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Introduction

Factorisable representations of current groups and current algebras have a long history, cf. [START_REF] Araki | Factorizable representation of current algebra. Non commutative extension of the Léy-Kinchin formula and cohomology of a solvable group with values in a Hilbert space[END_REF][START_REF] Parthasarathy | Positive definite kernels, continuous tensor products, and central limit theorems of probability theory[END_REF][START_REF] Guichardet | Symmetric Hilbert spaces and related topics. Infinitely divisible positive definite functions. Continuous products and tensor products[END_REF], and they played an important role in the development of quantum stochastic calculus, see [START_REF] Streater | Classical and quantum probability[END_REF] and the references therein.

Factorisable representations of current groups of a Lie group G can be viewed as Lévy processes in the sense of Schürmann [START_REF] Schürmann | White noise on bialgebras[END_REF] on the level of the associated universal enveloping algebra U (g) or the Lie algebra g, see [START_REF] Franz | Lévy process on real Lie algebras[END_REF][START_REF] Franz | Probability on real Lie algebras[END_REF]. We followed this approach in [START_REF] Accardi | Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras[END_REF], where we associated classical Lévy processes to the representation introduced in [START_REF] Vershik | Representations of the group SL(2, R), where R is a ring of functions[END_REF] and studied, e.g., their marginal distributions. Furthermore, in [START_REF] Accardi | Quadratic exponential vectors[END_REF][START_REF] Accardi | Quadratic exponential vectors[END_REF], this approach was used to define "quadratic" exponential vectors and a "quadratic" second quantization functor.

Interesting factorisable representations of current groups of a Lie group exist only if the Lie group has a representation which admit a non-trivial cocycle, see [START_REF] Vershik | Irreducible representations of the group G X and cohomology[END_REF][START_REF] Vershik | Cohomology of groups in unitary representations, neighborhood of the identity and conditionally positive definite functions[END_REF][START_REF] Graev | The basic representation of the current group O(n, 1) X in the L 2 space over the generalized Lebesgue measure[END_REF]. If we restrict our attention to unitary representations and simple Lie groups, then this leaves only the two series. G = SO(n, 1) and G = SU (n, 1). These are the simple Lie groups which do not have Kazhdan's property (T). According to Graev and Vershik [START_REF] Graev | The basic representation of the current group O(n, 1) X in the L 2 space over the generalized Lebesgue measure[END_REF][START_REF] Vershik | The structure of complementary series and special representations of the groups O(n, 1) and U (n, 1). (Russian. Russian summary)[END_REF], this fact was first observed in 1973-74 by Gelfand, Graev, and Vershik [START_REF] Vershik | Irreducible representations of the group G X and cohomology[END_REF] (but we where not able to confirm this claim from the paper's English translation), according to Shalom [START_REF] Shalom | Rigidity, unitary representations of semisimple groups, and fundamental groups of manifolds with rank one transformation group[END_REF] this was first proved by Delorme [START_REF] Delorme | 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles, in Produits Tensoriels Continus et Représentations[END_REF] and Hotta and Wallach [START_REF] Hotta | On Matsushima's formula for the Betti numbers of a locally symmetric space[END_REF].

In [START_REF] Accardi | Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras[END_REF], we focussed on the lowest-dimensional case, i.e. the unique non-compact form so(2, 1) ∼ = su(1, 1) ∼ = sl(2, R) of the unique simple Lie algebra of rank one. In the present paper we study the Lie algebra so(3, 1) of the Lorentz group.

In Section 1, we recall the definition of the Lorentz group and its Lie algebra and we introduce some notations which we shall use in this paper. For the purpose of self-containedness we also recall several facts about their unitary representations.

In Section 2, we recall the definitions of Lévy processes and Schürmann triples on real Lie algebras. We also construct a Schürmann triple on so(3, 1), which has a non-trivial 1-cocycle. From the general theory mentioned above, it is clear that this Schürmann triple is unique up to rescaling and adding a coboundary. Therefore the Lévy process associated to this Schürmann triple must be the infinitesimal version of the factorisable representations on SO(3, 1) studied in [START_REF] Graev | The basic representation of the current group O(n, 1) X in the L 2 space over the generalized Lebesgue measure[END_REF][START_REF] Vershik | The structure of complementary series and special representations of the groups O(n, 1) and U (n, 1). (Russian. Russian summary)[END_REF].

