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Julien Salomon †
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Abstract

We propose a new strategy for solving by the parareal algorithm highly oscillatory
ordinary differential equations which are characteristics of a six-dimensional Vlasov
equation. For the coarse solvers we use reduced models, obtained from the two-scale
asymptotic expansions in [4]. Such reduced models have a low computational cost since
they are free of high oscillations. The parareal method allows to improve their accuracy
in a few iterations through corrections by fine solvers of the full model. We demonstrate
the accuracy and the efficiency of the strategy in numerical experiments of short time
and long time simulations of charged particles submitted to a large magnetic field. In
addition, the convergence of the parareal method is obtained uniformly with respect to
the vanishing stiff parameter.

Keywords: parareal algorithm, two-scale expansion, multi-scale models, Vlasov character-
istics, electric and magnetic fields.

1 Introduction

In this paper we propose a new coupling strategy in the parareal framework [14, 15] to
efficiently solve the following six dimensional dynamical system for 0 < ε� 1

dxε
dt

= vε, xε(s) = x,

dvε
dt

=
1

ε

(
vε ×Bε(xε)

)
+ E(t,xε), vε(s) = v,

(1)

where (x,v) is an initial condition given at the initial time t = s. The system in (1) models
the dynamics of a charged particle under the influence of an external electro-magnetic field.
This is a typical characteristic curve of the Vlasov equation. In this context, xε : R → R3
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stands for the position unknown, vε : R→ R3 for the velocity unknown, and E : R×R3 → R3

and 1
εBε : R3 → R3 for a given electro-magnetic field. We assume |Bε| = 1 and that the

mass and the charge particle are both equal to 1. The parameter 1/ε in front of the
vε×Bε(xε) term means that the magnetic field is assumed high with respect to the electric
term, in view of plasma confinement considerations [10]. More precisely, 1/ε denotes the
strength of the magnetic field and thus, since the charge-to-mass ratio is assumed to be 1,
the cyclotron frequency is also equal to 1/ε. The difficulty of the problem is that the large
magnetic field introduces a rapid time scale, the rotation of particles around the magnetic
field line, which is much smaller than the one driven by the electric field. We are thus faced
with a multi-scale problem whose numerical solution by standard methods requires high
computational cost, since a standard but accurate enough numerical integrator requires
time steps that are of the order of the fastest oscillation. This is an issue to be avoided in
applications, and therefore, in this paper we are interested in solving equations in (1) with
a time step which is not constraint by ε.

The parareal algorithm is an efficient method performing real time simulations with the
help of parallel computing, for the numerical solving of a very large class of time dependent
equations. The literature is huge, we cite only [14, 15, 3, 7]. The method involves a fine
expensive solver that is only applied in parallel, and a coarse but cheap solver which is used
in sequential. A basic way to apply parareal in practice consists in taking large time steps
∆t for a coarse solver and in refining the solutions in parallel using smaller time steps δt.
This can reduce the computational time if the parareal iterations converge rapidly and if
the ratio ∆t/δt is large.

However, when solving stiff equations like (1), regardless of the numerical scheme used for
the coarse solver, the time step should satisfy ∆t ∼ ε to achieve enough accuracy leading to
a rapid convergence of the parareal scheme [8]. This is due to the high oscillations in time
(with period of order ε) in the solution. Therefore, it can be interesting to use a different
model to define the coarse solver in such a way that it remains computationally cheap but
with a time step satisfying ∆t � ε. Eventually, it is also important that the coarse solver
be accurate enough so that the parareal iterations converge rapidly. In the case of equation
(1), it is crucial for the coarse solver to provide an accurate approximation of the high
oscillations, since otherwise the solver accumulates large errors, parareal requires a large
number of iterations and thus the computational speed-up deteriorates. The purpose of
our work is to obtain a convergent parareal algorithm with a large ratio ∆t/δt and a small
number of iterations (k � N , see section 2 for notation).

In this paper, we use the parareal algorithm to efficiently integrate equation (1), by using a
reduced model to define the coarse solver. Roughly speaking, such a reduced model reads

dY

dt
= f(Y,U), Y(s) = x,

dU

dt
= g(Y,U), U(s) = v,

(2)

where Y, U are used to approximate xε, vε thanks to(
xε(t),vε(t)

)
∼ Z

(
(t− s)/ε,

(
Y(t),U(t)

))
when ε→ 0,

2



and where Z is an operator for which an explicit form is to be derived in practice.
Specifically, we illustrate the idea above with an example in a similar context, as detailed
in [9]. Thus, if instead of equation (1) we consider

duε
dt

+
1

ε
Luε = N(uε), uε(0) = u0,

where L is a linear operator and N(uε) is a specific nonlinear term, then it is well-known that
under suitable assumptions, the solution uε(t) has the asymptotic approximation uε(t) =
exp(− t

εL)u(t) + O(ε), where the slowly varying function u is the solution to the reduced
model

du

dt
= N(u), u(0) = u0, (3)

where the N(u) term is obtained by time averaging

N(u(t)) = lim
T→∞

1

T

∫ T

0
eθLN(e−θLu(t))dθ.

It is important to note that u(t) and its derivatives are formally bounded independently of
ε and therefore, large time steps ∆t� ε can be taken to solve (3) (see [9]).

In our approach, the reduced model is obtained through a two-scale asymptotic expansion
and is proved to provide an accurate approximation of the initial equation when the small
parameter ε vanishes [4]. More precisely, we use either a zero-th order or a first order two-
scale model, depending on the availability of practical equations. Indeed, it is possible that
the first order model is too complex to be solved, analytically or numerically and in this case,
only the zero-th order model will be considered. These models have two advantages: the low
computational cost and the capability to give a good approximation of the high frequency
oscillations through the operator Z enclosing the smallest scale, under the assumption that
these oscillations are periodic and can be analytically computed [4].

