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Abstract ͶͶ�
Retention of intracellular Toll-Like Receptors (TLRs) in the endoplasmic reticulum prevents Ͷͷ�
their activation under basal conditions. TLR9, whose trafficking is still largely unknown, is Ͷ�
activated by sensing ligands in specific endosomal compartments. Here, we describe the Ͷ�
identification of IRAP (insulin responsive aminopeptidase) vesicles as major cellular Ͷͺ�
compartments for the early steps of TLR9 activation in dendritic cells (DCs). Both CpG and Ͷͻ�
TLR9 were found to be cargos of IRAP endosomes. In the absence of IRAP, CpG and TLR9 ͷͲ�
trafficking to lysosomes and TLR9 signaling were enhanced in DCs and in mice following ͷͳ�
bacterial infection. IRAP stabilized CpG-containing endosomes by interacting with the actin ͷʹ�
nucleation factor FHOD4, slowing down TLR9 activation in lysosomes. Thus, endosome ͷ͵�
retention through IRAP interaction with the actin cytoskeleton is a mechanism that prevents ͷͶ�
TLR9 hyper-activation in DCs.  ͷͷ�
 ͷ�
� �ͷ�
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Innate and adaptive immune responses depend on the ability of toll-like receptors (TLRs) to ͷͻ�
discriminate between different classes of microbial products and initiate specific signaling Ͳ�
cascades. While microbial products with no equivalent in mammalian cells, such as the ͳ�
components of the bacterial wall, are recognized by surface TLRs (1, 2, 4, 5 and 6), pathogen ʹ�
derived nucleic acids are sensed by intracellular TLRs (3, 7, 8 and 9). Recognition of nucleic ͵�
acids by intracellular TLRs has an intrinsic potential to trigger autoimmune diseases through Ͷ�
interaction with self nucleic acids 1. To avoid inappropriate activation of endosomal TLRs, ͷ�
the trafficking of these receptors is tightly controlled. Thus, in basal conditions the receptors �
are located in the endoplasmic reticulum (ER) and translocate to endocytic vesicles only after �
cell stimulation by TLR ligands. Although all intracellular TLRs reside in the ER and require ͺ�
the chaperone Unc93b for their transfer to endosomes 2,3, the trafficking pathways that move ͻ�
the receptors into the endocytic pathway show considerable variation among intracellular Ͳ�
TLRs 4-6. For example, the TLR7/Unc93b complex traffics from Golgi stacks directly to ͳ�
endosomes using the clathrin adaptor AP4, while the TLR9/Unc93b complex is directed to ʹ�
the cell surface and reaches the endosomes via AP2-mediated clathrin-dependent endocytosis ͵�
6. Ͷ�
In addition to the transfer into the endocytic pathway, a second step that controls the ͷ�
activation of endosomal TLRs is their partial proteolysis by an array of different proteases, �
specific for each TLR 5,7-12. �
Although less often mentioned, the intracellular trafficking of its ligand also controls the ͺ�
activation of TLR9. TLR9 ligands (CpG) are internalized via clathrin-mediated endocytosis in ͻ�
early endosomes and translocate to late LAMP+ compartments 2. TLR9 activation depends on ͺͲ�
CpG localization, since the abrogation of CpG translocation to LAMP+ vesicles by PIKfyve ͺͳ�
inhibitors decreased TLR9 signaling 13,14. Thus, the intracellular trafficking of both, the ligand ͺʹ�
and the receptor are essential for the control of TLR9 activation. ͺ͵�
The complexity of TLR9 and CpG trafficking is rendered possible by the diversity and ͺͶ�
plasticity of the endocytic system. This system includes early endosomes that fuse to generate ͺͷ�
the sorting endosomes. From there, cargos are directed to different organelles, such as Rab4+ ͺ�
fast recycling endosomes, Rab11+ slow recycling endosomes, the trans Golgi network (TGN) ͺ�
or lysosomes. Next to these universal routes of endosome trafficking, specialized cells, such ͺͺ�
as dendritic cells (DCs), display particular, albeit poorly characterized endosomal populations ͺͻ�
that affect TLR function, such as the VAMP3+ vesicles, which are involved in TLR9 ͻͲ�
trafficking 15. ͻͳ�
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A particular and abundant endocytic population present in DCs, not yet investigated in the ͻʹ�
context of TLR signaling, is the slow recycling endosomes. They are characterized by the ͻ͵�
presence of the aminopeptidase IRAP (Insulin Responsive AminoPeptidase), a type II ͻͶ�
transmembrane protein composed of a catalytic site localized in the endosomal lumen and a ͻͷ�
cytosolic domain of 110 amino acids. We have previously demonstrated that in DCs, IRAP+ ͻ�
vesicles are rapidly recruited to DC phagosomes, where the enzymatic activity of IRAP is ͻ�
involved in antigen processing during MHC-I cross presentation 16,17.  ͻͺ�
In addition to DCs, IRAP+ endosomes have been extensively studied in adipocytes, were they ͻͻ�
are called Glut4 storage vesicles (GSVs) and are rapidly transported to the cell surface under ͳͲͲ�
insulin stimulation. After the fusion of the endosomes with the cell membrane, Glut4 remains ͳͲͳ�
at the cell surface to facilitate glucose uptake, while IRAP is rapidly internalized 18. Thus, ͳͲʹ�
both in adipocytes and in DCs, IRAP displays a complex trafficking, sensitive to external ͳͲ͵�
regulation by insulin or phagocytic receptors activation. The regulated trafficking of IRAP ͳͲͶ�
depends on the cytosolic domain of the enzyme, which has been shown to interact with ͳͲͷ�
several proteins involved in vesicles formation or in cytoskeleton remodeling, such as the ͳͲ�
golgin p115 19, vimentin 20 and FHOS (formin homologue overexpressed in the spleen, also ͳͲ�
called FHOD1) 21. Whether these proteins and their interaction with the cytosolic domain of ͳͲͺ�
IRAP play a role in the complex trafficking of IRAP and IRAP+ endosomes is not known.  ͳͲͻ�
Considering the dynamic and potentially regulated nature of IRAP+ endosomes, we wondered ͳͳͲ�
if IRAP plays a role in endosomal TLR trafficking and activation. We report here that the ͳͳͳ�
early step in TLR9 trafficking and CpG endocytosis requires IRAP. The absence of IRAP ͳͳʹ�
affects both CpG and TLR9 trafficking, leading to a dramatic increase in TLR9 signaling in ͳͳ͵�
vitro and in vivo following TLR9 stimulation. These results can be explained by the central ͳͳͶ�
role of IRAP in anchoring TLR9 endosomes to the actin cytoskeleton, which would limit ͳͳͷ�
TLR9-driven inflammatory responses. These findings provide a mechanistic explanation to ͳͳ�
the link between IRAP mutations and autoimmune disorders implicating TLR9 22 and identify ͳͳ�
new factors and cellular pathways involved in TLR9 activation. ͳͳͺ�
 ͳͳͻ�
RESULTS  ͳʹͲ�
 ͳʹͳ�
IRAP deletion increases TLR9 response ͳʹʹ�
To address the role of IRAP in TLRs signaling, wild type (wt) and IRAP-deficient (ko) bone ͳʹ͵�
marrow derived dendritic cells (BM-DCs) were stimulated with ligands specific for ͳʹͶ�
intracellular and membrane TLRs: polyIC for TLR3, Imiquimod for TLR7, CpG-B for TLR9 ͳʹͷ�
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and LPS for TLR4, and the production of the pro-inflammatory cytokines IL-6, IL-12p40, ͳʹ�
TNF ������������. While IRAP deletion did not affect TLR3- and TLR4-dependent ͳʹ�
pro-inflammatory cytokine production, it enhanced pro-inflammatory cytokine production ͳʹͺ�
driven by TLR9 (Fig. 1a) and TLR7 activation (Supplementary Fig. 1a). These results ͳʹͻ�
suggest that IRAP affects the NF-κB pathway downstream of TLR9 and probably TLR7.  ͳ͵Ͳ�
Since type I IFN production depends on TLR9 signaling through IRF-7, we wondered ͳ͵ͳ�
whether IRAP deletion affected this cytokine. We measured IFN-β production by wt and ͳ͵ʹ�
IRAP-deficient BM-DCs stimulated with TLR3, 4 and 9 ligands (Fig. 1b). IRAP deletion ͳ͵͵�
significantly increased only TLR9-driven IFN-β production but not IFN-β production by ͳ͵Ͷ�
TLR3 and TLR4. Thus, IRAP disturbed the amplitude of both pro-inflammatory cytokine and ͳ͵ͷ�
type I IFN production in a TLR9-dependent manner in BM-DCs. ͳ͵�
To address whether the hypersensitivity of IRAP-deficient cells to TLR9 ligands was ͳ͵�
restricted to BM-DCs, which correspond to monocyte-derived inflammatory DCs, we purified ͳ͵ͺ�
conventional DCs (cDCs) and plasmacytoïd DCs (pDCs) from the spleen and stimulated them ͳ͵ͻ�
with a TLR9 agonist. When incubated with CpG, IRAP-deficient spleen cDCs (Fig. 1c) and ͳͶͲ�
pDCs (Fig. 1d) produced significantly higher amounts of pro-inflammatory cytokines and ͳͶͳ�
INF-α than their wt counterparts. These results demonstrated that IRAP expression was ͳͶʹ�
required to prevent exacerbated inflammatory cytokine production in response to TLR9 ͳͶ͵�
activation in all tested DC subsets. ͳͶͶ�
At least two mechanisms might account for the increased TLR9 response in IRAP-deficient ͳͶͷ�
DCs. IRAP+ vesicles, which are storage compartments sensitive to regulation by cell-specific ͳͶ�
stimulation in adipocytes, could store pro-inflammatory cytokines and control their trafficking ͳͶ�
and secretion. Alternatively, IRAP+ endosomes could directly influence TLR9 or CpG ͳͶͺ�
trafficking. We thus analyzed the intracellular localization of pro-inflammatory cytokines in ͳͶͻ�
wt and IRAP-deficient cells. While both IL-6 and IL-12 could not be detected in unstimulated ͳͷͲ�
cells, incubation with CpG resulted in staining for IL-6 and IL-12 in intracellular structures ͳͷͳ�
with a morphology indicative of Golgi stacks but devoid of IRAP staining (Supplementary ͳͷʹ�
Fig. 1b). The staining for the cis-Golgi matrix protein GM130, consistent with previous ͳͷ͵�
reports, confirmed IL-6 localization in Golgi stacks (Supplementary Fig. 1c)23. ͳͷͶ�
Thus, IRAP+ endosomes are unlikely to be implicated in trafficking or secretion of IL-6 or IL-ͳͷͷ�
12(p40) and could be involved in a step upstream their synthesis. In support to this ͳͷ�
hypothesis, we found that DCs lacking IRAP expressed significantly higher levels of pro-ͳͷ�
inflammatory cytokine mRNAs than wt DCs upon CpG but not LPS stimulation (Fig. 1e-f). ͳͷͺ�
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The increase in cytokines, both at the mRNA and protein level, in IRAP deficient cells ͳͷͻ�
following TLR9 stimulation should be correlated with an enhanced TLR9 signaling. To ͳͲ�
specifically investigate TLR9 signaling, we tested the association of the MyD88 adaptor with ͳͳ�
the transcription factors NF-κB and IRF7. The proximity ligation assay (Duolink), which ͳʹ�
detects protein complexes in situ 24, demonstrated a significantly increased association of ͳ͵�
MyD88 with NF-κB (Fig. 2a) and of MyD88 with IRF7 (Fig. 2b) in IRAP-deficient cells, as ͳͶ�
compared with wt cells.  ͳͷ�
As a consequence of TLRs activation, the mitogen-activated protein kinase ERK is rapidly ͳ�
phosphorylated. Indeed, ERK phosphorylation was increased in IRAP deficient cells after ͳ�
CpG stimulation, as detected by immunoblot (Fig. 2c). In addition, the last step of NF-κB ͳͺ�
activation, the phosphorylation of IκB-α, was also significantly increased in IRAP-deficient ͳͻ�
cells after CpG but not LPS treatment (Fig. 2d), indicating an enhanced TLR9 signaling in the ͳͲ�
absence of IRAP. ͳͳ�
 ͳʹ�
IRAP-deficient mice display a hyper-inflammatory phenotype driven by TLR9 ͳ͵�
activation ͳͶ�
Our in vitro data demonstrated the regulation of TLR9 signaling by IRAP. We next addressed ͳͷ�
the question whether IRAP-deficient mice display increased TLR9 activation. To test this, we ͳ�
measured the level of IL-6 in the serum of wt and IRAP-deficient mice 2 h after intravenous ͳ�
injection of PBS, CpG-B or LPS. While wt and IRAP-deficient animals responded identically ͳͺ�
to PBS and LPS injection, TLR9 stimulation led to higher levels of IL-6 in the serum of mice ͳͻ�
lacking IRAP than in wt animals (Fig. 3a). ͳͺͲ�
We wondered if the observed exacerbated pro-inflammatory TLR9 signaling might affect the ͳͺͳ�
innate immune response during a bacterial infection. Pseudomonas aeruginosa (P. ͳͺʹ�
aeruginosa) is an opportunistic Gram-negative bacterium that activates several TLRs ͳͺ͵�
including TLR9 on alveolar macrophages (AM) and epithelial cells 25. TLR9-deficient mice ͳͺͶ�
were recently shown to be resistant to P. aeruginosa infection, suggesting that TLR9 ͳͺͷ�
signaling can have deleterious effects in this model 26. In order to test whether the TLR9-ͳͺ�
dependent hyper-activation observed in IRAP-deficient mice could affect survival upon ͳͺ�
bacterial pulmonary infection, we intranasally inoculated IRAP-deficient and wt mice with ͳͺͺ�
106 cfu of P. aeruginosa and monitored them for survival. At least 36% of wt mice survived ͳͺͻ�
during the two weeks of observation, while all IRAP-deficient mice died within 72 h after ͳͻͲ�
infection (Fig. 3b). We then investigated the correlation between mice survival and the ͳͻͳ�
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inflammatory response monitored in the lungs 24 h post-infection. In infected IRAP-deficient ͳͻʹ�
mice, broncho-alveolar lavage (BAL) fluid contained higher levels of KC, IL-6, TNF-Į and ͳͻ͵�
IL-1ȕ than in wt mice (Fig. 3c). Since AMs are the first innate immune cells to encounter ͳͻͶ�
bacteria in the lungs, we isolated AM and tested their cytokine production upon TLR9 and ͳͻͷ�
TLR4 stimulation in vitro. While a response was barely detectable in AM isolated from wt ͳͻ�
mice, IRAP-deficient AMs secreted substantial higher amounts of all pro-inflammatory ͳͻ�
cytokines tested upon CpG stimulation (Fig. 3d) in comparison to wt mice. In contrast, IRAP ͳͻͺ�
deficiency did not alter IL-6 and TNF-Į secretion upon LPS stimulation, indicating that the ͳͻͻ�
hyper-inflammatory phenotype produced was restricted to TLR9 (Fig. 3d).  ʹͲͲ�
To control for a potential difference between the two mouse strains in their ability to clear ʹͲͳ�
bacteria from the lungs, we measured the pulmonary bacterial load and found it to be identical ʹͲʹ�
in IRAP-deficient and wt mice (Fig. 3e). Consistent with an identical ability of both strains to ʹͲ͵�
clear bacteria, P. aeruginosa infection led to a similar accumulation of neutrophils and ʹͲͶ�
macrophages/monocytes in the airways of both groups (Supplementary Fig. 2a). In addition, ʹͲͷ�
myeloperoxidase activity that mirrors neutrophil degranulation was similar in BALs from ʹͲ�
both wt and IRAP-deficient mice (Supplementary Fig. 2b). Altogether, these experiments ʹͲ�
suggest that following P. aeruginosa infection, IRAP-deficient mice died earlier probably ʹͲͺ�
because of an excessive inflammatory response driven by TLR9 hyper-stimulation. ʹͲͻ�
 ʹͳͲ�
IRAP enzymatic activity is not involved in TLR9 activation ʹͳͳ�
Our results showed that proper regulation of TLR9 signaling required IRAP. Since IRAP is an ʹͳʹ�
aminopeptidase, we wondered if the enzymatic activity of IRAP was involved in the control ʹͳ͵�
of TLR9 activation. To investigate this possibility, we tested the effect of an inactive form of ʹͳͶ�
IRAP on TLR9 activation. IRAP, similar to all M1 aminopeptidases, has a Zn2+ atom in the ʹͳͷ�
active site 27 and contains the canonical zinc-binding amino acid motif HELAH, which is ʹͳ�
essential for the enzymatic activity. A form of IRAP in which the HELAH sequence was ʹͳ�
changed into HALAH (E465A substitution) co-localized, like the wild-type protein, with ʹͳͺ�
syntaxin 6 (Stx6), a SNARE of IRAP+ vesicles 16,17 (Fig. 4a). Both the wt and mutated form ʹͳͻ�
of IRAP were well expressed, as shown by immunoblotting with anti-IRAP antibodies (Fig. ʹʹͲ�
4b) but the mutated form was enzymatically inactive (Fig. 4c). When we reconstituted IRAP-ʹʹͳ�
deficient BM-DCs with wild-type IRAP (Fig. 4d) or enzymatically inactive IRAP (Fig. 4e), ʹʹʹ�
pro-inflammatory cytokine production upon CpG stimulation was similar to wt cells. These ʹʹ͵�
results demonstrated that the enzymatic activity of IRAP is not involved in the control of ʹʹͶ�
TLR9 activation. ʹʹͷ�
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 ʹʹ�
CpG and TLR9 are cargos of IRAP vesicles ʹʹ�
Since IRAP enzymatic activity was not involved in TLR9 activation, we wondered if IRAP ʹʹͺ�
could interfere directly with TLR9 or CpG trafficking. Analysis of CpG-FITC by confocal ʹʹͻ�
microscopy demonstrated that CpG massively colocalized with IRAP. After 20 min of ʹ͵Ͳ�
endocytosis, half of the internalized CpG was found in IRAP vesicles, where it was retained ʹ͵ͳ�
for at least 1 h (Fig. 5a). Concomitant with IRAP-CpG colocalization, we observed a ʹ͵ʹ�
significant increase of co-localization between IRAP and TLR9-GFP (Fig. 5b). While only ʹ͵͵�
20% of TLR9 was found in IRAP vesicles early after CpG stimulation, the TLR9 ligand was a ʹ͵Ͷ�
major and persistent cargo of IRAP endosomes.  ʹ͵ͷ�
Since both TLR9 and its ligand trafficked via IRAP vesicles, we wondered if IRAP vesicles ʹ͵�
overlap with VAMP3, a marker of an endosomal population through which TLR9 traffics ʹ͵�
towards lysosomes 15. IRAP, as well as the small GTPase Rab14 and the Q-SNARE Stx6, two ʹ͵ͺ�
others markers of IRAP+ vesicles in DCs 16,17 coincided with VAMP3 endosomes ʹ͵ͻ�
(Supplementary Fig. 3). These results suggest that IRAP vesicles are a new intermediate ʹͶͲ�
compartment between early endosomes and the final destination of TLR9, which is the ʹͶͳ�
LAMP+ lysosome. This conclusion is also supported by the absence of colocalization between ʹͶʹ�
IRAP and LAMP that we have shown previously 16,17. ʹͶ͵�
 ʹͶͶ�
IRAP absence increases the susceptibility of TLR9 to lysosomal processing  ʹͶͷ�
Since CpG and TLR9 are cargos of IRAP vesicles, we wondered if IRAP deletion could ʹͶ�
change the trafficking of CpG and TLR9. Analysis of CpG-FITC trafficking demonstrated ʹͶ�
that the proportion of TLR9 ligand transported to LAMP+ vesicles was significantly higher in ʹͶͺ�
IRAP-deficient cells than in wt cells, an effect that was obvious at early time points (Fig. 6a). ʹͶͻ�
The accelerated transport to lysosomes of CpG, in IRAP-deficient DCs, was potentially ʹͷͲ�
correlated with a change in the intracellular distribution of TLR9-GFP, which was found in ʹͷͳ�
lysosomes even in the absence of CpG stimulation (Fig. 6b). The presence of TLR9 in the ʹͷʹ�
LAMP+ compartment correlates with proteolytic generation of a highly active C-terminal ʹͷ͵�
fragment of the receptor in DCs and macrophages 7,8,11,12,28. In agreement with the lysosomal ʹͷͶ�
localization of TLR9 in unstimulated IRAP-deficient cells, we found that in IRAP-deficient, ʹͷͷ�
but not in wt primary mouse embryonic fibroblasts transfected with TLR9-GFP and ʹͷ�
UNC93B-Cherry, the majority of immunoprecipitated TLR9-GFP corresponded to its ʹͷ�
processed form (Fig. 6c). As expected from the functional assays of TLR stimulation (Fig. ʹͷͺ�
1a-b), TLR3 did not colocalize with IRAP and intracellular localization of TLR3 was not ʹͷͻ�
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affected by IRAP deletion (Supplementary Fig. 4). Thus, in the absence of IRAP, TLR9, but ʹͲ�
not TLR3, was targeted to lysosomes without cell stimulation. ʹͳ�
To ensure that the lysosomal expression of TLR9 in IRAP-deficient cells was not the ʹʹ�
consequence of TLR9-GFP expression by nucleofection, we investigated the localization of ʹ͵�
endogenous TLR9. Since the only antibody that is specific for TLR9 (Fig. 6d) was not ʹͶ�
sensitive enough to detect TLR9 in whole cell lysate, we isolated early and late phagosomes ʹͷ�
from wt and IRAP-deficient DCs. While in the absence of CpG, TLR9 was not recruited to ʹ�
phagosomes in wt cells, we detected the active C-terminal form of TLR9 in IRAP-deficient ʹ�
late phagosomes. Thus, similar to the TLR9-GFP fusion, endogenous TLR9 was recruited to ʹͺ�
phago-lysosomes without CpG treatment in the absence of IRAP. Intriguingly, when the cells ʹͻ�
were stimulated with CpG, TLR9 recruitment to early and late phagosomes was identical ʹͲ�
between wt and IRAP-deficient cells (Fig. 6e). However, despite the similar recruitment to ʹͳ�
phago-lysosomes of endogenous TLR9 in both wt and IRAP-deficient cells upon CpG ʹʹ�
treatment, TLR9 signaling was exacerbated only in IRAP-deficient cells. This apparent ʹ͵�
contradiction can be explained by an increased accessibility of TLR9 to CpG in IRAP-ʹͶ�
deficient cells, suggested by the accelerated translocation of internalized CpG-FITC to ʹͷ�
lysosomes (Fig. 6a).  ʹ�
 ʹ�
IRAP deletion reduces CpG and TLR9 retention in early endosomes ʹͺ�
Since the consequences of IRAP on TLR9 hyper-activation could come from properties of ʹͻ�
IRAP on early endosome trafficking, we wondered if the early steps of CpG and TLR9 ʹͺͲ�
trafficking were modified by IRAP depletion. To analyze this, we used the early endosomal ʹͺͳ�
antigen, EEA1, a tethering factor known to be involved in homotypic and heterotypic fusion ʹͺʹ�
events of early endosomes. EEA1 recruitment to endosome is a mandatory step in endosome ʹͺ͵�
maturation to lysosome since inhibition of EEA1 activity blocks phagosome maturation 29. ʹͺͶ�
Nevertheless, a fraction of EEA1+ vesicles display a slow maturation rate and do not fuse ʹͺͷ�
rapidly to late endosomes 30. To visualize TLR9 and CpG trafficking in EEA1+ vesicles, we ʹͺ�
used BM-DCs from TLR9-GFP transgenic mice pulsed with CpG-biotin (Fig. 7a) in which ʹͺ�
IRAP was depleted by lentiviral shRNA (shIRAP) delivery (Fig. 7d). Colocalization analysis ʹͺͺ�
between TLR9-GFP and EEA1 showed that in IRAP-depleted cells, and not in control cells ʹͺͻ�
(shNT), TLR9 displayed a vesicular staining in subdomains of EEA1 endosomes in the ʹͻͲ�
absence of CpG (Fig. 7a, upper panels). Following CpG incubation, the trafficking of CpG ʹͻͳ�
was also affected by IRAP depletion. While in control cells, 25% of internalized CpG ʹͻʹ�
remained in EEA1 endosomes for 2 h, in IRAP-depleted cells, CpG was rapidly transferred ʹͻ͵�
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from EEA1+ vesicles to TLR9+ vesicles, as illustrated by the white arrow in the Fig. 7a, ʹͻͶ�
middle panel. As a consequence of the rapid transfer to TLR9+ vesicles in IRAP-depleted ʹͻͷ�
cells, the colocalization between CpG and TLR9 was 3 times higher in comparison to control ʹͻ�
cells (Fig. 7b). This enhanced localization of CpG in TLR9 positive vesicles in cells lacking ʹͻ�
IRAP was not the consequence of an increased up-take of CpG by IRAP-depleted cells (Fig. ʹͻͺ�
7c). ʹͻͻ�
Thus, IRAP depletion facilitated not only TLR9 processing but also TLR9 access to its ͵ͲͲ�
ligand.  ͵Ͳͳ�
 ͵Ͳʹ�
IRAP interaction with the FHOD4 formin provides a molecular mechanism for the ͵Ͳ͵�
control of TLR9 activation ͵ͲͶ�
Altogether, these results highlighted a role for IRAP in TLR9 and CpG retention in EEA1+ ͵Ͳͷ�
endosomes that was independent on its enzymatic activity. We reasoned that the effect of ͵Ͳ�
IRAP on TLR9 activation could be mediated by interactions with proteins that play roles in ͵Ͳ�
vesicular trafficking. Two cytoskeleton factors have been previously identified to interact ͵Ͳͺ�
with the cytosolic domain of IRAP: vimentin 20 and FHOD1 (formin homology domain-͵Ͳͻ�
containing proteins; synonym: FHOS-formin homologue overexpressed in the spleen) 21. ͵ͳͲ�
Vimentin forms intermediate filaments, cytoskeleton components that are important for ͵ͳͳ�
anchoring intracellular organelles 31. FHOD formins are proteins essential for actin ͵ͳʹ�
polymerization and are involved in anchoring vesicles to the actin cytoskeleton 32. Thus, ͵ͳ͵�
vimentin and formins could play a role in the control of IRAP-mediated trafficking of TLR9. ͵ͳͶ�
Duolink and co-immunoprecipitation experiments in fibroblasts and in DCs failed to show a ͵ͳͷ�
robust interaction between IRAP and vimentin (data not shown), which implies that the ͵ͳ�
IRAP-vimentin interaction that has been demonstrated in adipocytes 20 might be specific to ͵ͳ�
that cell type.  ͵ͳͺ�
To investigate the FHOD1-IRAP interaction in DCs, we first investigated the expression of ͵ͳͻ�
FHOD1 in different cell types as reported in the gene expression database of the ImmGen 33 ͵ʹͲ�
consortium (Fig. 8a). The mRNA expression data recovered from ImmGen ͵ʹͳ�
(https://www.immgen.org/Databrowserpage.swf) showed that while FHOD1 expression is ͵ʹʹ�
restricted to a subset of macrophages, FHOD4, a formin from the same family, has a wider ͵ʹ͵�
distribution and higher expression levels in monocytes and DCs. As a consequence, we tested ͵ʹͶ�
the interaction between IRAP and FHOD4. Endogenous FHOD4, as well as a FHOD4-GFP ͵ʹͷ�
fusion protein interacted with IRAP as demonstrated by reciprocal co-immunoprecipitations  ͵ʹ�
(Fig. 8b and Supplementary Fig. 5a) and by Duolink, an alternative method used to ͵ʹ�
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investigate protein interaction in situ 24 (Fig. 8c and Supplementary Fig. 5b). Confocal ͵ʹͺ�
microscopy showed that FHOD4 could be recruited to IRAP+ vesicles, together with a ͵ʹͻ�
vesicular actin coat labeled by phalloidin (Fig. 8d). These results suggested that FHOD4 ͵͵Ͳ�
could anchor IRAP+ vesicles to the actin cytoskeleton. ͵͵ͳ�
To investigate if FHOD4-IRAP interaction was involved in TLR9 activation in DCs, we ͵͵ʹ�
knocked-down FHOD4 expression using lentiviral transduction of shRNA in BM-DCs from ͵͵͵�
TLR9-GFP transgenic mice. FHOD4 was reproducibly reduced by 95% (ά 10%) in the cells ͵͵Ͷ�
transduced with two shRNA (17 and 20) targeting FHOD4 (Fig. 8e). In the absence of ͵͵ͷ�
FHOD4 and CpG stimulation, 40% (ά 5%) of the endogenous TLR9-GFP was found in the ͵͵�
cleaved form (Fig. 8f). In agreement with the increased basal processing of TLR9-GFP, the ͵͵�
GFP-fused TLR9 was found in lysosomes in FHOD4 depleted cells (Fig. 8g). Thus, TLR9 ͵͵ͺ�
trafficking and processing were affected by FHOD4 depletion, like in the case of IRAP ͵͵ͻ�
deletion. ͵ͶͲ�
Considering the impact of FHOD4 depletion on TLR9 localization, we expected to have an ͵Ͷͳ�
increased TLR9-driven inflammatory response in FHOD4 depleted BM-DCs. When ͵Ͷʹ�
incubated with CpG, FHOD4 depleted cells (wt-shFHOD4) secreted significantly more pro-͵Ͷ͵�
inflammatory cytokines than the cells transduced with a non-targeting shRNA (wt-shNT) ͵ͶͶ�
(Fig. 8h and Supplementary Fig. 6a). Depletion of FHOD1 did not affected TLR9-GFP ͵Ͷͷ�
localization or activation (Supplementary Fig. 6c, d), consistent with its very low levels of ͵Ͷ�
expression in BMDCs (Supplementary Fig. 6b). These results suggest that IRAP anchors ͵Ͷ�
endosomal vesicles to the actin cytoskeleton through its specific interaction with FHOD4, ͵Ͷͺ�
slowing their transport to lysosomes. A major effect of these molecular interactions is ͵Ͷͻ�
ensuring a limited interaction between TLR9 and its ligand, which prevents hyper-͵ͷͲ�
inflammation. ͵ͷͳ�
�͵ͷʹ�
DISSCUSSION ͵ͷ͵�
 ͵ͷͶ�
The capacity of intracellular TLRs to recognize host nucleic acids is a risk for auto-immunity. ͵ͷͷ�
For example, inappropriate activation of endosomal TLRs by self DNA has a major role in ͵ͷ�
inflammation that occurs in systemic lupus erythematous, arthritis and psoriasis 34. To avoid ͵ͷ�
hyper-activation of TLRs, their encounter with the ligands and ability to signal must be tightly ͵ͷͺ�
regulated. First, exposure to ligands is restricted through the retention of TLRs in the ER in ͵ͷͻ�
basal conditions 35 and second, downstream signaling depends on the partial proteolysis of ͵Ͳ�
TLRs that occurs in the endo-lysosomal compartment 5,7,8,12,36. Although these two steps ͵ͳ�
apply to all intracellular TLRs, recent in-depth studies show that the trafficking routes used by ͵ʹ�
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distinct endosomal TLRs to reach the endocytic pathway are different 5,6. TLR9, like other ͵͵�
TLRs, exits ER by interacting with Unc93b 35. Unlike other TLRs, the TLR9-Unc93b ͵Ͷ�
complex reaches the cell surface and is later internalized into a poorly characterized ͵ͷ�
endosomal compartment through AP-2 mediated endocytosis 6. ͵�
In this study, we identified IRAP as a regulator of CpG and TLR9 intracellular trafficking and ͵�
in vivo activation of TLR9. IRAP deficiency led to rapid transport of internalized CpG to ͵ͺ�
lysosomes and to TLR9 localization in lysosomes, where TLR9 is cleaved into its active C-ter ͵ͻ�
form in the absence of CpG ligand. We observed this aberrant TLR9 trafficking and ͵Ͳ�
processing not only for TLR9-GFP, but also for endogenous TLR9 detected with anti-TLR9 ͵ͳ�
antibodies. Lysosomal localization of TLR9 in IRAP-deficient cells might be a consequence ͵ʹ�
of accelerated trafficking of its ligand, which normally is retained in IRAP+ vesicles for a long ͵͵�
time. The aberrant trafficking of both the ligand and the receptor led to an uncontrolled ͵Ͷ�
inflammatory response to TLR9 ligands, which culminated with animal death following an ͵ͷ�
infection with P. aeruginosa, a bacterium sensed by TLR9 26. Altogether, our results show ͵�
that IRAP is required to avoid excessive TLR9-driven inflammatory responses. In view of ͵�
these results, it is conceivable that IRAP plays a role in human autoimmune pathologies ͵ͺ�
through its effects on TLR9 signaling. The recent identification of a genetic association ͵ͻ�
between psoriasis, one of the autoimmune disorders implicating TLR9 activation, and a ͵ͺͲ�
nonsense mutation in the LNPEP gene encoding IRAP is consistent with this hypothesis 22. ͵ͺͳ�
The new role of IRAP and our co-localization experiments define an endosomal compartment ͵ͺʹ�
that is described by the presence of Rab14 and Stx6 (Supplementary Fig. 7) and partially ͵ͺ͵�
overlaps with VAMP3+ and EEA1+ vesicles. VAMP3 and TLR9 have been shown to co-͵ͺͶ�
localize in an intermediate step of the route that TLR9 follows towards lysosomes and which ͵ͺͷ�
depends on the AP-3 adaptor 15. Our data suggest that IRAP vesicles delay the trafficking of ͵ͺ�
CpG and TLR9 from EEA1+ endosomes to lysosomes, with important functional ͵ͺ�
consequences. To understand how IRAP could mechanistically affect the dynamics of the ͵ͺͺ�
early endosomal compartment in which CpG and TLR9 are retained, we screen for ͵ͺͻ�
cytoskeletal proteins that might interact with IRAP and could interfere with endosomal ͵ͻͲ�
motility. Indeed, considering that the cytosolic tail of IRAP was shown to interact with two ͵ͻͳ�
cytoskeleton components, an actin nucleation factor, the formin FHOD1 21 and the ͵ͻʹ�
intermediate filament vimentin 20, we hypothesized that these interactions ensure the ͵ͻ͵�
anchoring of IRAP and the associated TLR9 endosomes to cytoskeleton. Whereas the ͵ͻͶ�
interaction of IRAP with vimentin was not detectable in DCs (experiments not shown), we ͵ͻͷ�
found that IRAP binds to FHOD4 formin. ͵ͻ�
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Formins are major actin nucleation factors that drive the assembly of actin monomers into ͵ͻ�
filamentous structures and remain associated with the barbed end during filament elongation ͵ͻͺ�
37. A knock-down of FHOD4 had effects similar to IRAP deletion on TLR9 trafficking and ͵ͻͻ�
the cellular response to CpG. These results suggest that by promoting actin assembly on ͶͲͲ�
endosomes, FHOD4 prevents the transfer of endosomes to microtubules, delaying their ͶͲͳ�
retrograde transport towards lysosomes, as reported for the formin mDia1 38. Actin ͶͲʹ�
polymerization around the endosomal vesicles containing TLR9 ligands has been shown to be ͶͲ͵�
also driven by the other key actin nucleation factor, Arp2/3, and to be essential in limiting ͶͲͶ�
TLR9 signaling 39. Interestingly, both, FHOD4 and Arp2/3 are activated by the same small ͶͲͷ�
GTPase of Rho family, Cdc42 37, suggesting that these two actin-remodeling factors might ͶͲ�
cooperate in the regulation of TLR9 signaling, like they cooperate in phagocytic cup ͶͲ�
formation 40. ͶͲͺ�
The intervention of FHOD4 in interaction with IRAP for modulating TLR9 function has ͶͲͻ�
major implications for potential links between extracellular stimuli, such as cytokines and the ͶͳͲ�
ability of TLR9 to respond to its ligands. It has been previously reported that TLR responses Ͷͳͳ�
can be inhibited by extracellular stimuli such as cytokines 41 or integrin ligation 42,43. Since Ͷͳʹ�
Cdc42 activation occurs downstream integrin, receptor tyrosine kinase or G-protein-coupled Ͷͳ͵�
receptors signaling 44, it could affect actin polymerization and the anchoring of CpG+/TLR9+ ͶͳͶ�
vesicles by IRAP. Thus, the anchoring of CpG+/TLR9+ vesicles to actin cytoskeleton could be Ͷͳͷ�
essential in regulating TLR9 dependent cellular responses to the environment. Ͷͳ�
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Figure Legends Ͷʹͺ�
Figure 1. IRAP deletion increases TLR9 response Ͷʹͻ�
(a) Wt and IRAP-deficient (ko) BM-DCs were stimulated with different TLR ligands for 16 h Ͷ͵Ͳ�
and the secretion of IL-6, IL-12(p40) and TNF-α in supernatants was measured by ELISA Ͷ͵ͳ�
(n=10 experiments, mean ± SEM, * p<0.05, ** p<0.01). (b) Wt and ko BM-DCs were Ͷ͵ʹ�
incubated for 16 h with TLR ligands and IFN-β was measured by ELISA (n=3 experiments, Ͷ͵͵�
**p<0.01). (c-d) Splenic cDCs (c) or pDCs (d) from wt and ko mice were isolated by cell Ͷ͵Ͷ�
sorting (c) or anti-PDCA-1 magnetic beads (d), incubated overnight with CpG-B or CpG-A Ͷ͵ͷ�
and cytokine secretion was measured by ELISA (n=2 experiments, **p<0.001). (e) Wt and ko Ͷ͵�
BM-DCs were incubated for 3 h with CpG-B or LPS and mRNA for TNF-α, IL-6 and IL-12 Ͷ͵�
was quantified by RT-PCR using as reporters GAPDH and HPRT1. NS= non-stimulated Ͷ͵ͺ�
cells. (n= 4 experiments, data are represented as means ± SEM, * p<0.05, ** p<0.01). (f) Ͷ͵ͻ�
mRNAs for IL-6 and IL-12 from wt and ko splenic pDCs, stimulated or not (NS) with CpG-ͶͶͲ�
B, were measured by RT-PCR using the same reporter genes as in e (n= 3 experiments, means ͶͶͳ�
± SEM, * p<0.05). See also Supplementary Fig. 1. ͶͶʹ�
 ͶͶ͵�
Figure 2. Increased TLR9 signaling in IRAP-deficient DCs ͶͶͶ�
PLA for detection of MyD88/NF-κB (a) or MyD88/IRF7 (b) proximity was performed with ͶͶͷ�
specific antibodies against MyD88, NF-κB and IRF7. The graphs show the quantification of ͶͶ�
MyD88 interaction with NF-κB (a) or IRF7 (b) by PLA. A minimum of 30 cells was ͶͶ�
analyzed in each condition. (n=3 experiments, means ± SD, ** p<0.01, ***p<0.001). ͶͶͺ�
Statistical analysis was performed with Student t test. (c-d) Wt or ko BMDCs were incubated ͶͶͻ�
with TLR ligands (CpG-B: 10 µg/ml, LPS: 100 ng/ml) for 10, 20, 30, 40, 60 and 120 minutes. ͶͷͲ�
Cells lysates were assessed for ERK (c) and I-KB-α (d) phosphorylation by Western Blot and Ͷͷͳ�
ELISA. Total ERK (t-ERK) and I-KB-α (t-I-KB-α) were also measured. Phosphorylated Ͷͷʹ�
ERK (p-ERK) proteins were quantified and normalized over total ERK (t-ERK) using Ͷͷ͵�
IMAGE J software. (c, d, n= 3 experiments, means ± SEM, * p<0.05, ** p<0.01, *** ͶͷͶ�
p<0.001, **** p<0.0001).  Ͷͷͷ�
 Ͷͷ�
Figure 3. IRAP-deficient mice display a hyper-inflammatory phenotype driven by TLR9 Ͷͷ�
activation Ͷͷͺ�
(a) IL-6 production was measured in serum of wt or IRAP-deficient (ko) mice 2 h after i.v. Ͷͷͻ�
injection of CpG-B (left panel) or LPS (right panel) (n=9 animals, mean ± SEM, ** p<0.01). ͶͲ�
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(b) Wt and ko mice (n=9-11 in each group), were inoculated intranasally with P. Aeruginosa Ͷͳ�
at 106 cfu/mouse. Animal survival was determined up to 7 days post-infection (n=3 Ͷʹ�
independent experiments, * p<0.05). (c) Broncho-alveolar lavage (BAL) fluid levels of KC, Ͷ͵�
IL-6, TNF-α and IL-1β in wt and ko mice 24 h after intranasal inoculation of P. Aeruginosa ͶͶ�
(106 cfu/mice) (n=9 animals, 3 independent experiments, mean ± SEM * p<0.05, ** p<0.01, Ͷͷ�
*** p<0.001). (d) TNF-α, KC and IL-6 secretion in supernatants of non-stimulated (NS), Ͷ�
CpG-B- or LPS-stimulated wt or ko alveolar macrophages (2 independent experiments, mean Ͷ�
± SEM, * p<0.05, *** p<0.001. (e) Twenty-four hours post-infection, bacterial load was Ͷͺ�
determined in lungs from wt and ko mice. (n=9 animals; graphs show mean ± SEM of 2 Ͷͻ�
independent experiments). See also Supplementary Fig. 2. ͶͲ�
 Ͷͳ�
Figure 4. IRAP enzymatic activity is not involved in TLR9 activation Ͷʹ�
(a) IRAP-deficient (ko) BM-DCs reconstituted with active or inactive IRAP-HA by Ͷ͵�
nucleofection were seeded on fibronectin-coated slides and stained with anti-Stx6 and anti-ͶͶ�
HA specific antibodies. The graph shows the colocalization between IRAP and Stx6 (n=10 Ͷͷ�
cells, two experiments). (b) IRAP-deficient fibroblasts were transfected by electroporation Ͷ�
with active or inactive IRAP and 36 h later, IRAP expression was analyzed by Ͷ�
immunoblotting with anti-IRAP antibodies. (c) IRAP was immunoprecipitated with anti-Ͷͺ�
IRAP antibodies from the fibroblasts transfected as in (b) and the aminopeptidase activity was Ͷͻ�
tested by incubation of the beads with the colorimetric substrate Leu-AMC (2 independent ͶͺͲ�
experiments). (d-e) IRAP-deficient BM-DCs reconstituted with active (d) or inactive (e) Ͷͺͳ�
IRAP were stimulated with TLR ligands for 16 h and IL-6 secretion was measured by ELISA Ͷͺʹ�
(three (d) or two (e) independent experiments, mean ± SEM, **p<0.01, ***p<0.001). Ͷͺ͵�
 ͶͺͶ�
Figure 5. CpG and TLR9 are cargos of IRAP endosomes Ͷͺͷ�
(a) Wt BM-DCs were pulsed for 20 minutes with CpG-FITC, chased at 37°C for the indicated Ͷͺ�
time-points, washed in PBS, fixed and stained with anti-IRAP and anti-FITC specific Ͷͺ�
antibodies. (b) Wt BM-DCs were transfected with TLR9-GFP by nucleofection. Two days Ͷͺͺ�
later, the cells were stimulated or not with CpG-B for 20 min, fixed and stained with anti-Ͷͺͻ�
IRAP specific antibodies. See also Supplementary Fig. 3. ͶͻͲ�
 Ͷͻͳ�
Figure 6. IRAP absence increases the susceptibility of TLR9 to lysosomal processing Ͷͻʹ�
(a) Wt and IRAP-deficient BM-DCs were pulsed for 20 minutes with CpG-FITC, chased at Ͷͻ͵�
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37°C for the indicated time-points, washed in PBS, fixed and stained with anti-LAMP1 and ͶͻͶ�
anti-FITC specific antibodies (2 experiments, n=6 cells, *p<0.05, ***p<0.001). (b) IRAP-Ͷͻͷ�
deficient and wt BM-DCs were transfected with TLR9-GFP by nucleofection and 48 h later Ͷͻ�
stimulated or not with CpG-B for 20 or 120 min. The cells were fixed and stained with Ͷͻ�
specific antibodies for LAMP1 (2 experiments, n=10 cells, *p<0.05, **p<0.01). (c) Wt and Ͷͻͺ�
IRAP-deficient fibroblasts expressing TLR9-GFP and Unc93b-Cherry were lysed in 1% NP-Ͷͻͻ�
40 and TLR9-GFP was immunoprecipitated with anti-GFP antibodies and analyzed by anti-ͷͲͲ�
GFP immunoblot. One experiment out of three is shown. The graph represents the ͷͲͳ�
quantification of GFP immunoblots from the three independent experiments. Phagosomes ͷͲʹ�
from wt, ko (e) and tlr9-/- (TLR9-ko, d) BMDCs unstimulated or stimulated with CpG-B (10 ͷͲ͵�
µg/ml) were magnetically purified after 20 min or 120 min. Proteins expressed in phagosomes ͷͲͶ�
(10 µg) were resolved by SDS-PAGE and endogenous TLR9 and LAMP1 proteins were ͷͲͷ�
visualized by immunoblot. Data are representative of two experiments.  ͷͲ�
 ͷͲ�
Figure 7. IRAP deletion reduces CpG and TLR9 retention in early endosomes  ͷͲͺ�
BM-DCs from TLR9-GFP transgenic mice were transduced with a lentivirus coding for a ͷͲͻ�
shRNA against IRAP (shIRAP) or a non-targeting shRNA (shNT). (a) The cells were pulsed ͷͳͲ�
or not with Biotinylated-CpG, washed and chased for the indicated time points. After fixation, ͷͳͳ�
the cells were stained with anti-EEA1 specific antibodies. (b) The graphs represent the ͷͳʹ�
percentage of colocalization between the proteins visualized in (a) (2 experiments, n=6 cells, ͷͳ͵�
*p<0.05, **p<0.01, ***p<0.001 ****p<0.0001). (c) CpG-FITC up-take by wt and IRAP-ͷͳͶ�
deficient BM-DCs was measured by flow cytometry. (d) The efficiency of IRAP knockdown ͷͳͷ�
was analyzed by immunoblotting, using anti-IRAP antibodies and anti α-Tubulin antibodies ͷͳ�
for the loading control. ͷͳ�
 ͷͳͺ�
Figure 8. IRAP interaction with the FHOD family of formins controls TLR9 activation ͷͳͻ�
(a) IRAP (encoded by Lnpep gene), FHOD1, FHOD4 and TLR9 mRNA expression data were ͷʹͲ�
recovered from immgen (https://www.immgen.org/Databrowserpage.swf) for pDCs ͷʹͳ�
(pDCs_8+_sp sub-type), Monocytes (Mo_C6+_II+_Bl type) and Macrophages (MF_RP_Sp ͷʹʹ�
type). (b) Endogenous IRAP and FHOD4 were immunoprecipitated with antibodies anti-ͷʹ͵�
IRAP and anti-FHOD4 respectively and the precipitates were split in two and analyzed by ͷʹͶ�
immunoblot as indicated. (c) In situ IRAP/FHOD4 interaction was detected by Duolink assay ͷʹͷ�
in wt and IRAP-deficient (ko) BM-DCs using antibodies against IRAP and FHOD4 (2 ͷʹ�
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independent experiments, 10 cells acquired). (d) Wt fibroblasts expressing FHOD4-GFP were ͷʹ�
fixed and stained with phalloidin and anti-IRAP antibodies. 40% (+/-5) of IRAP colocalized ͷʹͺ�
with FHOD4 (n=5 cells, 2 independent experiments). (e-g) BM-DCs from TLR9-GFP ͷʹͻ�
transgenic mice were transduced with two lentiviruses coding for shRNAs against FHOD4 ͷ͵Ͳ�
(shFHOD4 17 and shFHOD4 20) or a non-targeting shRNA (shNT). (e) The efficiency of ͷ͵ͳ�
FHOD4 knock-down was analyzed by immunoblotting using anti FHOD4 antibodies. (f) ͷ͵ʹ�
Endogenous TLR9-GFP processing in cells transduced with shNT or shFHOD4 (20) was ͷ͵͵�
analyzed by immunoblot with anti-GFP antibodies. Control corresponds to untransduced wt ͷ͵Ͷ�
BMDCs. (g) Endogenous TLR9-GFP localization in steady state conditions was analyzed by ͷ͵ͷ�
confocal microscopy using an anti-LAMP1 antibody.  The graph represents the quantification ͷ͵�
of TLR9-GFP/LAMP1 colocalization (2 experiments, n=10 cells, ***p<0.001). (h) Wt and ko ͷ͵�
BMDCs were transduced with shNT (non-targeting) and shFHOD4 (20) lentiviruses and ͷ͵ͺ�
stimulated with different TLR ligands for 6 h. The secretion of IL-12(p40) in supernatants ͷ͵ͻ�
was measured by ELISA (n=3 experiments, mean ± SEM, **p<0.01, *p<0.05). See also ͷͶͲ�
Supplementary Fig. 5-6. ͷͶͳ�
 ͷͶʹ�
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