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Abstract. Data sharing is important in the medical domain. Sharing
data allows large-scale analysis with many data sources to provide more
accurate results. Cloud federations can leverage sharing medical data
stored in different cloud platforms, such as Amazon, Microsoft, etc.
The pay-as-you-go model in cloud federations raises important issues of
Multi-Objective Optimization Problems (MOOP) related to users’ pref-
erences, such as response time, money, etc. However, optimizing a query
in a cloud federation is complex with increasing the variety, especially
due to a wide range of communications and pricing models. The variety
of virtual machines configuration also leverages the high complexity in
generating the space of candidate solutions. Indeed, in such a context,
it is difficult to provide accurate estimations and optimal solutions to
make relevant decisions. The first challenge is how to estimate accurate
parameter values for MOOPs in a cloud federation consisting of different
sites. To address the accurate estimation of parameter values problem, we
present the Dynamic Regression Algorithm (DREAM). DREAM focuses
on reducing the size of historical data while maintaining the estimation
accuracy. The second challenge is how to find an approximate optimal
solution in MOOPs using an efficient Multi-Objective Optimization al-
gorithm. To address the problem of finding an approximate optimal so-
lution, we present Non-dominated Sorting Genetic Algorithms based on
Grid partitioning (NSGA-G) for MOOPs. The proposed algorithm is
integrated into the Intelligent Resource Scheduler, a solution for hetero-
geneous databases, to solve MOOP in cloud federations. We validate our
algorithms with experiments on a decision support benchmark.

Keywords: Cloud computing - Multiple Linear Regression - Cloud fed-
erations - Genetic Algorithm - Non-dominated Sorting Genetic Algo-
rithm.
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1 Introduction

Cloud federation is a paradigm of interconnecting the cloud environments of
more than one service providers for multiple purposes of commercial, service
quality, and user’s requirements [35]. Besides of vendor lock-in and provider in-
tegration, a cloud federation has several types of heterogeneity and variability in
the cloud environment, such as wide-range communications and pricing models.

Cloud federations can be seen as a major progress in cloud computing, in
particular for the medical domain. Indeed, sharing medical data would improve
healthcare. Federating resources makes it possible to access any information even
on distributed hospital data on several sites. Besides, it enables to access larger
volumes of data on more patients and thus provide finer statistics.

For example, patient A has just come back from a tropical country B. He has
a rare disease from there. The hospital cannot recognize his disease. The clinic in
country B records some cases like his. However, the two databases of the hospital
and the clinic are not in the same database engine, or cloud provider. If a cloud
federation exists to interconnect the two clouds, his disease could be recognized
and he can have a treatment soon.

In cloud federations, pay-as-you-go models and elasticity thus raise an im-
portant issue in terms of Multi-Objective Optimization Problems (MOOPs) ac-
cording to users preferences, such as time, money, quality, etc. However, MOOPs
in a cloud federation are hard to solve due to issues of heterogeneity, and vari-
ability of the cloud environment, and high complexity in generating the space of
candidate solutions.

Let’s consider a query Q in a example below.

Example 1. A query Q in the medical domain, based on TPC-H? query 3 and
4:

SELECT p.UID, p.PatientID, s.PatientName,
.PatientBrithDate, p.PatientSex,
.EthnicGroup, p.SmokingStatus,
.PatientAge, s.PatientWeight,
.PatientSize, i.GeneralName,
.GeneralValues, q.UID,

.SequenceTags, q.SequenceVRs,
.SequenceNames, q.SequenceValues

FROM Patient p, GenerallInfoTable i,

Study s, SequenceAttributes q

WHERE p.UID = s.UID AND p.UID = i.UID

AND p.UID = q.UID AND p.PatientSex = ’'M’
AND p.SmokingStatus = ’NO’ AND s.PatientAge >= x
AND q.SequenceNames

LIKE ’%X-ray%’

Q Q9 Hn o n oo

3 http://www.tpc.org/tpch/
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Table 1: Multiple Objectives for Query Execution Plans

QEP VMs Price ($/60min) Time (min) Monetary ($)

QEP1 20 0.02 60 0.4
QEP2 80 0.02 22 0.59
QEP3 50 0.02 26 0.43

This query is transformed into a logical query plan using logical operation,
such as select, project, join, etc. Depending on the physical operators, a query
optimizer generates a query execution plan to execute a logical plan. Actually,
various Query Execution Plans (QEPs) are generated with respect to the number
of nodes, their capacity in terms of CPU, memory and disk and the pricing model.
Table 1 presents an example of possible QEPs for Q. Choosing an execution plan
is a trade-off between objectives such as the response time or the monetary cost,
and depends on users’ preferences: a user A may prefer minimizing his budget
(QEP1); a user B may want the lowest response time (QEP2); a user C may
look for a trade-off between time and money (QEP3).

Assuming that the query is processed on Amazon EC2. The master consists
of a m2.4xlarge instance (8 virtual cores with 68.4 GB of RAM). Workers consist
of m3.2xlarge instances (8 virtual cores and with 30 GB of RAM). If the pool of
resources is 70 VCPU with 260GB of memory, the number of QEPs is thus 70
x 260 = 18,200. The problem is then how to search and optimize such a query
in a real environment, when the pool of resources is more variable, with respect
to multiple dimensions (response time, monetary cost, etc.). Since generating
QEPs maybe infeasible due to high complexity, we aim to find an approximate
optimal solution.

In this paper, we address several challenges for the development of medical
data management in cloud federations. The first challenge is how to estimate
accurate parameter values for MOOPs without precise knowledge of the execu-
tion environment in a cloud federation consisting of different sites. The execu-
tion environment may consist of various hardware and systems. In addition, it
also depends on the variety of physical machines, load evolution and wide-range
communications. As a consequence, the estimation process is complex. The sec-
ond challenge is how to find an approximate optimal solution in MOOPs us-
ing an efficient Multi-Objective Optimization algorithm. Indeed, MOOPs could
be solved by Multi-Objective Optimization algorithms or the Weighted Sum
Model (WSM) [24] or be converted to a Single-Objective Optimization Prob-
lem (SOOP). However, SOOPs cannot adequately represent MOOPs [23]. Also,
MOOPs leads to find solutions by Pareto dominance techniques. Since generating
a Pareto-optimal front is often infeasible due to high complexity [55], MOOPs
need an approximate optimal solution calculated by Pareto dominance tech-
niques.

The estimation process can be classified into two classes: without [39, 42, 50]
and with machine learning algorithms [17]. In a cloud federation with variability
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and different systems, cost functions may be quite complex. In the first class,
cost models introduced to build an optimal group of queries [39] are limited to
MapReduce [12]. Besides, a PostgreSQL cost model [50] aims to predict query
execution time for this specific relational DBMS. Moreover, OptEx [42] provides
estimated job completion times for Spark* with respect to the size of the input
dataset, the number of iterations, the number of nodes composing the underlying
cloud. These works mention the estimation of only execution time for a job, and
not for other metrics, such as monetary cost. Meanwhile, various machine learn-
ing techniques are applied to estimate execution time in recent research [2,21,
46, 51]. They predict the execution time by many machine learning algorithms.
They treat the database system as a black box and try to learn a query running
time prediction model using the total information for training and testing in
the model building process. It may lead to the use of expired information. In
addition, most of these solutions solve the optimization problem with a scalar
cost value and do not consider multi-objective problems.

A well known Pareto dominance technique to solve the high complexity of
MOOP is Evolutionary Multiobjective Optimization (EMO). Among EMO ap-
proaches, Non-dominated Sorting Genetic Algorithms (NSGAs) [14,15] have
lower computational complexity than other EMO approaches [15]. However,
these algorithms still have high computational complexity. We presented Non-
dominated Sorting Genetic Algorithm based on Grid partitioning (NSGA-G) [36]
to improve both computation time and qualities of NSGAs. It has more advan-
tages than other NSGAs. Two versions of NSGA-G will be shown to compromise
computation and quality.

In this paper, we introduce a medical system on a cloud federation called
Medical Data Management System (MIDAS). It is based on the Intelligent Re-
source Scheduler (IReS) [17], an open source platform for complex analytics
workflows executed over multi-engine environments. In particular, we focus on:
(1) a dynamic estimation and (2) a Non-dominated Sorting Genetic Algorithm
for Multi-Objective Optimization Problems. The first contribution is Dynamic
linear REgression AlgorithM (DREAM) to provide accurate estimation with
low computational cost. DREAM is then implemented and validated with ex-
periments on a decision support benchmark (TPC-H benchmark). The second
contribution is Non-dominated Sorting Genetic Algorithm based on Grid par-
titioning (NSGA-G) to improve both quality and computational efficiency of
NSGAs, and also provides an alternative for Pareto-optimal of MOOPs. NSGA-
Gs are validated through experiments on DTLZ problems [16] and compared
with NSGA-II [15], NSGA-III [14], and the others in Generational Distance [49],
Inverted Generational Distance [9], and Maximum Pareto Front Error [48] statis-
tic.

