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Abstract Marine air intrusions into Antarctica play a key role in high-precipitation events. Here we use
shipboard observations of water vapor isotopologues between Australia and Syowa on the East Antarctic
coast to elucidate the mechanism by which large-scale circulation influences marine air intrusions. The
temporal isotopic variations at Syowa reflect the meridional movement of a marine air front. They are also
associated with atmospheric circulation anomalies that enhance the southward movement of cyclones
over the Southern Ocean. The relationship between large-scale circulation and the movement of the front
is explained by northerly winds which, in association with cyclones, move toward the Antarctic coast and
push marine air with isotopically enriched moisture into the inland covered by glacial air with depleted
isotopic values. Future changes in large-scale circulation may have a significant impact on the frequency
and intensity of marine air intrusion into Antarctica.

1. Introduction

Large-scale atmospheric circulation anomalies that enhance poleward moisture transport are thought to
affect local weather and the East Antarctic surface mass balance. Observations at Dronning Maud Land (DML)
in East Antarctica (EA), for example, have revealed the highest snowfall events recorded in the past 60 years
[e.g., Lenaerts et al., 2013]. According to an analysis of heavy snow accumulation events from 2009 to 2011
at Princess Elisabeth station in DML, more than 70% of the total yearly accumulation was derived atmo-
spheric rivers (ARs) taking the form of narrow filamentary structures stretching from the subtropical latitudes
to Antarctica [Gorodetskaya et al., 2014].

The link between large-scale circulation and local precipitation can be mediated by coastal cyclones over the
Southern Ocean (SO) [e.g., Bromwich et al., 1995; King and Turner, 1997; Genthon and Krinner, 1998; Tietäväinen
and Vihma, 2008; Tsukernik and Lynch, 2013]. The northerly winds associated with cyclones may transport
warm, moist marine air to the interior of the Antarctic continent. Then, when the marine air meets the cold
glacial air over the ice-covered region, frontogenesis, a process that can bring intense snowfall, occurs along
the leading edge of the marine air (marine air front). The larger temperature gradient between the extratrop-
ical air and glacial air may result in more enhanced frontal activity. It would simplistic, however, to rely wholly
on this explanation. The steep coastal topography, for example, shields the ice sheets from marine air intrusion
[Stohl and Sodemann, 2010]. The persistent cold air drainage flow along the steep slope from the interior of
the ice sheet (katabatic outflow), may push the front seaward. There is also uncertainty as to whether marine
air from the extratropical regions can reach the Antarctic coast through the enhanced poleward moisture
flow associated with large-scale circulation. These issues complicate the relationship between large-scale cir-
culation and local precipitation. Our ability to accurately predict future mass balance changes in EA hinge on
our understanding of the mechanism by which large-scale circulation influences the marine air intrusion [e.g.,
Huybrechts et al., 2004; Krinner et al., 2007; Lenaerts et al., 2016].

Water vapor isotopologues (HDO and H18
2 O) are effective tracers to identify air mass sources in the polar region

[Kurita, 2011; Steen-Larsen et al., 2013, 2014; Bonne et al., 2014, 2015]. The isotopic composition is expressed by
𝛿 notation, which is a normalized difference of the isotopic ratio (R) from the isotopic ratio of Vienna Standard
Mean Ocean Water (Rvsmow): 𝛿 = R

Rvsmow
− 1. Kopec et al. [2014] recently used monitoring data on water stable
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Figure 1. JARE cruise track (gray line) overlaid on a map of the summer cyclone track density during the observation
period (2013/2014 and 2014/2015). A track density is a unit of number density per month per unit area (5∘ radius). The
trajectory launch positions (00 and 12 UTC) are also marked on the cruise track: open circles, green circles, and blue
circles, respectively, show locations in the extrapolar ocean, cold ice-free ocean, and ice-covered ocean. Contours
represent the austral summer mean sea surface temperature.