In the remaining sections we study restrictions of this Schürmann triple to Lie subalgebras of so [START_REF] Accardi | Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras[END_REF][START_REF] Accardi | Quadratic exponential vectors[END_REF] In Section 3, we obtain the decomposition of the restriction to so(3). In Section 4, we study the restriction to so(2, 1).

The Lorentz group and its Lie algebra

The Lorentz group O(3, 1) is the the group of all isometries of Minkowski spacetime, i.e., it is the group of all 4 × 4 matrices that leave invariant the Minkowksi inner product

    t x y z     ,     t ′ x ′ y ′ z ′     = tt ′ -xx ′ -yy ′ -zz ′ .
The identity component SO( The Lie algebra so(3, 1)

∼ = sl(2, C) of the Lorentz group O(3, 1) has as basis {H 1 , H 2 , H 3 , F 1 , F 2 , F 3 } with the relations [H j , H k ] = iǫ jkℓ H ℓ . [F j , F k ] = -iǫ jkℓ F ℓ , [F j , H k ] = iǫ jkℓ H ℓ , for j, k, ℓ ∈ {1, 2, 3}
, where ǫ jkℓ is the Levi-Civita symbol,

ǫ j,k,ℓ =    +1 if (jkℓ) = (1, 2 , 3), (2, 3, 1) or (3, 1, 2) 
, -1 if (jkℓ) = (2, 1, 3), (3, 2, 1) or (1, 3, 2), 0 else. We shall consider so(3, 1) with the involution which makes these six elements hermitian. Then the infinitesimals of unitary representations of SO(3, 1) + are *-representations of so [START_REF] Accardi | Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras[END_REF][START_REF] Accardi | Quadratic exponential vectors[END_REF]. For our computations we will also use the bases

{A 1 , A 2 , A 3 , B 1 , B 2 , B 3 } and {H 3 , H -, H + , K 3 , K -, K + } with A j = 1 2 (H j + iF j ), B j = 1 2 (H j -iF j ), j = 1, 2, 3, H 3 , H ± = H 1 ± iH 2 , F 3 , K ± = K 1 ± iK 2 .
In terms of these bases the relations become

[A j , A k ] = iǫ jkℓ A ℓ , [B j , B k ] = iǫ jkℓ B ℓ , [A j , B k ] = 0 [H + , H -] = 2H 3 , [F + , F -] = -2H 3 , [H 3 , H ± ] = ±H ± , [F 3 , F ± ] = ∓H ± , [H 3 , F ± ] = ±F ± , [F 3 , H ± ] = ±F ± , [H ± , F ∓ ] = ±F 3 , [H ± , F ± ] = 0, [F 3 , H 3 ] = 0, and 
A * j = B j , H * ± = H ∓ , F * ± = F ∓ .
The representation theory of SO(3, 1) + can be found in the monographs [START_REF] Gelfand | Representations of the rotation and Lorentz group and their applications[END_REF][START_REF] Naimark | Linear representations of the Lorentz group[END_REF][START_REF] Rühl | The Lorentz group and harmonic analysis[END_REF]. Here we are only interested in unitary representations. On the level of the Lie algebra so(3, 1) they can be described as follows. For ℓ 0 ∈ 1 2 Z, ℓ 0 ≥ 0, and ℓ 1 ∈ C, let D ℓ0ℓ1 = span{ξ ℓm ; ℓ = ℓ 0 , ℓ 0 + 1, . . . , m = -ℓ, -ℓ + 1, . . . , ℓ} and set

C ℓ = i √ (ℓ 2 -ℓ 2 0 )(ℓ 2 -ℓ 2 1 ) ℓ √ 4ℓ 2 -1 if ℓ ≥ 1, 0 if ℓ = 0, 1 2 , A ℓ = iℓ0ℓ1 ℓ(ℓ+1) if ℓ > 0, 0 if ℓ = 0,
(note that ℓ = 0 or ℓ = 1 2 can only occur if ℓ 0 = 0 or ℓ 0 = 1 2 , resp.). We define an action of so(3, 1) on D ℓ0ℓ1 by

