
HAL Id: hal-03103810
https://hal.science/hal-03103810v1

Submitted on 8 Jan 2021 (v1), last revised 18 Jan 2021 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic estimation and Grid partitioning approach for
Multi-Objective Optimization Problems in medical cloud

federations
Trung-Dung Le, Verena Kantere, Laurent d’Orazio

To cite this version:
Trung-Dung Le, Verena Kantere, Laurent d’Orazio. Dynamic estimation and Grid partitioning ap-
proach for Multi-Objective Optimization Problems in medical cloud federations. Transactions on
Large-Scale Data- and Knowledge-Centered Systems, 2020. �hal-03103810v1�

https://hal.science/hal-03103810v1
https://hal.archives-ouvertes.fr

Dynamic estimation and Grid partitioning
approach for Multi-Objective Optimization

Problems in medical cloud federations

Trung-Dung Le1[0000−0001−9560−1180], Verena Kantere2[0000−0002−3586−9406],
and Laurent d’Orazio1[0000−0001−8614−1848]

1 Univ Rennes, 2 rue du Thabor - CS 46510 - 35065 Rennes CEDEX
firstname.lastname@irisa.fr

2 University of Ottawa, 75 Laurier Ave E, Ottawa, ON K1N 6N5, Canada
vkantere@uOttawa.ca

Abstract. Data sharing is important in the medical domain. Sharing
data allows large-scale analysis with many data sources to provide more
accurate results (especially in the case of rare diseases with small local
datasets). Cloud federations can leverage sharing medical data stored in
different cloud platforms, such as Amazon, Microsoft, Google Cloud, etc.
They also enable access to distributed data of patients. The pay-as-you-
go model in cloud federations raises important issues of Multi-Objective
Optimization Problems (MOOP) related to users’ preferences, such as re-
sponse time, money, quality, etc. However, optimizing a query in a cloud
federation is complex with increasing the variety, especially due to a
wide range of communications and pricing models. The variety of virtual
machines configuration also leverages the high complexity in generating
the space of candidate solutions. Indeed, in such a context, it is difficult
to provide accurate estimations and optimal solutions to make relevant
decisions. The first challenge is how to estimate accurate parameter val-
ues for MOOPs without precise knowledge of the execution environment
in a cloud federation consisting of different sites. To address the accu-
rate estimation of parameter values problem, we present the Dynamic
Regression Algorithm (DREAM), which can provide accurate estima-
tions in a cloud federation with limited historical data. DREAM focuses
on reducing the size of historical data while maintaining the estimation
accuracy. The second challenge is how to find an approximate optimal
solution in MOOPs using an efficient Multi-Objective Optimization al-
gorithm. To address the problem of finding an approximate optimal so-
lution, we present Non-dominated Sorting Genetic Algorithms based on
Grid partitioning (NSGA-G) for MOOPs. The proposed algorithm is
integrated into the Intelligent Resource Scheduler, a solution for hetero-
geneous databases, to solve MOQP in cloud federations. We validate our
algorithms with experiments on a decision support benchmark (TPC-H
benchmark).

Keywords: Cloud computing · Multiple Linear Regression · Cloud fed-
erations · Genetic Algorithm · Non-dominated Sorting Genetic Algo-
rithm.

2 Trung-Dung Le et al.

1 Introduction

Cloud federation is a paradigm of interconnecting the cloud environments of
more than one service providers for multiple purposes of commercial, service
quality, and user’s requirements [24, 35]. Besides of vendor lock-in and provider
integration, a cloud federation has several types of heterogeneity and variabil-
ity in the cloud environment, such as wide-range communications and pricing
models.

Cloud federations can be seen as a major progress in cloud computing, in
particular for the medical domain. Indeed, sharing medical data would improve
healthcare. Federating resources makes it possible to access any information even
on distributed hospital data on several sites. Besides, it enables to access larger
volumes of data on more patients and thus provide finer statistics.

For example, patient A has just come back from a tropical country B. He has
a rare disease from there. The hospital cannot recognize his disease. The clinic in
country B records some cases like his. However, the two databases of the hospital
and the clinic are not in the same database engine, or cloud provider. If a cloud
federation exists to interconnect the two clouds, his disease could be recognized
and he can have a treatment soon.

In cloud federations, pay-as-you-go models and elasticity thus raise an im-
portant issue in terms of Multi-Objective Optimization Problems (MOOPs) ac-
cording to users preferences, such as time, money, quality, etc. However, MOOPs
in a cloud federation are hard to solve due to issues of heterogeneity, and vari-
ability of the cloud environment, and high complexity in generating the space of
candidate solutions.

Let’s consider a query Q in a example below.

Example 1. A query Q in the medical domain, based on TPC-H3 query 3 and 4
be:

SELECT p.UID , p.PatientID , s.PatientName ,

p.PatientBrithDate , p.PatientSex ,

p.EthnicGroup , p.SmokingStatus ,

s.PatientAge , s.PatientWeight ,

s.PatientSize , i.GeneralName ,

i.GeneralValues , q.UID ,

q.SequenceTags , q.SequenceVRs ,

q.SequenceNames , q.SequenceValues

FROM Patient p, GeneralInfoTable i,

Study s, SequenceAttributes q

WHERE p.UID = s.UID AND p.UID = i.UID

AND p.UID = q.UID AND p.PatientSex = ’M’

AND p.SmokingStatus = ’NO’ AND s.PatientAge >= x

AND q.SequenceNames

LIKE ’%X-ray%’

3 http://www.tpc.org/tpch/

DREAM and NSGA-G for MOOPs in medical cloud federations 3

This query is transformed into a logical query plan using logical operation,
such as select, project, join, etc. Depending on the physical operators, a query
optimizer generates a query execution plan to execute a logical plan. Actually,
various Query Execution Plans (QEPs) are generated with respect to the number
of nodes, their capacity in terms of CPU, memory and disk and the pricing model.
Table 1 presents an example of possible QEPs for Q. Choosing an execution plan
is a trade-off between objectives such as the response time or the monetary cost,
and depends on users’ preferences: a user A may prefer minimizing his budget
(QEP1); a user B may want the lowest response time (QEP2); a user C may
look for a trade-off between time and money (QEP3).

Assuming that the query is processed on Amazon EC2. The master consists
of a m2.4xlarge instance (8 virtual cores with 68.4 GB of RAM). Workers consist
of m3.2xlarge instances (8 virtual cores and with 30 GB of RAM). If the pool of
resources is 70 VCPU with 260GB of memory, the number of QEPs is thus 70
x 260 = 18,200. The problem is then how to search and optimize such a query
in a real environment, when the pool of resources is more variable, with respect
to multiple dimensions (response time, monetary cost, etc.). Since generating
QEPs maybe infeasible due to high complexity, we aim to find an approximate
optimal solution.

Table 1: Multiple Objectives for Query Execution Plans

QEP VMs Price ($/60min) Time (min) Monetary ($)

QEP1 10 0.02 60 0.2
QEP2 40 0.02 22 0.29
QEP3 30 0.02 26 0.26

In this paper, we address several challenges for the development of medical
data management in cloud federations. The first challenge is how to estimate
accurate parameter values for MOOPs without precise knowledge of the execu-
tion environment in a cloud federation consisting of different sites. The execu-
tion environment may consist of various hardware and systems. In addition, it
also depends on the variety of physical machines, load evolution and wide-range
communications. As a consequence, the estimation process is complex. The sec-
ond challenge is how to find an approximate optimal solution in MOOPs us-
ing an efficient Multi-Objective Optimization algorithm. Indeed, MOOPs could
be solved by Multi-Objective Optimization algorithms or the Weighted Sum
Model (WSM) [22] or be converted to a Single-Objective Optimization Prob-
lem (SOOP). However, SOOPs cannot adequately represent MOOPs [21]. Also,
MOOPs leads to find solutions by Pareto dominance techniques. Since generating
a Pareto-optimal front is often infeasible due to high complexity [56], MOOPs
need an approximate optimal solution calculated by Pareto dominance tech-
niques.

4 Trung-Dung Le et al.

The estimation process can be classified into two classes: without [40, 43, 51]
and with machine learning algorithms [15]. In a cloud federation with variability
and different systems, cost functions may be quite complex. In the first class,
cost models introduced to build an optimal group of queries [40] are limited to
MapReduce [12]. Besides, a PostgreSQL cost model [51] aims to predict query
execution time for this specific relational DBMS. Moreover, OptEx [43] provides
estimated job completion times for Spark4 with respect to the size of the input
dataset, the number of iterations, the number of nodes composing the underlying
cloud. These works mention the estimation of only execution time for a job, and
not for other metrics, such as monetary cost. Meanwhile, various machine learn-
ing techniques are applied to estimate execution time in recent research [2, 19,
47, 52]. They predict the execution time by many machine learning algorithms.
They treat the database system as a black box and try to learn a query running
time prediction model using the total information for training and testing in
the model building process. It may lead to the use of expired information. In
addition, most of these solutions solve the optimization problem with a scalar
cost value and do not consider multi-objective problems.

A well known Pareto dominance technique to solve the high complexity of
MOOP is Evolutionary Multiobjective Optimization (EMO). Among EMO ap-
proaches, Non-dominated Sorting Genetic Algorithms (NSGAs) [13, 14] have
lower computational complexity than other EMO approaches [14]. However,
these algorithms still have high computational complexity. We presented Non-
dominated Sorting Genetic Algorithm based on Grid partitioning (NSGA-G) [36]
to improve both computation time and qualities of NSGAs. It has more advan-
tages than other NSGAs. Two versions of NSGA-G will be shown to compromise
computation and quality.

In this paper, we introduce a medical system on a cloud federation called
Medical Data Management System (MIDAS). It is based on the Intelligent Re-
source Scheduler (IReS) [15], an open source platform for complex analytics
workflows executed over multi-engine environments. In particular, we focus on:
(1) a dynamic estimation and (2) a Non-dominated Sorting Genetic Algorithm
for Multi-Objective Optimization Problems. The first contribution is Dynamic
linear REgression AlgorithM (DREAM) to provide accurate estimation with
low computational cost. DREAM is then implemented and validated with ex-
periments on a decision support benchmark (TPC-H benchmark). The second
contribution is Non-dominated Sorting Genetic Algorithm based on Grid par-
titioning (NSGA-G) to improve both quality and computational efficiency of
NSGAs, and also provides an alternative for Pareto-optimal of MOOPs. NSGA-
Gs are validated through experiments on DTLZ problems [29] and compared
with NSGA-II [14], NSGA-III [13], and the others in Generational Distance [50],
Inverted Generational Distance [9], and Maximum Pareto Front Error [49] statis-
tic.

This paper is an extended version of [36, 37]. In particular, they are grouped
together to become a system, MIDAS. Besides, the theory of NSGA-G in [36]

4 https://spark.apache.org/

DREAM and NSGA-G for MOOPs in medical cloud federations 5

is expanded to two versions: NSGA-G using Min point and using Random met-
ric. The remaining of this paper is organized as follows. Section 2 presents the
research background. DREAM is presented in Section 3. Section 4 shows NSGA-
G. Section 5 presents experiments to validate DREAM and NSGA-Gs. Finally,
Section 6 concludes this paper and lists some perspectives.

2 Background

In this section, we introduce an architecture of the system, concepts and tech-
niques, allowing us to implement the proposed medical data management on
a cloud federation. First of all, an overview of the Medical Data Management
System (MIDAS) and the benefits of cloud federation where our system is built
on are introduced. After that, an open source platform, which helps our system
managing and executing workflows over multi-engine environments is described.
The concept of Pareto plan set related to Multi-Objective Optimization Problem
(MOOP) in MIDAS is then defined. In addition, Multiple Linear Regression
and Non-dominated Sorting Genetic Algorithm are also introduced as the basic
foundation of our proposed algorithms for MOOP.

2.1 Cloud federation

This section shows the definition and the example related to a cloud federa-
tion. A cloud federation enables to interconnect different cloud computing en-
vironments. Cloud computing [3] allows to access on demand and configurable
resources, which can be quickly made available with minimal maintenance. Ac-
cording to the pay-as-you-go pricing model, customers only pay for resources
(storage and computing) that they use. Cloud Service Providers (CSP) supply
a pool of resources, development platforms and services. There are many CSPs
on the market, such as Amazon, Google and Microsoft, etc., with different ser-
vices and pricing models. For example, Table 2 shows the pricing of instances in
two cloud providers in 2019. The price of Amazon instances are lower than the
price of Microsoft instances, but the price of Amazon is without storage. Hence,
depending on the demand of a query, the monetary cost is lower or higher at a
specific provider.

