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Real-time Imprecise Computation Tasks Mapping for
DVFS-Enabled Networked Systems
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Xianghui Cao∗, Senior Member, IEEE

Abstract—Networked systems are useful for a wide range of
applications, many of which require distributed and collaborative
data processing to satisfy real-time requirements. On the one
hand, networked systems are usually resource constrained, mainly
regarding the energy supply of the nodes and their computation
and communication abilities. On the other hand, many real-
time applications can be executed in an imprecise way, where
an approximate result is acceptable as long as the baseline
Quality-of-Service (QoS) is satisfied. Such applications can be
modeled through Imprecise Computation (IC) tasks. To achieve a
better trade-off between QoS and limited system resources, while
meeting application requirements, the IC-tasks must be efficiently
mapped to the system nodes. To tackle this problem, we firstly
construct an IC-tasks mapping problem that aims to maximize
system QoS subject to real-time and energy constraints. Dynamic
Voltage and Frequency Scaling (DVFS) and multi-path routing
are explored to further enhance real-time performance and reduce
energy consumption. Secondly, based on the problem structure, we
propose an optimal approach to perform IC-tasks mapping and
prove its optimality. Furthermore, to enhance the scalability of
the proposed approach, we present a heuristic IC-tasks mapping
method with low computation time. Finally, the simulation results
demonstrate the effectiveness of the proposed methods in terms of
the solution quality and the computation time.

Index Terms—Networked Systems, Task Mapping, Imprecise
Computation, Quality-of-Service.

I. INTRODUCTION

W IRELESS Sensor and Actuator Networks are networked
systems that cannot only measure the physical environ-

ment through the sensor nodes, but can also modify it, through
the actions performed by the actuator nodes. This characteristic
is one of the key elements of the Internet of Things (IoT) [1],
[2]. Typical application requirements in such networked systems
are low energy consumption, low task execution delay, and high
system Quality of Service (QoS) [3]. However, enhancing sys-
tem QoS often requires more energy consumption and execution
time. To balance these contradictory requirements, an efficient
mapping of the application tasks on the nodes is required. By
properly mapping the tasks on the nodes, we can avoid sending
all the data to a central controller that executes the tasks. Part
of task execution can be done on-site, on the nodes that have
computation and communication capabilities. As a result, only
a small part of data is required to be sent, reducing the network
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traffic and the node workload. This model of computation is
also known as “Fog/Edge-computing” [4].

In many application domains [5], such as multimedia process-
ing, mobile target tracking, real-time heuristic search, informa-
tion gathering and control engineering, an approximate result,
obtained before the deadline, is usually acceptable. For example,
in video streaming, frames with a lower quality are better
than totally missing frames. In target tracking, an approximate
estimation of target’s location in time is better than an accurate
location, obtained too late. In these domains, the applications are
usually modeled as Imprecise Computation (IC) tasks [6], where
a task is logically decomposed into a mandatory subtask and
an optional subtask. The mandatory subtask must be completed
before the task deadline to generate the minimum acceptable
QoS. Then, the optional subtask is executed, if there are enough
free resources in the system. With the IC-tasks model, the longer
the optional subtasks are executed, the better the QoS of the
result. Dynamic Voltage and Frequency Scaling (DVFS) [7] is
an efficient technique that controls both voltage and frequency,
thus, the energy and the time required to execute the tasks.
By properly mapping IC-tasks on DVFS-enabled nodes of
networked systems, the QoS can be further improved, under
the limited system sources and the application requirements.

Task mapping is a well-known problem in embedded sys-
tems [7]–[16]. However, there are few works that deal with task
mapping on the nodes of networked systems [17]–[23]. The
majority of these approaches focuses on precise computation
tasks (i.e., the tasks without optional subtasks) and systems
without DVFS capabilities, see Table I. When both IC-tasks and
DVFS are considered, the way to execute IC-tasks is decided by
1) the task mapping, which refers to both the task allocation (on
which node a task is executed) and the task scheduling (when
each task starts to execute and how long its optional subtask
is executed), and 2) the voltage and frequency of the node,
which executes the task. In this context, there are three main
differences between our work and the existing works:

1) Compared with the task mapping on embedded systems [7]–
[16], the task mapping on networked systems is constrained,
since some tasks (e.g., sensing and control) have one-to-one
allocation on the nodes, whereas the allocation constraints
of other tasks (e.g., data processing) may not be restricted.

2) In embedded systems, the task communication cost (time
and energy) is usually very small, compared with the task
execution cost. Therefore, the impact, that the task mapping
decisions have on the task communication cost, is limited.
However, in networked systems, the task communication
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TABLE I
TASK MAPPING METHOD

Embedded systems Networked systems
[7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17] [18] [19] [20] [21] [22] [23] Ours

Tasks

Precise
√ √ √ √ √ √ √ √ √ √ √

Imprecise
√ √ √ √ √ √ √

Dependent
√ √ √ √ √ √ √ √ √ √ √ √ √ √

Independent
√ √ √ √

Platform
DVFS

√ √ √ √ √ √ √ √ √ √

Multi-path
√ √

Comm. cost
√ √ √ √ √ √ √ √

Objective Max. QoS
√ √ √ √ √ √ √

Min. Energy
√ √ √ √ √ √ √ √ √ √ √

Constraint Real-timeliness
√ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √ √

Energy
√ √ √ √ √ √

Solution Optimal
√ √ √ √ √ √

Heuristic
√ √ √ √ √ √ √ √ √ √ √ √ √

cost must be taken into account, and this cost highly depends
on the task mapping decision. When tasks are allocated to
different nodes, communication delay is introduced, while
the nodes consume energy for transmitting the data.

3) In networked systems, the task mapping approaches usually
assume that the tasks are precise [17]–[22]. However, since
our work considers IC-tasks, a set of new variables (relevant
to the execution of optional subtasks) has to be introduced
into the task mapping problem. The objective is to maximize
the QoS by increasing the execution cycles of the optional
subtasks. The longer the optional subtasks are executed, the
more energy and time are spent. Hence, the adjustment of
optional subtasks affects the objective function as well as the
energy and the time constraints of the task mapping problem.

A. Related Work

Existing task mapping approaches focus either on energy-
aware mapping or QoS-aware mapping. The majority of energy-
aware task mapping approaches usually aim at minimizing
energy consumption, under system resource and application
constraints [7]–[11]. In order to enhance energy efficiency,
DVFS is used. An example considering independent real-time
tasks is the work of [8], where the task allocation problem
with DVFS is formulated as an Integer Linear Programming
(ILP) and solved by a relaxation method based on Linear
Programming (LP). When dependent real-time tasks are con-
sidered, Mixed Integer Programming (MIP) is usually used to
formulate the task mapping problem [7], [9]–[11]. In order to
solve an ILP-based task mapping problem, a hybrid Genetic
Algorithm (GA) is designed in [9], and an optimal method
based on Benders Decomposition (BD) [24] is presented in [10].
Combining DVFS and Dynamic Power Management (DPM),
a Mixed-Integer Linear Programming (MILP)-based task map-
ping problem is formulated in [7]. The number of variables is
further reduced by problem refinement, and then, the refined
MILP problem is optimally solved by the CPLEX solver. The
Mixed-Integer Non-Linear Programming (MINLP)-based task
mapping problem in [11] is first relaxed to a MILP by linear
approximation, and then, is optimally solved by the Branch and
Bound (B&B) method [25].

