spectra with

Fig. 3. Example of the field of view of WASP-189 observed by CHEOPS
(left) and its respective DRP simulation with the target removed (right).
The circle and the cross represent the photometric aperture and the
location of the target’s PSF, respectively. The triangular shape of the
CHEOPS PSF is clearly visible.

synthetic spectra computed using the synth3 code (Kochukhov
2007), employing the tools described in Fossati et al. (2007). We
computed stellar atmosphere models using LLmodels (Shulyak
et al. 2004). We used an iterative procedure to derive the
effective temperature (Teff) by imposing excitation equilibrium
for both 57 FeI and 10 FeII lines, the surface gravity (log g)
by imposing Fe ionisation equilibrium, and the microturbu-
lence velocity (νmic) by minimising the standard deviation in
the Fe abundance. Prior to fitting the lines, we measured the
stellar projected rotational velocity (νsinI∗ = 93.1± 1.7 km s−1)
from several unblended lines. We confirmed this measure-
ment by applying the Fourier analysis technique (Gray 2005;
Murphy et al. 2016) to a handful of unblended lines. We find
Teff = 8000± 80 K, log g= 3.9± 0.2, and νmic = 2.7± 0.3 km s−1.
Both Teff and log g are in good agreement with those derived by
Anderson et al. (2018). We measured an iron abundance [Fe/H]
of +0.29± 0.13 dex, as well as the abundances of C, O, Na, Mg,
Si, S, Ca, Sc, Ti, Cr, Ni, Y, and Ba, obtaining the pattern shown
in Appendix A.

The derived abundance pattern is typical of chemically pecu-
liar metallic-line (Am) stars (Fossati et al. 2007, 2008), which are
limited to stars with a rotational velocity lower than ≈100 km s−1

(Michaud 1970). Therefore, as the measured stellar νsinI∗ value
is close to the maximum rotational velocity for which Am chem-
ical peculiarities can arise, the stellar inclination angle should
be close to 90◦. The peculiar abundance pattern characterises
only the stellar atmosphere and does not reflect the internal abun-
dances, which we estimate at +0.2 dex from the abundances of
Mg, Si, and S – elements that have been shown to be a good
probe of the internal stellar metallicity (Fossati et al. 2007,
2008).

In order to determine the stellar radius of WASP-189, we
utilised the infrared flux method (IRFM; Blackwell & Shallis
1977), which permits the calculation of stellar angular diam-
eter and Teff using previously derived relations between these
parameters and optical and infrared broadband fluxes as well
as the synthetic photometry conducted on stellar atmospheric
models over the bandpasses of the observed data. We retrieved
fluxes and corresponding uncertainties in the Gaia G, GBP, and
GRP, 2MASS J, H, and K, and WISE W1 and W2 bandpasses
taken from the most recent data release archives, respectively
(Skrutskie et al. 2006; Wright et al. 2010; Gaia Collabora-
tion 2018). Stellar synthetic models (Castelli & Kurucz 2003)
were fitted to the obtained broadband photometry in a Markov
chain Monte Carlo (MCMC) approach, with priors on the stel-
lar parameters taken from the spectroscopic analysis detailed
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above. The derived stellar angular diameter was combined with
the Gaia parallax to determine the stellar radius, R∗,IRFM =
2.362± 0.030R�. This value is in good agreement with the value
reported in the discovery paper (Anderson et al. 2018), with a
precision, in fact, that is four times greater.

Finally, we used Teff , metallicity (using 0.2± 0.1 dex, see
above), and R∗,IRFM as inputs to obtain stellar mass and age
through stellar evolution modelling. We merged the results
from two independent approaches and stellar evolution codes:
the Liège code CLES with a Levenberg-Marquardt approach,
as in Buldgen et al. (2016), and the PARSEC code with the
approach described in Bonfanti et al. (2015, 2016). We varied
the input physics in stellar models (particularly with regard to the
importance of convective overshooting and mixing of elements
induced by diffusion) and we checked the consistency between
our two approaches, which was found to be excellent. We ulti-
mately infer a mass of M∗ = 2.030± 0.066 M� and an age of
730± 130 Myr. The stellar parameters are listed in Table 1.