This paper is an extended version of [36,37]. In particular, they are grouped
together to become a system, MIDAS. Besides, the theory of NSGA-G in [36]
is expanded to two versions: NSGA-G using Min point and using Random met-
ric. The remaining of this paper is organized as follows. Section 2 presents the

4 https://spark.apache.org/



DREAM and NSGA-G for MOOPs in medical cloud federations 5

research background. DREAM is presented in Section 3. Section 4 shows NSGA-
G. Section 5 presents experiments to validate DREAM and NSGA-Gs. Finally,
Section 6 concludes this paper and lists some perspectives.

2 Background

In this section, we introduce an architecture of the system, concepts and tech-
niques, allowing us to implement the proposed medical data management on
a cloud federation. First of all, an overview of the Medical Data Management
System (MIDAS) and the benefits of cloud federation where our system is built
on are introduced. After that, an open source platform, which helps our system
managing and executing workflows over multi-engine environments is described.
The concept of Pareto plan set related to Multi-Objective Optimization Problem
(MOOP) in MIDAS is then defined. In addition, Multiple Linear Regression
and Non-dominated Sorting Genetic Algorithm are also introduced as the basic
foundation of our proposed algorithms for MOOP.

2.1 Cloud federation

This section shows the definition and the example related to a cloud federa-
tion. A cloud federation enables to interconnect different cloud computing en-
vironments. Cloud computing [3] allows to access on demand and configurable
resources, which can be quickly made available with minimal maintenance. Ac-
cording to the pay-as-you-go pricing model, customers only pay for resources
(storage and computing) that they use. Cloud Service Providers (CSP) supply a
pool of resources, development platforms and services. There are many CSPs on
the market, such as Amazon, Google and Microsoft, etc., with different services
and pricing models. For example, Table 2 shows the pricing of instances in two
cloud providers in 2019. The price of Amazon instances are lower than the price
of Microsoft instances, but the price of Amazon is without storage. Hence, de-
pending on the demand of a query, the monetary cost is low or high at a specific
provider.

In the medical domain, cloud federation may lead to query data across differ-
ent clouds. A demand query running in that cloud federation could be concerned
about the price of time and money of the execution query. It is a Multi-Objective
Optimization Problem (MOOP). For example, federating resources makes it pos-
sible to access any information on a person with distributed hospital data on
various sites. Various big data management system could be used to manage the
medical data, which has the 3Vs characteristics of Big Data [1]: high volume,
high variety, and high velocity. The data also stores that belong in different
clouds are shown in Fig. 1. This example shows that the data can be stored in
three different clouds, such as Amazon Web Services, Microsoft Azure, Google
Cloud Platform. Pay-as-you-go models in clouds lead to solving Multi-Objective
Optimization Problem to find a Query Execution Plan (QEP) according to users
preferences, such as time, money, quality, etc. MOOPs often use Pareto domi-
nance techniques in finding an optimal solution.
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Hospital

Microsoft Azure Google Cloud Platform

Fig. 1: Motivating Example on using cloud federation.

Table 2: Example of instances pricing in 2019.

Provider | Machine |[vCPU|Memory (GiB)|Storage (GB)|Price ($/hour)
Amazon |al.medium| 1 2 EBS-Only 0.0255
al.large 2 4 EBS-Only 0.0510
al.xlarge 4 8 EBS-Only 0.1020
al.2xlarge| 8 16 EBS-Only 0.2040
al.4xlarge | 16 32 EBS-Only 0.4080
Microsoft B1S 1 1 2 0.0104
B1MS 1 2 4 0.0208
B2S 2 4 8 0.0416
B2MS 2 8 16 0.0832
B4MS 4 16 32 0.1660
B8MS 8 32 64 0.3330

2.2 Pareto plan set

Pareto dominance techniques are often used in Multi-Objective Optimization
Problem (MOOP), such as Evolutionary Multiobjective Optimization (EMO) [14,
15,27,31, 44,53, 54]. In the vast space of candidate solutions of Multi-Objective
Optimization Problem (MOOP), a candidate solution may be not better than
another one because of trade-off between various objective values. Pareto sets
are used in this situation to optimize a MOOP.

In particular, in a query processing problem, let a query ¢ be an information
request from databases, presented by a set of tables. A Query Execution Plan
(QEP), denoted by p, is the evaluation of a query that can be passed to the
executor. The set of QEPs is denoted by symbol P. The set of operators is
denoted by O. A QEP, p, can be divided into two sub-plans p; and ps if p is
the result of function Combine(p;,p2,0), where o € O.
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The execution cost of a QEP depends on parameters, which values are not
known at the optimization time. A vector x denotes parameters value and the
parameter space X is the set of all possible parameter vectors x. N is denoted
as the set of n cost metrics. We can compare QEPs according to n cost metrics
which are processed with respect to the parameter vector x and cost functions
c"(p,x). Let denote C as the set of cost function c.

Let p1,p2 € P, p1 dominates p, if the cost values according to each cost
metric of plan p; is less than or equal to the corresponding values of plan ps in
all the space of parameter X. That is to say:

C(p1,X) X C(pa, X) | Vn € N,Vx € X : c"(p1,2) < " (p2, ). (1)

The function Dom(pi,p2) € X yields the parameter space region where p;
dominates po [47]:

Dom(py,p2) ={z € X |Vne N :"(p1,z) < " (ps2,x)}. (2)

Assume that in the area x € A, A C X, p; dominates pa, C(p1,A) = C(p2,.A),
Dom(p1,p2) = A C X. p; strictly dominates ps if all values for the cost
functions of p; are less than the corresponding values for po [47], i.e.

StriDom(p1,p2) = {x € X |Vn € N : *(p1,2) < "*(p2, )} (3)

A Pareto region of a plan is a space of parameters where there is no alternative
plan has lower cost than it [47]:

PaReg(p) = X\ ( U StriDom(p*, p)). (4)
p*EP

2.3 IReS

Cloud federation model needs to integrate cloud services from multiple cloud
providers. It raises an important issue in terms of heterogeneous database engines
in various clouds. Among various heterogeneous database system described in
Table 3, IReS platform considers both heterogeneous systems and MOOP in
clouds.

Intelligent Multi-Engine Resource Scheduler (IReS) [17] is an open source
platform for managing, executing and monitoring complex analytics workflows.
IReS provides a method of optimizing cost-based workflows and customizable
resource management of diverse execution and various storage engines. Espe-
cially, IReS platform helps us to organize data in the multiple clouds as a cloud
federation. Interface is the first module which is designed to receive informa-
tion on data and operators, as shown in Fig. 4. The second module is Mod-
elling, as shown in Fig. 4, is used to predict the execution time by a model
chosen by comparing machine learning algorithms. For example, Least squared
regression [41], Bagging predictors [5], Multilayer Perceptron in WEKA frame-
work® are used to build the cost model in Modelling module. The module

® https://www.cs.waikato.ac.nz/ml/weka/
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Table 3: Recent heterogeneous database system researches.

Research Heterogeneous| MOOP
Proteus [28]

Polystore Query rewriting [40]
BigDAWG Polystore System [18]
ClooudMdsQL [33, 32]
MuSQLE [22]

MISO [38]

Polybase [11]
Estoscada [6]

IReS

X

N N N NN
A X X X X X X X

tests many algorithms and the best model with the smallest error is selected.
It guarantees the predicted values as the best one for estimating process. Next
module, Multi-Objective Optimizer, optimizes Multi-Objective Query Pro-
cessing (MOQP) and generates a Pareto QEP set. In Multi-Objective problem,
the objectives are the cost functions user concerned, such as the execution time,
monetary, intermediate data, etc. Multi-Objective Optimization algorithms can
be applied to the Multi-Objective Optimizer. For instance, the algorithms
based on Pareto dominance techniques [10, 14, 15,27, 31, 36,44, 53, 54] are solu-
tions for Multi-objective Optimization problems. Finally, the system selects the
best QEP based on user query policy and Pareto set. The final QEP is run on
multiple engines, as shown in Fig. 4.

2.4 Multiple Linear Regression

In many database management systems, predicting cost values is useful in op-
timization process [50]. Recent researches have been exploring the statistical
machine learning approaches to build predictive models for this task. They of-
ten use historical data to train and test the cost model as a Single-Objective
Problem (SOP). Besides, Linear Regression is an useful class of models in sci-
ence and engineering [43]. In this section, we describe the background of this
model.

This model is used in the situation in which a cost value, ¢, is a function
of one or more independent variables x1, o, ..., and x,. For example, execution
time c is a function of data size x; of first element in join operator and data size
x9 of second element in that join operator.