ρ ℓ0ℓ1 (H 3 )ξ ℓm = mξ ℓm , ρ ℓ0ℓ1 (H ± )ξ ℓm = (ℓ ∓ m)(ℓ ± m + 1)ξ ℓ,m±1 , ρ ℓ0ℓ1 (F 3 )ξ ℓm = C ℓ ℓ 2 -m 2 ξ ℓ-1,m -mA ℓ ξ ℓm -C ℓ+1 (ℓ + 1) 2 -m 2 ξ ℓ+1,m , ρ ℓ0ℓ1 (F ± )ξ ℓm = ±C ℓ (ℓ ∓ m)(ℓ ∓ m -1)ξ ℓ-1,m±1 -A ℓ (ℓ ∓ m)(ℓ ± m + 1)ξ ℓ,m±1 ± C ℓ+1 (ℓ ± m + 1)(ℓ ± m + 2)ξ ℓ+1,m±1
(we use the same basis as [START_REF] Gelfand | Representations of the rotation and Lorentz group and their applications[END_REF] and [START_REF] Naimark | Linear representations of the Lorentz group[END_REF], note that [START_REF] Atakishiyev | The Hahn and Meixner polynomials of an imaginary argument and some of their applications[END_REF] uses ψ ℓm = i m-ℓ ξ ℓm instead).

As was observed in [START_REF] Atakishiyev | The Hahn and Meixner polynomials of an imaginary argument and some of their applications[END_REF], "formally" there exists also a basis {φ m1,m2 } on which

A 3 , A ± = A 1 ± iA 2 , B 3 , and B ± = B 1 ± iB 2 act as A 3 φ m1,m2 = m 1 φ m1,m2 , A ± = (j 1 ∓ m 1 )(j 1 ± m 1 + 1)φ m1±1,m2 , B 3 φ m1,m2 = m 2 φ m1,m2 , B ± = (j 2 ∓ m 2 )(j 2 ± m 2 + 1)φ m1,m2±1 , where j 1 = j 2 = 1 2 (ℓ 0 + ℓ 1 -1)
. Define an inner product on D ℓ0ℓ1 s.t. the family {ξ ℓm } is an orthonormal system and denote by H ℓ0ℓ1 the completion of D ℓ0ℓ1 .

The representation ρ ℓ0ℓ1 is the infinitesimal representation of an irreducible unitary representation of SO(3, 1) + on H ℓ0ℓ1 in the following two cases: a): ℓ 1 is purely imaginary (and no restriction on ℓ 0 ∈ 1 2 Z + ), this is the principal series. b): ℓ 0 = 0 and 0 ≤ ℓ 1 < 1, this is the supplementary series. The representations ρ 0,ℓ1 and ρ 0,-ℓ1 with ℓ 1 purely imaginary are easily seen to be equal, since only the square of ℓ 1 occurs in their definition. The remaining representations are all inequivalent. Together with the trivial representation ε, which sends so(3, 1) identically to 0, these two families exhaust all irreducible unitary representations of SO(3, 1) + . Note that the representation ρ 01 is not irreducible. It can be decomposed as

ρ 01 ∼ = ε ⊕ ρ 10 on D 01 = span{ξ 00 } ⊕ span{ξ ℓm ; ℓ ≥ 1, m = -ℓ, . . . , ℓ}. The elements C A = 2A 2 3 + A + A -+ A -A + and C B = 2B 2 3 + B + B -+ B -B + generate the center of the universal enveloping algebra U so(3, 1) and satisfy C * A = C B . The Casimir invariants J 1 = C A + C B = 2H 2 3 + H + H -+ H -H + -2F 2 3 -F + F --F -F + , J 2 = -i(C A -C B )/2 = H + F -+ H -F + + F + H -+ F -H + + 4F 3 H 3 ,
are hermitian and also generate the center of U so(3, 1) . In the irreducible unitary representations defined above they act as

ρ ℓ0ℓ1 (J 1 ) = (ℓ 2 0 + ℓ 2 1 -1)id D ℓ 0 ℓ 1 and ρ ℓ0ℓ1 (J 2 ) = iℓ 0 ℓ 1 id D ℓ 0 ℓ 1 .
In this paper we will work with (in general) unbounded involutive representations of involutive complex Lie algebras (g, * ) or their universal envelopping algebras U (g) acting on some pre-Hilbert space D. See [START_REF] Nelson | Analytic vectors[END_REF] for necessary and sufficient conditions for such a representationation to be the infinitesimal representation associated to a unitary representation H = D of the connected simply connected Lig group G associated to the real Lie algebra g R = {X ∈ g; X * = -X}.