The idea of using a different model for the coarse solver is not new. As an example, a
similar approach has been used in chemical kinetics [15], where a reduction of a linear
kinetic system with multiple scales was applied for the coarse solving. In [13], a slow
manifold projector is used as coarse solver for solving ordinary differential equations with
dissipative stiffness. We also mention two contributions closely related to our work. First,
a parareal method for PDEs with linear high oscillating term is proposed in [9]. On the
basis of a classical averaged model, the method needs exact knowledge of the fast variable
to obtain a convergent parareal algorithm. Though our strategy also assumes the period
of the fastest motion to be known, the high oscillating term is not necessarily linear in our
case (see section 5). Additionally, we consider first-order asymptotic terms which provide a
more accurate averaged model and can accelerate the convergence of the parareal method.
Second, in the frame of models similar to (1), a multi-scale method for solving the slow
evolution was successfully used as coarse solver in [1], without requiring explicit knowledge
of the fast and slow variables. However a tedious alignment algorithm is required to achieve
convergence of parareal. Specifically, the method needs to make the alignment of the fast
phases of the coarse and fine solvers with sufficient efficiency and accuracy. On the contrary,
our reduced model accurately synchronizes phase with the fine solution, which allows us to
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avoid such an alignment algorithm to get the numerical convergence of the parareal method.
The drawback of our approach is that the small period of the fast oscillation must to be
known. However, this particular framework covers several models which solve interesting
problems in plasma physics, as illustrated in section 6.

The paper is organized as follows. In section 2, we briefly present the parareal method and
describe our strategy as applied in the context of stiff ordinary differential equations. In sec-
tion 3, we introduce the two-scale asymptotic expansion at the base of the reduced models
and we justify their use as coarse solvers of our parareal algorithm. In sections 4 and 5, we
present three ODE models which enter into the general form (1) and derive their first order
and zero-th order reduced equations following [4]. The full equations under consideration
apply to different models in plasma physics: isotope separation by ion cyclotron resonance,
storing of charged particles in a Penning trap, and an example of charged particle confine-
ment by strong variable magnetic field. For these models, we present in section 6 numerical
experiments that show that the parareal strategy provides accurate results together with
computational efficiency through parallelism.

2 The parareal algorithm

Introduced in 2001 [14], the parareal (parallel in real time) algorithm displays its advantage
by covering various fields of applications where it exploits very efficiently parallel computing
over a large number of processors to solve problems in real time constraint context. Since
its conception, the algorithm has been intensively analyzed [2, 8, 16, 6]. Let us briefly recall
this approach. Consider the simple time dependent problem

du

dt
= f(u) in (0, T ), u(0) = u0. (4)

The time interval [0, T ] is decomposed into N uniform time slices [Tn, Tn+1], for n ∈
{0, . . . , N − 1}. Let F(Tn+1, Tn, Un) denote the fine solver, which gives a very accurate
approximation of the solution at time Tn+1 with the initial solution Un at time Tn and let
G(Tn+1, Tn, Un) denote the coarse solver, which gives a coarse approximation of the solution
at time Tn+1 also with the initial solution Un at time Tn. The coarse solver is to be chosen
in such a way that, its cost is much lower than the one of the fine solver. A popular strategy
consists in using the approximation method considered in the fine solver but with a larger
time step [8]. Alternatively, one can use an approximation method with lower accuracy,
or even use a different model from the original problem as long as it can give a reasonable
coarse and fast approximation of the solution of the original problem [15].
In this paper, we follow the latter approach and focus on the idea of using a reduced
model of the original problem for the coarse solver. For that reason, the coarse solver
G(Tn+1, Tn, Un) is always assigned to the solution of the reduced model (2) and the fine
solver F(Tn+1, Tn, Un) is always assigned to the (approximated) solution of the original
problem (1). In addition, we let the coarse propagator perform a single time step per time
slice [Tn, Tn+1].
The parareal algorithm aims at computing a sequence (Ukn)k,n of approximations of u(Tn) for
n ∈ {0, . . . , N} for every k in the following way. At the first step, the initial approximation
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U0
n at coarse time points 0 = T0 < T1 < · · · < TN = T can be computed sequentially using

the coarse solver that reads

U0
n+1 = G(Tn+1, Tn, U

0
n), U0

0 = u0,

and then for k = 0, 1, . . . with Uk+1
0 = u0, the parareal algorithm computes a more accurate

approximation

Uk+1
n+1 = G(Tn+1, Tn, U

k+1
n ) + F(Tn+1, Tn, U

k
n)− G(Tn+1, Tn, U

k
n).

In this iteration, the terms F(Tn+1, Tn, U
k
n) have the largest computational cost. Therefore,

all these fine computations could be performed in parallel over each interval [Tn, Tn+1], the
main goal of parareal being to speed up the computing time. However, in order to achieve a
real speed-up, the algorithm should converge in a number of iterations significantly smaller
than the number of time intervals.

3 Two-scale asymptotic expansion

In this section, we summarize the principles and the main result of two-scale asymptotic
expansion allowing to obtain reduced models. The equation (1) is a particular instance of
the more general singularly perturbed dynamical system

dXε
dt

= a(t,Xε) +
1

ε
b(t,Xε), Xε(s) = X , (5)

where Xε : R → Rd and a and b are given fields satisfying suitable assumptions and s
plays the role of the initial time. Following [4], we briefly recall the asymptotic two-scale
expansion method in order to approximate the solution Xε(t) when ε→ 0. Under regularity
assumptions on a and b and assuming the solution Z(t; θ, z) to equation

dZ

dθ
= b(t,Z), Z(t; 0, z) = z (6)

to be periodic in θ, for every t ∈ R and every z ∈ Rd, it is proved in [4] that Xε admits the
following two-scale expansion in time

Xε(t) = X 0
(
t,
t− s
ε

)
+ εX 1

(
t,
t− s
ε

)
+ ε2X 2

(
t,
t− s
ε

)
+ . . . (7)

when ε → 0 and where the functions X i(t, θ) are periodic in θ for every i ∈ N. In this
setting, ordinary differential equations characterizing the terms of the expansion (7) are
derived in [4, Theorems 1.1 & 1.3]. In addition, strong convergence theorems are proved,
justifying the approximation results asserting that, e.g., at the zero-th order we have

Xε(t) ∼ X 0
(
t,
t− s
ε

)
, when ε→ 0,

and at the first order,

Xε(t) ∼ X 0
(
t,
t− s
ε

)
+ εX 1

(
t,
t− s
ε

)
, when ε→ 0.
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For the sake of completeness, we give below the result concerning the two-scale limit model
or the zero-th order approximation [4, Theorem 1.1] in the case of a six dimensional space
(d = 6).