Given a sample of ¢ values with their associated values of z;, i = 1,2, ..., L.
We focus in the estimation the relationship between ¢ and the independent vari-
ables x1, xo, ..., and 1, based on this sample. Cost function ¢ of Multiple Linear
Regression (MLR) model [43] is defined as follows:

c= o+ Brx1+ ...+ Brrr + ¢, (5)

where (i, [ =0, ..., L, are unknown coefficients, x;,l = 1, ..., L, are the indepen-
dent variables, e.g., size of data, computer configuration, etc., ¢ is cost function
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values and ¢ is random error following normal distribution N(0,0?) with zero
mean and variance 2. The fitted equation is defined by:

¢=Bo+ Bixs + ...+ Brar. (6)
Ezample 2. A query Q [37] could be expressed as follows:

SELECT p.PatientSex, i.GeneralNames
FROM Patient p, GenerallInfo i
WHERE p.UID = i.UID

where Patient table is stored in cloud A and uses Hive [45] database engine®,
while Generallnfo table is in cloud B with PostgreSQL database engine”. This
scenario leads to concern two metrics of monetary cost and execution time cost.
We can use the cost functions which depend on the size of tables of Patient and
Generallnfo. Besides, the configuration and pricing of virtual machines cloud A
and B are different. Hence, the cost functions depend on the size of tables and
the number of virtual machines in cloud A and B.

étz = ﬂtO + 5t1mpa + ﬁt2xGe + ﬁthnodeA + ﬁtélxnodeB

Ao

c = BmO + 5m1xPa + BmQxGe + ﬁmSmnodeA + ﬁm4$nodeB
where ¢%, ¢™° are execution time and monetary cost function; zpg, zge are the
size of Patient and Generallnfo tables, respectively, and Tnodea, Tnoden are the
number of virtual machines created to run query Q.

There are M historical data, each of them associates with a response c¢,,,
which can be predicted by a fitted value ¢,, calculated from corresponding x;;,
as follows:

ém:B()+le1m+~~+3L$Lm;m: 17"'7M‘ (7)
Let denote
1 r11 21 ... TL1
1 12 X22 ... TL2
A= : (8)

1 TI1M oM -« TLM

5 http://hive.apache.org/
" https://www.postgresql.org/
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Non-dominated Sorting Filter Front
Fy
Py Fo Pts1
F. F,
Q 3 3
F
Ry *

Fig. 2: NSGA-II and NSGA-III procedure [14, 15].

To minimize the Sum Square Error (SSE), defined by:

M
SSE =Y (cm —ém)?, (11)
m=1
the solution for B is retrieved by:
B = (ATA)~1ATC. (12)

2.5 NSGA

After having the prediction cost values of MOOPs, we need to use Multi-Objective
Optimization algorithms to find an optimal solution.

Among Multi-objective Optimization algorithm classes, Evolutionary Multi-
objective Optimization (EMO) shows their advantages in searching and opti-
mizing for the MOOPs [10]. Among EMO approaches, Non-dominated Sorting
Genetic Algorithms provide low computational complexity of non-dominated
sorting, O(M N?) of NSGAs [14,15] comparing to O(M N?) of other Evolution-
ary Multi-Objective Optimization (EMO), where M is the number of objectives
and N is the population size.

NSGA process Initially, NSGAs start with a population P, consisting of IV
solutions. In MOOPs, a population represents a set of candidate solutions. The
size of Py is smaller than the number of all candidate solutions. Each solution is
on a specific rank or non-domination level (any solution in level 1 is not dom-
inated, any solution in level 2 is dominated by one or more solutions in level
1 and so on). At first, the offspring population Qo containing N solutions, is
created by the binary tournament selection and mutation operators [13]. Where
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the binary tournament selection is a method of selecting an individual from a
population of individuals in a genetic algorithm, and the mutation operation is
a method to choose a neighboring individual in the locality of the current indi-
vidual. Secondly, a population Ry = Py U @y with the size of 2NV will be divided
into subpopulations based on the order of Pareto dominance. The appropriate
N members from Ry will be chosen for the next generation. The non-dominated
sorting based on usual domination principle [8] is first used, which classifies Ry
into different non-domination levels (F;, F» and so on). After that, a parent
population of next-generation P is selected in Ry from level 1 to level k so that
the size of P; = N and so on.

The difference among NSGA-II, NSGA-IIT and other NSGAs is the way to
select members in the last level F;. To keep the diversity, NSGA-II [15] and
SPEA-II [54] use crowding distance among solutions in their selection. NSGA-II
procedure is not suitable for MOO problems and the crowding distance operator
needs to be replaced for better performance [26, 34]. Hence, when the population
has a high-density area, higher than others, NSGA-II prefers the solution which
is located in a less crowded region.

On the other hand, MOEA/D [53] decomposes a multiple objectives prob-
lem into various scalar optimization subproblems. The diversity of solutions de-
pends on the scalar objectives. However, the number of neighborhoods needs to
be declared before running the algorithm. In addition, the estimation of good
neighborhood is not mentioned. The diversity is considered as the selected so-
lution associated with these different sub-problems. Experimental results in [14]
show various versions of MOEA/D approaches which fail to maintain a good
distribution of points.

An Evolutionary Many-Objective Optimization Algorithm Using Reference-
point Based Non-Dominated Sorting Approach [14] (NSGA-III) uses different
directions to maintain the diversity of solutions. NSGA-III replaces the crowd-
ing distance operator by comparing solutions. Each solution is associated to a
reference point [14], which impacts the execution time to built the reference
points in each generation. The diversity of NSGA-III is better than the others,
but the execution time is very high. For instance, with two objectives and two
divisions, three reference points will be created, (0.0,1.0), (1.0,0.0) and (0.5,0.5),
as shown in Fig. 3. After selection process, the diversity of population is better
than NSGA-II with solutions close to three reference points. However, comparing
all solutions to each reference point makes the computation time of NSGA-III
very high. In addition, NSGAs often compare all solutions to choose good solu-
tions in F;. Therefore, when the number of solutions or objectives is significant,
the time for calculating and comparing is considerable.

Application In some cases, some objectives are homogeneous. In the reason of
the homogeneity between the multi-objectives functions, removing an objective
do not affect to the final results of MOO problem. In other cases, the objectives
may be contradictory. For example, the monetary is proportional to the execu-
tion time in the same virtual machine configuration in a cloud. However, cloud



12 Trung-Dung Le et al.

Time QEP1
K
1.00-=5-- ==-mmmpm oo

o i
O : : 5
0.75 f------ E_Og-i ------ A 1:
05 f------ S S
' : ORI 5
o iog

0.25 ===~ e /OEPQ

00 025 05 075 1.0 Monetary

Fig.3: An example of using the crowing distance in NSGA-II.

providers usually leases computing resources that are typically charged based
on a per time quantum pricing scheme [30]. The solutions represent the trade-
offs between time and money. Hence, the execution time and the monetary cost
cannot be homogeneous.

As a consequence, the multi-objective problem cannot be reduced to a mono-
objective problem. Moreover, if we want to reduce the MOO to a mono-objective
optimization, we should have a policy to group all objectives by the Weighted
Sum Model (WSM) [24]. However, estimating the weights corresponding to dif-
ferent objectives in this model is also a multi-objective problem.

In addition, MOO problems could be solved by MOO algorithms or WSM [24].
However, MOO algorithms are selected thanks to their advantages when compar-
ing with WSM. The optimal solution of WSM could be unacceptable, because of
an inappropriate setting of the coefficients [20]. Furthermore, the research in [29]
proves that a small change in weights may result in significant changes in the
objective vectors and significantly different weights may produce nearly similar
objective vectors. Moreover, if WSM changes, a new optimization process will
be required.

In conclusion, MOOP approaches leads to using Pareto dominance tech-
niques. A pareto-optimal front is often infeasible [55]. NSGAs show the advantage
in searching a Pareto solution for MOOP in less computational complexity than
other EMO [15]. However, they should be improved the quality to solve MOOP
when the number of objectives is significant.

2.6 Motivation

In the context of medical data management, the background of concepts and
techniques related to cloud federations, we introduce a medical system on a
cloud federation called Medical Data Management System (MIDAS). It is based
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on the Intelligent Resource Scheduler (IReS) [17], an open source platform for
complex analytics work-flows executed over multi-engine environments.

MIDAS 1t is a medical data management system for cloud federation. The
proposal aims to provide query processing strategies to integrate existing in-
formation systems (with their associated cloud provider and data management
system) for clinics and hospitals. Fig. 4 presents an overview of the system. Inte-
grating the system within a cloud federation allows to choose the best strategy
for MOQP. MIDAS can be developed based on the platform which can exe-
cute over multi-engine environments on clouds. Fig. 4 also shows an example of
MIDAS, where three database engines are installed and run in three clouds of
different providers.

We choose TReS platform to consider the advantage as shown in Table 3. IReS
platform is installed in every machine in MIDAS. The different cloud resource
pools allow the system to run in the most appropriate infrastructure environ-
ments. The system can optimize workflows between different data sources on
different clouds, such as Amazon Web Services®, Microsoft Azure® and Google
Cloud Platform'®. The proposed system is developed based on the Intelligent
Resource Scheduler (IReS) for complex analytics workflows executed over multi-
engine environments on a cloud federation.

Machine learning algorithm The machine learning algorithms in IReS need
entire training datasets to estimate the running costs, which are calculated by
determining the cost of processing a job. It may lead to use expired information.
Hence, the proposal algorithm aims to improve the accuracy of estimated val-
ues with low computational cost. Our proposed method is integrated into IReS
to predict the cost values with low computational cost in MOQP of a cloud
environment.