Existing QoS-aware task mapping approaches usually con-
sider the IC-task model [12]–[16]. Their aim is to maximize
system QoS, under real-time and/or energy constraints. In [13],

the problem of mapping independent tasks is solved, but the
frequency of each processor is decided upfront, whereas task
allocation and optional subtasks adjustment are solved one
after the other. A similar task mapping problem is studied
in [14], where an optimal approach is proposed based on
problem decomposition. The work in [15] focuses on task
scheduling and optional subtasks adjustment of dependent tasks,
whereas task allocation is fixed and given in advance. Other
existing approaches focus on bi-objective optimization, e.g.,
increasing the QoS while reducing the frequency changes under
real-time constraints for independent tasks [16]. Dependent
tasks are mapped on a DVFS-enabled uni-processor platform
in [12]. This problem is first formulated as an Integer Non-
Linear Programming (INLP), and then, is relaxed to a convex
problem. However, the aforementioned approaches mainly focus
on embedded systems, thus, the communication cost is not taken
into account. In the networked systems, the nodes also consume
energy and time for data transmission.

In networked systems, approaches exist that map precise
dependent tasks on the nodes of Wireless Sensor Networks
(WSNs) [17]–[22]. For instance, the work of [17] minimizes
the overall energy consumption and balances the workload of
the system while meeting task deadline through a three-phase
heuristic. The task allocation problem with metric – balance
the energy consumption of the nodes – is considered in [19].
This problem is first formulated as an INLP, and then, it is
transformed to an ILP. Finally, the transformed problem is
solved by a greedy algorithm. In [20], [21], the lifetime of
system is maximized (i.e., minimize the energy consumption of
the node with the lowest energy level) by allocating dependent
tasks on the nodes. On this basis, a heuristic method [20] and
a game theory method [21] are designed to solve task alloca-
tion problems, respectively. However, DVFS is not taken into
account in the above approaches. The mapping of dependent
tasks and DVFS are jointly addressed in [18], where a two-
phase heuristic is proposed. In [22], the energy consumption for
communication and task execution is minimized, by allocating
the tasks to DVFS-enabled nodes through the ant colony and
the bee colony algorithms. However, since the aforementioned
approaches mainly focus on the precise computation tasks, the
improvement of system QoS is limited. In [23], the dependent
IC-tasks mapping problem is formulated as a MILP with the
goal of maximizing system QoS and optimally solved by a
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BD-based approach. Compared with our preliminary results
in [23], the current work takes DVFS and multi-path routing
into account and proposes a novel heuristic method to further
reduce the computation time. By using DVFS and multi-path
routing, we can achieve a better trade-off between real-time
performance and energy efficiency.

B. Contributions

Complementary to the state-of-the-art, this work solves the
following mapping problem: given a networked system with
DVFS-enabled wireless nodes and a set dependent IC-tasks, we
aim to determine: 1) which node should the task be executed on;
2) what voltage/frequency level should be used for each task;
3) what is the execution sequence of the tasks on each node; 4)
which paths transmit the data required for the task execution; 5)
when should a task start its execution; and 6) how many cycles
of the optional subtasks are needed to be executed, such that the
system QoS is maximized. while meeting the energy supply and
the task deadline constraints. In this context, the task mapping
decides task allocation, frequency assignment, task sequence,
multi-path routing, task start time and task adjustment. Our main
contributions are summarized as follows:

1) We formulate the IC-tasks mapping problem that simulta-
neously optimizes task allocation, frequency assignment,
task sequence, multi-path routing, task start time and task
adjustment as a MINLP. The objective is to maximize QoS
without violating the real-time and energy constraints.

2) We prove that, by replacing the nonlinear items with some
auxiliary variables and adding additional linear constraints
into the optimization problem, the MINLP problem can be
equivalently transformed to a MILP.

3) Based on the BD framework and the idea of closed-loop
control, we propose an Optimal Task Mapping (OTM)
algorithm to efficiently solve the transformed problem.
This method decomposes the transformed problem into two
subproblems, each with fewer constraints and variables.
The first subproblem is an ILP, which is responsible
for task allocation, frequency assignment, task sequence
and multi-path routing. The second subproblem is an LP,
which determines the start time and the optional cycles
of each task. The proposed OTM algorithm iterates using
the solutions of these two subproblems. We prove that
OTM converges to the optimal solution of the transformed
problem.

4) In order to enhance the scalability of the proposed ap-
proach, we present a Heuristic Task Mapping (HTM)
algorithm, which reduces the computation time of OTM
algorithm by solving the subproblems in a sequence.

5) Finally, we provide extensive experimental results to eval-
uate the performance of the proposed optimal and heuris-
tic task mapping algorithms. The obtained results show
significant performance improvements compared with the
state-of-the-art task mapping methods in terms of solution
quality and computation time.

The rest of this paper is organized as follows. Section II
presents the system model and formulates the problem under
study. Section III, Section IV and Section V describe the

problem linearization method, the optimal and the heuristic task
mapping algorithms, respectively. Finally, Section VI shows the
simulation results and Section VII concludes this work.

II. SYSTEM MODELS AND PROBLEM FORMULATION

A. Motivational Example

Let’s consider a Heating, Ventilation, and Air Conditioning
(HVAC) system [26] as an example. This system includes eight
wireless nodes {θ1, . . . , θ8}, as shown in Fig. 1. The nodes
θ1 and θ8 equipped with temperature sensors. They monitor
the average temperature within their sensing range and use this
information to determine if a fire has occurred. The nodes θ3

and θ7 are equipped with the humidity sensors, able to measure
the humidity in the air. The node θ4 is connected to a sprinkler,
capable of extinguishing a fire within its acting range. The node
θ5 is connected to a fan, capable of reducing the humidity in
the air. The nodes equipped with temperature sensor, humidity
sensor, sprinkler and fan are marked with St, Sh, As and Af ,
respectively.

Node Graph

𝜏3

𝜏2

𝜏1

𝜏5
𝜏6

𝜏7
𝜏8

Task Graphs35

s25

s15

s45

s56

s67

𝜃1

𝜃2

𝜃3

𝜃4
𝜃5

𝜃6
Af

St

𝜏4

s68

𝜃7

𝜃8

St
Sh

Sh

As

Fig. 1. HVAC system.

The HVAC system periodically measures the temperature and
the humidity of the environment, compare the measured values
with given thresholds, and decide the corresponding actions.
When a fire has been detected, the sprinkler must be activated
first, and then, the fan. If these actuators are activated in the
opposite order, it will cause serious problems. In the HVAC
system, a task can be of sensing, processing, or acting type.
For example, τ1 and τ2 are the temperature measurement tasks,
while τ3 and τ4 are the humidity measurement tasks. These
sensing tasks generate a set of data, with sizes s15, s25, s35,
and s45, that have to be processed by task τ5. After processing,
task τ5 transmits the result to task τ6, which determines the
control action to be taken. Finally, tasks τ7 and τ8 act upon
the decision generated by task τ6 and control the actions of the
actuators. The example of Fig. 1 illustrates the task mapping
problem addressed in this work.
• Firstly, the allocations of sensing tasks {τ1, τ2, τ3, τ4} and

acting tasks {τ7, τ8} are restricted only to the nodes that have
the corresponding capabilities. However, the data processing
tasks {τ5, τ6} can be allocated on any node. The dependencies
between the tasks define the task graph. Considering that the
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communication range of each node is limited, the communica-
tion between the nodes is modeled by a node graph. Both task
graph and node graph influence the task allocation decision.