isotopes to track the movement and position of a front between marine and glacial air masses in coastal
western Greenland. Marine air masses are generally characterized by moist air with higher water vapor iso-
topic values derived from the enhanced supply of heavier isotopes incorporated via evaporation from the
ocean [Uemura et al., 2008; Kurita, 2011]. The isotopic composition of marine vapor also yields information on
the moisture sources of marine air masses since the isotopic composition of oceanic evaporation gradually
increase as the sea surface temperature (SST) rises [e.g., Kurita, 2013]. In contrast, glacial air masses over inland
ice sheets are very dry and contain fewer heavy isotopes than maritime air due to isotopic removal by con-
densation as the vapor moves inland [Steen-Larsen et al., 2013, 2014]. Paired measurements of the water vapor
isotopes with H2O concentration are therefore useful to distinguish between marine air mass and glacial air
mass at the observation site (ship position).

Deuterium excess (d-excess), defined by Dansgaard [1964] as d = 𝛿D–8𝛿18O, is also recognized as an excel-
lent tool for identifying moisture origins. The d-excess in evaporated moisture is controlled by evaporation
conditions; i.e., sea surface temperature and relative humidity (for a detailed review see Gat [1996]). Low
d-excess is associated with the suppression of kinetic effects during evaporation from high humidity or high
sea surface temperatures, while high d-excess reflects enhanced kinetic effects from low humidity or cold sea
surface temperatures. A recent study combining in situ measurements of d-excess along a transect of sites
from the North Atlantic to the Greenland ice sheet has confirmed the preservation of the source signal along
transportation [Bonne et al., 2015].

In this study we classify air masses arriving at a coastal station in DML in EA (Syowa) into marine and glacial
air masses based on an H2O-𝛿 space diagram with the aid of trajectory analysis. We then use the classification
data to investigate the mechanism underlying the large-scale circulation control of marine air intrusion at
Syowa.

2. Data and Method

Water vapor isotopologues were continuously measured along the Japanese Antarctic Research Expedition
(JARE) cruise track on the icebreaker Shirase from Australia to Syowa station on the EA coast during two
Australian summers, 2013/2014 (JARE55) and 2014/2015 (JARE56). Syowa station (69.00∘’S, 39.58∘’E) is located
on East Ongul Island in Lutzow-Holm Bay in eastern DML. On each cruise, the Shirase left Fremantle (western
Australia) in late November and stayed in the Lutzow-Holm Bay area near Syowa station from late December to
early February (Figure 1). She then sailed back to Australia, arriving at Sydney (eastern Australia) or Fremantle
by the middle of March.

A Water Vapor Isotope Analyzer (WVIA) coupled with a Water Vapor Isotope Standard Source (WVISS) from
Los Gatos Research Inc. was installed in a laboratory placed on the top deck of the Shirase. Ambient air sam-
ples were collected 30 m above the sea surface and drawn into the WVIA-WVISS coupled system through a
perfluoroalkoxy alkanes tube of 5 m in length. The H2O concentration and water vapor isotopologues were
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Figure 2. Joint probability density function (PDF) of H2O versus 𝛿D from three different regions identified in Figure 1
along the JARE cruise tracks. The extrapolar ocean, cold ice-free ocean, and ice-covered ocean are, respectively, shown in
orange, green, and blue. The bin widths of H2O and 𝛿D are 200 ppm and 2.5‰, respectively. The contour interval is
0.5%. All hourly averaged data from JARE observations are shown as gray circles. The solid black curve shows the
calculated D values in marine vapor using the closure assumption model from Merlivat and Jouzel [1979] (see Text S2 for
details). The blue area between the dashed black curves represents mixing curves showing the possible paths taken
when complete mixing occurs between marine vapor and glacial vapor (see Text S3 for details). Inset: 𝛿D-d-excess plots
for surface vapor observed over the ice-covered ocean near Syowa station. The purple circle represents the average
values; the error bars indicate the standard deviation while the ship was near Syowa station.

recorded by the WVIA every second and calibrated according to the procedure described by Kurita et al. [2012]
(see Text S1 in the supporting information for details). The analytical uncertainty was 2.5‰ for 𝛿D and 0.28‰
for 𝛿18O, which resulted in an uncertainty of 3.4‰ for d-excess. Hourly integrated isotope data were used for
the analysis to procedure results easily comparable with hourly meteorological variables. The isotope data
used in this study will be available at http://scidbase.nipr.ac.jp.