Multi-Objective Optimization In addition, MOQP could be solved by Multi-
Objective Optimization algorithms or the Weighted Sum Model (WSM) [24].
However, Multi-Objective Optimization algorithms may be selected thanks to
their advantages when comparing with WSM. The optimal solution of WSM
could be not acceptable, because of an inappropriate setting of the coefficients
[20]. Furthermore, the research in [29] proves that a small change in weights
may result in significant changes in the objective vectors and significantly dif-
ferent weights may produce nearly similar objective vectors. Moreover, if WSM
changes, a new optimization process will be required. Hence, our system applies
a Multi-Objective Optimization algorithm to the Multi-Objective Optimizer
to find a Pareto-optimal solution. When the WSM changes, the final result just
is determined by using the Pareto-optimal set at the final step.

8 https://aws.amazon.com/
9 https://azure.microsoft.com/
10 https://cloud.google. com/



14 Trung-Dung Le et al.

Amazon Web Services

IReS|

Y + Y
»(__Interface

(Modelling }«>{ DREAM)

Multi-Objective
Optimizer

PostgreSQL

PostgreSQL, Generating

QEP
Microsoft Azure [ Google Cloud

User query Platform
l ;olic; ’

Fig.4: Architecture of MIDAS [37].

Furthermore, generating a Pareto-optimal front is often infeasible due to
high complexity [55]. MOOPs leads to finding an approximate optimal solution
by Pareto dominance techniques. A well known approach to solve the high com-
plexity of MOOP is Evolutionary Multiobjective Optimization (EMO). Among
EMO approaches, Non-dominated Sorting Genetic Algorithms (NSGAs) [14, 15]
have lower computational complexity than other EMO approaches [15]. How-
ever, this algorithm still has high computational complexity. We need to find an
approach to improve the computational complexity and quality of NSGAs.

In conclusion, our solutions aim to improve the accuracy of cost value pre-
diction with low computational cost and to solve MOQP by Multi-Objective
Optimization algorithm in a cloud federation environment. Besides, we also find
a method to search and optimize MOOPs by finding an approximate optimal
solution in the high complexity of generating a Pareto-optimal front.

3 Dynamic Regression Algorithm

The first technique in MIDAS relates to the estimation of accurate cost values
in the variable environment of a cloud federation. Most of cost models [19, 39,
50] depend on the size of data. Hence, our cost functions are functions of the
size of data. In particular, cost function and fitted value of Multiple Linear



DREAM and NSGA-G for MOOPs in medical cloud federations 15

Regression model are previously defined in Section 2.4. The bigger M for sets
{¢m,Tim} is, the more accurate MLR model usually is. However, the computer
is slowing down when M is too big.

Furthermore, the target of Multi-Objective Query Processing is the Multi-
Objective Optimization Problem [53], which is defined by:

minimize(F(z) = (fi(x), f2(x)..., fxc(2))"), (13)

where x = (x1, ...,IL)T € 2 C RY is an L-dimensional vector of decision vari-
ables, (2 is the decision (variable) space and F' is the objective vector function,
which contains K real value functions.

In general, it is hard to find a point in {2 that minimizes all the objectives
together. Pareto optimality is defined by trade-offs among the objectives. If
there is no point x € {2 such that F(z) dominates F(z*), * € 2, z* is called
Pareto optimal and F(z*) is called a Pareto optimal vector. Set of all Pareto
optimal points is the Pareto set. A Pareto front is a set of all Pareto optimal
objective vectors. Generating the Pareto-optimal front can be computationally
expensive [55]. In cloud environment, the number of equivalent query execution
plans is multiplied.

Ezxample 3. Assuming that a query is processed on Amazon EC2. If the pool of
resources includes 70 vCPUs and 260GB of memory, we assume that a configu-
ration to execute a query plan is created by the number of vCPUs and the size
of memory which is the multiple of 1GB. In particular, a configuration can be 01
vCPU and 260GB of memory and the others is 70 vCPUs and 01GB of memory.
Hence, the combination of different configurations to execute this query would
be 70*260=18,200.

Example 3 shows that a query plan can generate multiple equivalent QEPs in
cloud environment. The smaller M for sets {¢,, Zim } s, the faster speed for the
estimation cost process of Multi-Objective Query Processing for a QEP is. In the
system of computationally expensiveness in cloud environment as in Example 3,
a small reduction of computation for an equivalent QEP estimation will become
significant for a large number of equivalent QEPs estimation.

The most important idea is to estimate MLR quality by using the coefficient
of determination. The coefficient of determination [43] is defined by:

R?*=1-SSE/SST, (14)

where SSFE is the sum of squared errors and SST represents the amount of
total variation corresponding to the predictor variable X. Hence, R? shows the
proportion of variation in cost given by the Multiple Linear Regression model of
variable X. For example, the model gives R? = 0.75 of time response cost, it can
be concluded that 3/4 of the variation in time response values can be explained
by the linear relationship between the input variables and time response cost.
Table 4 presents an example of MLR with different number of measures. The
smallest dataset is M = L+ 2 = 4 [43], where M is the size of previous data and
L is the number of variables in Equation (5). In general, R? increases in parallel
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Table 4: Using MLR in different size of dataset [37].

Cost 1 o M R?
20.640 0.4916 0.2977

15.557 0.6313 0.0482

20.971 0.9481 0.8232

24.878 0.4855 2.7056 4 0.7571
23.274 0.0125 2.7268 5 0.7705
30.216 0.9029 2.6456 6 0.8371
29.978 0.7233 3.0640 7 0.8788
31.702 0.8749 4.2847 8 0.8876
20.860 0.3354 2.1082 9 0.8751
32.836 0.8521 4.8217 10 0.8945

with M. In particular, R? should be greater than 0.8 to provide a sufficient
quality of service level. As a consequence, M should be greater than 5 to provide
enough accuracy. Hence, when the system requires the minimum values of R? is
equal to 0.8, M > 6 is not recommended. In general, R? still rises up when M
goes up. Therefore, we need to determine the model which is sufficient suitable
by the coefficient of determination.

[Training set P»[ DREAM ]—»[Ne‘”;:'"'"g »[ Modelling }
coefficient of
determination

Fig. 5: DREAM module [37].

Our motivation is to provide accurate estimation while reducing the number
of previous measures based on R?. We thus propose DREAM as a solution
for cloud federation and their inherent variance, as shown in Fig. 5. DREAM
uses the training set to test the size of new training dataset. It depends on
the predefined coefficient of determination. The new training set is generated in
order to have the updated value and avoid using the expired information. With
the new training set, Modelling uses fewer data in the building model process
than the original approach does.

Cost modeling without machine learning [39,42,50] often uses the size of
data to estimate the execution time for the specific system. Besides, the ma-
chine learning approach [17] can use any information to estimate the cost value.
Hence, our algorithm uses the size of data as variables of DREAM. In (6), ¢ is
the cost value, which needs to be estimated in MOQP, and z1,xs,... are the
information of system, such as size of input data, the number of nodes, the type
of virtual machines. If RZ > R? where R? is predefined by users, the

require’ requires
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Algorithm 1 Calculate the predict value of multi-cost function [37]

1: function ESTIMATECOSTVALUE(R? . yire, X, Mimaz)
2: for n=1to N do

3: R2 < //with all cost function

4: end for

5: m=1L+2 //at least m = L+ 2

6: while (any RZ < Ri_mqmre) and m < Mynq: do
7 for é,(p) C én(p) do

8: R}, =1-SSE/SST

9: en = Bno + Br1T1 + ... + BnrTL

10: end for

11: m=m-+1

12: end while
13: return én(p)
14: end function

model is reliable. In contrast, it is necessary to increase the number of set value.
Algorithm 1 shows a scheme as an example of increasing value set: m = m + 1.

In this paper, we focus on the accuracy of execution time estimation with
the low computational cost in MOQP. The original optimization approach in
IReS uses Weighted Sum Model (WSM) [24] with user policy to find the best
candidate solution. However, the optimal solution of WSM could be not ac-
ceptable, because of an inappropriate setting of the coefficients [20]. Besides,
Multi-Objective Optimization algorithms have more advantages than WSM [20,
29]. They lead to find solutions by Pareto dominance techniques. However, gen-
erating a Pareto-optimal front is often infeasible due to high complexity [55]. One
of well known Multi-Objective Optimization algorithm class is Non-dominated
Sorting Algorithms (NSGAs). Hence, after having a set of predicted cost func-
tion values for each query plan, a Multi-Objective Optimization algorithm, such
as NSGA-G [36] is applied to determine a Pareto query execution plan set. At
the final step, the weight sum model S and the constraint B associated with the
user policy are used to return the best QEP for the given query [24]. In particu-
lar, the most meaningful plan will be selected by comparing function values with
weight parameters between &, [24] at the final step, as shown in Algorithm 2.
Fig. 6 shows the different between two MOQP approaches. Our algorithms are
developed based on the MLR described above using x; for size of data and ¢; for
the metric cost, such as the execution time, energy consumption, etc.

