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Abstract 

In the frame of characterization of thermophysical properties of semi-transparent gray media for 

which radiative transfers can be modelled by P1 approximation, the present study deals with 

development, construction and validation of conducto-radiative linear reduced order models (ROMs) 

explicitly parametrized by thermal conductivity and effective absorption coefficient. As variations of 

temperature are assumed to be limited in magnitude (about a few tenths of K) in the considered 

applications, the radiative contribution is linearized in the ROM formulation. ROMs are built through 

the Modal Identification Method (MIM): once their general form has been derived, they are identified 

using Particle Swarm Optimization and Ordinary Least Squares, from simulations coming from a 

nonlinear reference model. In the presented application, the latter is a two-dimensional axisymmetric 

unsteady model designed to model a “flash-type” experiment. The chosen range of values for thermal 

conductivity and effective absorption coefficient includes the values usually found for polymethyl 

methacrylate (PMMA). In comparison with the reference model, the computing time is considerably 

reduced with limited loss of accuracy. 

Keywords: conduction; radiation; semi-transparent medium; P1 approximation; low order 

model; particle swarm optimization. 

 

1 Introduction 
 

In most applications involving heat transfer across semi-transparent media, the knowledge of 

both conductive and radiative properties is of essential importance. In particular, this is the 

case for polymethyl methacrylate (PMMA), also known as acrylic glass or Plexiglas®. PMMA is 

a semi-transparent thermoplastic material often used as an alternative to glass due to its 

lightweight and its remarkable mechanical properties. PMMA is used in a wide range of fields 

and applications such as aircraft construction (thermal insulators in motors [1] or composite 

materials [2] for instance), building windows, lenses, photovoltaic cells and many other 

applications. Consequently, the determination of thermophysical properties of PMMA in 

coupled radiation and conduction problems is of prime importance, especially with regard to 

the radiation absorption which exhibits a complex behavior. Although PMMA is a non-gray 
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participating medium, i.e. its radiation absorption capability depends strongly on the 

wavelength, the effective absorption coefficient is considered in this work, instead. The 

effective absorption expresses the integrated intensity for a homogeneous and isothermal 

non gray medium. In this work a gray-medium transport equation is considered, which is an 

approximation commonly used to the integrated radiative intensity for medium with 

moderate temperature gradients. Despite that assumption, which reduces the number of 

radiative transfer equations to be solved from many (depending on the medium radiative 

model) to one (i.e. gray radiative model), the resolution of coupled conduction-radiation 

problems may lead to prohibitive computational time, especially when an iterative procedure 

is involved, which is usually the case. This observation is especially true when 

multidimensional effects cannot be ignored leading to large systems of nonlinear equations 

due to the spatial discretization of the domain. In this context, model reduction is useful as it 

allows reducing the size of the model, hereafter referred to as Detailed Model (DM), from the 

number of discretization nodes to a much smaller size by means of a Reduced Order Model 

(ROM). A ROM is a model with a small number of degrees of freedom (dof), able to mimic the 

behavior of an actual physical system or a reference model of that system. A ROM allows 

computing the system response (observable outputs of interest or even the whole field) 

whatever the applied inputs, i.e. time-varying boundary conditions and/or volumetric source 

terms, and/or a range of values of some parameters, with limited loss of accuracy and much 

smaller computing time. A ROM can be obtained by transformation of a DM or identified from 

data coming either from simulations of a DM or from measurements on the actual system. 

Park et al. [3] used the Proper Orthogonal Decomposition (POD), also known as Karhunen-

Loève (KL) decomposition, combined with a Galerkin projection, to build a ROM for heat 

transfer by conduction and radiation (absorption, emission and scattering) in a homogeneous, 

isotropic and gray medium. The problem was clearly nonlinear due to the large variations of 

temperature (several hundreds of K). A material is defined there through scattering albedo 

𝜔 = 𝜎 (𝜎 + 𝜅)⁄  and extinction coefficient 𝛽 = 𝜎 + 𝜅, where 𝜎 and 𝜅 are the scattering and 

absorption coefficients, respectively. Transient snapshots of the temperature and incident 

radiation fields as a response of a step of prescribed temperature (Dirichlet thermal boundary 

condition), were computed with a reference detailed model (finite difference for energy 

equation and S4 method for RTE) and used to build empirical eigenfunctions via POD. The 

POD-Galerkin ROM so obtained was tested with the same reference values of parameters, 

first with the same step signal and then with a sinusoidal temperature signal. Both tests were 

successful. Not surprisingly, this first ROM showed discrepancies with simulations from the 

reference model when tested with the same temperature step signal but with parameter 

values different of the reference values used for generating snapshots for POD. In order to 

include dynamics corresponding to other parameter values, a second ROM was built with 

snapshots associated with 5 couples of parameter values (reference couple and 4 additional 

couples of parameters). This second ROM was tested with these 5 couples of parameters and 

gave good agreement but the authors did not mention which temperature signal was used 

and it is legitimate to wonder if it were the step signal used for snapshots. In such case, a good 

behavior is unsurprisingly expected. In the end only the first ROM seems to have been tested 

with a temperature signal different from the one used to generate snapshots. For the second 
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ROM, test results for parameter couples different from the 5 couples used to generate the 

snapshots employed for the ROM construction were not presented in [3]. However, the 

second ROM appears to work well for other values of parameters as it was used by Park and 