Theorem 3.1. We assume that1 a ∈
(
C1
b (R×R6)

)6
and b ∈

(
C2
b (R×R6)

)6
. Assume also

that the solution of (6) is 2π-periodic in θ, for every t ∈ R and every z ∈ R6. Then, for
every initial condition X ∈ R6, every ε > 0, and every ∆S > 0, the solution Xε of (5)
exists on [s, s+ ∆S], is unique and satisfies

lim
ε→0

sup
t∈[s,s+∆S]

∣∣∣∣Xε(t)−X 0

(
t,
t− s
ε

)∣∣∣∣ = 0, (8)

where | · | stands for the Euclidean norm on R6 and X 0 satisfies

X 0(t, θ) = Z
(
t; θ,Y0(t)

)
(9)

and where Y0 is the solution to

dY0

dt
= α(t,Y0), Y0(s) = X , (10)

with α defined by

α(t,Y) =
1

2π

∫ 2π

0
{∇Z(t; θ,Y)}−1

{
a(t,Z(t; θ,Y))− ∂Z

∂t
(t; θ,Y)

}
dθ.

Remark 3.2. We remark that the limit model in (10) does not contain high oscillations in
time so that cheap numerical schemes can be used to compute Y0. Then, when Z is known
in (6), we obtain the term X 0 by (9), as an approximation of the solution Xε in the sense
of (8). Though obtained at a low computational cost, the approximation X 0 still contains
information about the high oscillations in the solution, through the operator Z.
These facts underline that the solution to the limit model given by (9)-(10) is a good candi-
date for a coarse solving in the parareal framework.

In the subsequent sections, we develop this framework for equations of the type of equation
(1), by using the notation X = (x,v)T , where, as in classical mechanics, x = (x1,x2,x3)T

stands for the position vector and v = (v1,v2,v3)T for the velocity vector. In this setting,
it is important to note the particular form of the system (6). The solution Z captures
only the rotation of the particle velocity following the magnetic field: Z = (xZ,vZ)T is the
solution to 

dxZ

dθ
= 0, xZ(0) = x,

dvZ

dθ
= vZ ×B(xZ), vZ(0) = v.

This motion is assumed to be 2π-periodic in the theory we use. We denote in the sequel
the cyclotron period in time by P = 2πε and the cyclotron frequency by 1/ε, which are
associated to the full system (1).

1Cm
b stands for the space of continuous functions with bounded derivatives to the order m.
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4 The case of a constant magnetic field

In this section we consider equation (1) provided with a constant magnetic field Bε =−→e1 ,
where {−→e1 ,

−→e2 ,
−→e3} is the frame of R3 and with a given external electric field. In this way, the

term vε ×Bε(xε) in the velocity equation of (1) writes (vε)
⊥ = (0, (vε)3,−(vε)2)T . Thus,

we can see that the basic assumption of periodicity of the solution of (6) is satisfied. The
common feature of the test cases we treat in this section is that we can compute analytically
the solutions of equation (1) and of the corresponding reduced model. Therefore, when
applying the parareal algorithm we will be able to use the exact flows for the fine and the
coarse solvers.

4.1 A uniform time varying electric field

In this section, we take an electric field which is only highly oscillating in time. In this case,
system (1) writes 

dxε
dt

= vε, xε(s) = x,

dvε
dt

=
1

ε
(vε)

⊥ + E
( t
ε

)
, vε(s) = v,

(11)

where E has the form E(τ) =
(
E1, E2(τ), E3(τ)

)T
, with E1 ∈ R and E2, E3 are 2π-periodic

functions, see [4, Section 3.1]. This system can be used for modelling ion cyclotron resonance
with application in isotope separation in plasmas, see [5] and the references therein. In
magnetized plasmas, the ions are heated by an oscillating perpendicular electric field at
frequencies corresponding to the ion cyclotron frequency. Thus, the cyclotron resonance
leads to a growth of the amplitude of motion in time. In the sequel, we consider for
illustration the following electric field

E1 = 0, E2(τ) = sin(τ), E3(τ) = cos(τ). (12)

However, all the following results can be derived in a similar form for a general electric field
with the above properties. Next, we need the following matrices denoted by

P =

 1 0 0
0 0 0
0 0 0

, R(θ) =

 1 0 0
0 cos θ sin θ
0 − sin θ cos θ

,R(θ) =

 0 0 0
0 sin θ 1− cos θ
0 cos θ − 1 sin θ

.
(13)

It is convenient to put the solution of (11)-(12) in the form(
xε(t)
vε(t)

)
= A

(
x
v

)
+ B, (14)

where the 6× 6 matrix A and the vector B are given by

A =

(
I3 (t− s)P + εR

(
t−s
ε

)
O3 R

(
t−s
ε

) )
and

B =

(
ε(t− s)

(
0,− cos(t/ε), sin(t/ε)

)T
+ ε2

(
0, sin(t/ε)− sin(s/ε), cos(t/ε)− cos(s/ε)

)T
(t− s)

(
0, sin(t/ε), cos(t/ε)

)T
)
,
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with I3 the 3× 3 identity matrix and O3 the 3× 3 zero matrix.