The measured H2O concentration and 𝛿D are plotted on an H2O-𝛿D space diagram to diagnose atmospheric
moistening and drying processes in the surface marine vapor. The moisture balance over the polar ocean
is governed by the process of moistening via evaporation from the sea surface and the process of drying
through mixture with dry air masses draining from the interior of the ice sheet. The 𝛿D of oceanic evaporation
(𝛿DE) along the cruise track was calculated using the evaporative model based on Merlivat and Jouzel [1979]
with a closure assumption, the so-called closure model. Surface evaporation was the only source of moisture
considered (see Text S2 for details):

𝛿DE = 1
𝛼eq

1 − k
1 − kRHSST

− 1 (1)

where 𝛼eq represents the equilibrium fractionation factor between liquid and vapor, which is a variable
depending on sea surface temperature [Majoube, 1971], RHSST is relative humidity with respect to the sea sur-
face temperature (SST), and 1 − k is a parameter expressing diffusive fractionation of a thin saturated layer
just above the sea surface into the atmosphere. The 𝛿DE values are plotted (black line) as a function of the
H2O concentration in Figure 2. An air mass mixing model with a fully mixed assumption [e.g., Noone, 2012] is
applied to estimate the evolution of 𝛿D in freshly evaporated marine air approaching the isotopic content of
glacial air through continuous mixing (see Text S3 for details):

𝛿D = QMV [𝛿DMV − 𝛿DF](1∕QF) + 𝛿DF (2)

𝛿DF =
𝛿DGLQGV − 𝛿DMVQMV

QGV − QMV
(3)
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where Q is the H2O concentration, the subscript F represents the water vapor added by the diffusion flux in the
frontal zone, and the subscripts MV and GV represents marine and glacial vapor, respectively. The blue-shaded
area between hyperbolic paths (dashed lines) in Figure 2 shows the area of mixing between the marine air
mass evaporated from the open ocean and the glacial air mass draining from the interior of the ice sheet to
Syowa station (see section 3 for details).

Surface meteorological variables such as the mixing ratio, air temperature, wind speed, and wind direction are
observed on board the Shirase. The SST is also monitored on board the Shirase, and the RHSST is calculated over
the ocean. Large-scale circulation and synoptic-scale weather conditions are examined using the European
Center for Medium-range Weather Forecasts (ECMWF) Interim (ERA-Interim) [Dee et al., 2011] reanalysis data
at 0.75∘ × 0.75∘ horizontal resolution. ERA-Interim has been found to effectively reproduce poleward moisture
fluxes [Bromwich et al., 2011] and synoptic-scale cyclones over the Southern Hemisphere [Hodges et al., 2011].

Cyclones are tracked using the TRACK-1.4.3 algorithm developed by [Hodges, 1994, 1995, 1999] based on rel-
ative vorticity at the 850 hPa field derived from the ERA-Interim. The NOAA Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT) Model (Version 4.0) [Draxler and Rolph, 2003] is used for trajectory analysis
to classify air masses arriving at observation points into maritime and continental (glacial) origins. Four-day
back trajectories are calculated at 00 and 12 UTC from the location of the JARE cruises (Figure 1; also, see
Text S4). Poleward moving air masses (referred to as “marine air masses” in the ice-covered ocean) are defined
as air masses whose computed trajectories originate from oceanic regions warmer than the observation
site in more than 80% of the computations. Equatorward (extrapoleward) moving air masses (referred to as
“glacial air masses” in the ice-covered ocean) are defined as air masses whose computed trajectories originate
from Antarctica or pass through an oceanic region colder than the observation site in more than 50% of the
computations.