4 Non-dominated Sorting Genetic Algorithm based on
Grid partitioning

After having the prediction cost values of MOOPs by DREAM, we need to use
Multi-Objective Optimization algorithms to find an optimal solution. Hence,
the second technique relates to looking for an efficient approach for searching
and optimizing in MIDAS is introduced in this section. NSGAs [14, 15] are well



18 Trung-Dung Le et al.

Initial
Population

Objective
values

atisfied
Termination
riteria?

All Candidates
Weighted Sum
Model Values

Termination
Population

Comparing
Scalar Values
Fitness Weighted Sum
[ Distribution ] [Model ValuesJ The best QEP

Genetic Comparing
Operation Scalar Value

l I

% Insert Parent] [The best QEP]

Multi-Objecitve Optimization based Multi-Objecitve Optimization
on Genetic Algorithm based on Weighted Sum Model

Fig. 6: Comparing two MOQP approaches [37]

Algorithm 2 Select the best query plan in P [37]

1: function BESTINPARETO(P, S, B)

2: Pp + peP|Vn<|B|:cn(p) < By

3 if Pg # () then

4 return p € Pg|C(p) = min(WeightSum(Pg,S))
5 else

6: return p € P|C(p) = min(WeightSum(P,S))

7

8:

end if
end function

known approaches to optimize MOOPs. Our previous work [36] proposed Non-
dominated Sorting Genetic Algorithm based on Grid partitioning (NSGA-G) to
improve both diversity and convergence of NSGAs while having an efficient com-
putation time by reducing the space of selected good solutions in the truncating
process. NSGA-G is an algorithm based on genetic algorithms (GAs). The con-
vergence of GAs is discussed in [7]. The difference between many GAs is the
qualities of diversity and convergence. We will describe the strategy to improve
the qualities of NSGAs while having an efficient computation time as below.

At the t'" generation of Non-dominated Sorting Genetic Algorithms, P, rep-
resents the parent population with N size and @ is offspring population with
N members created by P;. Ry = P, U@, is a group in which N members will be
selected for P; 1.

4.1 Main process

This section describes more details about the main process of NSGAs. Algo-
rithm 3 shows the steps of the processing. First, the Offspring is initialized in
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Algorithm 3 Main process [14, 15].
1: function ITERATE(Population)
2: Of fsprings < 0
: while Of fsprings.size < populationSize do

3
4 Parent = Selection(Population)

5 Of fsprings = Of fsprings U Evolve(Parent)
6: end while

T Population = Population U Of fsprings

8: Population = Truncate(Population)

9: return Population
10: end function

Algorithm 4 Non-dominated Sorting [14].
Require: R
1: function SORTING(R)
2: RinRank <+ 0
rank =1
remaining < R
while RisNotEmpty do
Front < non — dominated Population(remaining, rank)
remaining = remaining \ Front
RinRank = RinRank U Front
9: rank + +
10: end while
11: return RinRank
12: end function

Line 2. The size of Offspring equals to the size of Population, i.e., N. Hence, a
parent is selected from the population and evolved to become a new offspring.
A new population with the size of 2N is created from Offspring and the old
population. After that, the function Truncate will cut off the new population to
reduce the members to the size of IV, as shown in Line 8.

4.2 Non-Dominated Sorting

Before the truncating process, the solutions in the population with a size of 2V
should be sorted in multiple fronts with their ranking, as shown in Algorithm 4.
First, the Non-dominated sorting operator generates the first Pareto set in a
population of 2N solutions. Its rank is 1. After that, the process is repeated
until the remain population is empty. Finally, 2N solutions are divided into
various fronts with their ranks.

4.3 Filter front process

NSGA-G using Min point NSGA-G finds the nearest smaller and bigger grid
point for each solution. For example, Fig. 7 shows an example of a two-objective
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Fig. 7: An example of using Grid points.

Algorithm 5 Filter front in NSGA-G using Min point. [36]

1: function FILTER(F;, M = N — Y/} Fj)

2: updateldealPoint/()

updateldealMaxPoint/()

translateByldeal Point()

normalizeByMinMax()

createGroups

while | 7; |[> M do
selectRandomGroup()

9: removeMaxSolutionInGroup()

10: end while

11: return F;

12: end function

problem. If the unit of the grid point is 0.25 (the size of grid is 4) and the solution
with two-objective value is [0.35,0.65], the closest Grid Min Point is [0.25,0.5]
and the nearest Grid Max Point is [0.5,0.75].

The first strategy avoids computing multiple objective cost values of all solu-
tions in the population, the space is divided into multiple small groups by Grid
Min Point and Grid Max Point, as shown in Fig. 7. Each group has one Grid
Min Point, the nearest smaller point and one Grid Max Point, the nearest bigger
point. Only solutions in a group are calculated and compared. The solution has
the smallest distance to the nearest smaller point in a group will be added to
P, 41. In this way, in any loop, we do not need to calculate the crowding-distance
values or estimate the smallest distance from solutions to the reference points
among all members in the last front, as shown in Fig. 7. In any loop, it is not nec-
essary to compare solutions among all members in Fj, as F3 in Fig. 2. The second
strategy chooses randomly a group. The characteristic of diversity is maintained
by this strategy. Both strategies are proposed to improve the qualities of our
algorithm. Algorithm 5 shows the strategy to select N — Zi_:ll F; members in
Fi.
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Algorithm 6 Filter front in NSGA-G using Random metric.

1: function FILTER(F;, M = N — Zé;ll Fj)

2: updateldealPoint/()

updateldealMaxPoint/()

translateByIdealPoint()

normalizeByMinMax()

createGroups

while | 7; [> M do
selectRandomGroup()

9: selectRandomMetric()

10: removeWorstSolutionInGroup()

11: end while

12: return F;

13: end function

The two lines 2 and 3 in Algorithm 5 determine the new origin coordinates
and the maximum objective values of all solutions, respectively. After that, they
will be normalized in a range of [0, 1]. All solutions will be in different groups,
depending on the coefficient of the grid. The most important characteristic of
this algorithm is randomly selecting the group like NSGA-III to keep the diver-
sity characteristic and remove the solution among members of that group. This
selection helps to avoid comparing and calculating the maximum objectives in
all solutions.

To estimate the quality of the proposed algorithm, three qualities, Genera-
tional Distance [49], Inverted Generational Distance [9] and the Maximum Pareto
Front Error [48], are used.

NSGA-G using Random metric In MOOP, when the number of objectives
is significant, any function used to compare solutions leads to high computation.
NSGA-G using Min point uses Grid partition to reduce the number in groups,
but it still needs a function to group all objectives value to a scalar value. In
order to decrease the execution time, this section proposes a random method to
compare solutions among a group. This approach does not generate any reference
point or an intermediate function to estimate the value of solutions. The natural
metric values are chosen randomly to remove the worst solution in the different
groups.

All the steps in this algorithm are similar to NSGA-G using Min point, as
shown from Line 2 to Line 6. Loop While has one more step of choosing metric
randomly. Function selectRandomMetric is used to select a natural metric among
the objectives in MOOP. The important characteristics of this algorithm are
randomly selecting the group like NSGA-G and using natural metric among
various objectives. It aims to keep the diversity characteristic, and reduce the
comparing time. This selection helps to avoid using an intermediate function in
comparing and calculating the values of solutions.



22 Trung-Dung Le et al.

1.0

0.75

0.5

0.25

\4

00 025 05 075 1.0

Fig.8: A simple front group.

4.4 Selecting the size of grid

The proposed approach uses Grid partitioning to guarantee that the solutions
are distributed in all the solution space. Assuming that there is a problem with
N objectives. The last front should remove k solutions. By normalizing the space
of solution in the range of [0, 1] and dividing that range to n segments, a solution
belongs to one of n¥ groups in that space. In terms of Non-dominated principle,
a group including a solution in that space have many other groups which contain
Non-dominated solutions. These groups are called Non-dominated groups. All the
groups in this situation make a set groups, called front group.

The proposed idea is to keep the diversity characteristic of the genetic algo-
rithm by generating k£ groups and removing k solutions. Hence, the ideal front
group is designed so that it has k groups.

Simple front group From a group in the normalizing space in range of [0, 1],
a simple plane covers it and includes Non-dominated groups. In the space of NV
axes, the number of groups is n’. Hence, the simple front group is the simple
plane. The number of groups in that front group is n™ 1. Therefore, if the last
front needs to remove k solutions, the number of grid n is determined as follows

n=[k¥T]. (15)

For example, Fig. 8 shows a problem with 3 objectives. In each axis coordinate,
the size of grid is 4, and the maximum number of groups in all space of N axis
coordinates is 43. A simple front group includes 43~! = 16 groups. If the last
front needs to remove 15 solutions, the number of grid when we choose simple
front group is n = [k;ﬁw =4.
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Fig. 9: A max front group.