• Secondly, each task τi is composed of a mandatory subtask
and an optional subtask. The optional subtask is executed
immediately after its corresponding mandatory subtask. The
QoS of the result highly depends on the number of execution
cycles of optional subtask. When deciding the task allocation
and the task scheduling (i.e., the start time and the end time of
each task), the following goals must be achieved at the same
time: 1) meet the deadline of the tasks (i.e., each task must be
completed within a predefined deadline to generate a result in
time), 2) the energy consumption of the nodes (i.e., the energy
spent for computation, communication, sensing and acting)
should not exceed their energy supply, and 3) increase the
execution cycles of optional subtasks to maximize the QoS.
These three goals are important, but they contradict with each
other, since the real-time and energy constraints may require
to sacrifice the system QoS.

B. System Model

1) Task Model: We consider a task set T of N periodic real-
time IC-tasks {τ1, . . . , τN}. Each task τi is described by a tuple
{oi,Mi, Oi, t

s
i , di, li}. oi, Mi and Oi are measured in Worst

Case Execution Cycles (WCEC). oi is the actual WCEC of the
optional subtask, Mi is the WCEC of the mandatory subtask,
and Oi is the maximum WCEC of the optional subtask oi (i.e.,
0 ≤ oi ≤ Oi). tsi and di are the start time and the deadline
of task τi, respectively. li is the period of task τi, which is
also equal to the scheduling horizon H . We introduce a linear
QoS function fi(oi) for each task τi, where the generated QoS
increases uniformly with the number of optional cycles, decided
for actual execution [5].

We assume that the tasks are dependent and non-preemptive.
They are released at the same time 0 and share a common
scheduling horizon H . The task set T is modeled by a Directed
Acyclic Graph (DAG) Gt(Vt, Et), where the vertexes Vt and the
edges Et represent the set of tasks to be executed and the data
dependencies between the tasks, respectively. We consider that
the system operates in rounds, which means in each round (i.e.,
scheduling horizon H) all the tasks in task set T are executed
once. Based on the dependency between the tasks, we introduce
a task execution order matrix p = [pij ]N×N . If pij = 1, task
τi precedes task τj and τj is the closest task of τi, otherwise,
pij = 0. As the task graph shown in Fig. 1, we have p15 =
p25 = p35 = p45 = p56 = p67 = p68 = 1.

2) Energy Model: We consider a networked system that
contains M wireless DVFS-enabled nodes {θ1, . . . , θM}, where
Ms nodes {θ1, . . . , θMs} equipped with sensors and Ma nodes
{θMs+1, . . . , θMs+Ma} connected to actuators (Ms+Ma ≤M ).
The processor of each node has L different Voltage/Frequency
(V/F) levels {(v1, f1), . . . , (vL, fL)}. The power consumption
of the processor under the lth V/F level is computed as

P cl = P sl + P dl , (1)

where P sl = vlK1e
K2vleK3vbs + |vbs|Ij is the static power, and

P dl = Ceffv
2
l fl is the dynamic power [7]. The constants K1,

K2 and K3 are technology dependent. Ij is the approximately
constant junction leakage current. vbs is the reverse bias voltage
used to reduce the leakage power and can be treated as constant.
Ceff is the average effective switching capacitance.

We assume that the processor of node θk can operate in two
modes: active mode with the power consumption P ck and idle
mode with the power consumption P 0

k [8]. The processor goes
into idle mode immediately when it has no task to execute.
The transition time and energy is incorporated into the task
execution time and energy, since they are very small compared
to those required to execute a task [8]. For each task τi, τi
starts and ends its execution on the same processor (i.e., no
task migration), and the frequency cannot be changed during
the execution of the task (i.e., inter-task DVFS).

3) Data Routing Model: Since each node can only commu-
nicate directly with the nodes that are within its communica-
tion range, we introduce a node graph Gn(Vn, En), where the
vertexes Vn represent the nodes, while the edges En represent
the communication cost between the nodes. In this paper, we
consider multi-path data routing, which means a pair of nodes
can communicate with each other through several paths. Specif-
ically, we consider two routing options: the 1st routing path
is energy-oriented, while the 2nd routing path is time-oriented,
since the system under study is energy and time constrained. For
the energy (time)-oriented path, an edge represents the energy
(time) required for transmitting and receiving a unit of data
between the corresponding two nodes. Therefore, the aim of
energy (time)-oriented routing is to find the shortest path. The
shortest path can be easily found through the existing methods,
such as Dijkstra’s algorithm [27].

e14

𝜃1
𝜃2

𝜃3

𝜃4

e13
e23

e24e34

(a)

t14

𝜃1
𝜃2

𝜃3

𝜃4

t13
t23

t24t34

(b)

Fig. 2. (a) Energy-oriented data path. (b) Time-oriented data path.

As the examples illustrated in Fig. 2, eij and tij is the weight
of the edge between the nodes θi and θj in the energy-oriented
and time-oriented graph, respectively. If a data is required to
be transmitted from θ1 to θ2, we have θ1 → θ3 → θ2 for
the energy-oriented path, and θ1 → θ4 → θ2 for the time-
oriented path. To describe the time and the energy related
to path selection, we introduce 1) a routing energy matrix
r = [rβγkh]N×N×N×2, where rβγkh represents the energy
consumed per unit of data at node θk, when routing the
messages from θβ to θγ through the hth path, and 2) a routing
time matrix t = [tβγh]N×N×2, where tβγh denotes the time
required to transmit unit of data from θβ to θγ through the hth

path. Note that during the data transmission between θβ to θγ ,
if θk is not included in the hth path, we have rβγkh = +∞,
e.g., r1241 = +∞ in Fig. 2(a).
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C. Problem Formulation

The IC-tasks mapping problem has the objective of maxi-
mizing system QoS subject to real-time and energy constraints,
by determining task allocation, frequency assignment, task se-
quence, multi-path routing, task start time and task adjustment.
In order to formulate this problem, we introduce the following
variables: 1) binary variable qik = 1 if task τi is allocated to
node θk, otherwise, qik = 0; 2) binary variable cil = 1 if task
τi is executed with frequency fl, otherwise, cil = 0; 3) binary
variable uij = 1 if task τi proceeds τj , otherwise, uij = 0;
4) binary variable xeh = 1 if data over edge e in Et is routed
along the hth path, otherwise, xeh = 0; 5) continuous variable
tsi denotes the start time of task τi; 6) continuous variable oi
represents the optional subtask of task τi.

We assume that the following matrices are known: 1) task ex-
ecution order matrix p, 2) data size matrix s, 3) routing energy
matrix r, and 4) routing time matrix t. The parameters and the
variables used in the problem formulation are summarized in
Table II. For tractability reasons, during the problem formula-
tion, we consider oi as continuous variables. When the problem
is solved, we round the result down. Since the tasks are typically
executed in hundreds of thousands of cycles, one cycle is a very
fine-grained unit [12]. Let N = {1, . . . , N},M = {1, . . . ,M},
Ms = {1, . . . ,Ms}, Ma = {Ms + 1, . . . ,Ms + Ma} and
H = {1, 2}. The constraints involved in the task mapping
problem can be explained as follows.

1) Task Allocation Constraint: Since each task τi is assigned
to only one node and the task allocation decisions related to the
sensors and the actuators are restricted, we have∑

k∈K

qik = 1, ∀i ∈ N , (2)

qik = 1, ∀(i, k) ∈Mm, (3)

where Mm denote the set of index pairs (tasks and nodes) that
have fixed matching. As the example shown in Fig. 1, since
q11 = q28 = q33 = q47 = q75 = q84 = 1, we have Mm =
{(1, 1), (2, 8), (3, 3), (4, 7), (7, 5), (8, 4)}.