Yoon [4] for solving an inverse problem for the estimation of the absorption coefficient 𝜅 and 

scattering coefficient 𝜎 from simulated temperature measurements with the conjugate 

gradient method. Although authors did not show the temperature signal used to simulate 

temperature measurements for the inverse problem, one can infer from the evolution of 

sensitivities of the temperature with respect to 𝜅 and 𝜎 as functions of time, that the 

temperature signal used to simulate temperatures for the inverse problem is the same as the 

one used to generate snapshots and hence build the ROM, which obviously makes the inverse 

problem much easier to solve with this ROM. In fact, in both [3] and [4], one may wonder how 

would behave the ROM built from 5 couples of parameter values and the step signal when 

used with other parameter values and a different prescribed temperature signal. In both 

papers the considered medium seems to be quite fictitious (density 𝜌 = 0.4 kg.m-3, specific 

heat capacity 𝐶𝑝 = 1100 J.kg-1.K-1 and thermal conductivity 𝑘𝑡ℎ = 44 W.m-1.K-1, thus resulting 

in thermal diffusivity 𝛼 = 0.1 m2.s-1). In [5], Park and Sung also use a ROM based on POD to 

solve an inverse radiation problem for the estimation of a time-varying heat source in an 

enclosure with a participating medium (same as above). 

The Amalgam Reduced Order Modal Model (AROMM) method is based on a special spectral 

problem where the eigenvalue of each mode appears in a Steklov boundary condition, thus 

allowing the handling of nonlinear problems. The amalgamation of the branch modes then 

allows obtaining a ROM from the reference large-size DM. Gaume et al. [6] recently applied 

this method on a furnace where a titanium object of complex shape is heated by radiant tubes. 

The enclosure is filled with a non-participating medium and radiation between heaters and 

object is modelled by radiosity method. The ROM allows computing the time-varying 

temperature distribution in the furnace and in particular in the heated object for different 

values of external heat exchange coefficient and temperature of radiant tubes. 

In the field of electronics, Fagiano and Gati [7] developed an approach to build ROMs for 

thermal radiation from plasma arcs in switchgear devices. The heat radiation problem is first 

modelled as a Linear Parameter Varying (LPV) full order model with one input (black-body 

intensity), one output (radiation intensity), three parameters (temperature, pressure, gas 

composition), and a large number of internal states (one for each considered frequency of the 

electromagnetic spectrum. The LPV ROM has the same form as the LPV full order model but 

with only a few bands of frequencies. The ROM parameters, which in fact are used for 

parametrizing “equivalent” absorption coefficient and spectral emissivity functions, are 

identified through a nonlinear optimization problem. 

To the best knowledge of the authors, other existing reduction methods have up to now not 

been applied to heat transfer problems involving radiation through participating media or 

between surfaces. 

In the present work the Modal Identification Method (MIM) [8] [9] [10] [11] [12] [13] is used 

to build ROMs of heat transfer for coupled conduction and linearized radiation (by absorption 

and emission) in semi-transparent media. MIM shares common features with POD-Galerkin 
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but also has significant differences. In both approaches, as in many model reduction methods, 

each variable field (e.g. temperature, incident radiation, velocity, etc.) is written as a sum of 

products of space functions by time functions, in fact it is a linear combination of space 

functions with time-dependent coefficients. Moreover both methods use space and time data 

obtained either by numerical simulation issued from a reference detailed model (DM) 

sometimes called full order model, or by measurements recorded on the actual system 

(experimental set-up or industrial plant for instance). In the POD-Galerkin approach the ROM 

equations are obtained via a Galerkin projection of local governing equations and the 

components of the ROM constitutive elements are computed with the space functions issued 

from POD performed over data covering space and time [3]. In order to compute these space 

functions, it is required for data to cover the entire spatial domain or at least a part of it for 

which the ROM is built (a 2D plane in a 3D problem for instance). The MIM also requires the 

knowledge of the local governing equations. In the MIM approach, the ROM equations may 

also be written down using a Galerkin projection [10], [12] but only the form of these 

equations is important. The components of the ROM constitutive elements are not computed 

using their literal expressions like in POD-Galerkin, they are identified through a parameter 

estimation problem corresponding to the minimization of a quadratic functional based on the 

difference between reference output data, on the one hand, and on the ROM outputs 

corresponding to the same inputs, on the other hand [8]. Thus, MIM does not require data 

fields over the entire spatial domain. A ROM can be built for a restricted set of observables 

located at chosen locations (even a single observable as in the present paper). MIM does not 

also require to perform a POD on the data. In return of such benefits, the parameter 

estimation problem requires to use optimization techniques (Particle Swarm Optimization 

[14] and Ordinary Least Squares). 

MIM was applied successfully on several heat transfer problems. Let us mention a few dealing 

with heat conduction. In [9], a transient inverse problem for the estimation of two time-

varying internal heat sources from surface temperature measurements, on a system involving 

both radiative and convective boundary conditions, was fruitfully solved with ROMs identified 

by MIM from experimental data. ROMs having as input both a time-varying heat flux density 

and a physical parameter in a predefined range (thermal conductivity) were built in [10], 

where the inverse problem for the estimation of thermal conductivity from temperature data 

was also carried out with these ROMs. State-feedback control problems were also addressed. 

As an example, real time thermal regulation within 0.01°C of an ultra-high precision metrology 

system was successfully performed by model predictive control using in-situ built ROMs [11]. 