Next, we derive the reduced model for equation (11). We apply [4, Theorems 3.1, 3.2] to
equations (11)-(12) to obtain the first order two-scale model. The approximation of the
solution is

G(t) =

 x0
(
t,
t− s
ε

)
v0
(
t,
t− s
ε

)
+ ε

 x1
(
t,
t− s
ε

)
v1
(
t,
t− s
ε

)
 , (15)

where the terms in the expansion are given by(
x0(t, θ)
v0(t, θ)

)
=

(
y0(t)

R(θ)u0(t)

)
(16)

and (
x1(t, θ)
v1(t, θ)

)
=

 y1(t) +R(θ)u0(t)

R(θ)u1(t) +R(θ)
(∫ θ

0
dσ − θ

2π

∫ 2π

0
dσ
)(
R(−σ)E(σ)

)
 . (17)

Then, in the particular case of the electric field in (12), we have that
(
y0(t),u0(t)

)
is solution

to

dy0

dt
=

 (u0)1

0
0

 ,
du0

dt
=

 0
0
1

 and

{
y0(s) = x,
u0(s) = v,

(18)

with (x,v) the initial condition in (11) and that
(
y1(t),u1(t)

)
is solution to

dy1

dt
=

 (u1)1

−1
0

 ,
du1

dt
= 0 and

{
y1(s) = 0,
u1(s) = 0.

(19)

Equations (18)-(19) are easy to solve, their solutions are{
y0(t) =

(
v1(t− s) + x1,x2,x3

)T
,

u0(t) =
(
v1,v2, (t− s) + v3

)T
,

and respectively {
y1(t) =

(
0,−(t− s), 0

)T
,

u1(t) =
(
0, 0, 0

)T
.

Replacing these formulas in (16)-(17) and getting the result in (15) we obtain the analytical
form of the first-order two-scale approximation G(t). However, it is interesting to write G
as the solution of the original system was derived in equation (14). We have

G(t) = A
(

x
v

)
+ C, (20)

where the matrix A is as in (14) and C is given by

C =

(
ε(t− s)

(
0,− cos((t− s)/ε), sin((t− s)/ε)

)T
(t− s)

(
0, sin((t− s)/ε), cos((t− s)/ε)

)T
)
.

8



Remark 4.1. We notice that in the general case where E has the form

E(τ) =
(
E1, E2(τ), E3(τ)

)T
, with E1 ∈ R and 2π-periodic functionsE2, E3,

the solutions of the full model and of the reduced one keep similar expressions to those in
(14) and (20) respectively. More precisely, the matrix A will be the same, the difference
appearing in the vectors B and C which will contain averages in the fast variable against
sin(·) and cos(·) of the functions E2 and E3.

4.2 A non uniform stationary electric field

In this part, we consider an electric field which is not dependent of time but of space and
we use the framework in [4, Section 3.2]. In this case, system (1) writes

dxε
dt

= vε, xε(s) = x,

dvε
dt

=
1

ε
(vε)

⊥ + E(xε), vε(s) = v,

(21)

Then, following a standard strategy we can find an explicit form of a linear application E
leading to highly oscillating solution but which is bounded in time. Nevertheless, by taking
in (21) the electric field given by

E(x) = c

 −x1

x2/2
x3/2

 , (22)

with an arbitrary constant c > 0, the system describes the dynamics of a charged particle
in an ideal Penning trap [12] (we fix to 1 both the charge and the mass of the particle).
Under the condition ε <

√
1/(2c), the solution of (21)-(22) is

xε(t) =

 c1 cos(
√
c (t− s)) + c2 sin(

√
c (t− s))

a1 sin(aε(t− s))− a2 cos(aε(t− s)) + b1 sin(bε(t− s))− b2 cos(bε(t− s))
a1 cos(aε(t− s)) + a2 sin(aε(t− s)) + b1 cos(bε(t− s)) + b2 sin(bε(t− s))

 ,

vε(t) =
dxε
dt

(t), (23)

where

aε =
1 +
√

1− 2cε2

2ε
, bε =

1−
√

1− 2cε2

2ε
, (24)

and a1, a2, b1, b2, c1, c2 are constants to be found from the initial condition.

Remark 4.2.

1. A Penning trap is a device for storing charged particles using a homogeneous magnetic
field and an inhomogeneous quadrupole electric field. The constant c in (22) entails the
geometry of the trap and the voltage between the electrodes, while 1/ε is the magnitude
of the magnetic field. The condition for having a stable periodic trajectory [12] is

1

ε
>
√

2c. (25)

9



Otherwise, the particle escapes from the trap due to a magnetic field which is weaker
than the electric field. This corresponds to a solution with growing amplitude of motion
in time.

2. We notice that the three frequencies
√
c, aε, and bε are denoted in literature [12] by

ωx, ω+, and ω− respectively, and they verify the relation

ω± =
1

2

(
ωcy ±

√
ω2
cy − 2ω2

x

)
,

where ωcy is the cyclotron frequency. In our notation ωcy = 1/ε.

3. It is clear that the motion in the −→e1 direction is decoupled from the motion in the
other two directions. More precisely, a charged particle performs in an ideal Penning
trap three independent motions with characteristic frequencies: a modified cyclotron
motion (at frequency ω+), the axial motion (at frequency ωx), and the magnetron
motion or the E×B drift (at frequency ω−).

4. We have aε ∼ 1
ε and bε ∼ ε when ε→ 0. Therefore, the solution in (23) oscillates in

time at three scales, 2πε, 1 and 2π/ε. In addition, we can identify initial conditions
leading to solutions which are oscillating at the desired scale(s) by equating to zero the
corresponding coefficients.