2) Frequency Assignment Constraint: Since each task τi is
executed with only one V/F level, we get∑

l∈L

cil = 1, ∀i ∈ N . (4)

3) Data Routing Constraint: Since the data over edge e in
Et is routed through one path, we obtain∑

h∈H

xeh = 1, ∀e = (i, j) ∈ Et. (5)

4) Task Sequence Constraints: Before executing a task τj ,
we need to collect all the data generated from its previous
dependent tasks. If pij = pkj = 1, tasks τi and τk precede
τj and they are the tasks closest to τj . When these tasks
are allocated to different nodes, the node that executes τj
should collect the data from the other nodes. In order to avoid
communication collision [28], the data are received in sequence,
since one node cannot receive the data from multiple nodes
simultaneously. For the dependent tasks, e.g., τi and τj in Fig. 3
(pij = 1), if we allocate these tasks to different nodes θβ

TABLE II
SYMBOLS USED IN THE PROBLEM FORMULATION

Parameters

Ma number of actuator nodes
Ms number of sensor nodes
M number of nodes
N number of tasks
L number of voltage/frequency levels
H scheduling horizon
θk the kth node
τi the ith task

(vl, fl) the lth voltage/frequency level
P sk static power of node θk
P dk dynamic power of node θk
P ck active power of node θk
P 0
k idle power of node θk
Elk available energy of node θk at the lth round
Mi mandatory cycles of task τi
Oi maximum optional cycles of task τi
di deadline of task τi

pij =


1 if task τi proceeds τj and τj is the

nearest task of τi
0 else

sij size of data that task τi produces for task τj
rβγkh energy consumed of node θk when routing unit

of data from θβ to θγ through the hth path
tβγh time required to transmit unit of data from

θβ to θγ through the hth path

Binary Variables

qik =

{
1 if task τi is allocated to node θk
0 else

cil =

{
1 if task τi is executed with frequency fl
0 else

uij =

{
1 if task τi proceeds task τj
0 else

xeh =


1 if data over edge e in Et is routed along

with the hth path
0 else

Continuous Variables

oi optional cycles of task τi
tsi start time of task τi

and θγ (i.e., qiβ = qjγ = 1) and choose the hth path (i.e.,
xeh = 1, e = (i, j) ∈ Et) to transmit the data from θβ to
θγ , the time required for θγ to receive the data from θβ is
sijpijqiβqjγxehtβγh. Therefore, the time spent for receiving the
data required by the execution of task τj is

trj =
∑
e∈Et

∑
β∈M

∑
γ∈M

∑
h∈H

sijpijqiβqjγxehtβγh, ∀j ∈ N . (6)

For the dependent tasks, e.g., τi and τj in Fig. 3 (pij = 1),
no matter if they are allocated to the same node or to different
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nodes, the execution sequence between these tasks is fixed.
Therefore, the start and end time of the tasks is bounded by

tsj ≥ pijtei + trj , ∀i, j ∈ N , i 6= j, (7)

where tci =
∑
l∈L cil

Mi+oi
fl

and tei = tsi + tci are the execution
time and the end time of task τi, respectively. If pij = 1, we
have tsj ≥ tei + trj , else, (7) is always satisfied.

𝜏j

𝜏k
𝜏l𝜏i

Fig. 3. Task dependency.

On the other hand, for the independent tasks, e.g., τj and τk
in Fig. 3 (pjk = 0), if they are allocated to different nodes, the
execution of τj doesn’t affect the execution of τk. However, if τj
and τk are allocated to the same node, we need to schedule these
tasks so as to make sure that their executions do not overlap
with each other, since one processor executes no more than one
task at the same time. To this end, we introduce the following
constraint:

tei + trj ≤ tsj + (2− qik − qjk)H + (1− uij)H,
∀i, j ∈ N , i 6= j, ∀k ∈M. (8)

If τi and τj are executed on the different nodes (i.e., qik +
qjk ≤ 1), (8) is always satisfied, else, (8) is meaningful: with
the task allocation decision qik = qjk = 1, if uij = 1 (i.e., τi
precedes τj), we have tei + trj ≤ tsj ; if uij = 0, we get uji = 1
due to uji+uij = 1. Note that (8) can be rewritten as tej + tri ≤
tsi+(2−qjk−qik)H+(1−uji)H = tsi+(2−qjk−qik)H+uijH .
Therefore, we have tej + tri ≤ tsi .

5) Task Deadline Constraint: Since each task τi must be
finished within a given time threshold di, we have

tei ≤ di, ∀i ∈ N . (9)

6) Energy Supply Constraint: With the task allocation deci-
sion qik, the time required to execute all the tasks assigned to
node θk is

∑
i∈N qikt

c
i , and the idle time of node θk being in

the scheduling horizon H is H −
∑
i∈N qikt

c
i . Based on the

energy model (1), the computation energy of node θk in each
round is

Eck =
∑
i∈N

qike
c
i +

(
H −

∑
i∈N

qikt
c
i

)
P 0
k , ∀k ∈M. (10)

where eci =
∑
l∈L cil

Mi+oi
fl

P cl is the energy required to execute
task τi. On the other hand, the energy consumed for node θk
to transmit data in each round is

Etk =
∑
e∈Et

∑
β∈M

∑
γ∈M

∑
h∈H

sijqiβqiγxehrβγkh, ∀k ∈M. (11)

Since the total energy consumed by node θk during the schedul-
ing horizon H cannot exceed the energy supply Elk, we have

Eck + Etk + Esk ≤ Elk, ∀k ∈Ms, (12)

Eck + Etk + Eak ≤ Elk, ∀k ∈Ma, (13)

Eck + Etk ≤ Elk, ∀k ∈M, ∀k /∈Ms,Ma, (14)

where Esk is the sensing energy consumption and Eak is the
acting energy consumption.

Taking the objective (maximize QoS function
∑
i∈N fi(oi))

and all the constraints mentioned above into account, the Primal
Problem (PP) can be formulated as

PP : min
q,c,u,x,

ts,o

−
∑
i∈N

fi(oi) (15)

s.t.


(2)− (14),
qik, cil, uij , xeh ∈ {0, 1},
0 ≤ tsi ≤ H, 0 ≤ oi ≤ Oi.

III. PROBLEM LINEARIZATION

Since the products qikcil, qiβqjγxeh, ciloi and qikciloi are
included in the constraints (6)–(14), (15) is a MINLP problem,
which is hard to solve directly. Note that qik, cil and xeh are
binary variables, while oi is a continuous variable. In order
to linearize above nonlinear terms, we introduce the following
lemmas.

Lemma 3.1: Let b1, b2 and g denote the binary variables. The
nonlinear constraint g = b1b2 can be equivalently replaced by
the linear constraints: g ≤ b1, g ≤ b2 and g ≥ b1 + b2 − 1.

All the proofs of lemmas and theorems are presented in the
Appendices for better readability of the main manuscript.

Based on Lemma 3.1, we first introduce an auxiliary (binary)
variable gikl to replace the nonlinear term qikcil. Then, we add
the following constraints into the PP:

{gikl ≤ qik, gikl ≤ cil, gikl ≥ qik + cil − 1},
∀i ∈ N , ∀k ∈M, ∀l ∈ L. (16)

Similarly, the nonlinear term qiβqjγ in qiβqjγxeh is first
replaced by the auxiliary variable biβjγ and the following
constraints:

{biβjγ ≤ qiβ , biβjγ ≤ qjγ , biβjγ ≥ qiβ + qjγ − 1},
∀e ∈ Et, ∀β, γ ∈M. (17)

Then, the nonlinear term biβjγxeh is replaced by the auxiliary
variable wiβjγh and the following constraints:

{wiβjγh ≤ biβjγ , wiβjγh ≤ xeh, wiβjγh ≥ biβjγ+xeh−1},
∀e ∈ Et, ∀β, γ ∈M, ∀h ∈ H. (18)

Note that qikciloi = gikloi, where gikl is a binary variable,
while oi is a continuous variable bounded by 0 ≤ oi ≤ Oi. To
deal with the nonlinear terms ciloi and gikloi, we introduce the
following lemma.