Max front group From a group in the normalizing space in range of [0, 1],
a simple plane covers it and includes Non-dominated groups. In the space of N
axis coordinates, the number of groups is n’V. Max front group has the largest
number of groups includes N planes. Hence, the number of groups in Max front
group is n™N — (n — 1)N. Therefore, if the last front needs to remove k solution,
the number of grid n is determined as follows

nN —(n—-1DN =k (16)

For instance, Fig. 9 shows a problems with 3 objectives. In each axis coordinate,
the size of grid is 4, the maximum number of groups in all space of N axis
coordinates is 43. Maz front group includes 43 — 3% = 64 — 27 = 37 groups.

5 Validation

5.1 DREAM

The previous section introduces two algorithms for the Multi-Objective Opti-
mization Problem in MIDAS. DREAM and NSGA-G have been implemented
on top of IReS platform. They have been validated with experiments.

Implementation Our experiments are executed on Galactica private cloud '
with a cluster of three machines. Each node has four 2.4 GHz CPU, 80 GiB
Disk, 8 GiB memory and runs 64-bit platform Linux Ubuntu 16.04.2 LTS. The
system uses Hadoop 2.7.3'2, Hive 2.1.1, PostgreSQL 9.5.14, Spark 2.2.0 and Java
OpenJDK Runtime Environment 1.8.0. IReS platform is used to manage data
in multiple database engine and deploy the algorithms.

" https://horizon.isima.fr/
2 http://hadoop. apache.org/
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Table 5: Comparison of mean relative error with 100MiB TPC-H dataset [37].

Query BMLy BMLony BMLsxy BML DREAM

12 0.265 0.459 0.220 0.485 0.146
13 0.434 0.517 0.381 0.358| 0.258
14 0.373 0.340 0.335 0.358| 0.319
17 0.404 0.396 0.267 0.965/ 0.119

Table 6: Comparison of mean relative error with 1GiB TPC-H dataset [37].

Query BMLy BMLoy BMLsy BML DREAM

12 0.349 0.854 0.341 0.480| 0.335
13 0.396 0.843 0.457 0.487| 0.349
14 0.468 0.664 0.539 0.790; 0.318
17 0.620 0.611 0.681 0.970; 0.536

Experiments TPC-H benchmark with two datasets of 100MB and 1GB is
used to have experiments with DREAM. Experiments with TPC-H benchmark
are executed in a multi-engine environment consisting of Hive and PostgreSQL
deployed on Galactica private cloud. In TPC-H benchmark, the queries related
to two tables are 12, 13, 14 and 17. These queries with two tables in two different
databases, such as Hive and PostgreSQL, are studied.

Results To estimate the quality of price models which are estimated by DREAM
in comparison with other algorithms, Mean Relative Error (MRE), a metric used
in [2] is used and described as below:

=1

1 ‘éz — C;

7D it (17)
M

T

where M is the number of testing queries, ¢; and ¢; are the predict and ac-
tual execution time of testing queries, respectively. IReS platform uses multiple
machine learning algorithms in their model, such as Least squared regression,
Bagging predictors, Multilayer Perceptron.

In TReS model building process, IReS tests many algorithms and the best
model with the smallest error is selected. It guarantees the predicted values as
the best one for estimating process. DREAM is compared to the Best Machine
Learning model (BML) in IReS platform with many observation window (N, 2N,
3N and no limit of history data). The smallest size of a window, N = L+ 2 [43],
where L is the number of variables, is the minimum data set DREAM requires.

As shown in Table 5 and 6, MRE of DREAM are the smallest values between
various observation windows. In our experiments, the size of historical data,
which DREAM uses, are small, around N.
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5.2 NSGA-G

Various earlier studies on Multiple Objective Evolutionary Algorithms (MOEAS)
introduce test problems which are either simple or not scalable. DTLZ test prob-
lems [16] are useful in various research activities on MOEAs, e.g., testing the
performance of a new MOEA, comparing different MOEAs and a better un-
derstanding of MOEAs. The proposed algorithm is experimented on DTLZ test
problems with other famous NSGAs to show advantages in convergence, diversity
and execution time.

Implementation Our experiments use Multiobjective Evolutionary Algorithms
(MOEA)!3 framework in Open JDK Java 1.8. All experiments are run on a ma-
chine with following parameters: Intel(R) core(TM) i7-6600U CPU @ 2.60GHz
x 4, 16GB RAM.

Experiments For fair comparison and evaluation, the same parameters are
used, such as Simulated binary crossover [13] (30), Polynomial mutation [13]
(20), max evaluations (10000) and populations (100) for eMOEA [10], NSGA-
II, MOEA/D [53], NSGA-III and NSGA-G'4, during 50 independent running
to solve two types of problems in DTLZ test problems [16] with m objectives,
m € [5,10]. These algorithms use the same population size N = 100 and the
maximum evaluation M = 10000. We apply Simple front group approach, equa-
tion 15, to determine the grid in both of NSGA-Gs with Min point and Random
metric experiments. We use the Generational Distance (GD) [49], Inverted Gen-
erational Distance (IGD) [9] and the Maximum Pareto Front Error (MPFE) [48]
to compare the quality of NSGA-Gs to other NSGAs.

GD measures how far the evolved solution set is from the true Pareto front [52],

as shown in following:
n
NS
GD = V2&imd , (18)
n
where d; = min||f(x;) — PFirye(x;)|| shows the distance objective space between
J
solution x; and the nearest member in the true Pareto front (PFy,.), and n is
the number of solutions in the approximation front. Lower value of GD represents
a better quality of an algorithm.
IGD is a metric to estimate the approximation quality of the Pareto front
obtained by MOO algorithms [4], which can measure both convergence and di-
versity in a sense. IGD is shown in the following equation [52]:

ZvePF,,mﬁ d(v, X)

IGD = 7
|PFtrue|

(19)
where X is the set of non-dominated solutions in the approximation front,
d(v, X) presents the minimum Euclidean distance between a point v in PFiyqe

13 http://moeaframevork.org/
" https://gitlab.inria.fr/trle/moea
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and the points in X. Lower value of IDG represents the approximate front getting
close to PFipye, and not missing any part of the whole PFjyye.

MPFE shows the most significant distance between the individuals in Pareto
front and the solutions in the approximation front [52]. This metric is shown in
the following equation:

MPFE = maxd;. (20)
7

In all tables show the experiments, the darkest mark value show the least value
in various algorithm experiments, and the brighter mark value is the second least
value among them.

Study on test problems In this section, we use DTLZs, and WFG [25] test
problem to experiment NSGA-Gs. Advantages of two versions of NSGA-G are
present in Table 7, 8, 9, 10, 11, and 12. Metrics, such as GD, IDG, MPFE, are
used to estimate the qualities of the different algorithms. These experiments com-
pare both of NSGA-Gs with Min point and Random metric to other algorithms.

Table 7: Generational Distance

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G

DTLZ1 5 2.595e-01 4.418e-01 2.251e+01 4.264e-01 3.090e+001.977e-01
DTLZ3 5 1.861e-01 5.528e-02 1.130e+4-00 8.650e-02 3.079e-01 [1.678e-02
WFG1 5 1.133e-03 9.748e-04 6.923e-03 6.908e-03 3.218e-03 |7.617e-04
WFG3 5 4.027e-04 0.000e+00 2.549¢-03 1.941e-03 2.011e-03 1.061e-05
DTLZ1 6 2.903e+00 2.137e4-00 9.131e+01 1.820e+4-00 6.839e+00 4.907e-01
DTLZ3 6 2.226e+01 1.332e+01 1.252e+02 1.760e+01 2.389e+01 5.457e+00
WFG1 6 1.207e-03 8.842e-04 8.000e-03 6.753e-03 3.559e-03 |7.417e-04
WFG3 6 4.104e-04 0.000e+00|2.523e-03 1.639¢-03 1.800e-03 5.384e-05
DTLZ1 7 7.790e-01 8.949e-01 2.228e+01 2.601e-01 1.407e+008.201e-02
DTLZ3 7 1.719e-01 4.449e-02 1.309e+00 3.610e-02 1.619e-01 5.628e-03
WFG1 7 1.048e-03 8.219e-04 6.825e-03 5.613e-03 3.891e-03 6.405e-04
WFG3 7 4.011e-04 [3.055e-06 |2.390e-03 1.871e-03 1.665e-03 5.926e-05
DTLZ1 8 5.823e+00 5.851e4-00 1.130e+02 1.276e+4-00 9.933e+00 4.660e-01
DTLZ3 8 2.071le+01 1.941e4-01 1.604e+02 1.355e+4-01 3.001e+01 4.757e+00
WEFG1 8 1.377e-03 9.406e-04 9.023e-03 7.659e-03 4.454e-03 6.469e-04
WFG3 8 3.655e-04 2.689e-05 1.692e¢-03 1.301e-03 9.662e-04 6.578e-05
DTLZ1 9 8.374e-01 3.626e+-00 3.074e+01 3.544e-01 2.772e+001.003e-01
DTLZ3 9 4.673e-02 7.112e-02 6.293e-01 8.922e-03 1.052e-01 [2.843e-03
WEFG1 9 1.309e-03 8.924e-04 8.882e-03 7.551e-03 4.020e-03 6.816e-04
WFG3 9 3.597e-04 2.576e-05 1.298e-03 1.208e-03 7.634e-04 5.365e-05