MIM has also been used to build ROMs for non-isothermal flows, for instance a 2D laminar 

mixed convection flow around a heated circular cylinder [12]. In the frame of characterization 

of melted polymer flows, a thermo-rheological ROM for a pseudo-plastic fluid flow in a circular 

runner, taking into account transport, conduction and heat dissipation due to viscous effects 

in high shear zones, was developed in [13]. The ROM, whose output was the temperature 

profile in the channel outlet section, was explicitly parametrized by two parameters: the 

consistency index and the flow behavior index defining a power-law model of dynamic 

viscosity. 
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It should be emphasized that POD-Galerkin may lead to unstable ROMs (in the sense of 

Lyapunov Stability), even for linear Partial Differential Equations as shown by Kalashnikova et 

al. [15]. These authors proposed to stabilize the ROMs issued from POD by using a constrained 

nonlinear least squares optimization problem over the unstable eigenvalues of the Linear Time 

Invariant ROM state matrix: the output error between the reference full order model and the 

ROM is minimized subject to the constraint that the real part of the eigenvalues must be 

strictly negative. This approach is in fact very close to the one used in MIM when building non-

parametric linear ROMs, for linear heat conduction problems for instance [11]: the ROM being 

written under modal from, the components of the diagonal state matrix are identified through 

the nonlinear output error minimization problem subject to the constraint that they must be 

real strictly negative scalars, thus ensuring the ROM stability. In the present work, a particular 

care will be paid to the final parametric ROM equations whose specific form will ensure 

stability regardless the values of the parameters. 

The present work is set in the frame of coupled heat transfers by conduction and radiation 

across gray semi-transparent media, such as glass and polymers, for which radiative transfers 

can be modelled suitably by P1 approximation [16]. Furthermore the temperature variations 

of limited range are assumed (about a few tenths of K), thus allowing linearization of the 

radiative contribution. The goal is to build linear ROMs having the ability to compute very 

quickly and with sufficient accuracy the evolution of temperature at locations of interest in 

response to unsteady boundary conditions, with thermal conductivity 𝑘𝑡ℎ and effective 

absorption coefficient 𝜅 of the medium as explicit parameters. Once the governing equations 

and general boundary conditions are presented in section 2, a brief overview of the MIM is 

given in section 3. The parametric ROM equations are then derived in section 4 and the 

method for building a series of ROMs of different sizes is described in section 5. In section 6, 

the proposed approach is then applied to a test problem for which the reference model is a 

two-dimensional axisymmetric unsteady model [17], [18] designed to mimic a “flash-type” 

experiment and based on the finite volumes method coupled with the P1 approximation. In 

this illustrative example, the ranges of 𝑘𝑡ℎ and 𝜅 values enclose the values found in the 

literature for PMMA. ROMs are tested with parameter values and applied heat flux signal both 

different from those used for the ROMs construction. 

 

2 Local governing equations and boundary conditions 
 

2.1 Local governing equations 
 

Let us consider heat transfer by conduction and radiation within a gray, homogeneous, 

isotropic, absorbing, emitting and non-scattering medium with black boundary surfaces. Let 

us call Ω the domain and Γ its boundary. The problem may be either 1D, 2D or 3D. 

The energy equation writes: 
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𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
(𝑥, 𝑡) = −∇⃗⃗ . (𝑞 𝑐𝑜𝑛𝑑 + 𝑞 𝑟𝑎𝑑) (1)  

 

Where 𝑥 ∈ Ω is the generic position in space and 𝑡 ∈ [0; 𝑡𝑓] is the time variable. 

 

The conductive heat flux density vector 𝑞 𝑐𝑜𝑛𝑑 is assumed to follow Fourier’s law: 

 

𝑞 𝑐𝑜𝑛𝑑 = −𝑘𝑡ℎ∇⃗⃗ 𝑇(𝑥, 𝑡) (2)  

 

The radiative transfer equation (RTE) for a semi-transparent gray medium writes: 

 

−∇⃗⃗ . 𝑞 𝑟𝑎𝑑 = 𝜅(𝐺(𝑥, 𝑡) − 4𝜋𝐿
0(𝑇)) (3)  

 

Where 𝑞 𝑟𝑎𝑑 is the radiative heat flux density, 𝜅 the effective absorption coefficient, 𝐺 the 

incident radiation and 𝐿0(𝑇) = 𝑛2𝜎𝑇4 𝜋⁄  the total radiation intensity. 

The P1 method [16], suitable for optically thick media, provides a relationship between the 

radiative heat flux density and the incident radiation: 

 

𝑞 𝑟𝑎𝑑 = −
1

3𝜅
∇⃗⃗ 𝐺(𝑥, 𝑡) (4)  

 

Using (2) and (4), equations (1) and (3) can be written as: 

 

𝜌𝐶𝑝
𝜕𝑇

𝜕𝑡
(𝑥, 𝑡) = ∇⃗⃗ . (𝑘𝑡ℎ ∇⃗⃗ 𝑇(𝑥, 𝑡)) + ∇⃗⃗ . (

1

3𝜅
∇⃗⃗ 𝐺(𝑥, 𝑡)) (5)  

 

∇⃗⃗ . (
1

3𝜅
∇⃗⃗ 𝐺(𝑥, 𝑡)) = 𝜅(𝐺(𝑥, 𝑡) − 4𝑛2𝜎𝑇4(𝑥, 𝑡)) (6)  

 

In equations (5) and (6), density 𝜌, specific heat capacity 𝐶𝑝, thermal conductivity 𝑘𝑡ℎ, 

effective absorption coefficient 𝜅 and refractive index 𝑛 are considered uniform on domain Ω 

and independent of the temperature. 
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2.2 Boundary conditions 
 

The thermal boundary condition is written in the following general form: 

 

𝑘𝑡ℎ∇⃗⃗ 𝑇. �⃗� +
1

3𝜅
∇⃗⃗ 𝐺. �⃗� = 𝛾(𝑥)𝜑(𝑡) + ℎ(𝑥)(𝑇𝑎 − 𝑇(𝑥, 𝑡))      ∀𝑥 ∈ Γ, ∀𝑡 ∈ [0; 𝑡𝑓] (7)  

 

Where ℎ(𝑥) is the heat transfer coefficient distribution and 𝑇𝑎 is the ambient temperature. 