Lemma 3.2: The spaces S1 = {[y, b, x]|y = bx,−s1 ≤ x ≤
s2} and S2 = {[y, b, x]| − bs1 ≤ y ≤ bs2, y + bs1 − x − s1 ≤
0, y−bs2−x+s2 ≥ 0} are equivalent, where x is a continuous
variable, b is a binary variable, and s1, s2 > 0 are constants.

Based on Lemma 3.2, the nonlinear terms ciloi and gikloi are
replaced by the auxiliary (continuous) variables yil and zikl, and
the following constraints:

{yil ≤ cilOi, yil − oi ≤ 0, yil − cilOi − oi +Oi ≥ 0},
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∀i ∈ N , ∀l ∈ L, (19)

{zikl ≤ giklOi, zikl− oi ≤ 0, zikl− giklOi− oi +Oi ≥ 0},
∀i ∈ N , ∀k ∈M, ∀l ∈ L. (20)

Therefore, with the auxiliary variable wiβjγh, (6) and (11)
are rewritten as follows:

trj =
∑
e∈Et

∑
β∈M

∑
γ∈M

∑
h∈H

sijpijwiβjγhtβγh, ∀j ∈ N , (21)

Etk =
∑
e∈Et

∑
β∈M

∑
γ∈M

∑
h∈H

sijwiβjγhrβγkh, ∀k ∈M. (22)

On this basis, with the auxiliary variables gikl, yil and zikl,
(7)–(10) are reformulated as follows:

tsj ≥ pij

(
tsi +

∑
l∈L

cilMi + yil
fl

)
+trj , ∀i, j ∈ N , i 6= j, (23)

tsi+
∑
l∈L

cilMi + yil
fl

+trj ≤ tsj+(2−qik−qjk)H+(1−uij)H,

∀i, j ∈ N , i 6= j, ∀k ∈M, (24)

tsi +
∑
l∈L

cilMi + yil
fl

≤ di, ∀i ∈ N , (25)

Eck = HP 0
k+
∑
i∈N

∑
l∈L

giklMi + zikl
fl

(P cl −P 0
k ), ∀k ∈M. (26)

Finally, (15) is transformed to the following MILP problem:

PP1 : min
q,c,u,x,g,b,w,

o,ts,y,z

−
∑
i∈N

fi(oi) (27)

s.t.


(2)− (5), (12)− (14), (16)− (26),
qik, cil, uij , xeh, gikl, biβjγ , wiβjγh ∈ {0, 1},
0 ≤ oi, yil, zikl ≤ Oi, 0 ≤ tsi ≤ H.

Remark 3.1: Lemma 3.1 and Lemma 3.2 show that the lin-
earization does not change the feasible region and the objective
function of the problem. Therefore, solving PP and solving PP1
are equivalent.

IV. OPTIMAL TASK MAPPING ALGORITHM

In this section, we present an OTM algorithm to optimally
solve the PP1. Our method decomposes the PP1 into two smaller
subproblems with less variables: a Master Problem (MP) for
task allocation q, frequency assignment c, task sequence u, and
data routing x, and a Slave Problem (SP) for task start time ts

and optional cycles adjustment o. Then, the optimal solution of
PP1 is found by solving the subproblems iteratively. With this
decomposition structure, the computational complexity can be
greatly reduced.

For the sake of presentation, (27) is reformulated as follows:

PP2 : min
x,y

Φ = fTy (28)

s.t.

{
Ax � b1,

Cx+Dy � b2,

where x and y represent the vector of binary and continuous
variables, respectively. The vector f represents the coefficients
in the objective function. The matrices A, C, D and the vectors
b1, b2 represent the coefficients in the constraints.

A. MP and SP formulation

According to the structure of PP2, at the kth iteration, the
MP and the SP have the forms:

MP : Φl(k) = min
x,Φ̂

Φ̂ (29)

s.t. Ax � b1, C1, C2,

SP : Φu(k) = min
y�0

fTy (30)

s.t. Cx(k) +Dy � b2,

where x(k) is the MP solution at the kth iteration, C1 : Φ̂ ≥
µ(i)T (Cx− b2), ∀i ∈ A, C2 : 0 ≥ µ̂(j)T (Cx− b2), ∀j ∈ B.

Lemma 4.1: Φl(k) and Φu(k) are the lower and upper bounds
on Φ∗, respectively, where Φ∗ is the optimal value of Φ.

The MP considers all the binary variables x, and the asso-
ciated part of the constraints (i.e., Ax � b1). It also includes
the information regarding the SP through a set of constraints
(i.e., C1 and C2) called Benders cuts. Note that the objective
function of the PP2 only considers the continuous variables
y. To facilitate the iterations between the MP and the SP, an
auxiliary (continuous) variable Φ̂ is introduced into the MP as
the objective function, where Φ̂ and Φ have the same physical
meaning. At each iteration, based on the SP solution, a new
constraint is added into C1 or C2 to reduce the gap between
the upper and the lower bounds. The problem iterations stop
when Φu(k)−Φl(k) ≤ ε, where ε is a small positive tolerance.

B. Iterations Between MP and SP

Initially, we set the iteration counter k = 0 and the MP
solution x(0) that satisfies Ax(0) � b1. In addition, we assume
that the constraint sets C1 and C2 are null, the lower bound
Φl(0) = −∞ and the upper bound Φu(0) = +∞.

Since the SP is a LP problem, the strong duality [29] exists
between the SP and its dual problem (DSP), i.e., solving SP and
solving DSP are equivalent. Instead of solving the SP directly,
we solve its dual problem:

max
µ�0

µT (Cx(k)− b2) (31)

s.t. f +DTµ � 0,

where µ = [µi]v×1 are the dual variables. According to the
solution of DSP, we can construct the constraints in C1 and
C2. Specifically, if (31) has a bounded solution µ(k), (30) is
feasible under given x(k). Therefore, A ← {k}∪A and a new
constraint:

Φ̂ ≥ µ(k)T (Cx− b2), (32)

is added into C1. On the other hand, if (31) has an unbounded
solution, i.e., µ(k)T (Cx(k) − b2) = +∞, (30) is infeasible
under given x(k). Therefore, B ← {k}∪B and a new constraint:

0 ≥ µ̂(k)T (Cx− b2), (33)
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is added into C2, where µ̂(k) is the optimal solution to (45)
at the kth iteration. Based on the solution of (31), at the kth

iteration, the upper bound is updated by

Φu(k) = min{Φu(k − 1),µ(k)T (Cx(k)− b2)}. (34)

Finally, with the updated constraint sets C1 and C2, (29) is
solved again to obtain a solution x(k + 1) for the next round
iteration.

Theorem 4.1: Constraints (32) and (33) exclude the non-
optimal and infeasible solutions of the binary variables x,
respectively.

Lemma 4.2: With updating the constraints in C1 and C2, the
lower bound sequence {Φl(0), . . . ,Φl(k)} is increasing while
the upper bound sequence {Φu(0), . . . ,Φu(k)} is decreasing.