In the medical domain, cloud federation may lead to query data across differ-
ent clouds. A demand query running in that cloud federation could be concerned
about the price of time and money of the execution query. It is a Multi-Objective
Optimization Problem (MOOP). For example, federating resources makes it pos-
sible to access any information on a person with distributed hospital data on
various sites. Various big data management system could be used to manage the
medical data, which has the 3Vs characteristics of Big Data [1]: high volume,
high variety, and high velocity. The data also stores that belong in different
clouds are shown in Fig. 1. This example shows that the data can be stored in
three different clouds, such as Amazon Web Services, Microsoft Azure, Google
Cloud Platform. Pay-as-you-go models in clouds lead to solving Multi-Objective

6 Trung-Dung Le et al.

Hive
engine

Hive

PostgreSQL
engine

PostgreSQL

Spark
engine

Spark

Amazon Web Services

Microsoft Azure Google Cloud Platform

Data
DataClinic

Hospital

Laboratory of Medical
Analyzes

Data

Fig. 1: Motivating Example on using cloud federation.

Table 2: Example of instances pricing in 2019.

Provider Machine vCPU Memory (GiB) Storage (GiB) Price ($/hour)

Amazon a1.medium 1 2 EBS-Only 0.0255
a1.large 2 4 EBS-Only 0.0510
a1.xlarge 4 8 EBS-Only 0.1020
a1.2xlarge 8 16 EBS-Only 0.2040
a1.4xlarge 16 32 EBS-Only 0.4080

Microsoft B1S 1 1 2 0.0104
B1MS 1 2 4 0.0208
B2S 2 4 8 0.0416

B2MS 2 8 16 0.0832
B4MS 4 16 32 0.1660
B8MS 8 32 64 0.3330

Optimization Problem to find a Query Execution Plan (QEP) according to users
preferences, such as time, money, quality, etc. MOOPs often use Pareto domi-
nance techniques in finding an optimal solution.

2.2 Pareto plan set

Pareto dominance techniques are often used in Multi-Objective Optimization
Problem (MOOP), such as Evolutionary Multiobjective Optimization (EMO) [13,
14, 27, 32, 45, 54, 55]. In the vast space of candidate solutions of Multi-Objective
Optimization Problem (MOOP), a candidate solution may be not better than
another one because of trade-off between various objective values. Pareto sets
are used in this situation to optimize a MOOP.

In particular, in a query processing problem, let a query q be an information
request from databases, presented by a set of tables. A Query Execution Plan

DREAM and NSGA-G for MOOPs in medical cloud federations 7

(QEP) is the evaluation of a query plan that can be passed to the executor. The
set of QEPs p of q is denoted by symbol P. The set of operators is denoted by
O. A plan p can be divided into two sub-plans p1 and p2 if p is the result of
function Combine(p1, p2, o), where o ∈ O.

The execution cost of a QEP depends on parameters, which values are not
known at the optimization time. A vector x denotes parameters value and the
parameter space X is the set of all possible parameter vectors x. N is denoted
as the set of n cost metrics. We can compare QEPs according to n cost metrics
which are processed with respect to the parameter vector x and cost functions
cn(p,x). Let denote C as the set of cost function c.

Let p1, p2 ∈ P, p1 dominates p2 if the cost values according to each cost
metric of plan p1 is less than or equal to the corresponding values of plan p2 in
all the space of parameter X . That is to say:

C(p1,X) � C(p2,X) | ∀n ∈ N, ∀x ∈ X : cn(p1, x) ≤ cn(p2, x). (1)

The function Dom(p1, p2) ⊆ X yields the parameter space region where p1
dominates p2 [48]:

Dom(p1, p2) = {x ∈ X | ∀n ∈ N : cn(p1, x) ≤ cn(p2, x)}. (2)

Assume that in the area x ∈ A,A ⊆ X , p1 dominates p2, C(p1,A) � C(p2,A),
Dom(p1, p2) = A ⊆ X . p1 strictly dominates p2 if all values for the cost
functions of p1 are less than the corresponding values for p2 [48], i.e.

StriDom(p1, p2) = {x ∈ X | ∀n ∈ N : cn(p1, x) < cn(p2, x)}. (3)

A Pareto region of a plan is a space of parameters where there is no alternative
plan has lower cost than it [48]:

PaReg(p) = X \ (
⋃

p∗∈P
StriDom(p∗, p)). (4)

2.3 IReS

Cloud federation model needs to integrate cloud services from multiple cloud
providers. It raises an important issue in terms of heterogeneous database engines
in various clouds. Among various heterogeneous database system described in
Table 3, IReS platform considers both heterogeneous systems and MOOP in
clouds.

Intelligent Multi-Engine Resource Scheduler (IReS) [15] is an open source
platform for managing, executing and monitoring complex analytics workflows.
IReS provides a method of optimizing cost-based workflows and customizable
resource management of diverse execution and various storage engines. Espe-
cially, IReS platform helps us to organize data in the multiple clouds as a cloud
federation. Interface is the first module which is designed to receive informa-
tion on data and operators, as shown in Fig. 4. The second module is Mod-
elling, as shown in Fig. 4, is used to predict the execution time by a model

8 Trung-Dung Le et al.

Table 3: Recent heterogeneous database system researches.

Research Heterogeneous MOOP

Proteus [30] X ×
Polystore Query rewriting [41] X ×

BigDAWG Polystore System [16] X ×
ClooudMdsQL [34, 33] X ×

MuSQLE [20] X ×
MISO [38] X ×

Polybase [11] X ×
Estoscada [6] X ×

IReS X X

chosen by comparing machine learning algorithms. For example, Least squared
regression [42], Bagging predictors [5], Multilayer Perceptron in WEKA frame-
work5 are used to build the cost model in Modelling module. The module
tests many algorithms and the best model with the smallest error is selected.
It guarantees the predicted values as the best one for estimating process. Next
module, Multi-Objective Optimizer, optimizes Multi-Objective Query Pro-
cessing (MOQP) and generates a Pareto QEP set. In Multi-Objective problem,
the objectives are the cost functions user concerned, such as the execution time,
monetary, intermediate data, etc. Multi-Objective Optimization algorithms can
be applied to the Multi-Objective Optimizer. For instance, the algorithms
based on Pareto dominance techniques [10, 13, 14, 27, 32, 36, 45, 54, 55] are solu-
tions for Multi-objective Optimization problems. Finally, the system selects the
best QEP based on user query policy and Pareto set. The final query plan is run
on multiple engines, as shown in Fig. 4.

2.4 Multiple Linear Regression

In many database management systems, predicting cost values is useful in op-
timization process [51]. Recent researches have been exploring the statistical
machine learning approaches to build predictive models for this task. They of-
ten use historical data to train and test the cost model as a Single-Objective
Problem (SOP). Besides, Linear Regression is an useful class of models in sci-
ence and engineering [44]. In this section, we describe the background of this
model.

This model is used in the situation in which a cost value, c, is a function
of one or more independent variables x1, x2, ..., and xL. For example, execution
time c is a function of data size x1 of first element in join operator and data size
x2 of second element in that join operator.

Given a sample of c values with their associated values of xi, i = 1, 2, ..., L.
We focus in the estimation the relationship between c and the independent vari-
ables x1, x2, ..., and xL based on this sample. Cost function c of Multiple Linear

5 https://www.cs.waikato.ac.nz/ml/weka/

DREAM and NSGA-G for MOOPs in medical cloud federations 9

Regression (MLR) model [44] is defined as follows:

c = β0 + β1x1 + ...+ βLxL + ε, (5)

where βl, l = 0, ..., L, are unknown coefficients, xl, l = 1, ..., L, are the indepen-
dent variables, e.g., size of data, computer configuration, etc., c is cost function
values and ε is random error following normal distribution N (0, σ2) with zero
mean and variance σ2. The fitted equation is defined by:

ĉ = β̂0 + β̂1x1 + ...+ β̂LxL. (6)

Example 2. A query Q could be expressed as follows:

SELECT p.PatientSex , i.GeneralNames

FROM Patient p, GeneralInfo i

WHERE p.UID = i.UID

where Patient table is stored in cloud A and uses Hive [46] database engine6,
while GeneralInfo table is in cloud B with PostgreSQL database engine7. This
scenario leads to concern two metrics of monetary cost and execution time cost.
We can use the cost functions which depend on the size of tables of Patient and
GeneralInfo. Besides, the configuration and pricing of virtual machines cloud A
and B are different. Hence, the cost functions depend on the size of tables and
the number of virtual machines in cloud A and B.

ĉti = β̂t0 + β̂t1xPa + β̂t2xGe + β̂t3xnodeA + β̂t4xnodeB

ĉmo = β̂m0 + β̂m1xPa + β̂m2xGe + β̂m3xnodeA + β̂m4xnodeB

where ĉti, ĉmo are execution time and monetary cost function; xPa, xGe are the
size of Patient and GeneralInfo tables, respectively, and xnodeA, xnodeB are the
number of virtual machines created to run query Q.

There are M historical data, each of them associates with a response cm,
which can be predicted by a fitted value ĉm calculated from corresponding xlm
as follows:

ĉm = β̂0 + β̂1x1m + ...+ β̂LxLm;m = 1, ...,M. (7)

Let denote

A =

1 x11 x21 ... xL1

1 x12 x22 ... xL2

.

.
1 x1M x2M ... xLM

 , (8)

C =

c1
c2
.
.
cM

 , (9)

6 http://hive.apache.org/
7 https://www.postgresql.org/

10 Trung-Dung Le et al.

Non-dominated Sorting Filter Front

P t

Qt

F1
F2

F3

F4

F3

Pt+1

Rt

Fig. 2: NSGA-II and NSGA-III procedure [13, 14].

B =

β̂0
β̂1
.
.

β̂L

 . (10)

To minimize the Sum Square Error (SSE), defined by:

SSE =

M∑
m=1

(cm − ĉm)2, (11)

the solution for B is retrieved by:

B = (ATA)−1ATC. (12)

2.5 NSGA

After having the prediction cost values of MOOPs, we need to use Multi-Objective
Optimization algorithms to find an optimal solution.

Among Multi-objective Optimization algorithm classes, Evolutionary Multi-
objective Optimization (EMO) shows their advantages in searching and opti-
mizing for the MOOPs [10]. Among EMO approaches, Non-dominated Sorting
Genetic Algorithms provide low computational complexity of non-dominated
sorting, O(MN2) of NSGAs [13, 14] comparing to O(MN3) of other Evolution-
ary Multi-Objective Optimization (EMO), where M is the number of objectives
and N is the population size.

DREAM and NSGA-G for MOOPs in medical cloud federations 11

NSGA process Initially, NSGAs start with a population P0 consisting of N
solutions. In hybrid data optimization problem, a population represents a set
of candidate solutions of hybrid data storage configuration. The size of P0 is
smaller than the space of all candidate solutions. Each solution is on a specific
rank or non-domination level (any solution in level 1 is not dominated, any
solution in level 2 is dominated by one or more solutions in level 1 and so
on). At first, the offspring population Q0 containing N solutions, is created by
the binary tournament selection and mutation operators [28]. Where the binary
tournament selection is a method of selecting an individual from a population
of individuals in a genetic algorithm, and the mutation operation is a method to
choose a neighboring individual in the locality of the current individual. Secondly,
a population R0 = P0∪Q0 with the size of 2N will be divided into subpopulations
based on the order of Pareto dominance. The appropriate N members from R0

will be chosen for the next generation. The non-dominated sorting based on
usual domination principle [8] is first used, which classifies R0 into different
non-domination levels (F1, F2 and so on). After that, a parent population of
next-generation P1 is selected in R0 from level 1 to level k so that the size of
P1 = N and so on.

The difference among NSGA-II, NSGA-III and other NSGAs is the way to
select members in the last level Fl. To keep the diversity, NSGA-II [14] and
SPEA-II [55] use crowding distance among solutions in their selection. NSGA-II
procedure is not suitable for MOO problems and the crowding distance operator
needs to be replaced for better performance [26, 39]. Hence, when the population
has a high-density area, higher than others, NSGA-II prefers the solution which
is located in a less crowded region.

On the other hand, MOEA/D [54] decomposes a multiple objectives prob-
lem into various scalar optimization subproblems. The diversity of solutions de-
pends on the scalar objectives. However, the number of neighborhoods needs to
be declared before running the algorithm. In addition, the estimation of good
neighborhood is not mentioned. The diversity is considered as the selected so-
lution associated with these different sub-problems. Experimental results in [13]
show various versions of MOEA/D approaches which fail to maintain a good
distribution of points.