2.3. CHEOPS data analysis

We initially carried out an analysis that included only the occul-
tations observed during the first weeks of scientific operations.
However, later transit observations evidently showed an unex-
pectedly deep transit. We included these new data in our analysis,
as a well-measured planetary radius is needed to properly inter-
pret the occultation signal.

In addition to the astrophysical signals, the light curves con-
tain the effect of variable contamination, which introduces a
V-shaped flux variation in phase with the spacecraft roll angle
(clearly visible in Fig. 1). Furthermore, several visits show
trends with time, the origin of which could lie in δ Scuti or γ
Doradus-type stellar pulsations.

2.3.1. Occultation

We carried out the analysis using an MCMC framework
(CONAN, Lendl et al. 2020), modelling the occultation signal
at the same time as these signals of non-planetary origin to
ensure a full propagation of uncertainties. To account for cor-
related noise, we made use of either parametric models (e.g.
Gillon et al. 2010) or Gaussian Processes (GP; using the George
package Ambikasaran et al. 2016), or a combination of both (i.e.
using a parametric function multiplied with the transit model as
the GP mean model). To prescribe the occultation light curve,
we used a limb-darkening-free Mandel & Agol (2002) transit
model. To account for our knowledge of the planetary tran-
sit parameters, we placed Gaussian priors corresponding to the
values and uncertainties found from the CHEOPS transits (see
Sect. 2.3.2) on the impact parameter, b, and the transit duration,
T14, the radius ratio, RP/R∗. Uniform priors were assumed for
the occultation depth, dFocc, and the mid-transit time, T0. The
period was kept fixed and the eccentricity was assumed to be
zero (as found by Anderson et al. 2018). For the radial velocity
amplitude, K, and the stellar mass and radius (M∗, R∗), which
are unconstrained by our analysis, we assumed Gaussian distri-
butions, centred on the values of Anderson et al. (2018) or, where
appropriate, the values reported in Sect. 2.2.

We explored a large range of models for the correlated noise,
testing both parametric models composed of polynomials up
to 4th order in the recorded state variables (most importantly:
time, PSF centre, contamination, and spacecraft roll angle) as
well as GPs using time, roll angle, and contamination, or a
combination of these, as input. We tested both a Matérn-3/2

Table 1. Summary of stellar, input, and derived parameters of the
WASP-189 system.

Fitted parameters

Mid-transit time (T0) 8926.5416960+0.000065
−0.000064

[BJDTT −2450 000]
Impact parameter (b) 0.478+0.009

−0.012
Scaled semi-major axis (a/R∗) 4.60+0.031

−0.025
Eclipse duration (T14) [h] 4.3336+0.0054

−0.0058
Occultation depth (dFocc) [ppm] 87.9± 4.3
Radius ratio (Rp/R∗) 0.07045+0.00013

−0.00015
u+ = ua + ub 0.550+0.016

−0.017
u− = ua − ub 0.440+0.066

−0.065
Stellar inclination I∗ [◦] 75.5+3.1

−2.2
Projected orbital obliquity λ [◦] 86.4+2.9

−4.4

Additional input parameters

RV amplitude (K) [km s−1] 0.182± 0.013
Planetary period (a) (P) [d] 2.7240330
Eccentricity (a) (e) 0

Stellar parameters

Stellar Mass (M∗) [M�] 2.030± 0.066
Stellar Radius (R∗) [R�] 2.36± 0.030
Stellar eff. temperature (Teff) [K] 8000± 80
Stellar surface gravity log g [log g] 3.9± 0.2
Projected rotational velocity 93.1± 1.7
νsinI∗ [km s−1]

Microturbulent velocity 2.7± 0.3
νmic [km s−1]