Schürmann triples on so(3, 1) and their Lévy processes

We start by recalling the definition of Schürmann triples and Lévy processes on real Lie algebras. Let g be a real Lie algebra, (g C , * ) its complexification equipped with the involution that makes the elements of g anti-hermitian, and U 0 (g) its universal enveloping algebra, without unit, but with the involution induced from (g C , * )

For D a complex pre-Hilbert space with, we let L(D) be algebra of linear operators on D having an adjoint defined everywhere on D, and L AH (D) the anti-Hermitian linear operators on D. 

j st : g → L AH (D) 0≤s≤t
of representations of g is a Lévy process on g over (D, ω) if a): (increment property) we have

j st (X) + j tu (X) = j su (X)
for all 0 ≤ s ≤ t ≤ u and all X ∈ g; b): (independence) we have

[j st (X), j s ′ t ′ (Y )] = 0, X, Y ∈ g, 0 ≤ s ≤ t ≤ s ′ ≤ t ′ , and ω, j s1t1 (X 1 ) k1 • • • j sntn (X n ) kn ω = ω, j s1t1 (X 1 ) k1 ω • • • ω, j sntn (X n ) kn ω , for n, k 1 , . . . , k n ∈ N, 0 ≤ s 1 ≤ t 1 ≤ s 2 ≤ • • • ≤ t n , X 1 , . . . , X n ∈ g; c): (stationarity) for n ∈ N, X ∈ g, 0 ≤ s ≤ t, ω, j st (X) n ω = ω, j 0,t-s (X) n ω
i.e., the moments depend only on the difference t -s; d): (pointwise continuity) we have

lim tցs ω, j st (X) n ω = 0, n ∈ N, X ∈ g.
To a Lévy process we can associate the states ϕ t = ω, j 0,t (a) n ω for a ∈ U 0 (g), t ≥ 0, and the functional

L(a) = d dt t=0 ϕ t (a), a ∈ U 0 (g.
The functional L is a generating functional in the sense of the following definition: A linear functional L : U 0 (g) → C on the non-unital *-algebra U 0 (g) is called a generating functional on g if a): L is Hermitian, i.e., L(u * ) = L(u) for u ∈ U 0 (g); b): L is positive, i.e., L(u * u) ≥ 0 for u ∈ U 0 (g). 

ρ : g → L AH (D) is a representation of g on D, i.e., ρ [X, Y ] = ρ(X)ρ(Y ) -ρ(Y )ρ(X) for X, Y ∈ g; b): η : g → D is a ρ-1-cocycle, i.e. it satisfies η [X, Y ]) = ρ(X)η(Y ) -ρ(X)η(Y ), X, Y ∈ g; c): ψ : g → C is a linear functional with imaginary values s.t. the bilinear map (X, Y ) -→ η(X), η(Y ) is the 2-ε-ε-coboundary of ψ (where ε denotes the trivial representation), i.e., ψ [X, Y ] = η(Y ), η(X) -η(X), η(Y ) , X, Y ∈ g.
See [START_REF] Guichardet | Cohomologie des groupes topologiques et des algèbres de Lie[END_REF] for more information on the cohomology of Lie algebras and Lie groups.

The Schürmann triple and in particular the linear functional ψ in a Schürmann triple have unique extensions to g C (by linearity) and to U 0 (g) (as representation, cocycle and coboundary, resp.) and the extension of the functional is a generating functional. Therefore it corresponds to a Lévy process on g (which is unique in distribution). This Lévy process can be realised on the symmetric Fock space

Γ L 2 (R + , D) = ∞ n=0 L 2 (R + , D) ⊗sn over L 2 (R + , D) as j st (X) = Λ st ρ(X) + A + st η(X) + A - st η(X * ) + ψ(X)(t -s)id, X ∈ g C , cf. [19]. Here Λ st (M ) = Λ(M ⊗ 1 [s,t] ), A + st (v) = A(v ⊗ 1 [s,t]
), and

A - st (v) = A(v ⊗ 1 [s,t]
), with M ∈ L(D), v ∈ D, denote the conservation, creation, and annihilation operators, see, e.g., [START_REF] Franz | Probability on real Lie algebras[END_REF], Chapter 5].