An Evolutionary Many-Objective Optimization Algorithm Using Reference-
point Based Non-Dominated Sorting Approach [13] (NSGA-III) uses different
directions to maintain the diversity of solutions. NSGA-III replaces the crowd-
ing distance operator by comparing solutions. Each solution is associated to a
reference point [13], which impacts the execution time to built the reference
points in each generation. The diversity of NSGA-III is better than the others,
but the execution time is very high. For instance, with two objectives and two
divisions, three reference points will be created, (0.0,1.0), (1.0,0.0) and (0.5,0.5),
as shown in Fig. 3. After selection process, the diversity of population is better
than NSGA-II with solutions close to three reference points. However, comparing
all solutions to each reference point makes the computation time of NSGA-III
very high. In addition, NSGAs often compare all solutions to choose good solu-

12 Trung-Dung Le et al.

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Time

Monetary

QEP1

QEP2

Fig. 3: An example of using the crowing distance in NSGA-II.

tions in Fl. Therefore, when the number of solutions or objectives is significant,
the time for calculating and comparing is considerable.

Application In some cases, some objectives are homogeneous. In the reason of
the homogeneity between the multi-objectives functions, removing an objective
do not affect to the final results of MOO problem. In other cases, the objectives
may be contradictory. For example, the monetary is proportional to the execu-
tion time in the same virtual machine configuration in a cloud. However, cloud
providers usually leases computing resources that are typically charged based
on a per time quantum pricing scheme [23]. The solutions represent the trade-
offs between time and money. Hence, the execution time and the monetary cost
cannot be homogeneous.

As a consequence, the multi-objective problem cannot be reduced to a mono-
objective problem. Moreover, if we want to reduce the MOO to a mono-objective
optimization, we should have a policy to group all objectives by the Weighted
Sum Model (WSM) [22]. However, estimating the weights corresponding to dif-
ferent objectives in this model is also a multi-objective problem.

In addition, MOO problems could be solved by MOO algorithms or WSM [22].
However, MOO algorithms are selected thanks to their advantages when compar-
ing with WSM. The optimal solution of WSM could be unacceptable, because of
an inappropriate setting of the coefficients [18]. Furthermore, the research in [31]
proves that a small change in weights may result in significant changes in the
objective vectors and significantly different weights may produce nearly similar
objective vectors. Moreover, if WSM changes, a new optimization process will be
required. Hence, our system applies a Multi-objective Optimization algorithm
to find a Pareto-optimal solution.

In conclusion, MOOP approaches leads to using Pareto dominance tech-
niques. A pareto-optimal front is often infeasible [56]. NSGAs show the advantage

DREAM and NSGA-G for MOOPs in medical cloud federations 13

in searching a Pareto solution for MOOP in less computational complexity than
other EMO [14]. However, they should be improved the quality to solve MOOP
when the number of objectives is significant.

2.6 Motivation

In the context of medical data management, the background of concepts and
techniques related to cloud federations, we introduce a medical system on a
cloud federation called Medical Data Management System (MIDAS). It is based
on the Intelligent Resource Scheduler (IReS) [15], an open source platform for
complex analytics work-flows executed over multi-engine environments.

MIDAS It is a medical data management system for cloud federation. The
proposal aims to provide query processing strategies to integrate existing in-
formation systems (with their associated cloud provider and data management
system) for clinics and hospitals. Fig. 4 presents an overview of the system. Inte-
grating the system within a cloud federation allows to choose the best strategy
for MOQP. MIDAS can be developed based on the platform which can exe-
cute over multi-engine environments on clouds. Fig. 4 also shows an example
of MIDAS, where three database engines are installed and run in three clouds
of different providers. We choice IReS platform to consider the advantage as
shown in 3. IReS platform is installed in every machine in MIDAS. The different
cloud resource pools allow the system to run in the most appropriate infrastruc-
ture environments. The system can optimize workflows between different data
sources on different clouds, such as Amazon Web Services8, Microsoft Azure9

and Google Cloud Platform10. The proposed system is developed based on the
Intelligent Resource Scheduler (IReS) for complex analytics workflows executed
over multi-engine environments on a cloud federation.

Machine learning algorithm The machine learning algorithms in IReS need
entire training datasets to estimate the running costs, which are calculated by
determining the cost of processing a job. It may lead to use expired information.
Hence, the proposal algorithm aims to improve the accuracy of estimated val-
ues with low computational cost. Our proposed method is integrated into IReS
to predict the cost values with low computational cost in MOQP of a cloud
environment.

Multi-Objective Optimization In addition, MOQP could be solved by Multi-
objective Optimization algorithms or the Weighted Sum Model (WSM) [22].
However, Multi-objective Optimization algorithms may be selected thanks to
their advantages when comparing with WSM. The optimal solution of WSM

8 https://aws.amazon.com/
9 https://azure.microsoft.com/

10 https://cloud.google.com/

14 Trung-Dung Le et al.

Interface

User query
policy

Modelling

Generating
QEP

Hive
engine

Multi-Objective
Optimizer

Hive

A Query

PostgreSQL
engine

PostgreSQL

Spark
engine

Spark

Amazon Web Services

Microsoft Azure Google Cloud
Platform

IReS

DREAM

Fig. 4: Architecture of MIDAS.

could be not acceptable, because of an inappropriate setting of the coefficients
[18]. Furthermore, the research in [31] proves that a small change in weights
may result in significant changes in the objective vectors and significantly dif-
ferent weights may produce nearly similar objective vectors. Moreover, if WSM
changes, a new optimization process will be required. Hence, our system applies
a Multi-objective Optimization algorithm to the Multi-Objective Optimizer
to find a Pareto-optimal solution.

Furthermore, generating a Pareto-optimal front is often infeasible due to
high complexity [56]. MOOPs leads to finding an approximate optimal solution
by Pareto dominance techniques. A well known approach to solve the high com-
plexity of MOOP is Evolutionary Multiobjective Optimization (EMO). Among
EMO approaches, Non-dominated Sorting Genetic Algorithms (NSGAs) [13, 14]
have lower computational complexity than other EMO approaches [14]. How-
ever, this algorithm still has high computational complexity. We need to find an
approach to improve the computational complexity and quality of NSGAs.

In conclusion, our solutions aim to improve the accuracy of cost value pre-
diction with low computational cost and to solve MOQP by Multi-objective
Optimization algorithm in a cloud federation environment. Besides, we also find
a method to search and optimize MOOPs by finding an approximate optimal
solution in the high complexity of generating a Pareto-optimal front.

DREAM and NSGA-G for MOOPs in medical cloud federations 15

3 Dynamic Regression Algorithm

The first technique in MIDAS relates to the estimation of accurate cost values
in the variable environment of a cloud federation. Most of cost models [17, 40,
51] depend on the size of data. Hence, our cost functions are functions of the
size of data. In particular, cost function and fitted value of Multiple Linear
Regression model are previously defined in Section 2.4. The bigger M for sets
{cm, xlm} is, the more accurate MLR model usually is. However, the computers
is slowing down when M is too big.

Furthermore, the target of Multi-Objective Query Processing is the Multi-
Objective Optimization Problem [54], which is defined by:

minimize(F (x) = (f1(x), f2(x)..., fK(x))T), (13)

where x = (x1, ..., xL)T ∈ Ω ⊆ RL is an L-dimensional vector of decision vari-
ables, Ω is the decision (variable) space and F is the objective vector function,
which contains K real value functions.

In general, there is no point in Ω that minimizes all the objectives together.
Pareto optimality is defined by trade-offs among the objectives. If there is no
point x ∈ Ω such that F (x) dominates F (x∗), x∗ ∈ Ω, x∗ is called Pareto optimal
and F (x∗) is called a Pareto optimal vector. Set of all Pareto optimal points is
the Pareto set. A Pareto front is a set of all Pareto optimal objective vectors.
Generating the Pareto-optimal front can be computationally expensive [56]. In
cloud environment, the number of equivalent query execution plans is multiplied.

Example 3. Assuming that a query is processed on Amazon EC2. If the pool of
resources includes 70 vCPU and 260GB of memory, we assume that a configura-
tion to execute a query plan is created by the number of VCPUs and the size of
memory which is the multiple of 1 GB. In particular, a configuration can be 01
VCPU and 260GB of memory and the others is 70 VCPU and 01GB of memory.
Hence, the combination of different configurations to execute this query would
be 70*260=18,200.

Example 3 shows that a query plan can generate multiple equivalent QEPs in
cloud environment. The smaller M for sets {cm, xlm} is, the faster speed for the
estimation cost process of Multi-Objective Query Processing for a QEP is. In the
system of computationally expensiveness in cloud environment as in Example 3,
a small reduction of computation for an equivalent QEP estimation will become
significant for a large number of equivalent QEPs estimation.

The most important idea is to estimate MLR quality by using the coefficient
of determination. The coefficient of determination [44] is defined by:

R2 = 1− SSE/SST, (14)

where SSE is the sum of squared errors and SST represents the amount of
total variation corresponding to the predictor variable X. Hence, R2 shows the
proportion of variation in cost given by the Multiple Linear Regression model of
variable X. For example, the model gives R2 = 0.75 of time response cost, it can

16 Trung-Dung Le et al.

Table 4: Using MLR in different size of dataset.

Cost x1 x2 M R2

20.640 0.4916 0.2977
15.557 0.6313 0.0482
20.971 0.9481 0.8232
24.878 0.4855 2.7056 4 0.7571
23.274 0.0125 2.7268 5 0.7705
30.216 0.9029 2.6456 6 0.8371
29.978 0.7233 3.0640 7 0.8788
31.702 0.8749 4.2847 8 0.8876
20.860 0.3354 2.1082 9 0.8751
32.836 0.8521 4.8217 10 0.8945

be concluded that 3/4 of the variation in time response values can be explained
by the linear relationship between the input variables and time response cost.
Table 4 presents an example of MLR with different number of measures. The
smallest dataset is M = L+2 = 4 [44], where M is the size of previous data and
L is the number of variables in Equation (5). In general, R2 increases in parallel
with M . In particular, R2 should be greater than 0.8 to provide a sufficient
quality of service level. As a consequence, M should be greater than 5 to provide
enough accuracy. Hence, when the system requires the minimum values of R2 is
equal to 0.8, M > 6 is not recommended. In general, R2 still rises up when M
goes up. Therefore, we need to determine the model which is sufficient suitable
by the coefficient of determination.

Training set DREAM

coefficient of
determination

New training
set Modelling

Fig. 5: DREAM module.

Our motivation is to provide accurate estimation while reducing the number
of previous measures based on R2. We thus propose DREAM as a solution
for cloud federation and their inherent variance, as shown in Fig. 5. DREAM
uses the training set to test the size of new training dataset. It depends on the
predefined coefficient of determination. The new training set is generated in oder
to have the updated value and avoid using the expired information. With the
new training set, Modelling uses less data in building model process than the
original approach.

Cost modeling without machine learning [40, 43, 51] often uses the size of
data to estimate the execution time for the specific system. Besides, the ma-

DREAM and NSGA-G for MOOPs in medical cloud federations 17

Algorithm 1 Calculate the predict value of multi-cost function

1: function EstimateCostValue(R2
require, X,Mmax)

2: for n = 1 to N do
3: R2

n ← ∅ //with all cost function
4: end for
5: m = L+ 2 //at least m = L+ 2
6: while (any R2

n < R2
n−require) and m < Mmax do

7: for ĉn(p) ⊆ ĉN(p) do
8: R2

n = 1− SSE/SST
9: ĉn = β̂n0 + β̂n1x1 + ...+ β̂nLxL

10: end for
11: m = m+ 1
12: end while
13: return ĉN(p)
14: end function

chine learning approach [15] can use any information to estimate the cost value.
Hence, our algorithm uses the size of data as variables of DREAM. In (6), ĉ is
the cost value, which needs to be estimated in MOQP, and x1, x2, . . . are the
information of system, such as size of input data, the number of nodes, the type
of virtual machines. If R2 ≥ R2

require, where R2
requires is predefined by users, the

model is reliable. In contrast, it is necessary to increase the number of set value.
Algorithm 1 shows a scheme as an example of increasing value set: m = m+ 1.