One may therefore define subparts of boundary Γ, each one with either a Fourier condition 

(𝛾 = 0), a Neumann condition (𝛾 = 1 and ℎ = 0) or a mixed condition. 

 

The radiative boundary condition is written according to Marshak’s model [16], based on 

conservation of normal flux across the surface: 

 

2

3
∇⃗⃗ 𝐺. �⃗� + 𝜅𝐺 = 4𝜅𝑛2𝜎𝑇4      ∀𝑥 ∈ Γ, ∀𝑡 ∈ [0; 𝑡𝑓] (8)  

 

Assuming diffuse surfaces, the Marshak’s model does not add any error to that of the P1 

approximation itself. 

The medium is considered to be initially at ambient temperature 𝑇𝑎 (𝑇(𝑡 = 0) = 𝑇𝑎), thus 

corresponding to zero applied heat flux density (𝜑(𝑡 = 0) = 0). 

 

2.3 Linearization around nominal configuration 
 

Let us consider a steady state corresponding to the temperature field 𝑇0(𝑥) and incident 

radiation field 𝐺0(𝑥) resulting from constant applied heat flux density 𝜑0. According to energy 

equation (5), RTE (6) and boundary conditions (7) and (8), these fields are solutions of: 

0 = ∇⃗⃗ . (𝑘𝑡ℎ∇⃗⃗ 𝑇0(𝑥)) + ∇⃗⃗ . (
1

3𝜅
∇⃗⃗ 𝐺0(𝑥)) (9)  

And: 

∇⃗⃗ . (
1

3𝜅
∇⃗⃗ 𝐺0(𝑥)) = 𝜅 (𝐺0(𝑥) − 4𝑛

2𝜎(𝑇0(𝑥))
4
) (10)  

With boundary conditions: 

𝑘𝑡ℎ∇⃗⃗ 𝑇0(𝑥). �⃗� +
1

3𝜅
∇⃗⃗ 𝐺0(𝑥). �⃗� = 𝛾(𝑥)𝜑0 + ℎ(𝑥)(𝑇𝑎 − 𝑇0(𝑥)) (11)  

And: 
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2

3
∇⃗⃗ 𝐺0(𝑥). �⃗� + 𝜅𝐺0(𝑥) = 4𝜅𝑛

2𝜎(𝑇0(𝑥))
4
 (12)  

 

Small heat flux density variation 𝛿𝜑(𝑡) and resulting small variations of temperature 𝛿𝑇(𝑥, 𝑡) 

and incident radiation 𝛿𝐺(𝑥, 𝑡) around this steady state are assumed. Heat flux density, 

temperature and incident radiation corresponding to these variations are written as: 

 

𝜑(𝑡) = 𝜑0 + 𝛿𝜑(𝑡) (13)  

 

𝑇(𝑥, 𝑡) = 𝑇0(𝑥) + 𝛿𝑇(𝑥, 𝑡) (14)  

 

𝐺(𝑥, 𝑡) = 𝐺0(𝑥) + 𝛿𝐺(𝑥, 𝑡) (15)  
 

Injecting (14) and (15) in (5), then subtracting (9), we get the energy equation for 𝛿𝑇 and 𝛿𝐺 : 

 

𝜌𝐶𝑝
𝜕𝛿𝑇

𝜕𝑡
(𝑥, 𝑡) = ∇⃗⃗ . (𝑘𝑡ℎ ∇⃗⃗ 𝛿𝑇(𝑥, 𝑡)) + ∇⃗⃗ . (

1

3𝜅
∇⃗⃗ 𝛿𝐺(𝑥, 𝑡)) (16)  

 

Injecting (14) and (15) in (6), developing the nonlinear term using the binomial theorem, then 

subtracting (10), we get the nonlinear RTE for 𝛿𝑇 and 𝛿𝐺. Then, taking into account the 

assumption of small temperature variation 𝛿𝑇, nonlinear terms i.e. terms in 𝛿𝑇 of degree 

higher than 1 are neglected, yielding the following linearized RTE for 𝛿𝑇 and 𝛿𝐺: 

 

∇⃗⃗ . (
1

3𝜅
∇⃗⃗ 𝛿𝐺(𝑥, 𝑡)) = 𝜅 (𝛿𝐺(𝑥, 𝑡) − 16𝑛2𝜎(𝑇0(𝑥))

3
𝛿𝑇(𝑥, 𝑡)) (17)  

 

Such linearization can be justified even for 𝑇0 = 300 𝐾 and temperature variations 𝛿𝑇(𝑥, 𝑡) 

of about 30 K: for these values, comparing the two terms in 𝛿𝑇 and (𝛿𝑇)2 in the expansion of 

(𝑇0(𝑥) + 𝛿𝑇(𝑥, 𝑡))
4
 using the binomial theorem gives 4(𝑇0(𝑥))

3
𝛿𝑇(𝑥, 𝑡) = 3.24 × 109 𝐾4 

and 6(𝑇0(𝑥))
2
(𝛿𝑇(𝑥, 𝑡))

2
= 4.86 × 108 𝐾4. 