If the cocycle η is a coboundary, then the associated Lévy process is unitarily equivalent to the second quantisation of ρ, cf. [7, Proposition 8.2.7], and the Lévy processes of cocycles that differ only by a coboundary are also unitarily equivalent. Therefore it is most interesting to study the processes associated to non-trivial cocycles. The Lévy processes associated to reducible Schürmann triples can be constructed as tensor products of the Lévy processes of their irreducible components, for this reason we shall study only irreducible representations.

If the Casimir invariants are invertible in some representation, then all 1-cocyles are coboundaries, cf. [3, Lemma 2.2]. Therefore the only non-trivial irreducible unitary representation that can have a non-trivial cocycle is ρ 10 . Since so(3, 1) is simple, it is clear that the trivial representation has no non-zero cocycles at all, cf. [3, Lemma 2.1].

From [START_REF] Delorme | 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles, in Produits Tensoriels Continus et Représentations[END_REF][START_REF] Hotta | On Matsushima's formula for the Betti numbers of a locally symmetric space[END_REF], we know that only one irreducible unitary representation of SO(3, 1) admits a non-trivial 1-cocycle, and this is ρ 10 . We will describe a non-trivial 1cocycle of this representation below, after recalling a useful lemma. Lemma 2.3. (Raabe-Duhamel test) Let (u n ) n∈N be a sequence of strictly positive real numbers such that

u n+1 u n = 1 - α n + o 1 n .
If α < 1, then the series n∈N u n diverges, if α > 1, then the series n∈N u n converges (nothing can be concluded in the case α = 1).

We can now construct a non-trivial 1-cocycle for ρ 10 .

Proposition 2.4. There exists a 1-ρ 10 -cocycle c with c(F + ) = ξ 11 . The cocycle c is not a coboundary and every other non-trivial 1-ρ 10 -cocycle is a linear combination of c and some 1-ρ 10 -coboundary.

Proof. The cocycle c can not be a coboundary, since the vector ξ 11 is not in the image of ρ 10 (F + ). Indeed, assume there exists a vector ζ =

x ℓm ξ ℓm ∈ H 10 s.t. ρ 10 (F + )ζ = ξ 11 . Then we have x ℓm = 0 for all m = 0 and for pairs with m = 0 and ℓ odd. For m = 0 and even ℓ we find the recurrence relation

x ℓ,0 = - C ℓ-1 C ℓ x ℓ-2,0
with the initial condition x 20 = -i 5 2 . We have

|x ℓ,0 | 2 |x ℓ-2,0 | 2 = (ℓ -1) 2 -1 (4ℓ 2 -1) (ℓ 2 -1) 4(ℓ -1) 2 -1 = (ℓ 2 -2ℓ)(4ℓ 2 -1) (ℓ 2 -1)(4ℓ 2 -8ℓ + 3) = 4ℓ 4 -8ℓ 3 -ℓ 2 + 2ℓ 4ℓ 4 -8ℓ 3 -ℓ 2 + 8ℓ + 3 = 1 + o 1 ℓ
i.e., α = 0 < 1. So the Raabe-Duhamel test implies that the series |x ℓm | 2 diverges and therefore there exists no such vector ζ in H 10 .

It was shown in [START_REF] Delorme | 1-cohomologie des représentations unitaires des groupes de Lie semi-simples et résolubles, in Produits Tensoriels Continus et Représentations[END_REF][START_REF] Hotta | On Matsushima's formula for the Betti numbers of a locally symmetric space[END_REF] that the first cohomology group of ρ 10 has dimension one, this implies the uniqueness. To prove existence, one checks that

c(H 3 ) = c(H ± ) = 0 c(F 3 ) = - 1 √ 2 ξ 10 , c(F ± ) = ±ξ 1,±1
defines indeed a 1-ρ 10 -cocycle.