Theorem 4.2: The solution found by OTM converges to the
global optimal one within a finite number of iterations.

V. HEURISTIC TASK MAPPING ALGORITHM

At each iteration, a new constraint is generated and added into
the MP. Therefore, with an increasing number of iterations, the
computational complexity and the size of MP both increase.
In order to enhance the scalability of the proposed approach,
we provide a novel heuristic approach HTM to efficiently solve
the PP1. The basic idea of HTM is similar to OTM: both of
them are based on problem decomposition. However, the HTM
solves the master and the slave problems in sequence (without
iteration), thus, the HTM contains two steps. During the first
step, we only consider the mandatory subtasks. By balancing
the energy consumption of the nodes, while meeting deadline
constraints, we obtain the feasible task allocation, frequency
assignment, task sequence, and data routing decisions. Under
these decisions, in the second step, we determine the start
time of the tasks and the cycles of optional subtasks so as to
maximize QoS function.

A. Task Allocation Problem

Since the mandatory subtasks must be executed, we initially
only consider the allocation, the frequency, the sequence and the
routing of the mandatory subtasks (i.e., oi = 0, ∀i ∈ N ). The
difficulty during the problem formulation is how to deal with
the continuous variables {ts1, . . . , tsN} (i.e., the start time of the
tasks). If the task start time is determined, the PP1 reduces to
an ILP problem, since oi = 0. (9) shows that the task deadline
constraint must be satisfied (i.e., tei ≤ di). In the worst case,
we have tei = di. Thus, the start time of task τi is

tsi = di −
∑
l∈L

cilMi

fl
, ∀i ∈ N . (35)

On the other hand, under different optional cycles oi, task
τi generates a set of data with size sij for task τj . Therefore,
the time required to collect the data for the execution of task
τj is given by (21), and the energy consumed for node θk to
transmit the task data is calculated as (22). With oi = 0 and
gikl = qikcil, (7), (8) and (10) have the forms:

tsj ≥ pij

(
tsi +

∑
l∈L

cilMi

fl

)
+ trj , ∀i, j ∈ N , i 6= j, (36)

tsi +
∑
l∈L

cilMi

fl
+ trj ≤ tsj + (2− qik − qjk)H + (1− uij)H,

∀i, j ∈ N , i 6= j, ∀k ∈M, (37)

Eck = HP 0
k +

∑
i∈N

∑
l∈L

giklMi

fl
(P cl − P 0

k ), ∀k ∈M. (38)

Hence, the total energy consumption of node θk is

Eallk =


Eck + Etk + Esk, ∀k ∈Ms,

Eck + Etk + Eak , ∀k ∈Ma,

Eck + Etk, ∀k ∈M, ∀k /∈Ms,Ma.

In order to make sure that we have enough energy to enhance
the QoS in the next step, the aim of the first step is to balance
the energy consumption of the nodes. Therefore, the Task
Allocation Problem (TAP) can be formulated as the following
ILP:

TAP : min
q,c,u,x,
g,b,w

{
max
∀k∈M

Eallk
Elk

}
(39)

s.t.

{
(2)− (5), (12)− (14), (16)− (18), (21), (22), (35)− (38),
qik, cil, uij , xeh, gikl, biβjγ , wiβjγh ∈ {0, 1}.

When solving the TAP, the polynomial-time method such
as the Feasibility Pump (FP) method [30] can be used to
reduce the computational complexity. In particular, we introduce
a set of auxiliary (continuous) variables {q̂, ĉ, û, x̂, ĝ, b̂, ŵ},
which are assumed to be within the range [0, 1], to replace the
original integer variables {q, c,u,x, g, b,w}. Then, we solve
the relaxed TAP (LP) and round the solution to the nearest
binary matrix that is feasible to the TAP.

B. Task Scheduling Problem

Based on the solution of TAP, we obtain the decisions for
the allocation, the frequency, the sequence and the routing of
the mandatory subtasks (i.e., q, c, u and x). When the values
of binary variables are determined, the PP1 reduces to a LP
problem. Note that the continuous variables, i.e., the task start
time tsi and the optional subtask cycles oi, affect the constraints
(7)-(14). With the aim to maximize QoS under real-time and
energy constraints, the Task Scheduling Problem (TSP) can be
formulated as

TSP : min
o,ts

−
∑
i∈N

gi(oi) (40)

s.t.



tsj ≥ pijtei + trj , ∀i, j ∈ N , i 6= j,

tei + trj ≤ tsj + (2− qik − qjk)H + (1− uij)H,
∀i, j ∈ N , i 6= j, ∀k ∈M,

tei ≤ di, ∀i ∈ N ,
Eck + Etk + Esk ≤ Elk, ∀k ∈Ms,

Eck + Etk + Eak ≤ Elk, ∀k ∈Ma,

Eck + Etk ≤ Elk, ∀k ∈M, ∀k /∈Ms,Ma,

0 ≤ oi ≤ Oi, 0 ≤ tsi ≤ H.

where tci =
∑
l∈L cil

Mi+oi
fl

and tei = tsi + tci . E
c
k and Etk are

given by (10) and (11), respectively.
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For the HTM algorithm, the binary variables {q, c,u,x} and
the continuous variables {o, ts} are solved in the TAP and the
TSP separately. Therefore, we can avoid adding the auxiliary
variables {y, z} and the additional constraints (19) and (20) into
the problem to linearize the nonlinear items ciloi and qikciloi.
In addition, the problem sizes of TAP and TSP are fixed and
these problems are solved only once. Therefore, compared with
OTM algorithm, the computation time of HTM algorithm can
be greatly reduced.

Remark 5.1: The structure of PP1 shows that the feasibility
of this problem is mainly determined by the real-time and the
energy related constraints, but these constraints are relaxed in
the TAP (i.e., tei = di and oi = 0). Therefore, if the PP1 is
feasible, the TAP is also feasible, and further, if the TAP is
feasible, the TSP is also feasible. This is because in the worst
case, we have tsi = di− tci and oi = 0, which is consistent with
the assumption of the TAP.

VI. SIMULATION RESULTS

For evaluating our approach, we consider a HVAC system
with 25 nodes, where 10 nodes equipped with sensors and 5
nodes equipped with actuators. The values and the tuned pa-
rameters of the experimental set-up are summarized in Table III.
The processor of the node is based on 70 nm technology [7],
and the WCECs of the mandatory subtask Mi and the maximum
optional subtask Oi are calculated from the MiBench and
the MediaBench benchmarks [31]. We consider a linear QoS
function gi(oi) = oi [13] and assume that all data items are
unit size (i.e., sij = 1) [19].

In order to set a deadline di of task τi, we introduce a
temporary data receiving time t̂ri and a relative deadline d̂i.
If pij = 1, τi precedes τj and τj is the closest task of
τi, dj = max∀i,pij 6=1{di + t̂ri + d̂i}. If τj is an entry task,
dj = d̂j . Let min∀β,γ,h{tβγh} and max∀β,γ,h{tβγh} denote
the minimum and the maximum time required to transmit the
data between the nodes. Since the number of tasks precede task
τi is

∑
j∈N pji, the temporary data receiving time t̂ri is assumed

to be within the range [t̂ri,min, t̂
r
i,max], where t̂ri,min and t̂ri,max

are the minimum and the maximum time required to transmit
the data related to τj’s previous dependent tasks, respectively.
The relative deadline d̂i is assumed to be within the range
[d̂i,min, d̂i,max], where d̂i,min and d̂i,max are the minimum and
the maximum time required to execute a task with Mi + Oi
cycles, respectively.