Thermal and radiative boundary conditions for the linearized problem can be obtained in a 

similar manner from equations (7), (8), (11), (12), (13), (14) and (15): 

 

𝑘𝑡ℎ∇⃗⃗ 𝛿𝑇(𝑥, 𝑡). �⃗� +
1

3𝜅
∇⃗⃗ 𝛿𝐺(𝑥, 𝑡). �⃗� = 𝛾(𝑥)𝛿𝜑(𝑡) − ℎ(𝑥)𝛿𝑇(𝑥, 𝑡) (18)  
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2

3
∇⃗⃗ 𝛿𝐺(𝑥, 𝑡). �⃗� + 𝜅𝛿𝐺(𝑥, 𝑡) = 16𝜅𝑛2𝜎(𝑇0(𝑥))

3
𝛿𝑇(𝑥, 𝑡) (19)  

 

From now on, equations (16) to (19) will be considered for the ROM formulation. However, 

the numerical data from which the ROMs are going to be built will be simulated by a reference 

nonlinear DM. 

The initial conditions for the linearized problem around nominal configuration are of course: 

 

𝛿𝑇(𝑥, 𝑡 = 0) = 0 (20)  
 

𝛿𝐺(𝑥, 𝑡 = 0) = 0 (21)  
 

Corresponding to 𝛿𝜑(𝑡 = 0) = 0. 

The nominal steady state may be chosen so that the medium is at ambient temperature 𝑇𝑎 : 

one has thus 𝜑0 = 0, 𝑇0(𝑥) = 𝑇𝑎 and 𝐺0(𝑥) = 4𝑛
2𝜎(𝑇0(𝑥))

4
. 

 

 

3 Modal Identification Method: overview 
 

We aim at building a ROM able to compute temperature values at some specific locations 

inside the domain and/or on its boundaries whatever the applied heat flux density signal 

𝛿𝜑(𝑡) and whatever the values of thermal conductivity 𝑘𝑡ℎ and effective absorption 

coefficient 𝜅 in predefined ranges. 

The approach used in the present paper is the Modal Identification Method (MIM) [8] [9] [10] 

[11] [12] [13]. The MIM consists of three main steps: 

1) Defining the structure of the ROM equations able to adequately describe the involved 

physics (see section 4); 

2) Generating some input-output data representative of the system. Those data may come 

from in-situ measurements or, as in the present work, from numerical simulations (see 

section 5.1 for a brief presentation and section 6.2 for the practical application); 

3) Identifying the fixed constitutive parameters of the ROM equations through the 

minimization of a functional based on the quadratic residuals between the previously 

generated output data of the system, on the one hand, and the outputs of the ROM, on 

the other hand, for the same input data (see section 5.2 for a description of technical 

aspects and section 6.2 for results on the presented application). 



 

10 
 

The MIM therefore aims to adjust the ROM constitutive parameters using optimization 

techniques, in order for the ROM to mimic the data characterizing the input-output responses 

of the system. 

 

4 Reduced Order Model formulation 
 

4.1 Approximation of temperature and incident radiation 
 

Fields of temperature variation 𝛿𝑇(𝑥, 𝑡) and incident radiation variation 𝛿𝐺(𝑥, 𝑡) are 

approximated as sums of products of space-varying functions and time-varying functions. This 

will allow us to separate space and time in the ROM. Let us write: 

𝛿𝑇(𝑥, 𝑡) ≈∑𝜙𝑖
(𝑇)(𝑥)𝑎𝑖

(𝑇)
(𝑡)

𝑚𝑇

𝑖=1

 (22)  

 

𝜙𝑖
(𝑇)(𝑥), 𝑖 ∈ {1,… ,𝑚𝑇}, are a truncation of an orthonormal basis of the Hilbert space formed 

by the space ℒ2(Ω) of square integrable functions on Ω equipped with the usual inner product 

〈. , . 〉: 

〈𝑢, 𝑣〉 = ∫𝑢𝑣𝑑Ω

 

Ω

 (23)  

 

Orthonormality of functions 𝜙𝑖
(𝑇)(𝑥), 𝑖 ∈ {1, … ,𝑚𝑇} corresponds to the following property: 

 

〈𝜙𝑖
(𝑇)(𝑥), 𝜙𝑗

(𝑇)(𝑥)〉 = ∫𝜙𝑖
(𝑇)(𝑥)𝜙𝑗

(𝑇)(𝑥)𝑑Ω

 

Ω

= 𝛿𝑖𝑗    ∀𝑖 ∈ [1;𝑚𝑇], ∀𝑗 ∈ [1;𝑚𝑇] (24)  

 

Let us also write: 

𝛿𝐺(𝑥, 𝑡) ≈∑𝜙𝑖
(𝐺)(𝑥)𝑎𝑖

(𝐺)
(𝑡)

𝑚𝐺

𝑖=1

 (25)  

 

Where 𝜙𝑖
(𝐺)(𝑥), 𝑖 ∈ {1, … ,𝑚𝐺}, are a truncation of another orthonormal basis of the same 

space. One therefore has: 
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〈𝜙𝑖
(𝐺)(𝑥), 𝜙𝑗

(𝐺)(𝑥)〉 = ∫𝜙𝑖
(𝐺)(𝑥)𝜙𝑗

(𝐺)(𝑥)𝑑Ω

 

Ω

= 𝛿𝑖𝑗    ∀𝑖 ∈ [1;𝑚𝐺], ∀𝑗 ∈ [1;𝑚𝐺] (26)  

 

At this point, we only seek to obtain the form of our ROM but at the time of the ROM 

identification, 𝑚𝑇 and 𝑚𝐺 will, of course, remain small. 