Next, we derive the reduced model for equation (21). More precisely, we apply [4, Theo-
rem 3.3] to write the specific first order two-scale model to the system (21)-(22). Recalling
the formula in [4, Theorem 3.3], the first-order approximation of the solution to the model
(21)-(22) is given by

G(t) =

 x0
(
t,
t− s
ε

)
v0
(
t,
t− s
ε

)
+ ε

 x1
(
t,
t− s
ε

)
v1
(
t,
t− s
ε

)
 , (26)

where, as in section 4.1, the terms in the expansion are given by(
x0(t, θ)
v0(t, θ)

)
=

(
y0(t)

R(θ)u0(t)

)
(27)

and (
x1(t, θ)
v1(t, θ)

)
=

(
y1(t) +R(θ)u0(t)

R(θ)u1(t) +R(θ)E(y0(t))

)
. (28)

Then, in the particular case of the electric field in (22), we have that
(
y0(t),u0(t)

)
is solution

to

dy0

dt
=

 (u0)1

0
0

 ,
du0

dt
=

 −c(y0)1

0
0

 and

{
y0(s) = x,
u0(s) = v,

(29)
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with (x,v) the initial condition in (21) and that
(
y1(t),u1(t)

)
is solution to

dy1

dt
=

 (u1)1
c
2(y0)3

− c
2(y0)2

 ,
du1

dt
=

 −c(y1)1

− c
2(u0)3
c
2(u0)2

 and

{
y1(s) = 0,
u1(s) = 0.

(30)

Equations (29)-(30) are easy to solve, their solutions are{
y0(t) =

(
x1 cos(

√
c (t− s)) + v1√

c
sin(
√
c (t− s)), x2, x3

)T
,

u0(t) =
(
− x1

√
c sin(

√
c (t− s)) + v1 cos(

√
c (t− s)), v2, v3

)T
,

and respectively {
y1(t) =

(
0, c2x3(t− s), − c

2x2(t− s)
)T
,

u1(t) =
(
0, − c

2v3(t− s), c2v2(t− s)
)T
.

Replacing (27)-(28) in (26), we obtain

G(t) =

(
y0(t)

R( t−sε )u0(t)

)
+ ε

(
y1(t) +R( t−sε )u0(t)

R( t−sε )u1(t) +R( t−sε )E(y0(t))

)
, (31)

and thus, getting the analytic expressions of y0,u0,y1,u1,E and of matrices R and R in
the above formula leads to the analytic form of the approximation G(t) to the solution(
xε(t),vε(t)

)
when ε is small enough and at any time t ∈ [s, s+ ∆S]. The obtained formula

will be used in section 6 for the coarse solver.

5 The case of a variable magnetic field

In this section we study the case of a magnetic field with a strong part which is variable
and a bounded part which is constant (see [4, Section 3.4]). In addition, we restrict to the
case without electric field. More precisely, we consider equation (1) in the form

dxε
dt

= vε, xε(s) = x,

dvε
dt

=
1

ε

(
vε ×M(xε)

)
+ vε ×−→e3 , vε(s) = v,

(32)

where

M(x) =
1√

x1
2 + x2

2

 −x2

x1

0

 .

We first notice that the assumption on the 2π-periodicity of the solution Z to equation (6)
is satisfied. Then, unlike the test cases in section 4, we do not have an analytic expression
for the solution of equation (32). The reduced model we will use in the parareal method for
this case, is the two-scale limit and not the first order approximation. The reason is that
using the first order term in the asymptotic expansion becomes almost impossible due to
its complex form (see [4, Theorem 3.6 & Appendix A]).
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Next, we detail the two-scale limit model approximating equation (32) when ε → 0. Fol-
lowing [4, Theorem 3.6], the limit term in the expansion is given by(

x0(t, θ)
v0(t, θ)

)
=

(
y0(t)

Zv

(
t; θ,y0(t),u0(t)

) ) ,
where the components of Z(t; θ,x,v) =

(
Zx(t; θ,x,v),Zv(t; θ,x,v)

)T
are Zx(t; θ,x,v) = x

and Zv(t; θ,x,v) = C(θ,x)v, with

C(θ,x) =


x1

2 cos θ+x2
2

x1
2+x2

2
x1x2(cos θ−1)

x1
2+x2

2 − x1 sin θ√
x1

2+x2
2

x1x2(cos θ−1)
x1

2+x2
2

x2
2 cos θ+x1

2

x1
2+x2

2 − x2 sin θ√
x1

2+x2
2

x1 sin θ√
x1

2+x2
2

x2 sin θ√
x1

2+x2
2

cos θ


and where

(
y0(t),u0(t)

)
is solution to

dy0

dt
= A(y0)u0,

du0

dt
= β(y0,u0) and

{
y0(s) = x,
u0(s) = v,

(33)

with (x,v) the initial condition in (32) and with

A(y) =
1

y1
2 + y2

2

 y2
2 −y1y2 0

−y1y2 y1
2 0

0 0 0

 , β(y,u) =


u2(u1y2−u2y1)

y1
2+y2

2

u1(u2y1−u1y2)
y1

2+y2
2

0

 .

Thus, in this case, the approximation G(t) to the solution
(
xε(t),vε(t)

)
when ε is small

enough, is obtained first by solving the system (33) and then

G(t) =

(
y0(t)

C
(
t−s
ε ,y

0(t)
)
u0(t)

)
. (34)

6 Numerical results

First, in section 6.1 we analyze the time interval of validity and the accuracy of the reduced
models for each test case. Then, we present numerical experiments illustrating the conver-
gence of the parareal algorithm. In all the cases we consider, we obtained the numerical
convergence with a number of parareal iterations K much smaller than the number N of
the time slices of the interval [0, T ].
The reduced models that we use are zero-th or first order approximations of the initial
stiff equation until a final time of order 1. The parareal algorithm allows us to perform
simulations in long times, of order 1/ε or larger, by using the reduced model on time
intervals where the latter is proved to be valid. For each case, we study the convergence
of the algorithm when ε is fixed and also when making the parameter ε vanishing. This
last issue is meaningful from the application viewpoint, since in realistic plasma physics
phenomena such parameters are not fixed to a single value during the simulation but they
can decrease in time.
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6.1 Validity of the reduced models

The theorems from [4] prove convergence over time intervals of length 1 of the original
models to the reduced models when the parameter ε vanishes. Therefore we cannot expect,
in theory, that the approximation be valid over intervals of length 1/ε or larger. In addition,
to the best of our knowledge, there are no estimates for the rate of convergence. In this
section, we consequently assess numerically the quality of approximation of the reduced
models in valid final times, i.e. in times of order O(1). We then check how large the final
time can be such that the reduced models still provide satisfactory approximations. To this
end, we plot the relative error

Error(Tn) =
‖Gn −X (Tn)‖1
‖X (Tn)‖1

, (35)

where ‖ · ‖1 stands for the `1 norm in R6, Gn stands for the reduced model solution at time
Tn and X (Tn) stands for the original model solution at time Tn. Recall that Gn and X (Tn)
have analytic forms for the test case in section 4.2, whereas numerical approximations are
used for both for the test case in section 5. Next, we do not discuss the case described in
section 4.1 since writing the solutions of the original and the reduced models in the forms
(14) and (20) respectively, shows that convergence occurs after one iteration (see next
section).