Iron abundance [Fe/H] +0.29± 0.13
System age [Myr] 730± 130

Derived parameters

Plan. radius (RP) [RJ] 1.619± 0.021
Plan. mass (MP) [MJ] 1.99+0.16

−0.14
Plan. mean density (ρP) [ρJ] 0.469+0.058

−0.0275
Plan. surface gravity (gP) [m s−2] 18.8+2.1

−1.8
Orbital semi-major axis (a) [au] 0.05053± 0.00098
Orbital inclination (i) [◦] 84.03± 0.14
True orbital obliquity Ψ [◦] 85.4± 4.3
Dayside equilibrium temp. (b) (Teq) [K] 3353+27

−34
Brightness temp. (c) (Tb) [K] 3348+26

−35
Dayside temp. (d) (Tday) [K] 3435± 27

Notes. (a)Fixed. (b)Teq = Teff

√
R∗/a ( f (1 − AB))1/4, assuming imme-

diate re-radiation ( f = 2/3) and zero albedo (AB = 0). (c)Assuming
black body stellar and planetary SEDs. (d)Assuming a PHOENIX stellar
model spectrum, Ag = 0, and inefficient energy circulation (ε = 0).

and an exponential-squared kernel. We find that the systematics
are equally well-modelled by using either a combination of
time polynomials (modelling the slow trends) paired with a
Matérn-3/2 GP with the telescope roll angle as input (modelling
the contamination), or a combination of first- and second-order
time polynomials together with a linear dependence on the
contamination value. Both the results and derived uncertain-
ties associated with each approach are fully compatible. We
selected the latter as our preferred model, as it accounts for our
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Fig. 4. Corrected and phase-folded CHEOPS occultation light curve of WASP-189 b. Black points show the light curve binned into 20-min intervals
and the red line shows the final occultation model.

physical understanding of the source of the roll-angle-dependent
variability. We report the results of our analysis in Table 1.
Individual light curves are shown in Fig. 1, with the corrected
and phase-folded data presented in Fig. 4.

We also carried out an independent analysis using the
pycheops1 package, which is being developed specifically for
the analysis of CHEOPS data. Optimisation of the model param-
eters was done using lmfit2 and detrending done either via a
parametric method of decorrelating the data linearly against the
contamination or roll angle, and quadratically against time, or a
GP regression with a Matérn-3/2 kernel to model the flux against
roll angle trend using the celerite package (Foreman-Mackey
et al. 2017). Again, we obtained values that are fully compatible
with the reported ones.

2.3.2. Transit

At the photometric precision reached by CHEOPS, the plane-
tary transit can be seen to be asymmetric, a feature most readily
explained by the presence of gravity darkening due to the com-
bination of the host star’s fast rotation and the planet’s inclined
orbit (von Zeipel 1924; Barnes 2009). Accounting for gravity
darkening in transit models is computationally intensive and,
therefore, we performed an independent analysis of the transits
and used the results as priors for the analysis of the occultations
(see Sect. 2.3.1). We used the Transit and Light Curve Modeller
(TLCM, see Csizmadia 2020 for details) for this purpose. This
code uses the analytic expressions of Mandel & Agol (2002)
for the transit model and allows us to jointly model the transit
together with various baseline models that account for correlated
noise.

To model the gravity darkening, we compute a modification
to the analytic model taking into account the varying stellar flux
emitted along the planet’s transit path. To do so, the stellar sur-
face is divided into 120 × 120 surface elements (in longitude
and in latitude) and, for each, the surface effective temperature
is calculated via

Tlocal = T∗

( |∇V |local

|∇V |pole

)0.25

. (1)

1 https://github.com/pmaxted/pycheops
2 https://lmfit.github.io/lmfit-py/

We assume a polar temperature of Tpole = 8000 K and the above
equation inherently assumes a gravity darkening exponent of 1.0,
which is appropriate for hot stars Claret et al. (2014). The local
surface gravitational potential (V) is calculated by assuming a
two-axial ellipsoidal shape of the host star and given as3