 

4.2 Galerkin projections of energy and radiative transfer equations 
 

The ROM formulation is obtained by writing down Galerkin projections of local conservation 

equations. For the sake of brevity, a short description of Galerkin projections of energy 

equation (16) and linearized radiative transfer equation (17), along with the introduction of 

boundary conditions (18) and (19), is given in section 1 of the appendix. 

Coupled equations (A.5) and (A.13) (equations in the appendix are noted with an « A ») in 

matrix-vector form are obtained and written hereafter: 

 

𝑑𝑎(𝑇)(𝑡)

𝑑𝑡
= (𝑘𝑡ℎ𝑀𝑇𝑑 +𝑀𝑇ℎ)𝑎

(𝑇)(𝑡) +
1

𝜅
𝑀𝑇𝐺𝑎

(𝐺)(𝑡) + 𝑉𝛿𝜑(𝑡) 

 

(
1

𝜅
𝑀𝐺0 + 𝜅𝐼𝑚𝐺 +𝑀𝐺2) 𝑎

(𝐺)(𝑡) = (𝜅𝑀𝐺𝑇1 +𝑀𝐺𝑇2)𝑎
(𝑇)(𝑡) 

 

The involved matrices and vectors are defined in the appendix by equations (A.6) to (A.9) and 

(A.14) to (A.17). If space functions 𝜙𝑘
(𝑇)
, 𝑘 ∈ [1;𝑚𝑇] and 𝜙𝑘

(𝐺)
, 𝑘 ∈ [1;𝑚𝐺] were computed 

through Proper Orthogonal Decomposition (POD) of some temperature and incident radiation 

data, it would be possible to compute the elements defined in (A.6) to (A.9) and (A.14) to 

(A.17). Coupled equations (A.4) and (A.12) would thus form the so-called “POD-Galerkin” 

ROM. However, in the frame of the Modal Identification Method (MIM) used in this paper, 

space functions are not obtained via POD. The literal form of elements defined in (A.6) to (A.9) 

and (A.14) to (A.17) is not even taken into account. An optimization algorithm is used instead 

to build the ROM (see section 5.2). In order to reduce as much as possible the number of 

parameters to identify in the ROM construction, further processing is performed in the 

following section 4.3. 

It is worth noticing that the case of several independent applied heat flux densities in the ROM 

formulation can be easily handled. Such case would correspond to have ∑ 𝛾𝑖(𝑥)𝛿𝜑𝑖(𝑡)
𝑝
𝑖=1  

instead of 𝛾(𝑥)𝛿𝜑(𝑡) in thermal boundary condition (18), resulting in a ∑ 𝑉𝑖𝛿𝜑𝑖(𝑡)
𝑝
𝑖=1  term in 

equation (A.5). However, building such a ROM via an identification procedure requires heat 

flux signals and resulting temperature data representative of the system behavior. 
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4.3 ROM in modal form: change of variables 
 

Matrix 𝑀𝑇𝑑 defined by eq.(A.6) is symmetric. It is hence diagonalizable with real eigenvalues 

and its eigenvectors form an orthonormal basis of ℝ𝑚𝑇. Let us call 𝐷𝑇  the diagonal matrix 

whose components are eigenvalues of 𝑀𝑇𝑑 and 𝑃𝑇  the orthogonal matrix ([𝑃𝑇]
−1 = [𝑃𝑇]

𝑇) 

whose columns form a set of eigenvectors of 𝑀𝑇𝑑. 

One therefore has: 

𝐷𝑇 = [𝑃𝑇]
𝑇𝑀𝑇𝑑𝑃𝑇  (27)  

 

Matrix 𝑀𝐺0 defined by eq.(A.14) is also symmetric. Let us call 𝐷𝐺  the diagonal matrix whose 

components are eigenvalues of 𝑀𝐺0 and 𝑃𝐺  the orthogonal matrix ([𝑃𝐺]
−1 = [𝑃𝐺]

𝑇) whose 

columns form a set of eigenvectors of 𝑀𝐺0. 

One therefore has: 

𝐷𝐺 = [𝑃𝐺]
𝑇𝑀𝐺0𝑃𝐺 (28)  

 

The following changes of variables are now considered: 

𝑎(𝑇)(𝑡) = 𝑃𝑇𝑋
(𝑇)(𝑡) (29)  

 

𝑎(𝐺)(𝑡) = 𝑃𝐺𝑋
(𝐺)(𝑡) (30)  

 

Let us now define the following matrices and vectors: 

 

𝑆𝑇 = [𝑃𝑇]
𝑇𝑀𝑡ℎ𝑃𝑇 ,    𝐴𝑇𝐺 = [𝑃𝑇]

𝑇𝑀𝑇𝐺𝑃𝐺 ,   𝐵 = [𝑃𝑇]
𝑇𝑉 (31)  

 

Injecting changes of variables (29) and (30) into ROM for energy equation (A.5), performing 

the matrix-vector product of [𝑃𝑇]
−1 (= [𝑃𝑇]

𝑇) with each term of the equation and taking 

equation (27) and notations (31) into account, one obtains the ROM for energy in modal form: 

 

𝑑𝑋(𝑇)(𝑡)

𝑑𝑡
= (𝑘𝑡ℎ𝐷𝑇 + 𝑆𝑇)𝑋

(𝑇)(𝑡) +
1

𝜅
𝐴𝑇𝐺𝑋

(𝐺)(𝑡) + 𝐵𝛿𝜑(𝑡) (32)  