For the case considered in section 4.2 we recall that both the original and the first-order
reduced models have analytic solutions given by (23) and (31). First, we remark that the
exact solutions corresponding to the values of ε ∈ {0.1, 0.04} are not well-approximated
by the reduced model, see Fig. 3. We can see that beyond the final time T = 50 the
approximations are not acceptable anymore. In contrast, for ε = 0.01 or smaller, the
relative error is below 0.1 till the final time T = 2500, meaning that ε is small enough so
that the reduced model provides a good approximation. Thus, if ε = 0.01, we obtain an
acceptable relative error at the final time T = 2500, which means almost 40000 cyclotron
orbits.

We now consider the test case of section 5. Here, we solve both models numerically, since
no analytic expressions of their solutions are available. More precisely, we solve the system
(32) by the symmetric and volume-preserving method G4 of order 4 described in [11]
and the limit model in (33) by the explicit Runge-Kutta 4 method. We use for the limit
model approximation a time step equal to 0.625, whereas for the original dynamics we use
a time step about 2πε/80 to accurately solve the cyclotron motion. We consider two initial
conditions

x = (0, 1, 1)T , v = (1, ε, 0)T (36)

and
x = (1, 1, 1)T , v = (1, ε, 0)T . (37)

Let us do some qualitative remarks about the trajectories of both particles. First, notice
that the solutions obtained with these initial conditions behave differently: for the first
particle, the solution oscillates at two time scales (a rapid oscillation of order ε and a
slower oscillation of order 1) whereas for the second one, the solution entails additionally a
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slow motion, consisting of a linear drift in the −→e3 direction (see Fig. 1). Also, the amplitude
of the rapid oscillation in position in the −→e3 direction is of order ε2 for one particle and of
order ε for the other.

Then, as we can deduce from (33), the two-scale limit model does not capture the
motion in the −→e3 direction, providing only an approximation of the projected motion on
the perpendicular plane to −→e3 . Thus, the limit model misses the −→e3-drift motion of the
particle in (37). Eventually, the right panel in Fig. 1 shows that the planar angular velocity
of the particle in (36) is larger than that of the particle in (37). We plot the relative
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Figure 1: The position trajectories until final time 5 of two particles: (36) at the left panel
and (37) at the center, following the model in (32). The projection of their motion on the
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Figure 2: The position trajectories until final time 50 of two particles: (36) at the left panel
and (37) at the right, following the model in (32).

error of the reduced (limit) model for several values of ε in Fig. 4. We can see that the
behaviour of the error displays significant difference between these two initial conditions.
More precisely, we observe that at final time T = 100, the reduced model does not provide
a good approximation of the original model when ε ∈ {0.1, 0.05} in the case of the initial
condition given by (37). On the contrary, when the initial condition is given by (36), the
error is acceptable. However, for both particles, we deduce from Fig. 4 that the errors are
large for times of order 2500, for any value of ε. In addition, when diminishing the time
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step for the numerical solver of the reduced model, we observe that the error drastically
decreases when using the initial condition in (36). This result does not hold for the initial
condition in (37), see Fig. 5.

In conclusion, we obtained for the first test case that the reduced model accurately ap-
proximates the original model in large times if ε is sufficiently small. For the second test
case the reduced model fails to approximate the original dynamics in long times for every
considered value of ε. We show in the next sections that the parareal algorithm allows to
enhance the situation.
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Figure 3: Evolution with respect to time of the relative errors of the reduced model solution
in (31) with respect to the solution in (23) with the initial condition in (38), in short time
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6.2 The test cases with strong constant magnetic field

First, we discuss about the case in section 4.1 of a uniform but time varying electric force in
equation (11). Assume we fix an initial condition and we fix ε to a small value, say ε = 0.01.
Then we use the exact solutions in (14) and (20) for the fine propagator F and respectively
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Figure 5: Evolution with respect to time of the relative errors of the reduced model in (34)
with respect to the solution of (32) with the initial condition in (37) (at left) and that in
(36) (at right). The fast cyclotron period is denoted by P = 2πε where ε = 0.01. Two time
steps for the reduced model are used: 0.625 ∼ 10P and 0.3125 ∼ 5P .

the coarse solver G. We observe that the parareal algorithm writes in this case

Uk+1
n+1 = F(Tn+1, Tn, U

k+1
n ), ∀n ∈ {0, . . . , N − 1}, ∀k ≥ 0.

In particular, for k = 1 we have

U1
n+1 = F(Tn+1, Tn, U

1
n), ∀n ∈ {0, . . . , N − 1}

and therefore, since the exact flows are used for the propagators F and G, the parareal
algorithm provides an exact solution in one iteration. Though easy to solve, this test case
underlines the strength of the strategy: thanks to the writing of the original and reduced
flows as (14) and (20) respectively, the use of the reduced model through the parareal
algorithm leads to high accuracy in one iteration, whereas the error of the reduced model
alone is very large (of order 1, following our simulations when ε is fixed to ε = 0.01).

We now treat the case in section 4.2. We consider the initial condition

x = (1, 1, 1)T , v = (1, 1, 1)T (38)

for solving the model (21)-(22). We set c = 2 and we vary ε verifying (25). The solution
issued from this initial condition oscillates at three definite time scales (see Remark 4.2).