3. Results and Discussion

Figure 1 shows the mean storm track density for the Australian summer (December–February) in the obser-
vation years (2013/2014 and 2014/2015). As shown in past studies, the highest densities correspond to the
Antarctic Circumpolar Trough (ACT) expansion from the sea ice edge to the midlatitudes (45∘’S–65∘’S) [e.g.,
Simmonds et al., 2003; Hoskins and Hodges, 2005]. In this study we divide our study area into (1) the extrapo-
lar ocean (north of the ACT), (2) cold ice-free ocean (ACT), and (3) ice-covered ocean (south of ACT). Figure 2
shows the joint probability density function (PDF) of H2O-𝛿D pairs for all measurements in each area. This
PDF is computed as a the two-dimensional histogram between H2O and 𝛿D in surface vapor normalized by
the total number of measurements. The PDF represents the distribution of data in the respective study areas
during the JARE cruises.

Over the extrapolar ocean, where the SST exceeds 10∘C (north of 45∘’S), the PDF lying along the evaporation
curve (black line) suggests that oceanic evaporation from this region is a dominant source. This is supported
by a clear negative linear relationship between d-excess and RHSST (Figure S1). Since surface water with a low
(high) RHSST supplies moisture with a high (low) d-excess [e.g., Pfahl and Sodemann, 2014], d-excess varies in
association with changes in RHSST in regions where locally evaporated moisture from the ocean dominates.
By contrast, the PDF for the cold ice-free ocean (SST < 10∘C) falls below the evaporation curve and depicts a
large spread toward the PDF for the ice-covered ocean. The isotopic composition of precipitation observed
in earlier JARE cruises also exhibits a decreasing trend with latitude in this region (south of 60∘’S) [Nakamura
et al., 2014]. These results suggest that southward/northward winds associated with cyclones transport mois-
ture with enriched/depleted 𝛿D values to the observation site. Based on trajectory analysis, we identify both
the poleward and extrapoleward moving air masses and then examine the isotopic signature of each. As
expected, the 𝛿D values of poleward moving air lie close to the evaporation curve. While the 𝛿D values of
the extrapoleward moving air also turn out to be significantly lower than the 𝛿D values of the poleward mov-
ing air (Figure 3a), they are still significantly higher than those in the ice-covered region. This difference in 𝛿D
implies the presence of a significant supply of additional moisture from evaporation during transport over
the SO. Southerly winds from the Antarctic coast push cold glacial air across the ice-free ocean. Evaporation
under a low-SST condition with a strong temperature contrast between the surface air temperature and SST
(corresponding to a lower RHSST) supplies moisture with a relatively lower 𝛿D and higher d-excess to the mar-
itime air [e.g., Kurita, 2011]. These isotopic features were clearly observable in the extrapoleward moving air
(Figure 3a). Further, the similarity in the relationship between d-excess and RHSST to that in the extrapolar
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Figure 3. (a) H2O-𝛿D of water vapor for JARE observations at the trajectory launch positions. The trajectory analysis was
done from the launch positions at 00 and 12 UTC. The red and blue circles represent poleward and extrapoleward
moving air masses arriving at the location of the ship. Open and filled circles show data obtained from the cold ice-free
ocean and ice-covered ocean, respectively. The masses measured over the ice-covered ocean are marine and glacial air
masses, respectively. The square symbols represent average values; the error bars indicate standard deviations. The
cross symbols represent data that cannot be classified into air masses of either marine or glacial origin. The red
circles enclosed by the purple oval were collected during an atmospheric river (AR) event (17–19 January 2015). (b) A
composite back trajectory pattern for Syowa (black circle) during periods when marine air masses dominated. The color
represents the number of trajectories at each grid. Contours represent the mean sea surface pressure (solid lines;
contour interval 4 hPa) during the same periods. Sea level pressure data above 150 m elevation is masked. (c) Same
as Figure 3b but for glacial air masses.

ocean (Figure S1) supports the notion that oceanic evaporation during transport is the dominant moisture
source for the air mass.