In this paper, we focus on the accuracy of execution time estimation with
the low computational cost in MOQP. The original optimization approach in
IReS uses Weighted Sum Model (WSM) [22] with user policy to find the best
candidate solution. However, the optimal solution of WSM could be not ac-
ceptable, because of an inappropriate setting of the coefficients [18]. Besides,
Multi-objective Optimization algorithms have more advantages than WSM [18,
31]. They lead to find solutions by Pareto dominance techniques. However, gen-
erating a Pareto-optimal front is often infeasible due to high complexity [56]. One
of well known Multi-objective Optimization algorithm class is Non-dominated
Sorting Algorithms (NSGAs). Hence, after having a set of predicted cost func-
tion values for each query plan, a Multi-objective Optimization algorithm, such
as NSGA-G [36] is applied to determine a Pareto plan set. At the final step,
the weight sum model S and the constraint B associated with the user policy
are used to return the best QEP for the given query [22]. In particular, the
most meaningful plan will be selected by comparing function values with weight
parameters between ĉn [22] at the final step, as shown in Algorithm 2. Fig. 6
shows the different between two MOQP approaches. Our algorithms are devel-
oped based on the MLR described above using xi for size of data and ci for the
metric cost, such as the execution time, energy consumption, etc.

18 Trung-Dung Le et al.

Initial
Population

Objective
values

Fitness
Distribution

Genetic
Operation

Insert Parent

Satisfied
Termination
Criteria?

Termination
Population

All Candidates

Weighted Sum
Model Values

Comparing
Scalar Values

Weighted Sum
Model Values

Comparing
Scalar Value

The best QEP

The best QEP

Multi-Objecitve Optimization based
on Genetic Algorithm

Multi-Objecitve Optimization
based on Weighted Sum Model

Fig. 6: Comparing two MOQP approaches

Algorithm 2 Select the best query plan in P
1: function BestInPareto(P,S,B)
2: PB ← p ∈ P|∀n ≤ |B| : cn(p) ≤ Bn

3: if PB 6= ∅ then
4: return p ∈ PB |C(p) = min(WeightSum(PB ,S))
5: else
6: return p ∈ P|C(p) = min(WeightSum(P,S))
7: end if
8: end function

4 Non-dominated Sorting Genetic Algorithm based on
Grid partitioning

After having the prediction cost values of MOOPs by DREAM, we need to use
Multi-Objective Optimization algorithms to find an optimal solution. Hence,
the second technique relates to looking for an efficient approach for searching
and optimizing in MIDAS is introduced in this section. NSGAs [13, 14] are well
known approaches to optimize MOOPs. Our previous work [36] proposed Non-
dominated Sorting Genetic Algorithm based on Grid partitioning (NSGA-G) to
improve both diversity and convergence of NSGAs while having an efficient com-
putation time by reducing the space of selected good solutions in the truncating
process. NSGA-G is an algorithm based on genetic algorithms (GAs). The con-
vergence of GAs is discussed in [7]. The difference between many GAs is the
qualities of diversity and convergence. We will describe the strategy to improve
the qualities of NSGAs while having an efficient computation time as below.

DREAM and NSGA-G for MOOPs in medical cloud federations 19

Algorithm 3 Main process [13, 14].

1: function Iterate(Population)
2: Offsprings← ∅
3: while Offsprings.size < populationSize do
4: Parent = Selection(Population)
5: Offsprings = Offsprings ∪ Evolve(Parent)
6: end while
7: Population = Population ∪Offsprings
8: Population = Truncate(Population)
9: return Population

10: end function

At the tth generation of Non-dominated Sorting Genetic Algorithms, Pt rep-
resents the parent population with N size and Qt is offspring population with
N members created by Pt. Rt = Pt ∪Qt is a group in which N members will be
selected for Pt+1.

4.1 Main process

This section describes more details about the main process of NSGAs. Algo-
rithm 3 shows the steps of the processing. First, the Offspring is initialized in
Line 2. The size of Offspring equals to the size of Population, i.e., N . Hence, a
parent is selected from the population and evolved to become a new offspring.
A new population with the size of (2N) is created from Offspring and the old
population. After that, the function Truncate will cut off the new population to
reduce the members to the size of N , as shown in Line 8.

4.2 Non-Dominated Sorting

Before the truncating process, the solutions in the population with a size of 2N
should be sorting in multiple fronts with their ranking, as shown in Algorithm 4.
First, the Non-dominated sorting operator generates the first Pareto set in a
population of 2N solutions. Its rank is 1. After that, the process is repeated
until the remain population is empty. Finally, 2N solutions are divided into
various fronts with their ranks.

4.3 Filter front process

NSGA-G using Min point NSGA-G finds the nearest smaller and bigger grid
point for each solution. For example, Fig. 7 shows an example of a two-objective
problem. If the unit of the grid point is 0.25 (the size of grid is 4) and the solution
with two-objective value is [0.35, 0.45], the closest smaller point is [0.25, 0.5] and
the nearest bigger point is [0.5, 0.5].

The first strategy avoids computing multiple objective cost values of all solu-
tions in the population, the space is divided into multiple small groups by Grid

20 Trung-Dung Le et al.

Algorithm 4 Non-dominated Sorting [13].

Require: R
1: function Sorting(R)
2: RinRank ← ∅
3: rank = 1
4: remaining ← R
5: while RisNotEmpty do
6: Front← non− dominatedPopulation(remaining, rank)
7: remaining = remaining \ Front
8: RinRank = RinRank ∪ Front
9: rank + +

10: end while
11: return RinRank
12: end function

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Grid Max Point

Grid Min Point

Group
Time

Monetary

Fig. 7: An example of using Grid points.

Min Point and Grid Max Point, as shown in Fig. 7. Each group has one Grid
Min Point, the nearest smaller point and one Grid Max Point, the nearest bigger
point. Only solutions in a group are calculated and compared. The solution has
the smallest distance to the nearest smaller point in a group will be added to
Pt+1. In this way, in any loop, we do not need to calculate the crowding-distance
values or estimate the smallest distance from solutions to the reference points
among all members in F3 in Fig. 7. In any loop, it is not necessary to com-
pare solutions among all members in Fl, as F3 in Fig. 7. The second strategy
chooses randomly a group. The characteristic of diversity is maintained by this
strategy. Both strategies are proposed to improve the qualities of our algorithm.
Algorithm 5 shows the strategy to select N −

∑l−1
j=1 Fj members in Fl.

The first two lines in Algorithm 5 determine the new origin coordinates and
the maximum objective values of all solutions, respectively. After that, they will
be normalized in a range of [0, 1]. All solutions will be in different groups, de-
pending on the coefficient of the grid. The most important characteristic of this
algorithm is randomly selecting the group like NSGA-III to keep the diversity

DREAM and NSGA-G for MOOPs in medical cloud federations 21

Algorithm 5 Filter front in NSGA-G using Min point.

1: function Filter(Fl,M = N −
∑l−1

j=1 Fj)
2: updateIdealPoint()
3: updateIdealMaxPoint()
4: translateByIdealPoint()
5: normalizeByMinMax()
6: createGroups
7: while | Fl |> M do
8: selectRandomGroup()
9: removeMaxSolutionInGroup()

10: end while
11: return Fl

12: end function

Algorithm 6 Filter front in NSGA-G using Random metric.

1: function Filter(Fl,M = N −
∑l−1

j=1 Fj)
2: updateIdealPoint()
3: updateIdealMaxPoint()
4: translateByIdealPoint()
5: normalizeByMinMax()
6: createGroups
7: while | Fl |> M do
8: selectRandomGroup()
9: selectRandomMetric()

10: removeWorstSolutionInGroup()
11: end while
12: return Fl

13: end function

characteristic and remove the solution among members of that group. This se-
lection helps to avoid comparing and calculating the maximum objectives in all
solutions.

To estimate the quality of the proposed algorithm, three qualities, Genera-
tional Distance [50], Inverted Generational Distance [9] and the Maximum Pareto
Front Error [49], are used including convergence, diversity and execution time.

NSGA-G using Random metric In MOOP, when the number of objectives
is significant, any function used to compare solutions leads to high computation.
NSGA-G using Min point uses Grid partition to reduce the number in groups,
but it still needs a function to group all objectives value to a scalar value. In
order to decrease the execution time, this section proposes a random method to
compare solutions among a group. This approach does not generate any referent
point or an intermediate function to estimate the value of solutions. The natural
metric values are chosen randomly to remove the worst solution in the different
groups.

22 Trung-Dung Le et al.

All the step in this algorithm are similar to NSGA-G using Min point, as
shown from line 2 to 6. Loop While has one more step of choosing metric ran-
domly. Function selectRandomMetric is used to select a natural metric among
the objectives in MOOP. The important characteristics of this algorithm are ran-
domly selecting the group like NSGA-G and using nature metric among various
objectives. It aims to keep the diversity characteristic, and reduce the comparing
time. This selection helps to avoid using an intermediate function in comparing
and calculating the values of solutions.

4.4 Selecting the size of grid

The proposed approach uses Grid partitioning to guarantee that the solutions
are distributed in all the solution space. Assuming that there is a problem with
N objectives. The last front should remove k solutions. By normalizing the space
of solution in the range of [0, 1] and dividing that range to n segments, a solution
belongs to one of nN groups in that space. In terms of Non-dominated principle,
a group including a solution in that space have many other groups which contain
Non-dominated solutions. These groups are called Non-dominated groups. All the
groups in this situation make a set groups, called front group.

The proposed idea is to keep the diversity characteristic of the genetic algo-
rithm by generating k groups and removing k solutions. Hence, the ideal front
group is designed so that it has k groups.

Simple front group From a group in the normalizing space in range of [0, 1],
a simple plane covers it and includes Non-dominated groups. In the space of N
axes, the number of groups is nN . Hence, the simple front group is the simple
plane. The number of groups in that front group is nN−1. Therefore, if the last
front needs to remove k solutions, the number of grid n is determined as follows

n = dk
1

N−1 e. (15)

For example, Fig. 8 shows a problem with 3 objectives. In each axis coordinate,
the size of grid is 4, and the maximum number of groups in all space of N axis
coordinates is 43. A simple front group includes 43−1 = 16 groups. If the last
front needs to remove 15 solutions, the number of grid when we choose simple

front group is n = dk
1

N−1 e = 4.

Max front group From a group in the normalizing space in range of [0, 1], a
simple plane covers it and includes Non-dominated groups. In the space of N axis
coordinates, the number of groups is nN . The front group which has the largest
number of groups includes N planes. Hence, the number of groups in this front
group is nN − (n− 1)N . Therefore, if the last front needs to remove k solution,
the number of grid n is determined as follows

nN − (n− 1)N = k. (16)

DREAM and NSGA-G for MOOPs in medical cloud federations 23

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Fig. 8: A simple front group.

For instance, Fig. 9 shows a problems with 3 objectives. In each axis coordinate,
the size of grid is 4, the maximum number of groups in all space of N axis
coordinates is 43. A max front group includes 43 − 33 = 64− 27 = 37.

5 Validation

5.1 DREAM

The previous section introduces two algorithms for the Multi-Objective Opti-
mization Problem in MIDAS. DREAM and NSGA-G have been implemented
on top of IReS platform. They have been validated with experiments.

Implementation Our experiments are executed on Galactica private cloud 11

with a cluster of three machines. Each node has four 2.4 GHz CPU, 80 GiB
Disk, 8 GiB memory and runs 64-bit platform Linux Ubuntu 16.04.2 LTS. The
system uses Hadoop 2.7.312, Hive 2.1.1, PostgreSQL 9.5.14, Spark 2.2.0 and Java
OpenJDK Runtime Environment 1.8.0. IReS platform is used to manage data
in multiple database engine and deploy the algorithms.

Experiments TPC-H benchmark with two datasets of 100MB and 1GB is
used to have experiments with DREAM. Experiments with TPC-H benchmark
are executed in a multi-engine environment consisting of Hive and PostgreSQL
deployed on Galactica private cloud. In TPC-H benchmark, the queries related
to two tables are 12, 13, 14 and 17. These queries with two tables in two different
databases, such as Hive and PostgreSQL, are studied.

11 https://horizon.isima.fr/
12 http://hadoop.apache.org/

24 Trung-Dung Le et al.

0.25 0.5 0.75 1.00.0

0.25

0.5

0.75

1.0

Fig. 9: A max front group.

Table 5: Comparison of mean relative error with 100MiB TPC-H dataset.