Remark 2.5. Let ℓ 0 = 0. The 1-ρ 0,ℓ1 -coboundary of ξ 00 is given by

∂ξ 00 (H 3 ) = 0 = ∂ξ 00 (H ± ), ∂ξ 00 (F 3 ) = -iC 1 (0, ℓ 1 )ξ 10 , ∂ξ 00 (F ± ) = ±iC 1 (0, ℓ 1 ) √ 2ξ 1,±1 , with C 1 (0, ℓ 1 ) = √ 1-ℓ 2 1 √ 3 .
We see that c is formally the limit of the 1-ρ 0,ℓ1 -coboundaries

1 iC1(0,ℓ1) √
2 ∂ξ 00 as ℓ 1 tends to 1.

Proposition 2.6. There exists a unique Schürmann triple (ρ 10 , c, ψ) containing the representation ρ 10 and the cocycle c.

Proof. This is a consequence of the fact that so(3, 1) is simple and that therefore the second cohomology group of the trivial representation is trivial. Any element in so(3, 1) can be written as a commutator and so Condition c) in Definition 2.2 allows to deduce the values of ψ from the values of c. We have, e.g.,

2ψ(F 3 ) = ψ [F + , H -] = c (F + ) * , c(H -) -c (H -) * , c(F + ) = 0.
It turns out that ψ is identically equal to 0 on su(3, 1).

We would like to characterise the Lévy process associated to the Schürmann triple (ρ 10 , c, ψ). For this purpose one could compute the action of the Casimir invariants on the vacuum vector Ω ∈ Γ L 2 (R + , D) .

Since ψ vanishes on g, we have a simple formula for the action of Lie algebra elements on the vacuum vector,

j st (X)Ω = c(X) ⊗ 1 [s,t] , X ∈ g C , 0 ≤ s ≤ t,
so we have

j st (H 3 )Ω = 0 = j st (H ± )Ω, j st (F 3 )Ω = - 1 √ 2 ξ 10 ⊗ 1 [s,t] , j st (F ± )Ω = ±ξ 1,±1 ⊗ 1 [s,t] .
For the Casimir invariants we get

j st (J 2 )Ω = j st (H + ) -ξ 1,-1 ⊗ 1 [s,t] + j st (H -) ξ 1,1 ⊗ 1 [s,t] = 0.
and

j st (J 1 )Ω = -2j st (F 3 ) - 1 √ 2 ξ 10 ⊗ 1 [s,t] -j st (F + ) -ξ 1,-1 ⊗ 1 [s,t] -j st (F -) ξ 11 ⊗ 1 [s,t] = -(t -s)Ω + √ 2 ξ 1,1 ⊗ 1 [s,t] ⊗ ξ 1,-1 ⊗ 1 [s,t] + √ 2 ξ 1,-1 ⊗ 1 [s,t] ⊗ ξ 1,1 ⊗ 1 [s,t] - √ 2 ξ 10 ⊗ 1 [s,t] ⊗ ξ 10 ⊗ 1 [s,t] .
. The action of j st (J 1 ) on the vacuum vector shows that j st (J 1 ) is not a multiple of the identity, which implies that the representatoin j st restricted to the subspace generated from the vacuum vector can not be irreducible.

To get a better understanding of the representations j st , 0 ≤ s ≤ t, we will now consider the restrictions of ρ 10 to Lie subalgebras of so(3, 1).

Restriction to the Lie sub algebra so(3)

The basis we used to describe the representations of so(3, 1) is already adapted to the subalgebra so(3) = span{H 3 , H + , H -}, so it is easy to decompose the restriction of representations of so(3, 1) to its Lie subalgebra so(3) into its irreducible parts.

The representation ρ 10 restricted to so(3) = span{H 3 , H + , H + } decomposes into a direct sum of finite-dimensional irreducible representations. Recall that the irreducible representations of so(3) are all unitarily equivalent to one of the following. Let s ∈ 1 2 Z, set E s = span{e -s , e -s+1 , . . . , e s }, where e -s , . . . , e s form an orthonormal basis, and set The basis elements H 3 , F + , F -span a Lie sub algebra of so(3, 1) that is isomorphic to the non-compact form sl(2; R) ∼ = su(1, 1) ∼ = so(2, 1) of the three-dimensional simple Lie algebra sl(2). We will now describe the restriction of our Lévy processes on so [START_REF] Accardi | Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras[END_REF][START_REF] Accardi | Quadratic exponential vectors[END_REF] [START_REF] Accardi | Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras[END_REF]. There is also a third family π c,µ acting on D 0 c,µ = span{f n , n ∈ Z} (where (f n ) is an orthonormal basis) as