 

Let us also define the following matrices: 

 

𝑆𝐺 = [𝑃𝐺]
𝑇𝑀𝐺2𝑃𝐺 ,   𝐴𝐺𝑇1 = [𝑃𝐺]

𝑇𝑀𝐺𝑇1𝑃𝑇 ,   𝐴𝐺𝑇2 = [𝑃𝐺]
𝑇𝑀𝐺𝑇2𝑃𝑇  (33)  
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Injecting changes of variables (29) and (30) into ROM for RTE (A.13), performing the matrix-

vector product of [𝑃𝐺]
−1 (= [𝑃𝐺]

𝑇) with each term of the equation and taking equation (28) 

and notations (33) into account, one obtains the ROM for RTE in modal form: 

 

(
1

𝜅
𝐷𝐺 + 𝜅𝐼𝑚𝐺 + 𝑆𝐺)𝑋

(𝐺)(𝑡) = (𝜅𝐴𝐺𝑇1 + 𝐴𝐺𝑇2)𝑋
(𝑇)(𝑡) (34)  

 

4.4 Particular form to ensure ROM stability 
 

In order to ensure stability of the linear ROM for any choice of the values of parameters 𝑘𝑡ℎ 

and 𝜅, the following constraints are enforced on constitutive matrices of equations (32) and 

(34): 

i. Diagonal matrix 𝐷𝑇  has negative components (possibly zero for some); 

ii. 𝑆𝑇 = −[𝑈𝑇]
𝑇𝑈𝑇 with 𝑈𝑇 an upper triangular matrix (possibly with some components 

of its diagonal equal to zero); 

iii. Diagonal matrix 𝐷𝐺  has positive components (possibly zero for some); 

iv. 𝑆𝐺 = [𝑈𝐺]
𝑇𝑈𝐺 with 𝑈𝐺 an upper triangular matrix (possibly with some components of 

its diagonal equal to zero); 

v. 𝐴𝐺𝑇1 = 𝐴𝐺𝑇2 = −[𝐴𝑇𝐺]
𝑇. One should note that even if the components of these 

matrices are equal, their dimensional units are not the same; 

vi. Matrix 𝐴𝑇𝐺  is orthogonal i.e. [𝐴𝑇𝐺]
−1 = [𝐴𝑇𝐺]

𝑇. This requires the next condition; 

vii. Matrix 𝐴𝑇𝐺  is a square matrix, i.e. 𝑚𝑇 = 𝑚𝐺 = 𝑚. In practice this is actually the case, 

independently of stability issues. 

Taking constraint iv into account, let be the matrix 𝐴𝐺  defined as: 

𝐴𝐺 =
1

𝜅
𝐷𝐺 + 𝜅𝐼𝑚𝐺 + [𝑈𝐺]

𝑇𝑈𝐺⏟    
=𝑆𝐺

 (35)  

 

𝜅 being strictly positive, constraint iii ensures that 
1

𝜅
𝐷𝐺  is symmetric semi-definite positive. 

Matrix 𝜅𝐼𝑚𝐺  is also symmetric definite positive. 

According to (33), matrix 𝑆𝐺 is symmetric. Constraint iv is the Cholesky factorization of 𝑆𝐺 and 

thus ensures that 𝑆𝐺 is symmetric semi-definite positive. 

Hence matrix 𝐴𝐺  is the sum of three symmetric positive matrices, one being definite. 𝐴𝐺  is 

therefore symmetric definite positive. So, 𝐴𝐺  is invertible and its inverse [𝐴𝐺]
−1 is also 

symmetric definite positive. 

Hence, according to equations (34) and (35), one has: 

𝑋(𝐺)(𝑡) = [𝐴𝐺]
−1(𝜅𝐴𝐺𝑇1 + 𝐴𝐺𝑇2)𝑋

(𝑇)(𝑡) 
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Which, thanks to constraint v, writes: 

𝑋(𝐺)(𝑡) = −(𝜅 + 1)[𝐴𝐺]
−1[𝐴𝑇𝐺]

𝑇𝑋(𝑇)(𝑡) 

Injecting this expression into equation (32) and taking into account constraint ii leads to: 

 

𝑑𝑋(𝑇)(𝑡)

𝑑𝑡
= (𝑘𝑡ℎ𝐷𝑇 −[𝑈𝑇]

𝑇𝑈𝑇⏟      
=𝑆𝑇

− (1 +
1

𝜅
)𝐴𝑇𝐺[𝐴𝐺]

−1[𝐴𝑇𝐺]
𝑇)𝑋(𝑇)(𝑡) + 𝐵𝛿𝜑(𝑡) (36)  

 

Let us define matrix 𝐴𝑇  as: 

𝐴𝑇 = 𝑘𝑡ℎ𝐷𝑇 + 𝑆𝑇 − (1 +
1

𝜅
)𝐴𝑇𝐺[𝐴𝐺]

−1[𝐴𝑇𝐺]
𝑇 (37)  

 

Let us also define matrix 𝑆𝑇𝐺 as: 

𝑆𝑇𝐺 = 𝐴𝑇𝐺[𝐴𝐺]
−1[𝐴𝑇𝐺]

𝑇  (38)  

 

Obviously, 𝑆𝑇𝐺 is symmetric. 