V =
n2a3

(1 + q)r
+

1
2
ω2

rotr
2 sin2 b, (2)

with the mass ratio, q = Mp/M∗, the mean motion, n, and the
astrographic latitude, b. The rotational angular velocity (ωrot)
is calculated from the stellar radius, R? = 2.36± 0.030, the
ν sin I∗ = 93.1± 1.7 km s−1 (see Sect. 2.2), and the fitted stel-
lar inclination. We fit two angles: the inclination of the stellar
rotational vector, I∗, and its tilt-angle relative to celestial north
direction (Ωstar = 90◦ − λ). These two angles fully describe the
orientation of the stellar rotational axis. From the stellar and
planetary orbital geometry and the stellar deformation, we infer
the local stellar temperature behind the planetary disc. We then
convert this temperature into a fractional light loss (or gain)
compared to the nominal transit model, assuming black-body
radiation and integrating over the CHEOPS’ response function.

We fit these angles (I∗, Ω∗) together with the transit shape
parameters, RP/R∗, b, T0, the relative semi-major axis, a/R∗, and
the linear combinations of the quadratic limb-darkening coef-
ficients, u+ = ua + ub and u− = ua − ub. We assume a circular
orbit and fix the period to that measured by Anderson et al.
(2018). The roll-angle-dependent flux variation is accounted for
through a baseline model in form of a fourth-order Fourier series
for each light curve and we allow for a constant normalisation
offset. As described in Csizmadia (2020), we first explored a
wide parameter space using a series of genetic algorithm and
simulated annealing chains, before using the best solution found
as a starting point for five independent MCMC chains of 106

steps each. The convergence was checked through the Gelman &
Rubin (1992) statistic.

We find a projected stellar obliquity of λ = 86.4+2.9
−4.4

◦. The
true obliquity Ψ – the angle between the stellar rotational axis
and the orbital angular momentum vector – can be calculated
via

cos Ψ = cos I∗ cos i + sin I∗ sin i cos λ, (3)
3 Stellar gravitational potential V = GM/R∗ was expressed by more
easily measurable quantities via Kepler’s third law.
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Fig. 5. Top: corrected and phase-folded transit light curve of WASP-
189 b. Data from the 15 June 2020 are shown as black circles and data
from 18 June 2020 are shown as blue diamonds. The red and green
curves illustrate the best-fit models, including and excluding gravity
darkening, respectively. Bottom: data residuals related to each of the
models. Green points in the upper panel refer to residuals in the model
without gravity darkening and red points in the lower panel refer to that
with gravity darkening.

and we find a value of Ψ = 85.4± 4.3◦. Here, I∗ and i are
the inclinations of the stellar rotational axis and the plane-
tary orbit, respectively. The projected and true obliquity values
found here are in good agreement with the findings of Anderson
et al. (2018), who reported values of λ = 89.3± 1.4◦ and Ψ =
90± 5.8◦ based on spectroscopic measurements.

We list all inferred and derived parameters in Table 1. The
full list of baseline function coefficients for transits and occul-
tations is given in Appendix B. The individual and phase-folded
transit light curves, together with the best-fit model, are shown in
Figs. 2 and 5, respectively. For the sake of comparison, we also
show a model fit obtained by assuming a spherical star with-
out gravity darkening in Fig. 5 (green curve). It is evident from
the residuals that the full model provides an improved fit for the
asymmetric transit shape.

3. Results

3.1. Revised planetary and system parameters

The new, high-precision CHEOPS observations allow us to
substantially revise the planetary parameters, and the gravity-
darkened nature of the stellar photosphere allows us to derive
an independent measurement of the projected angle between the
stellar spin and the planetary orbital axes.