π c,µ (H 3 )f n = (n -µ)f n , π c,µ (F + )f n = n 2 + (1 -2µ)n + µ(µ -1) -cf n+1 , π c,µ (F -)f n = (n -1) 2 + (1 -2µ)(n -1) + µ(µ -1) -cf n-1 ,
with 0 ≤ µ < 1 and c < µ(µ -1). The families π + t and π - t are called the positive and the negative discrete series. Our third family contains both the principal unitary series and the complementary unitary series. See, e.g., [START_REF] Vilenkin | Representation of Lie groups and special functions. Vol. 1. Simplest Lie groups, special functions and integral transforms[END_REF], Section 6.4] for more information on the representation theory of SU (1, 1).

Denote by K = H 2 3 -1 2 (F + F -+ F -F + ) = H 3 (H 3 -1) -F -F + the Casimir element of so(2, 1). Then we have π ± t (K) = 2t(t -1) id and π c,µ (K) = 2c id.

The subrepresentations π + t and π - t can be detected by their cyclic vector e 0 which is characterised by the equations π + t (F -)e 0 = 0, π + t (H 3 )e 0 = te 0 (or π - t (F + )e 0 = 0, π + t (H 3 )e 0 = -te 0 resp.). Proposition 4.1. If we restrict the representation ρ 10 of so(3, 1) to the Lie subalgebra so(2, 1), then it decomposes as

(D 10 , ρ 10 | so(2,1) ) ∼ = (D + 1 , π + 1 ) ⊕ (D - 1 , π - 1 ) ⊕ (D R , π R )
where the "rest" (π R , D R ) is a direct sum of unitary irreducible representations (π c,0 , D 0 c,0 ) belonging to the third family. Proof. We need to determine all eigenvectors of ρ 10 (H 3 ) that are annihilated by ρ 10 (F -). A non-zero vector ξ = ∞ ℓ=1 ℓ m=-ℓ x ℓm ξ ℓm is an eigenvector of ρ 10 (H 3 ), if and only if there exists an integer m 0 ∈ Z s.t. x ℓm = 0 for m = m 0 . And this integer is then its eigenvalue.

Let us now study, when such a vector is annihilated by ρ 10 (F -). We consider first m 0 ∈ {-1, 0, 1}. For ξ = ∞ ℓ=1 x ℓ ξ ℓm0 ∈ D 10 we have

ρ 10 (F -)ξ = - ∞ ℓ=2 x ℓ+1 C ℓ+1 (ℓ + m 0 + 1)(ℓ + m 0 ) (1) + x ℓ-1 C ℓ (ℓ -m 0 )(ℓ -m 0 + 1) ξ ℓm0 , (2) 
If this vector vanishes, then the coefficients x 2ℓ+1 , ℓ ∈ N, are determined by x 1 via the recurrence relation

(3) x ℓ+1 = - C ℓ (ℓ -m 0 )(ℓ -m 0 + 1) C ℓ+1 (ℓ + m 0 + 1)(ℓ + m 0 ) x ℓ-1 .
We get

|x ℓ+1 | |x ℓ-1 | = (ℓ 2 -1) 4(ℓ + 1) 2 -1 (ℓ -m 0 )(ℓ -m 0 + 1) (4ℓ 2 -1) (ℓ + 1) 2 -1 (ℓ + m 0 + 1)(ℓ + m 0 ) = 1 - 8m 0 2ℓ + o 1 ℓ
and the Raabe-Duhamel test shows that for x 1 = 0 this series can only converge if m 0 = 1. Furthermore, in the case m 0 = 1 we get x 2 = 0 from the coefficient of ξ 10 in (1), and then x 2ℓ = 0 for all ℓ > 1 from the recurrrence relations (3).

We set x 1 = 1, x 2 = 0 and let (x ℓ ) ℓ≥1 denote the solution of the recurrence relation [START_REF] Accardi | Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras[END_REF]. Then ξ + = ∞ ℓ=1 x ℓ ξ ℓ1 is a non-zero vector s.t. ρ 10 (H 3 )ξ + = ξ + , ρ 10 (F -)ξ + = 0, it is therefore the cyclic vector of a subrespresentation of (D 10 , ρ 10 | so(2,1) ) that is unitarily equivalent to (D + 1 , π + 1 ). A careful study of the equation ρ 10 (F -)ξ = 0 shows that all solutions are of the form λξ + for some λ ∈ C.