• We first fix ε = 0.01. As a first approach, we apply the parareal method in a standard
way, meaning that we use for the coarse propagator G the classical Runge-Kutta 4 method
for the initial model, with a bigger time step than that for the fine propagator. However,
the coarse time step still needs to solve the smallest scale in order to have stability and
reasonable accuracy. In this case, we have only to investigate the needed number of the
parareal iterations for achieving convergence. More precisely, we first set the final time
T = 2πε (one rapid oscillation), N ∈ {8, 16} (larger N is not interesting), ∆t = T/N , the
number of coarse time steps on each time slice MG = 1 and the number of fine time steps
on each time slice MF = 80/N . Thus, the fine time step δt = T/80 is fixed with respect
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to N and additionally is small enough for capturing the smallest scale. We plot at the top
of Fig. 6 the relative error (in L∞[0, T ]) between the solution X (tn) obtained with the fine
solver and the parareal solution Ukn , as a function of the number k of parareal iterations

Error(k) =
maxn∈{1,...,N} ‖Ukn −X (tn)‖1

maxn∈{1,...,N} ‖X (tn)‖1
, (39)

where ‖ · ‖1 stands for the `1 norm in R6. We obtain convergence of the algorithm for small
k (4 or 5), however in a case of a too small T from the application point of view. When
taking a larger final time T = 8πε (4 oscillations) with MF = 320/N and δt = T/320, we
have convergence of parareal for k very close to N (see the bottom of Fig. 6 for N ∈ {8, 16}).
We can conclude that this parareal strategy provides convergence after k . N iterations
and with a ratio ∆t/δt ∼ 1, which is not an interesting approach.
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Figure 6: Convergence rate of standard parareal algorithm for the test case in section 4.2.

• We now propose to use for the coarse solver G the reduced model in section 4.2 and we
thus make use of the analytic expression in (31). In addition, we use for the fine solver
F the explicit form of the solution in (23). We start by illustrating the convergence of
the algorithm in short time simulations. We fix the final time T = 5 and the interval
[0, T ] is partitioned in N ∈ {2, 4, 8, 16, 32, 64, 128} sub-intervals. The big time step is thus
∆t = T/N . It is interesting to note the size of the coarse time step ∆t with respect to the
small cyclotron period P , when N varies (see Table 1). Larger is ∆t/P , larger is the ratio
∆t/δt and thus, cheaper is the coarse propagator.
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N = 2 N = 4 N = 8 N = 16 N = 32 N = 64 N = 128

∆t/P 39.79 19.89 9.95 4.97 2.49 1.24 0.62

Table 1: Numbers of cyclotron periods (P = 2π/aε) enclosed in a time step of the coarse
solver for several values of N . We have T = 5, ∆t = T/N , and ε = 0.01.
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Figure 7: Convergence of the parareal algorithm for the Penning trap test case at short
final time T = 5. The fast cyclotron period is denoted by P ∼ 2πε.

We plot in Fig. 7 the relative error in L∞[0, T ] defined in (39) by taking the solution in (23)
for X (tn). The case k = 0 corresponds to the relative error of the solution of the reduced
model with respect to the exact solution of the original model. We obtained convergence
of the algorithm after a maximum of 6 iterations for all the considered values of N .

• We now analyze the behaviour of the parareal algorithm when ε decreases, in which case
the reduced model becomes a more accurate approximation for the initial equation. We
display in Fig. 10 the relative errors illustrating the convergence of the parareal algorithm.
We plot for each value of N in the set {8, 16, 32, 64} the errors for several values of ε at final
time T = 500ε which corresponds to approximately 80 cyclotron periods. As expected, the
initial errors of the parareal method (i.e. k = 0) are decreasing when ε becomes smaller.
Also, the smaller is ε, the faster is the convergence of the parareal algorithm since the
better is the approximation of the reduced model. We already observed in section 6.1 that
for ε ∈ {0.1, 0.04}, the reduced model induces a much bigger error than for the other smaller
values of ε. However, with the parareal strategy we obtain acceptable convergence results for
ε = 0.1, which entails a O(1) error for the reduced model: the parareal method convergences
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after k = 10 (resp. k = 14) iterations when N = 32 (resp. N = 64). Except for the values
of ε ∈ {0.1, 0.04}, the convergence of the parareal algorithm for all the considered values of
N is obtained after a maximum of k = 5 iterations. We also emphasize the achievement of
an uniform error with respect to ε.

• Then, we consider the more challenging case of a long time simulation (of order 1/ε). We
fix the final time T = 600 ∼ 2π/bε, where bε is defined in (24) and we take N in the set
{120, 240, 480, 960}. As previously, we plot in Fig. 8 the relative errors between the exact
solution and the parareal solution, as a function of the number k of parareal iterations. For
this case, we can conclude with underlying the strength of using the parareal algorithm. The
reduced model is not proved to be an approximation of the initial model in time of order 1/ε.
However, in a few number of parareal iterations we obtain high accuracy by applying the
reduced model on valid intervals. Thus, if parallelism is to be used, the computational cost
in the case of N = 480 (resp. N = 960) could drastically be reduced, achieving a round-off
error in only 7 parareal iterations. In this case, a time slice includes approximately 20 (resp.
10) rapid oscillations.
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Figure 8: Convergence of the parareal algorithm for the Penning trap test case at final time
T = 600. The fast cyclotron period is denoted by P ∼ 2πε.

• Finally, we show the outcome of much longer simulations, where we keep the coarse time
step fixed while the final time is increased with N . This framework is relevant for applica-
tions where one needs to integrate over very long times. We fix ε = 0.01 and the coarse time
step to ∆t = 1.25. The final time T is chosen in the set {2000, 4000, 8000, 16000, 32000},
see Fig. 9. Setting N = 25600, we observe that when T = 32000 , i.e. T larger than
500000 cyclotron orbits, the convergence of the parareal algorithm is obtained in k = 21
iterations, with an error around 10−13. In our opinion this is an excellent result which is

19



due to the accuracy of the reduced model. Being of first order, the model provides good
approximations of the slow motion and of the fast oscillation.
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Figure 9: Convergence of the parareal algorithm for the Penning trap test case when the
coarse time step is kept constant to 1.25 and the final time T is increasing with N . The
fast cyclotron period is denoted by P ∼ 2πε.