The remarkable difference of our results compared to those
of Anderson et al. (2018) is that we find a ∼25% deeper tran-
sit, which is inconsistent with their published value at the level
of 4.5σ. Paired with updated stellar parameters, this corre-
sponds to a ∼15% larger planetary radius (inconsistent at 2.9σ)
and, hence, a smaller planetary mean density. We attribute this
discrepancy to the difficulties in obtaining high-precision pho-
tometry for bright stars from the ground given that the quality
of ground-based data for bright stars is limited by the paucity
of bright nearby reference stars. The photometric follow-up pre-
sented in Anderson et al. (2018) is, furthermore, limited to partial
transits, which often suffer from imprecisely determined photo-
metric trends that can bias the observed transit depth. In contrast,
neither the time trends related to stellar variability nor the roll-
angle-dependent, in-orbit variations in CHEOPS data exhibit
amplitudes that are large enough to create a transit depth offset of
the observed magnitude. Furthermore, as described in Sect. 2.1,
the CHEOPS DRS has been validated on well-known planetary
transits.

From our gravity darkening analysis, we confirm a strongly
misaligned orbit. While the analysis of the Rossiter-McLaughlin
effect by Anderson et al. (2018) yields λ = 89.3 ± 1.4◦, our
purely photometric analysis results in λ = 86.4+2.9

−4.4
◦. Assum-

ing that the star rotates more slowly than its break-up velocity,
Anderson et al. (2018) find a true obliquity of Ψ = 90.0◦ ± 5.8◦.
Our photometric analysis is able to provide an assumption-free
value of Ψ = 85.4◦ ± 4.3.

3.2. CHEOPS occultation measurement

Based on a joint analysis of the four CHEOPS occultations,
we determined the occultation depth of WASP-189 b in the
CHEOPS passband to be 87.9± 4.3 ppm. The precision of this
measurement exceeds that of previous measurements obtained
with CoRoT (Parviainen et al. 2013), and TESS (see Wong et al.
2020, and references therein), and is comparable in precision
with the occultation depth measurements of hot Jupiters inferred
from several quarters worth of Kepler data (e.g. Angerhausen
et al. 2015; Esteves et al. 2015; Morris et al. 2013).

The individual, unbinned, occultation light curves, which
have a cadence of 33.4 s, have a residual RMS between 86
and 92 ppm. When applying binning into 10-min and 1-h inter-
vals, we reach RMS values between 34 and 47, and 10 and
17 ppm, respectively. The phase-folded and binned residuals
show an RMS of 23 and 5.7 ppm for 10-min and 1-h time bins,
respectively. These values underline the excellent performance
of CHEOPS.

Motivated by the high level of precision reached here, we
also carried out independent analyses of each occultation to
probe for any potential variation in the measured occultation
depth. The occultation is detected at high significance in each
individual light curve and the measurements are consistent at
1-σ level. Thus, we find no significant sign of variability (see
Table 2) in the dayside flux from WASP-189 b over the 19-day
time span of our observations. At the same time, this illus-
trates that the value derived from a joint fit is not biased by any
individual light curve.

3.3. The atmosphere of WASP-189 b

3.3.1. Model description

To interpret the occultation depth, the radiative transfer code
HELIOS was used to calculate the spectral energy distribution
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Fig. 6. Left panel: calculated (curves) versus measured (shaded horizontal region) occultation depths as functions of the heat redistribution effi-
ciency. Different curves with assumed values of Ag are shown. As a sensitivity test, the shaded region associated with each curve corresponds to
a variation in metallicity within a range of [M/H] = 0.2± 0.3. Right panel: theoretical spectral energy distribution, at a low and high resolution of
the star (blue curve) with the CHEOPS bandpass (black dot-dashed curve) overlaid. The model for WASP-189 b (with Ag = ε = 0) is overlaid in
orange, with the corresponding temperature–pressure profile shown in the inset. For comparison, a blackbody curve with a temperature of 3345 K
is also overlaid (orange dashed line).

Table 2. Occultation depths inferred from analyses of individual visits.