Indeed, the discussion above shows this already for m 0 ∈ {-1, 0, 1}. Furthermore, there are no solution with m 0 > 1, because the condition ρ 10 (F -)ξ = 0 implies immediately x 1 = 0 = x 2 . And the Raabe-Duhamel test allows to show that there are no solutions with m 0 < 1, either.

The discussion of the condition ρ 10 (F + )ξ = 0, which leads to subrepresentations that are unitarily equivalent to a representation of the form (D - t , π - t ) is similary. Set y 1 = 1, y 2 = 0 and let (y , ℓ) ℓ≥1 be the sequence determined from these values via the recurrence relation ) contains a unique subrepresentation that is unitarily equivalent to (D + -1 , π + -1 ). Since the spectrum of ρ 10 (H 3 ) is equal to Z, it follows that the remaining subrepresentations have to belong to the family (D 0 c,0 , π c,0 ), c < 0.

Conclusion

We have identified the Schürmann triple underlying the factorizable current representations of the Lorentz group in [START_REF] Graev | The basic representation of the current group O(n, 1) X in the L 2 space over the generalized Lebesgue measure[END_REF][START_REF] Vershik | The structure of complementary series and special representations of the groups O(n, 1) and U (n, 1). (Russian. Russian summary)[END_REF].

The decomposition in Proposition 4.1 can be used to compute the classical distribution of elements of j st (F + + F -+ λH 3 ), since the distributions of elements of this form are known for the irreducible unitary representations of so(2, 1), cf. [START_REF] Koelink | Convolutions for orthogonal polynomials from Lie and quantum algebra representations[END_REF] and [START_REF] Accardi | Renormalized squares of white noise and other non-Gaussian noises as Lévy processes on real Lie algebras[END_REF], and since the direct sums at the level of the Schürmann triple translate into tensor products for the associated Lévy processes.

It would be interesting to extend these results to the higher rank groups O(n, 1) and U (n, 1) in the future.

Definition 2 . 1 .

 21 [START_REF] Franz | Probability on real Lie algebras[END_REF] Definition 8.1.1] Let D be a pre-Hilbert space and ω ∈ D a unit vector. A family

Definition 2 . 2 . [ 7 ,

 227 Definition 8.2.1] Let D be a pre-Hilbert space. A Schürmann triple on g over D is a triple (ρ, η, ψ), where a):

4 .

 4 π s (H 3 )e m = me m , π s (H ± )e m = (s ∓ m)(s ± s + 1)e m±1 ,for m = -s, . . . , s. It is not difficult to check that we have(D 10 , ρ 10 | so(3) ) ∼ = ∞ s=3(E s , π s ). Restriction to Lie sub algebra so[START_REF] Accardi | Quadratic exponential vectors[END_REF][START_REF] Accardi | Quadratic exponential vectors[END_REF] 

  y ℓ+1 = C ℓ (ℓ + m)(ℓ + m + 1) C ℓ+1 (ℓ -m)(ℓ -m + 1) with m = 1. Set ξ -= ∞ ℓ=1 y ℓ ξ ℓ,-1 . Then we have {ξ ∈ D 10 ; ρ 10 (F + )ξ = 0} = Cξ -,which implies that (D 10 , ρ 10 | so(2,1)

  3, 1) + of O(3, 1) is called the restricted Lorentz group.

It consists of the 4 × 4 matrices A = (a jk ) ∈ O(3, 1) with det(A) = +1 and a 11 ≥ 1. The restricted Lorentz group SO(3, 1) + is isomorphic to the projective special linear group (or Möbius group) P SL(2, C).

  to this Lie sub algebra. Recall that so(2, 1) admits the highest and lowest weight representations π +

	t and t = span{e n ; n ∈ N} (where (e n ) are an orthonormal t , with t > 0, acting on D ± π -basis) as
	π ± t (H 3 )e n = ±(n + t)e n , t (F + )e n = (n + 1)(n + 2t)e n+1 , π -π + t (F + )e n = n(n + 2t -1)e n-1 π + t (F -)e n = n(n + 2t -1)e n-1 , π -t (F -)e n = (n + 1)(n + 2t)e n+1 ,
	cf.
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