The observations over the ice-covered ocean were mostly conducted while the icebreaker Shirase was near
Syowa station. The 𝛿D values varied widely, ranging from less than −250‰ to more than −150‰, while the
variability in H2O was small. When heavy snowfall and blizzards were observed, 𝛿D values were higher than
the mean for the ice-covered ocean (−212‰). The highest 𝛿D value appeared during a 3 day episode of heavy
snowfall at Syowa (17–19 January 2015) associated with high poleward moisture transport organized in a fil-
amentary structure stretching from subtropical latitudes to the East Antarctic coast (Figure 4a). The vertically
integrated water vapor in this filamentary plume satisfies the threshold for an AR event: more than 1 cm at
70∘’S [Gorodetskaya et al., 2014]. Note that the snow height measured at Syowa increased by about 70–80 mm
during this AR event. In contrast, the lowest 𝛿D values were observed during a dry, cold period with a daily
minimum temperature of below−5∘C. Trajectory analysis was used to explore the 𝛿D signatures for the period
when marine and glacial air masses were dominant at Syowa. As shown in Figures 3b and 3c, the major trajec-
tory paths for the marine and glacial air masses clearly differ. In Figure 3a, anomalously high (low) 𝛿D values
(anomalies from the mean of the whole events exceed 1 𝜎) correspond to the marine air masses (glacial air
masses) in spite of the wide range of isotopic variability. The large 𝛿D variability at Syowa may therefore reflect
the large 𝛿D difference between the marine and glacial air masses. Assuming that the isotopic composition
of glacial vapor is constant at the lowest 𝛿D of the glacial air mass (−285‰) in the H2O concentration range
of glacial air (1500 ppmv ∼ 4500 ppmv), we estimate the evolution of 𝛿D in the inland-moving marine air
mass under a condition of continuous mixing toward the isotopic content of glacial air. Values for possible
end-members of the marine air mass were chosen along the evaporation curve over the ice-free ocean, which
spans an SST from 0∘C to 10∘C. H2O-𝛿D pairs for both the ice-free ocean and ice-covered ocean lie along the
calculated mixing curves (blue shaded area), except in the data on the extrapoleward moving air masses.
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Figure 4. (a) Composite of total column precipitable water (shading: mm) and 500 hPa geopotential heights (contours;
contour interval 150 m) for an atmospheric river event at 00 UTC 17 January 2015. (b) The 500 hPa geopotential height
anomalies (shading; m) and column-integrated water vapor flux anomalies (arrows; kg/m−1 s−1) regressed against the
𝛿D anomalies of water vapor while the ship was near Syowa station. The color shading and arrows have confidence
levels of more than 95%. The counter interval is 0.1, with solid and dashed lines indicating anticyclonic and cyclonic
circulation anomalies, respectively.

This result suggests that the coastal-inland movement of the marine air front governs 𝛿D variability: higher
(lower) 𝛿D values correspond to the front moving inland (seaward). This is also consistent with the relationship
between the variations in d-excess and 𝛿D (inset in Figure 3a). In the 𝛿D-d-excess plot we find that the values
for marine air lie between the mean of the whole events over the ice-covered region and those for marine air
over the cold ice-free ocean. Note that the observed data during the AR event align with those for the ice-free
ocean (Figure 3a). This tells us that the marine air masses from the cold ice-free ocean (ACT) penetrate inland
across the Syowa station.