6.3 The test case with strong variable magnetic field

We now consider solving the problem in (32) with the initial conditions in (36) and (37).
As in the previous section, we discuss the results of our simulations when ε = 0.01 in final
times of order 1 and 1/ε, and then we perform simulations in short final times by varying
the values of ε. We recall that we use a symmetric and volume-preserving scheme and the
classical Runge-Kutta 4 method for the models in (32) and (33) respectively, for the fine
and respectively the coarse propagators. However, while the F propagator needs a time
step δt which is a fraction of the rapid oscillation (P ∼ 2πε), the G propagator is computed
with a time step ∆t much larger than 2πε (see typical values in Table 1).

•We first set ε = 0.01. We fix the final time T = 5 and we partitioned the interval [0, T ] in
N ∈ {2, 4, 8, 16, 32, 64, 128} sub-intervals. The coarse time step is ∆t = T/N and the fine
time step is fixed to δt = T/6400, which is sufficiently small to solve the rapid oscillation.
We plot at the top of Fig. 11 the relative error defined in (39) of the parareal solution with
respect to the reference one computed with the F propagator. We observe convergence after
a maximum of k = 9 iterations when N ∈ {32, 64, 128} which could lead to satisfactory
speed-up if parallel processing is set up.

• Then, we plot in Fig. 12 the errors of the parareal algorithm when ε vanishes. For
a fixed number of time slices of [0, T = 500ε] we perform simulations when ε goes in
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Figure 10: Convergence of the parareal algorithm in short final times, T = 500ε ∼ 80P , for
several small values of ε, for the test case in section 4.2.

{0.01, 0.04, 0.01, 0.004, 0.001, 0.0004, 0.0001}. We find numerically the property of smaller
errors with smaller ε, for every k, due to the smaller error of the reduced model with respect
to the initial equation. We obtain unsatisfactory results when ε = 0.1, since we recall from
the left panel of Fig. 4 that the reduced model is not a good approximation at T = 50 for
this case. On the contrary, the value of ε = 0.04 leads to satisfactory parareal results, when
N ∈ {32, 64}. For the other smaller values of the parameter, we observe convergence of
the algorithm for all N after a maximum of k = 9 iterations. As for the test case in the
previous section, we obtain uniform error with respect to ε.

•However, the most interesting problem is that of a long time simulation. We now fix T = 50
and we take N in the set {20, 40, 80, 160}. A bigger value of T can be treated similarly,
since the trajectories of both particles evolve as until T = 50, with a linear drift in the −→e3

direction for the particle in (37) (see Fig. 2). The fine time step is set to δt = T/64000. We
plot the relative error at the bottom of Fig. 11. We obtained when N is small much larger
errors of the parareal algorithm for the particle in (36) because of its larger perpendicular
angular velocity, as mentioned above. Indeed, when N is small, i.e. when the time step is
big, the error of the limit model is too large so that the parareal method (or the fine solver)
can catch a convenient accuracy in a small number of iterations. At the top of Fig. 11,
N = 2 means a coarse time step of almost 40 rapid oscillations; we have the same remark
for N = 20 at the bottom of the figure. Nevertheless, we note that in the interesting case of
N = 80 (resp. N = 160), we achieve convergence after only k = 9 iterations. This value of
N corresponds to a coarse time step of almost 10 (resp. 5) rapid oscillations and to a ratio
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∆t/δt of 800 (resp. 400). Thus, coupled to the parallel computations of the fine solver, this
strategy could be very effective in terms of computational costs.

• Finally, we perform longer simulations, by keeping the coarse time step fixed while the final
time increases with N . The obtained results (see Fig. 13) are not as good as those reported
in the previous section, as a consequence of the accuracy of the approximation of the reduced
model (compare Fig. 4 to Fig. 3). We fix ε = 0.01, the coarse time step to ∆t = 1.25 and we
use the initial condition in (37); smaller values of ∆t do not significantly improve the error
of the reduced model. As for the particle in (36), we fix ∆t = 0.625, in order to approximate
the slow circular motion with a similar accuracy as for the other particle. When considering
the initial condition in (37), the results of the parareal algorithm are not fully satisfactory
when the final time is large (see Fig. 13): for example, when T = 1000, i.e. almost 16000
cyclotron periods, we obtain an error of order 10−5 after less than k = 60 iterations (recall
N = 800) but afterwards, the error decays very slowly, a quite large number of parareal
iterations being necessary to achieve a much smaller error. The situation is completely
different when using the initial condition in (36). We obtain good convergence results of
the parareal algorithm in large times: at T = 1000, for N = 1600 time slices, we achieve a
10−10 error after k = 25 iterations.

To further understand the rationale behind the slow convergence of the algorithm for this
test case, we assess the long-term energy error, which is a major issue in applications. First,
we verified that the volume-preserving numerical scheme G4, used as fine solver, preserves
the Hamiltonian of the system (32), at the accuracy of the machine precision. More precisely,
the Hamiltonian is H(x,v) = |v|2/2, since there is no electric term. Following [7], we plot
in Fig. 14 the error in the energy

H(xkn,v
k
n)−H(x0,v0) (40)

where (x0,v0) is the initial condition and (xkn,v
k
n) is the k-th iterate of the parareal algo-

rithm. We display, for both initial conditions given by (36) and (37), the energy error
corresponding to the first 6 parareal iterations and then, the k = 10-th iterate respectively
the k = 50-th iterate, taking into account when the parareal convergence is achieved (see
Fig. 13). We can see that the energy error of the particle in (36) has no large amplitude
oscillations in time and the convergence is quite fast, unlike the particle in (37). This is in
accordance with the results in Fig. 13.
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