Date (all 2020) 19 March 27 March 30 March 7 April

dFocc [ppm] 88.6+8.5
−11 83.5+11.4

−8.5 94.1+9.9
−9.6 89.3+6.5

−6.9

(SED) of the dayside atmosphere of WASP-189 b. HELIOS solves
for the thermal structure self-consistently (Malik et al. 2017,
2019). The model atmosphere is assumed to be cloud-free and
in chemical equilibrium. We varied the planet’s atmospheric
metallicity within [M/H] = 0.2± 0.3, based on the stellar abun-
dances. Sources of opacity include: spectral lines of atoms and
ions of metals (Ca, Ca+, Fe, Fe+, Ti, Ti+, Na, K; Kurucz & Bell
1995), which are predicted theoretically (e.g. Kitzmann et al.
2018) and observed at a high resolution in other ultra-hot Jupiters
(e.g. Hoeijmakers et al. 2019); spectral lines of H2O, CO, CH4,
VO and TiO (Barber et al. 2006; Yurchenko & Tennyson 2014;
Rothman et al. 2010; McKemmish et al. 2016, 2019); continuum
absorption from the hydrogen anion (H−; John 1988); H2–H2,
H2–He and H–He collision-induced absorption (Karman et al.
2019). It is worth noting that HELIOS includes albedo contribu-
tions from Rayleigh scattering due to molecules. As illustrated in
Fig. 6, our models predict that WASP-189 b possesses a thermal
inversion, as inferred recently by Yan et al. (2020) from high-
resolution spectroscopic observations. We report the planetary
dayside temperature in Table 1, next to the brightness tempera-
ture computed under the assumption of black-body emission for
star and planet. As described in Appendix C, these are discrepant
because the assumption of black-body emission is flawed due to
the proximity of the CHEOPS band to the Balmer jump.

The measured occultation depth can be explained by a com-
bination of thermal emission and a weakly-reflective atmosphere
(i.e. geometric albedo Ag ∼ [0.1 − 0.3]) for most values of the
heat redistribution efficiency (ε, see below). We note that ther-
mal emission alone (Ag = 0) may account for the measured
occultation depth if zero heat redistribution is assumed (ε = 0).

3.3.2. Scattering by clouds/hazes

Since the heat redistribution efficiency (ε) is unknown, a broader
interpretation of the measured occultation depth may be obtained
by assuming that scatterers of unknown origin and composition
which are associated with clouds or hazes are present in
the model atmosphere. They are parameterised by a single
value of the geometric albedo (Ag). The occultation depth has
contributions from reflected light and thermal emission, namely,

dFocc = Ag

(
Rp

a

)2

+

∫
F Fpdλ∫
F F∗dλ

(
Rp

R∗

)2

. (4)

The CHEOPS bandpass (F ), the SED of the star (F∗, as com-
puted in Sect. 2.2) and an example of the SED of WASP-189 b
(Fp) are shown in Fig. 6. As an input to HELIOS, the top-of-the-
atmosphere (TOA) flux impinging upon WASP-189 b is

FTOA = F∗
(R∗

a

)2
(1 − AB)

(
2
3
− 5ε

12

)
, (5)

where the heat redistribution efficiency (0 ≤ ε ≤ 1) follows the
parametrisation of Cowan & Agol (2011). It is related to the
commonly used redistribution factor of 1/4 ≤ f ≤ 2/3 (Seager
et al. 2005) via ε = 8/5 − 12 f /5. To relate the geometric and
Bond (AB) albedos, isotropic scattering is assumed such that
Ag = 2AB/3.

Figure 6 shows that Ag ∼ 0.1 models are easily consistent
with the measured occultation depth if ε ∼ 0.1, which is, in turn,
consistent with the values of geometric albedos measured for
cooler hot Jupiters (Heng & Demory 2013).

4. Conclusions and outlook

In this paper, we present CHEOPS observations of the hot Jupiter
WASP-189 b, capturing both the transit and the occultation of the
highly irradiated planet. We robustly detect the occultation in
individual epochs and measure a depth of 87.9± 4.3 ppm when
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combining four occultation light curves. Our measurement can
be reproduced by atmospheric models with comparatively low
albedo and heat redistribution efficiency. From two transit light
curves, we derive updated planetary parameters and find a ∼15%
larger planetary radius. The transits clearly show an asymmetric
shape due to gravity darkening of the stellar host, and we use this
effect to measure the planetary spin-orbit angle, finding a clearly
misaligned orbit with a projected obliquity of λ = 86.4+2.9