Query BMLN BML2N BML3N BML DREAM

12 0.265 0.459 0.220 0.485 0.146
13 0.434 0.517 0.381 0.358 0.258
14 0.373 0.340 0.335 0.358 0.319
17 0.404 0.396 0.267 0.965 0.119

Results To estimate the quality of price models which are estimated by DREAM
in comparison with other algorithms, Mean Relative Error (MRE), a metric used
in [2] is used and described as below:

1

M

i=1∑
M

|ĉi − ci|
ci

, (17)

where M is the number of testing queries, ĉi and ci are the predict and ac-
tual execution time of testing queries, respectively. IReS platform uses multiple
machine learning algorithms in their model, such as Least squared regression,
Bagging predictors, Multilayer Perceptron.

In IReS model building process, IReS tests many algorithms and the best
model with the smallest error is selected. It guarantees the predicted values as
the best one for estimating process. DREAM is compared to the Best Machine
Learning model (BML) in IReS platform with many observation window (N , 2N ,
3N and no limit of history data). The smallest size of a window, N = L+ 2 [44],
where L is the number of variables, is the minimum data set DREAM requires.
As shown in Tables 5 and 6, MRE of DREAM are the smallest values between

various observation windows. In our experiments, the size of historical data,
which DREAM uses, are small, around N .

DREAM and NSGA-G for MOOPs in medical cloud federations 25

Table 6: Comparison of mean relative error with 1GiB TPC-H dataset.

Query BMLN BML2N BML3N BML DREAM

12 0.349 0.854 0.341 0.480 0.335
13 0.396 0.843 0.457 0.487 0.349
14 0.468 0.664 0.539 0.790 0.318
17 0.620 0.611 0.681 0.970 0.536

5.2 NSGA-G

Various earlier studies on Multiple Objective Evolutionary Algorithms (MOEAs)
introduce test problems which are either simple or not scalable. DTLZ test prob-
lems [29] are useful in various research activities on MOEAs, e.g., testing the
performance of a new MOEA, comparing different MOEAs and a better un-
derstanding of MOEAs. The proposed algorithm is experimented on DTLZ test
problems with other famous NSGAs to show advantages in convergence, diversity
and execution time.

Implementation Our experiments use Multiobjective Evolutionary Algorithms
(MOEA)13 framework in Open JDK Java 1.8. All experiments are run on a ma-
chine with following parameters: Intel(R) core(TM) i7-6600U CPU @ 2.60GHz
× 4, 16GB RAM.

Experiments For fair comparison and evaluation, the same parameters are
used, such as Simulated binary crossover (30), Polynomial mutation (20), max
evaluations (10000) and populations (100) for eMOEA[10], NSGA-II, MOEA/D[54],
NSGA-III and NSGA-G14, during their 50 independent runs to solve two types
of problems in DTLZ test problems [29] with m objectives , m ∈ [5, 10]. These
algorithms use the same population size N = 100 and the maximum evaluation
M = 10000. We use the Generational Distance (GD) [50], Inverted Generational
Distance (IGD) [9] and the Maximum Pareto Front Error (MPFE) [49] to com-
pare the quality of NSGA-G with random metric (NSGA-R) to other NSGAs,
including NSGA-G with Min point.

GD measures how far the evolved solution set is from the true Pareto front [53],
as shown in following:

GD =

√∑n
i=1 d

2
i

n
, (18)

where dj = min
j
||f(xi)−PFtrue(xj)|| shows the distance objective space between

solution xi and the nearest member in the true Pareto front (PFtrue), and n is
the number of solutions in the approximation front. Lower value of GD represents
a better quality of an algorithm.

13 http://moeaframework.org/
14 https://gitlab.inria.fr/trle/moea

26 Trung-Dung Le et al.

IGD is a metric to estimate the approximation quality of the Pareto front
obtained by MOO algorithms [4], which can measure both convergence and di-
versity in a sense. IGD is shown in the following equation [53]:

IGD =

∑
v∈PFtrue

d(v,X)

|PFtrue|
, (19)

where X is the set of non-dominated solutions in the approximation front,
d(v,X) presents the minimum Euclidean distance between a point v in PFtrue

and the points in X. Lower value of IDG represents the approximate front getting
close to PFtrue, and not missing any part of the whole PFtrue.

MPFE shows the most significant distance between the individuals in Pareto
front and the solutions in the approximation front [53]. This metric is shown in
the following equation:

MPFE = max
i
di. (20)

In all tables show the experiments, the darkest mark value show the least value
in various algorithm experiments, and the brighter mark value is the second least
value among them.

Study on test problems In this section, we use DTLZs, and WFG [25] test
problem to experiment NSGA-Gs. Advantages of two versions of NSGA-G are
present in Table 7, 8, 9, 10, 11, and 12. Metrics such as GD, IDG, MPFE, are used
to estimate the qualities of the different algorithms. These experiments compare
both of NSGA-G with Min point and Random metric to other algorithms.

Table 7: Generational Distance

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 2.595e-01 4.418e-01 2.251e+01 4.264e-01 3.090e+00 1.977e-01
DTLZ3 5 1.861e-01 5.528e-02 1.130e+00 8.650e-02 3.079e-01 1.678e-02
WFG1 5 1.133e-03 9.748e-04 6.923e-03 6.908e-03 3.218e-03 7.617e-04
WFG3 5 4.027e-04 0.000e+00 2.549e-03 1.941e-03 2.011e-03 1.061e-05
DTLZ1 6 2.903e+00 2.137e+00 9.131e+01 1.820e+00 6.839e+00 4.907e-01
DTLZ3 6 2.226e+01 1.332e+01 1.252e+02 1.760e+01 2.389e+01 5.457e+00
WFG1 6 1.207e-03 8.842e-04 8.000e-03 6.753e-03 3.559e-03 7.417e-04
WFG3 6 4.104e-04 0.000e+00 2.523e-03 1.639e-03 1.800e-03 5.384e-05
DTLZ1 7 7.790e-01 8.949e-01 2.228e+01 2.601e-01 1.407e+00 8.201e-02
DTLZ3 7 1.719e-01 4.449e-02 1.309e+00 3.610e-02 1.619e-01 5.628e-03
WFG1 7 1.048e-03 8.219e-04 6.825e-03 5.613e-03 3.891e-03 6.405e-04
WFG3 7 4.011e-04 3.055e-06 2.390e-03 1.871e-03 1.665e-03 5.926e-05
DTLZ1 8 5.823e+00 5.851e+00 1.130e+02 1.276e+00 9.933e+00 4.660e-01
DTLZ3 8 2.071e+01 1.941e+01 1.604e+02 1.355e+01 3.001e+01 4.757e+00
WFG1 8 1.377e-03 9.406e-04 9.023e-03 7.659e-03 4.454e-03 6.469e-04
WFG3 8 3.655e-04 2.689e-05 1.692e-03 1.301e-03 9.662e-04 6.578e-05
DTLZ1 9 8.374e-01 3.626e+00 3.074e+01 3.544e-01 2.772e+00 1.003e-01
DTLZ3 9 4.673e-02 7.112e-02 6.293e-01 8.922e-03 1.052e-01 2.843e-03
WFG1 9 1.309e-03 8.924e-04 8.882e-03 7.551e-03 4.020e-03 6.816e-04
WFG3 9 3.597e-04 2.576e-05 1.298e-03 1.208e-03 7.634e-04 5.365e-05
DTLZ1 10 7.375e-01 1.519e+00 2.091e+01 2.705e-01 2.207e+00 3.021e-02
DTLZ3 10 4.785e-02 1.116e-01 6.793e-01 7.345e-03 1.118e-01 2.939e-03
WFG1 10 1.369e-03 1.385e-03 8.551e-03 6.364e-03 3.648e-03 6.692e-04
WFG3 10 3.259e-04 0.000e+00 1.196e-03 1.265e-03 6.945e-04 4.352e-05

DREAM and NSGA-G for MOOPs in medical cloud federations 27

Table 8: Average compute time in Generational Distance experiment

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 3.604e+01 6.642e+01 5.508e+01 2.000e+02 2.241e+02 6.366e+01
DTLZ3 5 5.398e+01 6.440e+01 7.074e+01 1.870e+02 2.714e+02 6.212e+01
WFG1 5 1.379e+02 6.658e+01 6.636e+01 1.899e+02 2.594e+02 6.720e+01
WFG3 5 8.562e+02 8.162e+01 6.074e+01 1.864e+02 3.077e+02 8.370e+01
DTLZ1 6 4.552e+01 5.582e+01 5.632e+01 1.918e+02 1.662e+02 5.672e+01
DTLZ3 6 9.340e+01 6.572e+01 6.362e+01 1.971e+02 1.783e+02 6.638e+01
WFG1 6 1.961e+02 9.826e+01 7.392e+01 2.049e+02 2.157e+02 7.286e+01
WFG3 6 1.083e+03 7.580e+01 6.642e+01 1.967e+02 2.384e+02 7.782e+01
DTLZ1 7 6.206e+01 5.834e+01 6.208e+01 2.290e+02 1.621e+02 5.964e+01
DTLZ3 7 1.568e+02 6.992e+01 7.024e+01 2.405e+02 1.817e+02 7.022e+01
WFG1 7 2.585e+02 7.806e+01 8.042e+01 2.473e+02 2.085e+02 7.810e+01
WFG3 7 1.469e+03 8.030e+01 9.184e+01 2.896e+02 2.821e+02 9.950e+01
DTLZ1 8 8.762e+01 5.998e+01 6.640e+01 2.450e+02 2.327e+02 6.244e+01
DTLZ3 8 2.235e+02 7.618e+01 7.652e+01 2.536e+02 2.535e+02 7.424e+01
WFG1 8 3.100e+02 8.034e+01 8.710e+01 2.625e+02 2.924e+02 8.206e+01
WFG3 8 1.464e+03 7.912e+01 7.772e+01 2.542e+02 3.268e+02 8.346e+01
DTLZ1 9 1.157e+02 6.264e+01 7.034e+01 2.524e+02 3.095e+02 6.590e+01
DTLZ3 9 2.978e+02 7.694e+01 8.422e+01 2.678e+02 3.422e+02 7.828e+01
WFG1 9 3.846e+02 8.442e+01 9.426e+01 2.731e+02 3.844e+02 8.668e+01
WFG3 9 1.677e+03 8.954e+01 8.166e+01 2.595e+02 4.373e+02 8.642e+01
DTLZ1 10 1.527e+02 6.510e+01 7.584e+01 2.740e+02 4.204e+02 6.874e+01
DTLZ3 10 3.860e+02 8.132e+01 8.916e+01 2.883e+02 4.641e+02 8.370e+01
WFG1 10 4.747e+02 8.996e+01 1.005e+02 2.941e+02 5.175e+02 9.272e+01
WFG3 10 1.881e+03 8.576e+01 8.640e+01 2.802e+02 6.035e+02 9.128e+01

Table 9: Inverted Generational Distance

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 3.437e-01 1.027e+00 3.741e+01 6.226e-01 3.465e+00 4.637e-01
DTLZ3 5 5.568e-01 4.794e-01 3.576e+00 3.969e-01 1.098e+00 1.589e-01
WFG1 5 1.298e-01 2.924e-01 1.234e-01 7.202e-02 1.365e-01 2.906e-01
WFG3 5 4.167e-02 3.850e-01 1.272e-01 1.417e-01 7.899e-02 3.987e-01
DTLZ1 6 4.975e+00 6.617e+00 2.469e+02 2.903e+00 9.524e+00 2.688e+00
DTLZ3 6 1.131e+02 4.698e+01 5.199e+02 4.207e+01 8.253e+01 2.761e+01
WFG1 6 1.722e-01 3.705e-01 1.531e-01 7.460e-02 1.596e-01 3.341e-01
WFG3 6 5.367e-02 5.424e-01 1.488e-01 1.630e-01 1.065e-01 5.146e-01
DTLZ1 7 7.034e-01 4.042e+00 1.938e+01 4.718e-01 7.695e-01 8.458e-01
DTLZ3 7 7.320e-01 4.310e-01 4.852e+00 2.878e-01 3.826e-01 2.524e-01
WFG1 7 1.437e-01 3.547e-01 1.371e-01 7.114e-02 1.403e-01 3.199e-01
WFG3 7 6.134e-02 6.325e-01 1.573e-01 1.705e-01 1.169e-01 6.122e-01
DTLZ1 8 1.234e+01 1.212e+01 4.166e+02 3.101e+00 1.073e+01 2.849e+00
DTLZ3 8 1.501e+02 6.557e+01 7.623e+02 3.720e+01 1.011e+02 2.665e+01
WFG1 8 1.284e-01 3.186e-01 1.251e-01 6.956e-02 1.238e-01 2.692e-01
WFG3 8 6.487e-02 6.477e-01 1.593e-01 1.704e-01 1.115e-01 6.094e-01
DTLZ1 9 4.009e-01 3.676e+00 5.490e+00 3.932e-01 6.185e-01 5.747e-01
DTLZ3 9 3.029e-01 4.578e-01 1.713e+00 2.398e-01 2.584e-01 2.401e-01
WFG1 9 1.167e-01 2.921e-01 1.193e-01 6.477e-02 1.131e-01 2.561e-01
WFG3 9 6.758e-02 6.897e-01 1.621e-01 1.675e-01 1.078e-01 6.237e-01
DTLZ1 10 9.350e-01 9.074e+00 1.357e+01 6.061e-01 1.499e+00 1.028e+00
DTLZ3 10 4.368e-01 5.440e-01 2.368e+00 2.000e-01 3.965e-01 1.912e-01
WFG1 10 1.147e-01 3.043e-01 1.167e-01 6.273e-02 1.102e-01 2.671e-01
WFG3 10 6.759e-02 6.676e-01 1.670e-01 1.696e-01 1.043e-01 6.102e-01