DTLZ1 10 7.375e-01 1.519e4-00 2.091e+4-01 2.705e-01 2.207e+4003.021e-02
DTLZ3 10 4.785e-02 1.116e-01 6.793e-01 7.345e-03 1.118e-01 [2.939e-03
WEFG1 10 1.369e-03 1.385e-03 8.551e-03 6.364e-03 3.648e-03 6.692e-04
WEFG3 10 3.259¢e-04 [0.000e+00 1.196e-03 1.265e-03 6.945e-04 4.352e-05

First, two versions of NSGA-G often show that they are faster than the other
algorithms in all experiments of average computation time, Table 8, 10, and 12.
Second, NSGA-Gs are also better than other NSGAs in terms of quality in
GD and MPFE experiments, as shown in Table 7, and 11. Except for the IDG
experiment, as shown in Table 9 the quality of NSGA-G with Random metric
is not as good as other ones. However, the fastest algorithm among NSGAs is
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Table 8: Average compute time in Generational Distance experiment

m eMOEA NSGA-R__NSGA-II MOEA/D NSGA-III NSGAQ
DTLZ1 5 6.642¢+01 5.5086 101 2.000¢+02 2.241e+02 6.366¢+01
DTLZ3 5 6.440c+01 7.074e+-01 1.870c+02 2.714¢+026.212¢+01
WFG1 5 1.379¢+02 6.658e+01 1.899e+02 2.594¢+02 6.720e+01
WFG3 5 8.562e402 8.162e+01 1.864e+02 3.077e+02 8.370e+01
DTLZ1 6 [4i5526501 5.582e+01 5.632¢+01 1.918¢+02 1.662e402 5.672¢+01
DTLZ3 6 9.340c-+01 6.572¢+01 1.971e+02 1.783¢402 6.638¢+01
WFG1 6 1.961e+02 9.826e+01 7.392e+01 2.049e+02 2.157e+02
WFG3 6 1.083e+037.580e+01 1.967e+02 2.384¢+02 7.782e+01
DTLZ1 7 6.206e+01 6.208e+01 2.290e+02 1.621e+02 5.964e+01
DTLZ3 7 1.568¢+02 7.024e401 2.405¢+02 1.817e+02 7.022e401
WFG1 7 8.042¢+01 2.473¢+02 2.085¢-+02 7.810e+01
WFG3 7 9.184e+01 2.896e-+02 2.821e+02 9.950e+01
DTLZ1 8 8.762e+01 6.640e+01 2.450e+02 2.327e+02 6.244e+01
DTLZ3 8 7.652¢+01 2.536e+02 2.535¢+02
WFC1 8 8.710e+01 2.625¢+02 2.924e+02 8.206e+01
WFGC3 8 2.542¢+02 3.268¢4-02 8.346¢+01
DTLZ1 9 7.034e+01 2.524e+02 3.095¢-+026.590e+01
DTLZ3 9 8.422e+01 2.678e+02 3.422¢+02 7.828e+01
WFG1 9 9.426e+01 2.731e+02 3.844e+02 8.668e+01
WFG3 9 1.677¢+03 8.954¢+01 2.595¢+02 4.373¢4-02 8.642¢+01
DTLZ1 10 1.527e+02 7.584¢+01 2.740e+02 4.204¢+02 6.874e+01
DTLZ3 10 3.860e+02 8.916e+01 2.883e+02 4.641e+02 8.370e+01
WFG1 10 4.747e+02 1.005¢+02 2.941e+02 5.175e+02 9.272e-+01
WFG3 10 1.881e+03 8.640+01 2.802¢+02 6.035¢+02 9.128¢+01

Table 9: Inverted Generational Distance

m cMOEA NSGA-R_NSGA-II MOEA/D NSGA-III NSGA-G
DTLZ1 5 34376011 1.027¢100 3.741c 101 6.226-01 3.465¢+00 4.6376-01
DTLZ3 5 5.568¢-01 4.794¢-01 3.576¢+00 3.969¢-01 1.098¢+4-00
WFG1 5 1.298¢-01 2.924e-01 [1.234e-01 |7.2026-02  1.365¢-01 2.906e-01
WFG3 5 [I1676027 3.850c-01 1.272¢-01 1.417e-01 7.899e-02 3.987¢-01
DTLZ1 6 4.975e+00 6.617e+00 2.469¢+02 2.903e+00 9.524¢+00
DTLZ3 6 1.131e+02 4.698¢+01 5.199¢+02 4.207¢-+01 8.253¢+-01
WFG1 6 1.722¢-01 3.705¢-01 [1.531e-01 |7.4606-02  1.596e-01 3.341e-01
WFG3 6 [5I36762027 5.424¢-01 1.488¢-01 1.630e-01 1.065e-01 5.146¢-01
DTLZ1 7 7.034e-01 4.042¢400 1.938¢+01 [Ai71862017 7.695¢-01 8.458¢-01
DTLZ3 7 7.320e-01 4.310e-01 4.852e+00 2.878e-01 3.826e-01
WFG1 7 1.437¢-01 3.547¢-01 [1.371e-01 |7.1146-02  1.403¢-01 3.199¢-01
WFG3 7 [61134650216.325¢-01 1.573¢-01 1.705¢-01 1.169e-01 6.122¢-01
DTLZ1 8 1.234e+01 1.212e+01 4.166¢+02 3.101e+00 1.073e+01
DTLZ3 8 1.501e+02 6.557e+01 7.623¢+02 3.720e+01 1.011e+02
WFG1 8 1.284¢-01 3.186¢-01 1.251e-01 [6.9566-02 1.238e-01 2.692¢-01
WFG3 8 [61487650216.477¢c-01 1.593¢-01 1.704e-01 1.115e-01 6.094e-01

DTLZ1 9 4.009e-01 3.676e+4-00 5.490e+00 6.185e-01 5.747e-01
DTLZ3 9 3.029e-01 4.578e-01 1.713e+00 2.584e-01 2.401e-01
WFG1 9 1.167e-01 2.921e-01 1.193e-01 1.131e-01 2.561e-01

WFG3 9 [61758620216.897¢-01 1.621e-01 1.675¢-01 1.078e-01 6.237¢-01
DTLZ1 10 9.350e-01 9.074e+00 1.357e+01 [BI06TEZ0LT 1.499¢-+00 1.028¢+00
DTLZ3 10 4.368e-01 5.440e-01 2.368e+00 2.000e-01 3.965¢-01

WFGL 10 1.147¢-01 3.043¢-01 1.167¢-01 [6.273e-02  1.102¢-01 2.671c-01

WEFG3 10_6.676e—01 1.670e-01 1.696e-01 1.043e-01 6.102e-01

27
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Table 10: Average compute time in Inverted Generational Distance experiment

m eMOEA NSGA-R__NSGA-II MOEA/D NSGA-III NSGAQ
DTLZ1 5 [313846701 5.500e+ 01 5.1766 101 1.840¢+02 2.139¢+02 5.276e+01
DTLZ3 5 9.490c+01 8.072¢4-01 2.942¢+02 2.803e+02 6.146e-+01
WFGL 5 1.453e+02 8.710e+01 1.957e-+02 2.988¢+02 8.220e+01
WFG3 5 9.067¢+02 8.638e+01 2.087e+02 3.137e+02 8.416e-+01
DTLZ1 6 [A19826501] 6.264¢+01 5.860e+01 2.209¢+02 1.894e+02 6.534e+01
DTLZ3 6 9.604c-+01 6.984e+01 2.182¢+02 1.958¢4-02 7.078¢+01
WFG1 6 2.188e-+02 8.088e+01 2.452¢+02 2.282e+02 8.362e-+01
WFG3 6 2.601e+03 9.036e+01 3.200e+02 3.094e+02 1.215¢-+02
DTLZ1 7 6.754e+01 6.122¢+01 2.517e+02 1.620e+02 6.066e+01
DTLZ3 7 1.587e+02 7.172e+01 2.525¢+02 1.798¢4-02 7.168¢+01
WFG1 7 2.579e+02 8.294c-+01 2.587¢+02 2.185¢-+02 7.768¢+01
WFG3 7 2.487e+02 2.284e+02 8.888¢+01
DTLZ1 8 6.610e+01 2.537e-+02 2.322¢+02 6.328e+01
DTLZ3 8 7.808e4-01 2.608e+02 2.535¢+02 7.446e+01
WFC1 8 8.682¢-+01 2.704¢+02 2.903¢-+02 8.344e+01
WFG3 8 1.432¢+03 8.044e+01 2.513¢+02 3.242¢402 8.364e+01
DTLZ1 9 1.237e+02 6.978e+01 2.563e-+02 3.120e+02 6.646e+01
DTLZ3 9 3.174e+02 7.882e+01 8.330e-+01 2.721e+02 3.418¢+02

WFG1 9 3.827e+4-02 9.338e+01 2.718e+4-02 3.837e+02 8.594e+01
WFG3 9 1.696e+03 8.290e+01 2.607e+02 4.369¢+4-02 8.654e+01
DTLZ1 10 1.436e+02 7.536e+01 2.753e+02 4.187e+02 6.876e+01