−4.4
◦ and

a true obliquity of Ψ = 85.4± 4.3◦.
These observations showcase the capability of CHEOPS to

detect shallow signals with an extremely high level of precision,
thereby illustrating the potential of future studies of exoplanet
atmospheres with CHEOPS. These will include (geometric)
albedo measurements for cool planets, which have negligible
contribution of thermal emission in the optical, as well as for
planets, which have a dayside emission spectrum that is well-
known from infra-red observations. For the most favourable
objects, CHEOPS will conduct phase curve observations, reveal-
ing the longitudinal cloud distribution in the planets’ atmo-
sphere. Thanks to its flexible pointing and observing schedule,
CHEOPS can point to exoplanets across large areas of the sky,
targeting the most rewarding objects. These practical aspects
make CHEOPS an ideal facility for collecting a large sample of
optical-light exoplanet occultations and phase curves.
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Appendix A: Stellar abundances

Fig. A.1. WASP-189 abundance pattern. The abundances are relative to
solar (Asplund et al. 2009). The uncertainties are the standard deviation
from the average abundance, therefore the abundances obtained from
only one line (C, O, Ti, Ba) are shown without uncertainties.

The stellar abundance pattern is derived using the methods
described in Sect. 2.2 and displayed in Fig. A.1.

Appendix B: Photometric baseline model
parameters

In Table B.1, we report the inferred parameters and uncertainties
for the baseline model parameters of each individual light curve.

Table B.1. Coefficients found for the photometric baselines models
fitted jointly with the physical light curve model.

Occultations

Date 19 March 2020 27 March 2020

A0 1.0000805+0.0000086
−0.0000093 1.000024+0.000010

−0.0000096

A1 −0.001221+0.000080
−0.000089 −0.0011300.000082

−0.000101

A2 0.00162+0.00015
−0.00016 0.00184+0.00020

−0.00015

D1 3.20+0.17
−0.16 2.22+0.15

−0.18

Date 30 March 2020 07 April 2020

A0 1.000033+0.0000090
−0.000011 1.0000018+0.0000066

−0.0000058

A1 −0.000090+0.000086
−0.000090 0.000189± 0.000019

A2 0.000280.00016
−0.00015 0

D1 2.29± 0.16 1.95+0.14
−0.16

Transits

Date 15 June 2020 18 June 2020

Flux shift (ppm) −61± 7
c1 (ppm) −76± 14 −30± 14
c2 (ppm) +74± 11 −5± 10
c3 (ppm) +78± 16 +23± 17
c4 (ppm) +18± 9 +6± 9
s1 (ppm) −40± 14 +90± 11
s2 (ppm) −74± 19 +17± 21
s3 (ppm) +3± 11 −13± 11
s4 (ppm) +26± 9 −16± 10

Notes. For the occultations, Ai refer to the coefficients of second-order
polynomials in time, with A0 denoting the normalisation constant. D1 is
the coefficient of a linear trend with contamination. For the transits, c
stand for the cosine, and s for the sine terms of the Fourier-series.

Appendix C: Planetary brightness temperature

We remark that, unlike the case of long-wavelength measure-
ments, approximating the stellar emission by a black-body SED
leads to an under-estimation of the stellar flux in the CHEOPS
passband and, thus, it under-estimates the planetary dayside
temperature. This is illustrated in Fig. C.1, which shows a
model stellar spectrum compared to emission from an 8000 K
black-body. The difference is attributed to the proximity of the
CHEOPS band to the Balmer jump. For the case of WASP-
189 b, we find a brightness temperature of 3348+26

−35 when using
the black-body approximation, but a higher value of 3435± 27 K
when using a stellar model spectrum.

Fig. C.1. Comparison of a PHOENIX (Husser et al. 2013) stellar spec-
trum for a star with parameters corresponding to WASP-189 (blue), a
8000 K black-body (orange), and the CHEOPS passband (black).
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