28 Trung-Dung Le et al.

Table 10: Average compute time in Inverted Generational Distance experiment

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 3.384e+01 5.500e+01 5.176e+01 1.840e+02 2.139e+02 5.276e+01
DTLZ3 5 9.490e+01 8.072e+01 5.954e+01 2.942e+02 2.803e+02 6.146e+01
WFG1 5 1.453e+02 7.752e+01 8.710e+01 1.957e+02 2.988e+02 8.220e+01
WFG3 5 9.067e+02 8.638e+01 5.950e+01 2.087e+02 3.137e+02 8.416e+01
DTLZ1 6 4.982e+01 6.264e+01 5.860e+01 2.209e+02 1.894e+02 6.534e+01
DTLZ3 6 9.604e+01 6.984e+01 6.554e+01 2.182e+02 1.958e+02 7.078e+01
WFG1 6 2.188e+02 8.088e+01 7.810e+01 2.452e+02 2.282e+02 8.362e+01
WFG3 6 2.601e+03 9.036e+01 6.638e+01 3.200e+02 3.094e+02 1.215e+02
DTLZ1 7 6.754e+01 5.880e+01 6.122e+01 2.517e+02 1.620e+02 6.066e+01
DTLZ3 7 1.587e+02 7.172e+01 6.986e+01 2.525e+02 1.798e+02 7.168e+01
WFG1 7 2.579e+02 7.696e+01 8.294e+01 2.587e+02 2.185e+02 7.768e+01
WFG3 7 1.272e+03 7.836e+01 7.194e+01 2.487e+02 2.284e+02 8.888e+01
DTLZ1 8 8.430e+01 5.996e+01 6.610e+01 2.537e+02 2.322e+02 6.328e+01
DTLZ3 8 2.358e+02 7.418e+01 7.808e+01 2.608e+02 2.535e+02 7.446e+01
WFG1 8 3.158e+02 7.960e+01 8.682e+01 2.704e+02 2.903e+02 8.344e+01
WFG3 8 1.432e+03 8.044e+01 7.712e+01 2.513e+02 3.242e+02 8.364e+01
DTLZ1 9 1.237e+02 6.278e+01 6.978e+01 2.563e+02 3.120e+02 6.646e+01
DTLZ3 9 3.174e+02 7.882e+01 8.330e+01 2.721e+02 3.418e+02 7.838e+01
WFG1 9 3.827e+02 8.586e+01 9.338e+01 2.718e+02 3.837e+02 8.594e+01
WFG3 9 1.696e+03 8.290e+01 8.142e+01 2.607e+02 4.369e+02 8.654e+01
DTLZ1 10 1.436e+02 6.472e+01 7.536e+01 2.753e+02 4.187e+02 6.876e+01
DTLZ3 10 4.003e+02 8.566e+01 8.872e+01 2.897e+02 4.572e+02 8.270e+01
WFG1 10 4.635e+02 8.924e+01 1.008e+02 2.915e+02 5.137e+02 9.116e+01
WFG3 10 1.902e+03 8.662e+01 8.612e+01 2.802e+02 6.022e+02 9.028e+01

Table 11: Maximum Pareto Front Error

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 2.008e+01 1.195e+01 8.083e+02 1.765e+01 3.548e+02 4.912e+00
DTLZ3 5 1.079e+01 1.564e+00 2.545e+01 1.604e+00 1.546e+01 5.798e-01
WFG1 5 1.332e-01 1.763e-02 2.620e-01 2.042e-01 1.709e-01 1.588e-02
WFG3 5 1.583e-01 0.000e+00 9.601e-02 6.763e-02 1.139e-01 0.000e+00
DTLZ1 6 2.937e+02 5.789e+01 1.583e+03 5.168e+01 3.920e+02 7.665e+00
DTLZ3 6 1.045e+03 2.861e+02 1.825e+03 1.913e+02 7.048e+02 7.409e+01
WFG1 6 2.288e-01 1.619e-02 3.790e-01 3.086e-01 2.649e-01 1.372e-02
WFG3 6 1.690e-01 0.000e+00 1.090e-01 7.179e-02 9.973e-02 2.058e-03
DTLZ1 7 1.193e+02 4.205e+01 8.990e+02 9.095e+00 1.081e+02 2.998e+00
DTLZ3 7 1.138e+01 2.539e+00 1.768e+01 3.267e-01 4.447e+00 1.286e-01
WFG1 7 2.461e-01 1.443e-02 3.670e-01 2.775e-01 2.428e-01 1.545e-02
WFG3 7 1.630e-01 6.556e-04 1.017e-01 6.336e-02 7.499e-02 2.411e-03
DTLZ1 8 4.798e+02 2.375e+02 1.982e+03 4.991e+01 5.619e+02 8.178e+00
DTLZ3 8 1.458e+03 3.881e+02 2.152e+03 1.856e+02 9.085e+02 6.259e+01
WFG1 8 2.722e-01 1.486e-02 4.113e-01 3.155e-01 3.020e-01 1.039e-02
WFG3 8 1.499e-01 0.000e+00 9.124e-02 5.919e-02 6.697e-02 2.380e-03
DTLZ1 9 1.732e+02 1.234e+02 9.926e+02 1.264e+01 3.271e+02 1.976e+00
DTLZ3 9 7.820e+00 3.242e+00 1.899e+01 2.121e-01 6.489e+00 9.978e-02
WFG1 9 2.388e-01 1.108e-02 3.644e-01 2.316e-01 2.435e-01 7.929e-03
WFG3 9 1.516e-01 4.995e-04 8.803e-02 5.787e-02 8.046e-02 1.736e-03
DTLZ1 10 1.097e+02 1.138e+02 9.838e+02 8.148e+00 3.040e+02 2.231e+00
DTLZ3 10 6.727e+00 2.405e+00 1.556e+01 1.584e-01 5.933e+00 7.632e-02
WFG1 10 3.030e-01 1.372e-02 4.268e-01 2.544e-01 3.118e-01 9.250e-03
WFG3 10 1.468e-01 3.964e-04 7.328e-02 5.557e-02 6.889e-02 2.378e-03

DREAM and NSGA-G for MOOPs in medical cloud federations 29

Table 12: Average compute time in Maximum Pareto Front Error experiment

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 4.128e+01 5.408e+01 5.408e+01 2.401e+02 2.308e+02 5.522e+01
DTLZ3 5 5.676e+01 6.470e+01 5.944e+01 2.074e+02 2.982e+02 6.294e+01
WFG1 5 1.623e+02 8.048e+01 7.232e+01 2.239e+02 2.815e+02 7.082e+01
WFG3 5 9.397e+02 7.952e+01 6.154e+01 2.043e+02 3.174e+02 1.023e+02
DTLZ1 6 4.550e+01 5.556e+01 5.634e+01 1.924e+02 1.662e+02 5.686e+01
DTLZ3 6 9.168e+01 6.554e+01 6.418e+01 1.985e+02 1.787e+02 6.656e+01
WFG1 6 1.958e+02 7.512e+01 7.434e+01 2.072e+02 2.170e+02 7.650e+01
WFG3 6 1.136e+03 7.774e+01 6.724e+01 1.967e+02 2.406e+02 7.916e+01
DTLZ1 7 8.734e+01 6.188e+01 6.164e+01 2.453e+02 2.058e+02 6.204e+01
DTLZ3 7 1.622e+02 7.046e+01 7.170e+01 2.699e+02 1.812e+02 8.968e+01
WFG1 7 2.674e+02 8.156e+01 8.470e+01 2.574e+02 2.154e+02 8.036e+01
WFG3 7 1.461e+03 8.358e+01 7.426e+01 2.546e+02 2.334e+02 8.180e+01
DTLZ1 8 8.920e+01 6.054e+01 6.592e+01 2.443e+02 2.349e+02 6.252e+01
DTLZ3 8 2.360e+02 7.318e+01 7.644e+01 2.536e+02 2.555e+02 7.426e+01
WFG1 8 4.476e+02 7.960e+01 8.678e+01 2.612e+02 2.932e+02 8.164e+01
WFG3 8 1.482e+03 8.250e+01 7.690e+01 2.497e+02 3.244e+02 8.380e+01
DTLZ1 9 1.031e+02 6.208e+01 6.984e+01 2.514e+02 3.068e+02 6.554e+01
DTLZ3 9 3.043e+02 7.924e+01 8.222e+01 2.634e+02 3.368e+02 7.806e+01
WFG1 9 3.935e+02 8.856e+01 9.290e+01 2.700e+02 3.807e+02 8.676e+01
WFG3 9 1.660e+03 9.016e+01 8.028e+01 2.594e+02 4.347e+02 8.622e+01
DTLZ1 10 1.507e+02 6.436e+01 7.442e+01 2.728e+02 4.151e+02 6.830e+01
DTLZ3 10 3.933e+02 8.494e+01 8.852e+01 2.865e+02 4.593e+02 8.244e+01
WFG1 10 4.769e+02 9.296e+01 9.974e+01 2.904e+02 5.110e+02 9.182e+01
WFG3 10 1.875e+03 8.474e+01 8.594e+01 2.784e+02 6.013e+02 9.096e+01

First, two versions of NSGA-G often show that they are faster than the other
algorithms in all experiments of average computation time, Table 8, 10, and 12.

Second, NSGA-Gs are also better than other NSGAs in terms of quality in
GD and MPFE experiments, as shown in Table 7, and 11. Except for the IDG
experiment, as shown in Table 9 the quality of NSGA-G with Random metric
is not as good as other ones. However, the fastest algorithm among NSGAs is
often NSGA-G with random metric. It can be accepted for the trade-off between
quality and computation time.

Study on the evaluation In the previous experiments, we survey algorithms
with various problems and the constant number of max evaluation. This section
selects a specific problem and shows the observation of algorithms while the pro-
cess is running. In particular, we choose DTLZ3 problem with eight objectives,
called DTLZ3-8. Besides, we focus on reducing the execution time of NSGAs
algorithm. Hence, this section compares two versions of NSGA-G algorithms to
others in NSGA class, such as NSGA-II and NSGA-III. Two versions of NSGA-G
with Min point and Random metric are called NSGA-G and NSGA-R, respec-
tively. The results in Fig. 10 and 11 show that two versions of NSGA-G are faster
than others. Both their convergence and diversity are better than NSGA-II and
NSGA-III.

In conclusion, NSGA-Gs often show better quality and faster execution time
in most cases, such as DTLZs, WFGs. One main conclusion of these experiments
is that NSGA-G with a Random metric is often the least expensive in terms of
computation.

30 Trung-Dung Le et al.

NSGA-G NSGA-R NSGA-II NSGA-III

Fig. 10: Inverted Generational Distance of 4 algorithms with DTLZ3-8.

DREAM and NSGA-G for MOOPs in medical cloud federations 31

NSGA-G NSGA-R NSGA-II NSGA-III

Fig. 11: Execution time of 4 algorithms with DTLZ3-8.

32 Trung-Dung Le et al.

6 Conclusion

This paper is about medical data management in cloud federation. It introduces
Dynamic Regression Algorithm (DREAM) as a part of MIDAS and on top of
IReS, an open source platform for complex analytics work-flows executed over
multi-engine environments. DREAM aims to address variance in a cloud feder-
ation and to provide accurate estimation for MOQP. Experiment results with
DREAM and TPC-H benchmark are quite promising with respect to existing
solutions. Further more, we introduce Non-dominated Sorting Algorithms based
on Grid partitioning (NSGA-G) in searching and optimization MOOP. We vali-
dated NSGA-Gs with DTLZ, WFG test problems, and MOEA framework. The
experiments show that NSGA-Gs often show better quality and faster execution
time than other NSGAs in most cases, such as DTLZs, WFGs. One main con-
clusion of these experiments is that NSGA-G with a Random metric is often the
least expensive in terms of computation.