We assume that the scheduling horizon H = max∀i{di}
and Ehk = Etk,min + Eck,min, where Etk,min and Eck,min are the
minimum energy required for the node θk to transmit all the task
data and execute all the mandatory subtasks, respectively. The
energy supply of node θk is set to Elk = ηEhk , where η ∈ [0, 1]
is an energy efficiency factor. For the sensor and the actuator
nodes, we set Elk = 2ηEhk and Elk = 3ηEhk , respectively,
since these nodes consume more energy for sensing and acting
tasks. Note that different processor and task parameters lead to
different values in the parameters {A,C,D,f , b1, b2} for the
PP1. However, the problem structures under different values of
parameters are the same. Therefore, the proposed methods are
still applicative.

TABLE III
SIMULATION PARAMETERS

Processor θk characteristics
vl (V) 0.65 0.7 0.75 0.8 0.85
fl (GHz) 1.01 1.26 1.53 1.81 2.10
P dl (mW) 184.9 266.7 370.4 498.9 655.5
P sl (mW) 246 290.1 340.3 397.6 462.7
P s0 (µW) 80

M = 25 Ms = 10 Ma = 5
Task τi characteristics

Mi, Oi ∈ [4× 107, 6× 108]
Objective function∑
i∈N gi(oi) =

∑
i∈N oi

Constraints
t̂ri,min =

∑
j∈N pjimin∀β,γ,h{tβγh}

t̂ri,max =
∑
j∈N pjimax∀β,γ,h{tβγh}

d̂i,min = min∀l{Mi+Oi
fl
} d̂i,max = max∀l{Mi+Oi

fl
}

t̂ri ∈ [t̂ri,min, t̂
r
i,max] d̂i ∈ [d̂i,min, d̂i,max]

dj = max∀i,pij 6=1{di + t̂ri + d̂i} H = max∀i{di}
Etk,min = N min∀β,γ,h{rβγkh}

Eck,min = HP 0
k +

∑
i∈N [min∀l{Mi

fl
(P sl + P dl − P 0

k )}]
Elk = ηEhk

Tuned parameters
Min/Max/Step N : 25/50/5 η : 0.8/0.9/0.1

Firstly, we compare the system performance (i.e., the system
energy consumption and the system QoS) with the proposed task
mapping method (i.e., PP) and other task mapping methods [18],
[19], [23]. Secondly, we explore the algorithm performance (i.e.,
the computation time and the system QoS) of the proposed OTM
and HTM methods with: Branch and Bound (B&B) [25] and
Branch and Cut (B&C) [32], which are known to provide the
optimal solution for the MILP problem. The simulations are
performed on a PC with quad-core 2.5 GHz Intel i7 processor
and 16 GB RAM, and the algorithms are implemented in Matlab
2016a with CPLEX solver.

Let QoS-WDM, QoS-NDM, EE-ND and EE-WD denote the
methods proposed in this paper, [23], [19] and [18], respectively.
Specifically, QoS-WDM and QoS-NDM are QoS-aware task
mapping methods, while EE-ND and EE-WD are energy-aware
task mapping methods. Compared with QoS-NDM, DVFS and
multi-path routing are considered in our QoS-WDM method.
In addition, compared with EE-ND, DVFS is considered in EE-
WD. Fig. 4 and Fig. 5 show the system performance under these
task mapping methods. From Fig. 4, we observe that the QoS
increases with the values of N and η in QoS-WDM and QoS-
NDM, while the QoS is always equal to 0 in EE-ND and EE-
WD. This is because the aims of QoS-WDM and QoS-NDM
are to maximize QoS under energy and real-time constraints,
while the aims of EE-ND and EE-WD are to minimize energy
under real-time constraints. Therefore, with values of N and η
increasing, more optional subtasks are executed in QoS-WDM
and QoS-NDM, thus, a higher QoS is achieved. The cycles of
mandatory subtasks are fixed and they must be always executed.
However, the less optional subtask cycles are executed, the
less is the energy consumed to execute the tasks. Thus, the
execution cycles of the optional subtasks are 0 in EE-ND and
EE-WD. Fig. 4 also shows that the QoS achieved by QoS-
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WDM is higher than QoS-NDM. This is because DVFS and
multi-path routing are used in QoS-WDM. Compared with QoS-
NDM, where the frequency assignment and the routing path
selection are fixed, QoS-WDM is able to find better decisions
for frequency assignment and routing path selection, increasing
QoS under time and energy constraints.
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(a) η = 0.8
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(b) η = 0.9

Fig. 4. QoS under different task mapping methods with η and N varying.

The consumed energy under the different task mapping
methods is compared in Fig. 5. Although QoS-WDM and
QoS-NDM require more energy than EE-ND and EE-WD, the
consumed energy is always smaller than the supplied energy, as
the energy related constraints (12)–(14) must be satisfied. From
Fig. 4 and Fig. 5, we observe that QoS-aware task mapping
method provides a better usage of system resources to enhance
QoS. Fig. 5 also shows that the energy efficiency factor η
doesn’t affect the energy consumption of EE-ND and EE-WD,
under the same number of tasks N , since EE-ND and EE-WD
aim to minimize the energy consumption. In addition, EE-WD
consumed less energy than EE-ND. Typically, for the energy-
aware task mapping problem, as long as the constraints (e.g.,
deadline and energy) allow it, methods applying DVFS is able to
achieve a better energy efficiency compared to methods without
DVFS.

25 30 35 40 45 50
Task number (N)

2000

3000

4000

5000

6000

7000

8000

9000

10000

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

QoS-WDM

QoS-NDM

EE-WD

EE-ND

(a) η = 0.8

25 30 35 40 45 50
Task number (N)

2000

3000

4000

5000

6000

7000

8000

9000

10000

E
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
 (

m
J
)

QoS-WDM

QoS-NDM

EE-WD

EE-ND

(b) η = 0.9

Fig. 5. Energy consumption of the nodes under different task mapping methods
with η and N varying.

In order to further evaluate the behavior of the proposed QoS-
aware task mapping QoS-WDM, we compare the schedulability
of QoS-WDM and QoS-NDM, using the problem feasible ratio
as a metric. We set the number of tasks N = 30 and change
the value of energy efficiency factor η. Under a given η, we
independently construct and solve the task mapping problems
30 times (i.e., Nf = 30) for QoS-WDM and QoS-NDM. For
each experiment the parameters are randomly generated and
same values are used for QoS-WDM and QoS-NDM. Let Nw
and Nn denote the times that the task mapping problems in

QoS-WDM and QoS-NDM are feasible, respectively. Therefore,
the problem feasible ratios for QoS-WDM and QoS-NDM are
defined as Nw/Nf and Nn/Nf , respectively. From Fig. 6(a),
we observe that with the value of η increasing, the problem
feasible ratios of QoS-WDM and QoS-NDM increase as well.
This is because with a higher energy supply, a processor can use
a higher frequency to execute faster an assigned task. Therefore,
the time and the energy related constraints are easier to be
satisfied. Fig. 6(a) shows that the problem feasible ratio of QoS-
WDM is always higher than that of QoS-NDM. This is due to
fact that, by considering DVFS and multi-path routing in QoS-
WDM, the explored design space is larger, allowing QoS-WDM
to find solutions, even for cases where QoS-NDM is not able
to. Similar are the results when we compare the methods with
and without DVFS for the energy-aware task mapping problem,
as shown in Fig. 6(b).
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Fig. 6. Problem feasible ratio under different task mapping methods with η
varying.