DTLZ3 10 4.003e+4-02 8.566e+-01 8.872e+4-01 2.897e+4-02 4.572e+4-02

WFG1 10 4.635e+02 1.008e+02 2.915e+02 5.137e+02 9.116e+01
WFG3 10 1.902e+03 8.662e+01 2.802e+02 6.022e+4-02 9.028e+01

Table 11: Maximum Pareto Front Error

m cMOBEA _NSGA-R_NSCA-II_ _MOEA/D NSGA-III NSGA-G
DTLZI 5 2.008¢+01 1.1956101 8.083¢102 1.765¢+01 3.5480102
DTLZ3 5 1.079%+01 1.564¢400 2.545¢+01 1.604c400 1.546¢+01
WFC1 5 1.332e-01 1.763e-02 2.620e-01 2.042e-01 1.709e-01
WFG3 5 1.583¢-01 [0.0006400/9.601e-02 6.763¢-02 1.139¢-01
DTLZ1 6 2.937e+02 5.789e+01 1.583¢+03 5.168e+01 3.920e+02
DTLZ3 6 1.045¢+03 2.861c4-02 1.825¢-+03 1.913¢+02 7.048¢+02
WFC1 6 2.2880-01 [1.6196-02 3.790c-01 3.086¢-01 2.649¢-01
WFG3 6 1.690e-01 [0.000e400 1.090e-01 7.179¢-02 9.973-02 2.058¢-03
DTLZ1 7 1.193¢+02 4.205e+01 8.990e+02 9.095¢400 1.081e+02
DTLZ3 7 1.138e+01 2.539e+00 1.768¢+01 3.267e-01 4.447e+00
WFC1 7 2.461e-01 3.670e-01 2.775¢-01 2.428¢-01 1.545¢-02

WFG3 7 1.630e-01 1.017¢-01 6.336¢-02 7.499¢-02 2.411e-03
DTLZ1 8 4.798¢+02 2.375¢+02 1.982¢+03 4.991e+01 5.619¢+02
DTLZ3 8 1.458e+03 3.881e+02 2.152¢+03 1.856e+02 9.085¢+02
WFG1 8 2.722¢-01 [1.486¢-02 4.113¢-01 3.155¢-01 3.020e-01
WFG3 8 1.499¢-01 [0.0006400 9.124¢-02 5.919¢-02 6.697¢-02 2.380e-03
DTLZ1 9 1.732e+02 1.234c+02 9.926¢+02 1.264e+01 3.271e+02
DTLZ3 9 7.820e+00 3.242¢+00 1.899¢+01 2.121e-01  6.489¢+00
WFGL 9 2.388¢-01 1.108e-02 3.644e-01 2.316e-01 2.435¢-01
WFG3 9 1.516¢-01 [4.995¢-04  8.803¢-02 5.787¢-02 8.046¢-02 1.736e-03
DTLZ1 10 1.097¢+02 1.138¢+02 9.838¢+02 8.148¢+00 3.040¢+4-02
DTLZ3 10 6.727e+00 2.405e+00 1.556e+01 1.584e-01 5.933e+-00
WFG1 10 3.030e-01 [1.372¢-02 4.268¢-01 2.544e-01 3.118e-01
WFG3 10 1.468¢-01 |3.964e-04  7.328¢-02 5.557e-02  6.889¢-02 2.378¢-03
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Table 12: Average compute time in Maximum Pareto Front Error experiment

m eMOEA NSGA-R NSGA-II MOEA/D NSGA-III NSGA-G

DTLZ1 5 [4.128e+01 5.408e+-01 5.408e+01 2.401e+-02 2.308e+02 5.522e+-01
DTLZ3 5 [5.676e+01 6.470e+-01 5.944e+01 2.074e+-02 2.982e+02 6.294e4-01
WEFG1 5 1.623e+02 8.048e+01 7.232e+401 2.239e+02 2.815e+-027.082¢+01
WFG3 5 9.397e+402 7.952e+01 6.154e+01 2.043e+02 3.174e+402 1.023e+02
DTLZ1 6 [4.550e+01 5.556e+01 5.634e+01 1.924e+02 1.662e+02 5.686e+01
DTLZ3 6 9.168e+01 6.554e+01 6.418e+01 1.985e+4-02 1.787e+02 6.656e+-01
WFG1 6 1.958e+02 7.512e+01 7.434e+01 2.072e+02 2.170e+-02 7.650e+01
WFG3 6 1.136e+403 7.774e+01 6.724e+01 1.967e+02 2.406e+402 7.916e+01
DTLZ1 7 8.734e+401 6.188e+01 6.164e+01 2.453e+02 2.058e+02 6.204e+01
DTLZ3 7 1.622e+027.046e+01 7.170e+01 2.699¢+02 1.812e+02 8.968e+-01
WFG1 7 2.674e+02 8.156e+01 8.470e+01 2.574e+02 2.154e+028.036e+01
WFG3 7 1.461e+03 8.358e+01 [7.426e+01 2.546e+02 2.334e+-02 8.180e+01
DTLZ1 8 8.920e+016.054e+01 6.592e+01 2.443e+4-02 2.349e+02 6.252e+4-01
DTLZ3 8 2.360e+027.318e+01 7.644e+01 2.536e+02 2.555e+02 7.426e+01
WFG1 8 4.476e+027.960e+018.678e+01 2.612e+02 2.932e+02 8.164e+01
WFG3 8 1.482e+03 8.250e+01 [7.690e+01 2.497e+02 3.244e+02 8.380e+01
DTLZ1 9 1.031e+026.208e+01 6.984e+01 2.514e+4-02 3.068e+02 6.554e+-01
DTLZ3 9 3.043e+02 7.924e+401 8.222¢+01 2.634e+4-02 3.368e+027.806e+01
WFG1 9 3.935e+02 8.856e+01 9.290e+01 2.700e+02 3.807e+02|8.676e+01
WFG3 9 1.660e+03 9.016e+01 [8.028e+01] 2.594e+02 4.347e+02 8.622e+01

DTLZ1 10 1.507e+4-026.436e+01 7.442e+401 2.728e+402 4.151e+02 6.830e+01
DTLZ3 10 3.933e+02 8.494e+401 8.852e+01 2.865e+4-02 4.593e+028.244e+01
WFG1 10 4.769e+02 9.296e+4-01 9.974e+01 2.904e+4-02 5.110e+029.182e+01
WFG3 10 1.875e+038.474e+01 8.594e+01 2.784e+02 6.013e+02 9.096e+01

often NSGA-G with random metric. It can be accepted for the trade-off between
quality and computation time.

Study on the evaluation In the previous experiments, we survey algorithms
with various problems and the constant number of max evaluation. This section
selects a specific problem and shows the observation of algorithms while the pro-
cess is running. In particular, we choose DTLZ3 problem with eight objectives,
called DTLZ3-8. Besides, we focus on reducing the execution time of NSGAs
algorithm. Hence, this section compares two versions of NSGA-G algorithms to
others in NSGA class, such as NSGA-II and NSGA-III. Two versions of NSGA-G
with Min point and Random metric are called NSGA-G and NSGA-R, respec-
tively. The results in Fig. 10 and 11 show that two versions of NSGA-G are faster
than others. Both their convergence and diversity are better than NSGA-II and
NSGA-IIL.

In conclusion, NSGA-Gs often show better quality and faster execution time
in most cases, such as DTLZs, WFGs. One main conclusion of these experiments
is that NSGA-G with a Random metric is often the least expensive in terms of
computation.

6 Conclusion

This paper is about medical data management in cloud federation. It introduces
Dynamic Regression Algorithm (DREAM) as a part of MIDAS and on top of
IReS, an open source platform for complex analytics work-flows executed over
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Inverted Generational Distance experiment
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Fig. 10: Inverted Generational Distance of 4 algorithms with DTLZ3-8.
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Elapsed Time experiment
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Fig. 11: Execution time of 4 algorithms with DTLZ3-8.
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multi-engine environments. DREAM aims to address variance in a cloud feder-
ation and to provide accurate estimation for MOQP. Experiment results with
DREAM and TPC-H benchmark are quite promising with respect to existing
solutions. Further more, we introduce Non-dominated Sorting Algorithms based
on Grid partitioning (NSGA-G) in searching and optimization MOOP. We vali-
dated NSGA-Gs with DTLZ, WFG test problems, and MOEA framework. The
experiments show that NSGA-Gs often show better quality and faster execution
time than other NSGAs in most cases, such as DTLZs, WFGs. One main con-
clusion of these experiments is that NSGA-G with a Random metric is often the
least expensive in terms of computation.

In the future, we plan to validate our proposal with more cloud providers (and
their associated pricing model and services) and data management systems. We
will also define new strategies to choose QEPs in a Pareto Set. Further more,
the size of population in each generation iterate is constant in many NSGAs.
The suitable value of population size is still a question of NSGAs. Future works
include a deeper study on the impact of the size of the population.
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