In the future, we plan to validate our proposal with more cloud providers (and
their associated pricing model and services) and data management systems. We
will also define new strategies to choose QEPs in a Pareto Set. Further more,
the size of population in each generation iterate is constant in many NSGAs.
The suitable value of population size is still a question of NSGAs. Future works
include a deeper study on the impact of the size of the population.

References

1. Abadi, D., Agrawal, R., Ailamaki, A., Balazinska, M., Bernstein, P.A., Carey, M.J.,
Chaudhuri, S., Dean, J., Doan, A., Franklin, M.J., Gehrke, J., Haas, L.M., Halevy,
A.Y., Hellerstein, J.M., Ioannidis, Y.E., Jagadish, H.V., Kossmann, D., Madden, S.,
Mehrotra, S., Milo, T., Naughton, J.F., Ramakrishnan, R., Markl, V., Olston, C.,
Ooi, B.C., Ré, C., Suciu, D., Stonebraker, M., Walter, T., Widom: The Beckman
report on database research, J. Commun. ACM, 59(2): pp. 92–99(2016)

2. Akdere, M., Çetintemel, U., Riondato, M., Upfal, E., Zdonik, S.B.: Learning-based
Query Performance Modeling and Prediction, 2012 IEEE 28th International Con-
ference on Data Engineering, Washington, DC, 2012, pp. 390-401.

3. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski, A., Lee,
G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: A view of cloud computing.
Commun. ACM 53(4): 50-58 (2010).

4. Bezerra, L.C.T., López-Ibáñez, M., Stützle T.: An Empirical Assessment of the
Properties of Inverted Generational Distance on Multi- and Many-Objective Opti-
mization, Evolutionary Multi-Criterion Optimization, Springer International Pub-
lishing, pp. 31-45, 2017.

5. Breiman, L.: Bagging predictors. Mach. Learn. 24(2): 123-140, Aug. 1996.
6. Bugiotti, F., Bursztyn, D., Deutsch, A., Ileana, I., Manolescu, I.: Invisible Glue:

Scalable Self-Tuning Multi-Stores(2015), Conference on Innovative Data Systems
Research (CIDR), Asilomar, CA, USA, 2015.

7. Cerf, R.: Asymptotic convergence of genetic algorithms, Advances in Applied Prob-
ability, Cambridge University Press, vol. 30, no. 2, pp. 521–550, 1998.

8. Chankong, V., Haimes, Y.Y.: Multiobjective decision making: theory and method-
ology, North-Holland series in system science and engineering, North Holland, 1983.

DREAM and NSGA-G for MOOPs in medical cloud federations 33

9. Coello, C.A.C., Cortés, N.C.: Solving Multiobjective Optimization Problems Using
an Artificial Immune System. Genet Program Evolvable Mach 6, 163–190 (2005)

10. Coello, C.A.C., Lamont, G.B., Veldhuizen, D.A.V.: Evolutionary algorithms for
solving multi-objective problems, Second Edition. Genetic and evolutionary compu-
tation series, Springer 2007, ISBN 978-0-387-33254-3, pp. I-XXI, 1-800

11. DeWitt, D.J., Halverson, A., Nehme, R., Shankar, S., Aguilar-Saborit, J., Avanes,
A., Flasza, M., Gramling, J.: Split query processing in polybase. In Proceedings of
the 2013 ACM SIGMOD International Conference on Management of Data (SIG-
MOD ’13). Association for Computing Machinery, New York, NY, USA, 1255–1266,
2013.

12. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1): 107-113. Jan. 2008.

13. Deb, K., Jain, H.: An Evolutionary Many-Objective Optimization Algorithm Using
Reference-Point-Based Nondominated Sorting Approach, Part I: Solving Problems
With Box Constraints, in IEEE Transactions on Evolutionary Computation, vol.
18, no. 4, pp. 577-601, Aug. 2014.

14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective
genetic algorithm: NSGA-II, in IEEE Transactions on Evolutionary Computation,
vol. 6, no. 2, pp. 182-197, April 2002.

15. Doka, K., Papailiou, N., Tsoumakos, D., Mantas, C., Koziris, N.: IReS: Intelligent,
Multi-Engine Resource Scheduler for Big Data Analytics Workflows. In Proceed-
ings of the 2015 ACM SIGMOD International Conference on Management of Data
(SIGMOD ’15). ACM, New York, NY, USA, 1451-1456.

16. Elmore, A., Duggan, J., Stonebraker, M., Balazinska, M., Cetintemel, U., Gade-
pally, V., Heer, J., Howe, B., Kepner, J., Kraska, T., Madden, S., Maier, D., Mattson,
T., Papadopoulos, S., Parkhurst, J., Tatbul, N., Vartak, M., Zdonik, S.:A demon-
stration of the BigDAWG polystore system. Proc. VLDB Endow. 8, 12, 1908–1911,
2015.

17. Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A Multi-objective
Approach for Workflow Scheduling in Heterogeneous Environments, 2012 12th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (cc-
grid 2012), Ottawa, ON, 2012, pp. 300-309.

18. Fonseca, C.M., Fleming, P.J.: An Overview of Evolutionary Algorithms in Multi-
objective Optimization, Evolutionary Computation, vol. 3, no. 1, pp. 1-16, March
1995.

19. Ganapathi, A., Kuno, H., Dayal, U., Wiener, J.L., Fox, A., Jordan, M., Patterson,
D.: Predicting Multiple Metrics for Queries: Better Decisions Enabled by Machine
Learning. In: 2009 IEEE 25th International Conference on Data Engineering, Shang-
hai, pp. 592–603(2009)

20. Giannakouris, V., Papailiou, N., Tsoumakos, D., Koziris, N.: MuSQLE: Distributed
SQL query execution over multiple engine environments, 2016 IEEE International
Conference on Big Data (Big Data), Washington, DC, pp. 452-461, 2016.

21. Glaßer, C., Reitwießner, C., Schmitz, H., Witek, M.: Approximability and Hardness
in Multi-objective Optimization. In: Ferreira F., Löwe B., Mayordomo E., Mendes
Gomes L. (eds) Programs, Proofs, Processes. CiE 2010. Lecture Notes in Computer
Science, vol 6158. Springer, Berlin, Heidelberg, 2010.

22. Helff, F., Gruenwald, L., D’Orazio, L.: Weighted Sum Model for Multi-Objective
Query Optimization for Mobile-Cloud Database Environments, EDBT/ICDT Work-
shops, 2016.

34 Trung-Dung Le et al.

23. Herald, K., Eva, S., Tsangaris, M.M., Yannis, I.: Schedule optimization for data
processing flows on the cloud, Proceedings of the 2011 international conference on
Management of data - SIGMOD ’11, pp. 289, 2011.

24. Hiroshi, S., Akio, I.: Use cases and functional requirements for inter-cloud com-
puting, IEICE technical report. Speech, pp. 37-42, vol. 110, 2010.

25. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test
problems and a scalable test problem toolkit, IEEE Transactions on Evolutionary
Computation, vol. 10, pp. 447-506, num. 5, Oct 2006.

26. Ishibuchi, H., Masuda, H., Nojima, Y.: Sensitivity of performance evaluation results
by inverted generational distance to reference points, IEEE Congress on Evolution-
ary Computation (CEC), pp. 1107-1114, Jul. 2016.

27. Jain, H., Deb, K.: An Evolutionary Many-Objective Optimization Algorithm Using
Reference-Point Based Nondominated Sorting Approach, Part II: Handling Con-
straints and Extending to an Adaptive Approach, in IEEE Transactions on Evolu-
tionary Computation, vol. 18, no. 4, pp. 602-622, Aug. 2014.

28. Kalyanmoy, D., Bhushan, A.R.: Simulated Binary Crossover for Continuous Search
Space, Complex Systems, vol. 9, pp. 1-34, 1994.

29. Kalyanmoy, D., Lothar, T., Marco, L., Eckart, Z.: Scalable Test Problems for Evo-
lutionary Multiobjective Optimization, Evolutionary Multiobjective Optimization.
Theoretical Advances and Applications, pp. 105-145, 2005.

30. Karpathiotakis, M., Alagiannis, I., Ailamaki, A.: Fast queries over heterogeneous
data through engine customization. Proc. VLDB Endow. 9, 12, 972–983, 2016.

31. Khan, S.A., Rehman, S.: Iterative non-deterministic algorithms in on-shore wind
farm design: A brief survey, Renewable and Sustainable Energy Reviews, 19, 370 -
384, 2013.

32. Knowles, J., Corne, D.: The Pareto archived evolution strategy: a new baseline al-
gorithm for Pareto multiobjective optimisation, Proceedings of the 1999 Congress on
Evolutionary Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA,
1999, pp. 98-105 Vol. 1.

33. Kolev, B., Bondiombouy, C., Valduriez, P., Jimenez-Peris, R., Pau, R., Pereira,
J.: The CloudMdsQL Multistore System. In Proceedings of the 2016 International
Conference on Management of Data (SIGMOD ’16). Association for Computing
Machinery, New York, NY, USA, 2113–2116, 2016.

34. Kolev, B., Valduriez, P., Bondiombouy, C., Jiménez-Peris, R., Pau, R., Pereira, J.:
CloudMdsQL: querying heterogeneous cloud data stores with a common language.
Distrib. Parallel Databases 34, 4, 463–503, 2016.

35. Kurze, T., Klems, M., Bermbach, D., Lenk, A., Tai, S., Kunze, M.: Cloud fed-
eration. The Second International Conference on Cloud Computing, GRIDs, and
Virtualization. 32-38. 2011.

36. Le, T.-D., Kantere, V., D’Orazio, L.: An efficient multi-objective genetic algorithm
for cloud computing: NSGA-G, IEEE International Conference on Big Data, Big
Data 2018, Seattle, WA, USA, December 10-13, 2018, pp. 3883-3888, 2018.

37. Le, T.-D., Kantere, V., D’Orazio, L.: Dynamic Estimation for Medical Data Man-
agement in a Cloud Federation, Proceedings of the Workshops of the EDBT/ICDT
2019 Joint Conference, EDBT/ICDT 2019, Lisbon, Portugal, March 26, 2019.

38. LeFevre, J., Sankaranarayanan, J., Hacigümüs, H., Tatemura, J., Polyzotis, N.,
Carey, M.J.: MISO: souping up big data query processing with a multistore system.
SIGMOD Conference 2014: 1591-1602, 2014.

39. Mario, K., Kaori, Y.: Substitute Distance Assignments in NSGA-II for Handling
Many-objective Optimization Problems, pp. 727-741, Jan. 2006.

DREAM and NSGA-G for MOOPs in medical cloud federations 35

40. Nykiel, T., Potamias, M., Mishra, C., Kollios, G., Koudas, N.: MRShare: Sharing
Across Multiple Queries in MapReduce. PVLDB, 3, 494-505. 2010.

41. Papakonstantinou, Y.:Polystore Query Rewriting: The Challenges of Variety,
EDBT/ICDT Workshops, 2016.

42. Rousseeuw, P.J., Leroy, A.M.: Robust Regression and Outlier Detection. John Wi-
ley & Sons, Inc., New York, NY, USA. 1987.

43. Sidhanta, S., Golab, W., Mukhopadhyay, S.: OptEx: A Deadline-Aware Cost Op-
timization Model for Spark, 2016 16th IEEE/ACM International Symposium on
Cluster, Cloud and Grid Computing (CCGrid), Cartagena, 2016, pp. 193-202.

44. Soong, T.T.: Fundamentals of probability and statistics for engineers, John Wiley
& Sons, 2004.

45. Srinivas, N., Deb, K.: Muiltiobjective Optimization Using Nondominated Sorting
in Genetic Algorithms, Evolutionary Computation, vol. 2, no. 3, pp. 221-248, Sept.
1994.

46. Thusoo, A., Sarma, J.S., Jain, N., Shao, Z., Chakka, P., Zhang, N., Anthony, S.,
Liu, H., Murthy, R. (2010): Hive - a petabyte scale data warehouse using Hadoop.
2010 IEEE 26th International Conference on Data Engineering (ICDE 2010), 996-
1005.