Next, we consider whether the movement and position of the marine air front are influenced by a large-scale
atmospheric circulation. Figure 4b exhibits atmospheric circulation anomalies (geopotential height anomalies
at 500 hPa) regressed against the 𝛿D values recorded from the ship in the ice-covered ocean near Syowa.
The correlated anomalies are characterized by a synoptic pattern with an anticyclonic anomaly situated at
60∘E in the SO and cyclonic anomalies to both the east and west, a condition that may have led to poleward
moisture transport toward the DML coast. Note that the AR event was also found to be associated with this
atmospheric pattern (Figure 4a). The trough-ridge-trough pattern resembles the zonal wave number 3 (ZW3),
a typical circulation pattern in the extratropical Southern Hemisphere [e.g., Mo and White, 1985; Kidson, 1988]
(Figure S2). Uotila et al. [2013] has reported that anomalous poleward flows associated with ZW3 lead to the
increased southward movement of cyclones over the SO. The close association between the ZW3-like pattern
and southward cyclone movement is consistent with the southward shift of the cyclonic anomalies from the
position of the anticyclonic anomaly (Figure 4b). Southward moving cyclones that reach the Antarctic coast
can transport marine air with isotopically enriched moisture to the Antarctic ice sheet. For moisture transport,
the correlated anomalies of moisture flux (arrows in Figure 4b) lie along the eastern and northern edge of
the cyclone. The significant area extends to around 50∘S in the ACT. This result is consistent with the H2O-𝛿D
diagram showing the moisture sources of the marine air intrusions distributed over the ACT.

4. Conclusions

We used continuous measurements of isotopic ratios in water vapor along the JARE cruises from Australia
to Syowa station to identify the moisture origin of marine air moving to Syowa and the influence of large-scale
atmospheric circulation on the marine air intrusion. The joint PDF in the H2O-𝛿D space diagram showed
the distribution of moisture sources for marine air advected to Syowa, including an AR event, in the ACT
(45∘’S–65∘’S). This result supports a past assessment of the moisture sources of the precipitation at Syowa
based on the linear relationship between the 𝛿

18O of precipitation and the sea ice extent [Bromwich and
Weaver, 1983]. They have addressed that the moisture source region is located around the latitudes of 55∘’S
and 58∘’S. It is also consistent with an independent assessment of the moisture sources of this coastal
area based on a Lagrangian moisture source diagnostic (48∘’S–55∘’S) [Sodemann and Stohl, 2009]. In the
ice-covered ocean near Syowa station, the large range of isotopic variability reflects the coastal-inland
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movement of the front between a warm maritime air mass with an enriched 𝛿D value and a cold glacial air
mass with a depleted 𝛿D value. This 𝛿D variability was also found to be linked to the variability of large-scale
circulation elicited by the trough-ridge-trough pattern. This synoptic pattern enhances the southward move-
ment of the cyclones [Uotila et al., 2013]. The northerly winds associated with cyclones that reach the coast of
EA push marine air further inland, possibly bringing heavy snowfall toward inland sites [e.g., Hirasawa et al.,
2000; Gorodetskaya et al., 2014; Welker et al., 2014]. Changes in the frequency and duration of this pattern may
exert a strong controlling force on the surface mass balance of the EA coast. Close monitoring of these events
at coastal sites thus appears to be a promising method for detecting early signs of climate change in EA. A
quantitative understanding of the relationship between marine air intrusion and precipitation based on quan-
titative modeling is critical for projecting the coastal Antarctic surface mass balance. Our study shows that the
isotopic composition of water vapor on the Antarctic ice sheet is an important diagnostic tool for assessing
model performance.
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Erratum

In the originally published version of Figure 1, open circles showed the locations in the extra-polar ocean
where sea surface temperature (SST) exceeded 10∘C. Some open circles appeared inside the cold ocean
where SST is colder than 10∘C, and these have been corrected. A description has also been added to the leg-
end of Figure 1 to explain contours that represent summer average SST. This version may be considered the
authoritative version of record.
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