The QoS and the computation time of using OTM, HTM,
B&B and B&C to solve task mapping problem PP1 under
different number of tasks N and energy efficiency factor η are
compared in Fig. 7 and Fig. 8. Fig. 7 shows that the solutions
found by OTM, B&B and B&C are the same. This means that
OTM is able to find the optimal solution, verifying our analysis
about the convergence of OTM. In addition, the achieved QoS
increases with the value of η, since more optional subtasks
are executed. On the other hand, since HTM just provides a
feasible solution, OTM achieves higher QoS than HTM. As
shown in Fig. 8(a), with the value of N increasing, more
variables and constraints are involved into the problem, thus, the
algorithm computation time increases. However, compared with
OTM, HTM has a negligible computation time, since HTM only
needs to solve two polynomial-time problems in sequence. In
addition, OTM has a shorter computation time than that of B&B
and B&C. B&C combines the benefits of B&B and Gomory
cutting scheme and can better balance optimality, efficiency and
stability. Usually, B&C has a faster convergence speed than
that of B&B [32]. Note that the computational complexity of
an optimization problem is highly related to the number of
variables and constraints. Solving smaller problems with less
variables and constraints (i.e., MP and SP) iteratively is more
efficient than solving a single large problem [33]. Fig. 8(b)
shows that the influence of the energy efficiency factor η on the
computation time of OTM is limited, since η doesn’t change the
problem size (i.e., the number of variables and constraints).
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Fig. 7. QoS under different algorithms with η and N varying.
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Fig. 8. Computation time under different algorithms with η and N varying.

VII. CONCLUSION

In this paper, we study the IC-tasks mapping problem for the
networked system. We consider dependent IC-tasks executed
on the wireless DVFS-enabled nodes with real-time and energy
constraints. The design objective is to assign the IC-tasks to
the nodes and adjust the start and the end time of the tasks
so as to maximize QoS without violating the real-time and
the energy constraints. By introducing DVFS and multi-path
routing, we are able to achieve a better trade-off between real-
time performance and energy efficiency. We first develop a
MINLP model to describe this task mapping problem. Then, we
propose a MILP description of this model without performance
degradation. Through the problem transformation, the problem
structure can be simplified, thus, the optimal solution is easier
to find. This problem is optimally solved by the proposed OTM
algorithm. A novel algorithm, HTM, is proposed to reduce the
computation time. Our numerical results show that OTM is
guaranteed to converge to the optimal solution, while HTM is
able to find a feasible solution within a negligible computation
time compared with OTM. Moreover, the proposed QoS-aware
task mapping strategy outperforms other task mapping strategies
in term of QoS-enhancing and energy-utilizing.
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APPENDIX A
PROOF OF LEMMA 3.1

Proof: The inequalities g ≤ b1 and g ≤ b2 ensure that
g = 0 if either b1 = 0 or b2 = 0. On the other hand, the
inequality g ≥ b1+b2−1 guarantees that g = 1 if both variables
b1 and b2 are set to 1.

APPENDIX B
PROOF OF LEMMA 3.2

Proof: Since y = bx and −s1 ≤ x ≤ s2, we have −bs1 ≤
y ≤ bs2. And further, we obtain (b − 1)(x + s1) ≤ 0 and
(b − 1)(x − s2) ≥ 0 due to −s1 ≤ x ≤ s2 and b ∈ {0, 1}.
Therefore, we have y+bs1−x−s1 ≤ 0 and y−bs2−x+s2 ≥ 0.
S1 → S2 holds.

If b = 0, since −bs1 ≤ y ≤ bs2, y + bs1 − x − s1 ≤ 0 and
y − bs2 − x + s2 ≥ 0, we have y = 0 and −s1 ≤ x ≤ s2. On
the other hand, if b = 1, we have −s1 ≤ y = x ≤ s2. S2 → S1

holds.

APPENDIX C
PROOF OF LEMMA 4.1

Proof: Note that the MP can be reformulated as follows

Φ̂(k) = min
x

{
max
∀i∈A

µ(i)T (Cx− b2)

}
(41)

s.t. Ax � b1, C2.

It can be solved by only considering the binary variables x.
Comparing (41) with the following problem

Φ̂′(i) = min
x

µ(i)T (Cx− b2)

s.t. Ax � b1, C2,

we have Φ̂(k) ≥ Φ̂′(i). Without loss of generality, we assume
that

Φ̂(k) = Φ̂′(l) = max
∀i∈A

{
Φ̂′(i)

}
.

Since

Φ̂(k) = min
x
µ(l)T (Cx− b2) ≤ µ(l)T (Cx∗ − b2)

≤ max
µ
µT (Cx∗ − b2) = Φ∗,

where x∗ is the optimal value of x, we get Φl(k) = Φ̂(k) is a
lower bound of Φ∗ and Φ̂ has the same physical meaning as Φ.

On the other hand, according to (34), we have

Φu(k) = min
1≤i≤k

{
µ(i)T (Cx(i)− b2)

}
. (42)

In addition, due to the strong duality between the SP and its
dual problem, we get

µ(i)T (Cx(i)− b2) = min
y�0

fTy|x(i) ≥ min
y�0

fTy|x∗ = Φ∗.

(43)
Based on (42) and (43), Φu(k) is an upper bound of Φ∗.
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APPENDIX D
PROOF OF LEMMA 4.2

Proof: Note that the MP is a minimization problem,
and the non-optimal values of binary variables x∗ have been
excluded by the constraints in the set C1. In addition, with
iteration number k increasing, more constraints are added into
the MP. Therefore, the feasible region of the MP will shrink.
Accordingly, Φl(k + 1) = Φ̂(k + 1) is larger than the previous
lower bounds {Φl(0), . . . ,Φl(k)}. On the other hand, based
on (34), Φu(k + 1) is smaller than the previous upper bounds
{Φu(0), . . . ,Φu(k)}.

APPENDIX E
PROOF OF THEOREM 4.1

Proof: If (31) has a bounded solution, the SP is feasible
under the given MP solution x(k). However, since x(k) is a
non-optimal solution, we have Φ̂(k) < µ(k)T (Cx(k) − b2).
Therefore, the non-optimal solution x(k) is excluded by Φ̂ ≥
µ(k)T (Cx− b2).

On the other hand, if (31) has an unbounded solution, the
SP is infeasible under the given MP solution x(k). However,
this problem is feasible if the positive variables ξ = [ξi]v×1 are
introduced to relax the constraints. In order to minimize ξ, we
construct the following problem:

min
y,ξ�0

1T ξ (44)

s.t. Cx(k) +Dy � b2 + ξ.

Since (44) is a LP problem, we solve its dual problem:

max
µ̂�0

µ̂T (Cx(k)− b2) (45)

s.t. 1− µ̂ � 0, DT µ̂ � 0,

where µ̂ = [µ̂i]v×1 are the dual variables.
Let ξ(k) and µ̂(k) denote the solutions of (44) and (45),

respectively. Since the relaxation variables with respect to
infeasible constraints are non-zero, we have 1T ξ(k) > 0. On
this basis, due to the strong duality between (44) and (45),
we get 1T ξ(k) = µ̂(k)T (Cx(k) − b2) > 0. Therefore, the
infeasible solution x(k) is excluded by 0 ≥ µ̂(k)T (Cx− b2).

APPENDIX F
PROOF OF THEOREM 4.2

Proof: Note that the gap between the lower and upper
bounds gradually reduces. In addition, the dimension of binary
variables x is finite, and the non-optimal and infeasible values
are excluded. Therefore, the solution (x(k),y(k)) converges to
optimal one (x∗,y∗) within a finite number of iterations.
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