47. Tozer, S., Brecht, T., Aboulnaga, A.: Q-Cop: Avoiding bad query mixes to minimize
client timeouts under heavy loads, 2010 IEEE 26th International Conference on Data
Engineering (ICDE 2010), Long Beach, CA, 2010, pp. 397-408.

48. Trummer, L., Koch, C.: Multi-objective parametric query optimization. Commun.
ACM 60(10), 81-89 (2017).

49. Veldhuizen, D.A.V.: Multiobjective Evolutionary Algorithms: Classifications,
Analyses, and New Innovations, Evolutionary Computation, 1999.

50. Veldhuizen, D.A.V., Lamont, G.B.: Evolutionary Computation and Convergence to
a Pareto Front, Late Breaking Papers at the Genetic Programming 1998 Conference,
pp. 221-228, 1998.

51. Wu, W., Chi, Y., Zhu, S., Tatemura, J., Hacigümüs, H., Naughton, J.F.: Predicting
query execution time: Are optimizer cost models really unusable?, 2013 IEEE 29th
International Conference on Data Engineering (ICDE), Brisbane, QLD, 2013, pp.
1081-1092.

52. Xiong, P., Chi, Y., Zhu, S., Tatemura, J., Pu, C., HacigümüŞ, H.: ActiveSLA:
A profit-oriented admission control framework for Database-as-a-Service providers.
Proceedings of the 2nd ACM Symposium on Cloud Computing, SOCC 2011.

53. Yen, G.G., He, Z.: Performance Metrics Ensemble for Multiobjective Evolutionary
Algorithms, IEEE Transactions on Evolutionary Computation, 2013.

54. Zhang, Q., Li, H.: MOEA/D: A Multiobjective Evolutionary Algorithm Based on
Decomposition, IEEE Transactions on Evolutionary Computation, vol. 11, no. 6,
pp. 712-731, Dec. 2007.

55. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the Strength Pareto
Evolutionary Algorithm, TIK-Report. 103, 2001.

56. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Fonseca, V.G.D.: Perfor-
mance assessment of multiobjective optimizers: an analysis and review, IEEE Trans-
actions on Evolutionary Computation, vol. 7, no. 2, pp. 117-132, April 2003.

36 Trung-Dung Le et al.

Point-by-point response to the reviewers’ comments

Dear Dr./Mr./Ms. anonymous reviewers,
I am writing to submit our manuscript entitled, “Dynamic estimation and Grid
partitioning approach for Multi-Objective Optimization Problems in medical
cloud federations” for consideration as a Transactions on Large-Scale Data and
Knowledge-Centered Systems paper.
This manuscript expands on the prior researches conducted and published in
BPOD 2018, An efficient multi-objective genetic algorithm for cloud computing:
NSGA-G; in DARLI-AP 2019, Dynamic Estimation for Medical Data Manage-
ment in a Cloud Federation.
We have since expanded the scope of our research to optimize Multi-Objective
Problems in medical cloud federations.
Thank you very much for your attention to our paper and your valuable com-
ments. Please find in the following our replies to the comments.

Reviewer 1

In this paper, authors studied the query optimization problem in cloud federa-
tions. More precisely, two sub-problems have been addressed: (1) Estimation of
the execution cost (time and money) of a given query execution plan in a cloud
federation, and (2) search of an approximate optimal solution using an efficient
Multi-Objective Optimization algorithm. Correspondingly, authors proposed: (1)
to use a Multiple Linear Regression (MLR) model for parameter values estima-
tion and query execution cost prediction, and (2) to extend the Non-dominated
Sorting Genetic Algorithms (NSGAs) by using the Grid partitioning technique,
to improve both diversity and convergence of the solution while having a short
computation time. The topic is very interesting. The paper is well organized and
easy to read. The proposals have been validated by experimental evaluations.
My overall recommendation is to accept the paper with a major revision. Please
find below some detailed remarks:

Comment 1 The chosen environment is a cloud federation. Two figures (Fig.
1 and Fig. 4) are drawn to show the system architecture. However, they do
not have the same principle. In Fig. 1, data are directly exchanged between the
three clouds, and queries can be launched on any of them. It looks really like a
“federation”. In Fig. 4, the IReS platform is used outside of the clouds and the
unique query interface is through this platform. It is more similar to a “data
integration system”. In the latter case, an important question is: where do you
run the intermediate platform, and how do you share it with all data owners
and other users? How do you evaluate the running cost (time and money) of the
platform itself?

Response 1

DREAM and NSGA-G for MOOPs in medical cloud federations 37

Actually, IReS platform is installed in every machine in MIDAS (we add a sen-
tence in the MIDAS part. Please see page 13, line 19). Hence, the platform is
run in all the clouds, and it helps to organize and share data between owners
and other users.

Besides, the machine learning algorithms in IReS need entire training datasets
to estimate the running costs, which are calculated by determining the cost of
processing a job. We have revised the text. Please see page 13, line 28.

Comment 2 The submitted paper is positioned as an extension of [36] and [37],
but no explanation is given about the newly added materials. Therefore, it is
difficult for the reviewers to detect them.

Response 2

In particular, they are grouped to become a system, MIDAS. Besides, the theory
of NSGA-G in [36] is expanded to two versions: NSGA-G using Min point and
using Random metric. We have revised the text. Please see page 4, line 43.

Comment 3 The definition of a QEP (Query Execution Plan) need to be clari-
fied. According to the examples on Page 3 and Page 14, we can understand that,
different resource allocations for a same LOGICAL plan correspond to different
EXECUTION plans. However, on page 4, a QEP is defined as only “an ordered
set of operators (select, project, join, etc.)”. Maybe it is not really a definition?
Please make it clearer. Accordingly, the way to compute the number of QEPs on
Page 3 and Page 14 is also confusing. “If the pool of the resources is 70 VCPU
with 260GB of memory, the number of QEPs is thus 70*260=18,200.” Please
justify this computation.

Response 3

In particular, Query Execution Plan is the evaluation of a query plan that can
be passed to the executor. We have revised the text. Please see page 6, line 12.

In the example on Page 14, if the pool of the resources is 70 VCPU with
260GB of memory, we assume that a configuration to execute a query plan is
created by the number of VCPUs and the size of memory, which is the multiple
of 1 GB. In particular, a configuration can be 01 VCPU, and 260GB of memory,
and the other configuration is 70 VCPU and 01GB of memory. Hence, the combi-
nation of different configurations to execute this query would be 70*260=18,200.
We have revised the text. Please see page 15, line 22.

Comment 4 Different terms (MOOP, MOQP and MOO, MOP) are used for
the same thing. Maybe they have small differences? If so, please explain that.
Otherwise, it is better to use the same term everywhere.

Response 4

38 Trung-Dung Le et al.

Actually, Multi-Objective Query Processing (MOOP) and Multi-Objective Opti-
mization Problem (MOOP) are two different definitions. MOO is Multi-Objective
Optimization, and MOP is Multi-Objective Problem. Hence, we change MOP
in two lines. We have revised the text. Please see page 13, line 2 and page 22,
line 4.

Comment 5 In section 3, the proposed method is called “Dynamic Regression
Algorithm”, but we do not see the dynamicity of the algorithm. Please make it
clear.

Response 5

The dynamic definition in DREAM is that the size of training data is not fixed to
the size of total historical data. In particular, Example 3, page 16, line 9, shows
that the recommend size of training data is 6, while the total size of previous data
is 10. This dynamic depends on the predefine coefficient of determination, R2,
and the parameters of the environment, such as the number of virtual machines,
the size of memory, etc.

Comment 6 On Page 22, it is strange that the definition of the “Max front
group” is the same as that of the “Simple front group”.

Response 6

The definition of Simple front group in page 22, line 22 and Max front group
in page 22, line 35 are different. First, the difference is shown in Equation 15
and 16. Second, Fig. 8 and Fig. 9 also illustrate the different method between two
definitions. In conclusion, Simple front group implies a a group created by a sim-
ple plane, while Max front group describes a group that includes the maximum
number of planes.

Comment 7 In section 5.1, more details about the experimental setting should
be given. For example, how many nodes (e.g., min, max) are used for each en-
gine? How the pricing models are simulated?

Response 7

Our experiments are executed on a private cloud 15 with a cluster of three
machines. Each node has four 2.4 GHz CPU, 80 GiB Disk, 8 GiB memory and
runs 64-bit platform Linux Ubuntu 16.04.2 LTS. We have revised the text. Please
see page 23, line 11.

Besides, to estimate the quality of price models which are estimated by
DREAM in comparison with other algorithms, Mean Relative Error (MRE),
a metric used in [2] is used. We have revised the text. Please see page 24, line 1.

15 https://horizon.isima.fr/

DREAM and NSGA-G for MOOPs in medical cloud federations 39

Comment 8 In section 5.2, on Page 25, it is written that “It can be accepted
for the trade-off between quality and computation time”. We could understand
that the “computation time” is the time to find the approximate Pareto front.
However, by looking at the tables, we find that it is actually the time to compute
the errors (i.e., to measure the quality). However, is it a relevant metric to
compare algorithms, with respect to the original problem to solve?

Response 8

In particular, we use the Generational Distance (GD) [50], Inverted Generational
Distance (IGD) [9] and the Maximum Pareto Front Error (MPFE) [49] to com-
pare the quality of NSGA-G with random metric (NSGA-R) to other NSGAs,
including NSGA-G with Min point, please see page 25, line 19. They use the
errors between the true Pareto front and the approximate front, which the al-
gorithm found to estimate the quality of them. Hence, the time computation
and the three metrics, GD, IGD, MPFE, are relevant to compare the qualities
of algorithms.

Comment 9 The references are not ordered.

Response 9

We have revised the text. Please see page 32, line 20.

Reviewer 2

This paper proposes a DBMS on a CLOUD federation. The main target ap-
plication is medical. This paper focus on two major points: estimation of the
parameter values necessary for query optimization and a multi objective query
optimisation method based on Grid partitioning. The paper is badly written. In
particular, the links between the sections are rarely made. Section 2 is typical
of this problem. Related work section is important for positioning paper. we can
find a little positioning in the introduction. However, some assertions are difficult
to understand. For example : ”In the first class, cost models introduced to build
an optimal group of queries [40] are limited to MapReduce [12].” What is the
problem? It is impossible to use the introduced concepts on another platform?
An example used as a common thread would greatly aid understanding. ”This
query is optimized and transformed into an algebraic logical query plan” are you
sure?

Comment 10 To answer the question of ”What is the problem?”

Response 10

The estimation process can be classified into two classes: without [40, 43, 51] and
with machine learning algorithms [15]. On the one hand, the methods without
machine learning algorithms often focus on the specific model, such as [40], [43],

40 Trung-Dung Le et al.

or [51]. They are not suitable for cloud federations. Please see page 4, line 2.
On the other hand, various machine learning techniques are applied to estimate
execution time in recent research [2, 19, 47, 52], please see page 4, line 12. Hence,
the problem is that the estimation process is complex in the cloud federation,
page 3, line 26.

Comment 11 To answer the question ”It is impossible to use the introduced
concepts on another platform?”. An example used as a common thread would
greatly aid understanding.

Response 11

In my opinion, MIDAS can be developed based on the platform which can exe-
cute over multi-engine environments on clouds. For example, Fig. 4 also shows an
example of MIDAS, where three database engines are installed and run in three
clouds of different providers. We have revised the text. Please see page 13, line 18.

Further more, among various heterogeneous database system described in
Table 3, IReS platform considers both heterogeneous systems and MOOP in
clouds. We choice IReS platform to consider the advantage of it. We have revised
the text. Please see page 13, line 19.

Comment 12 To answer the question: ”This query is optimized and trans-
formed into an algebraic logical query plan” are you sure?

Response 12

This query is transformed into a logical query plan using logical operation, such
as select, project, join, etc. We have revised the text. Please see page 3, line 2.

Comment 13 The paper is badly written. In particular, the links between the
sections are rarely made. Section 2 is typical of this problem. Related work sec-
tion is important for positioning paper. we can find a little positioning in the
introduction.

Response 13

We have revise the text. Please see page 5, line 19; page 7, line 26; page 13,
line 6; page 15, line 3; page 18, line 6; page 23, line 7 and the other revised texts
as shown above.

Each named author has substantially contributed to conducting the under-
lying research and drafting this manuscript. Additionally, to the best of our
knowledge, the named authors have no conflict of interest, financial or other-
wise.
Sincerely,

Trung-Dung Le