According to equation (38), matrix 𝐴𝑇  defined by equation (37) also writes: 

𝐴𝑇 = 𝑘𝑡ℎ𝐷𝑇 + 𝑆𝑇 − (1 +
1

𝜅
) 𝑆𝑇𝐺 

𝑘𝑡ℎ being strictly positive, constraint i ensures that 𝑘𝑡ℎ𝐷𝑇  is symmetric semi-definite negative. 

According to (31), matrix 𝑆𝑇 is symmetric. Constraint ii is the Cholesky factorization of −𝑆𝑇 

and thus ensures that 𝑆𝑇 is symmetric semi-definite negative. 

[𝐴𝐺]
−1 being symmetric definite positive, it can be diagonalized and thus written as [𝐴𝐺]

−1 =

𝑃𝐷𝑃𝑇 where 𝐷 is diagonal with strictly positive components and 𝑃 is orthogonal. Matrix 𝑆𝑇𝐺 

defined by equation (38) therefore writes: 

𝑆𝑇𝐺 = 𝐴𝑇𝐺𝑃𝐷𝑃
𝑇[𝐴𝑇𝐺]

𝑇 = 𝐴𝑇𝐺𝑃𝐷[𝐴𝑇𝐺𝑃]
𝑇 

Constraint vi states that 𝐴𝑇𝐺  is orthogonal. 𝐴𝑇𝐺𝑃 is thus the product of two orthogonal 

matrices and hence is also orthogonal. As a consequence, matrix 𝑆𝑇𝐺 is symmetric definite 

positive. 𝜅 being strictly positive, −(1 +
1

𝜅
) 𝑆𝑇𝐺 is therefore symmetric definite negative. 

Finally, matrix 𝐴𝑇  is the sum of three symmetric negative matrices, one being definite. 

Subsequently, 𝐴𝑇  is itself symmetric definite negative. 

The dynamic system (36), which also writes 
𝑑𝑋(𝑇)(𝑡)

𝑑𝑡
= 𝐴𝑇𝑋

(𝑇)(𝑡) + 𝐵𝛿𝜑(𝑡) according to (37), 

is therefore stable (Lyapunov stability) regardless the values of 𝑘𝑡ℎ and 𝜅. 

Note that according to definition of 𝐴𝑇𝐺  in (31) and of 𝐴𝐺𝑇1 and 𝐴𝐺𝑇2 in (33), constraint v is 

equivalent to enforce 𝑀𝐺𝑇1 = 𝑀𝐺𝑇2 = −[𝑀𝑇𝐺]
𝑇. Taking into account expressions of 𝑀𝑇𝐺  
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(eq.(A.8)), 𝑀𝐺𝑇1 (eq.(A.16)) and 𝑀𝐺𝑇2 (eq.(A.17)), such a constraint corresponds to enforcing 

particular relationships between space functions 𝜙𝑘
(𝑇)

 and 𝜙𝑘
(𝐺)

, ∀𝑘 ∈ [1;𝑚]. 

 

4.5 Specific observables: output equation 
 

We are interested in some observable temperatures at specific locations 𝑥𝑗 , 𝑗 ∈ [1; 𝑁𝑜𝑏𝑠] 

gathered in vector 𝛿𝑇𝑜𝑏𝑠 ∈ ℝ
𝑁𝑜𝑏𝑠 . According to the temperature field approximation (22) and 

defining matrix 𝐶𝑜𝑏𝑠 ∈ ℝ
𝑁𝑜𝑏𝑠×𝑚𝑇 such as 𝐶𝑗𝑖 = 𝜙𝑖

(𝑇)
(𝑥𝑗)  ∀𝑗 ∈ [1;𝑁𝑜𝑏𝑠], ∀𝑖 ∈ [1;𝑚𝑇], one 

has: 

[𝛿𝑇𝑜𝑏𝑠]𝑗(𝑡) = 𝛿𝑇(𝑥𝑗 , 𝑡) =∑𝜙𝑖
(𝑇)
(𝑥𝑗)𝑎𝑖

(𝑇)
(𝑡)

𝑚𝑇

𝑖=1

=∑(𝐶𝑜𝑏𝑠)𝑗𝑖𝑎𝑖
(𝑇)
(𝑡)

𝑚𝑇

𝑖=1

     𝑗 ∈ [1; 𝑁𝑜𝑏𝑠] 

 

Which also writes in matrix form: 

𝛿𝑇𝑜𝑏𝑠(𝑡) = 𝐶𝑜𝑏𝑠𝑎
(𝑇)(𝑡) 

 

Injecting (29) in the above equation and defining 𝐻 = 𝐶𝑜𝑏𝑠𝑃𝑇 ∈ ℝ
𝑁𝑜𝑏𝑠×𝑚𝑇 leads to: 

 

𝛿𝑇𝑜𝑏𝑠(𝑡) = 𝐻𝑋
(𝑇)(𝑡) (39)  

 

Other observable quantities can be defined as linear combinations of such primary 

observables (average temperature on some chosen area, for instance). 

 

4.6 Parametric ROM: summary 
 

The parametric ROM is composed of: 

• The dynamic system of equations (36), taking constraints i to vii of section 4.4 into 
account in order to ensure stability whatever the values of 𝑘𝑡ℎ and 𝜅: 
 

𝑑𝑋(𝑇)(𝑡)

𝑑𝑡
= (𝑘𝑡ℎ𝐷𝑇 − [𝑈𝑇]

𝑇𝑈𝑇 − (1 +
1

𝜅
)𝐴𝑇𝐺[𝐴𝐺]

−1[𝐴𝑇𝐺]
𝑇)𝑋(𝑇)(𝑡) + 𝐵𝛿𝜑(𝑡) 

 
where 𝐷𝑇  is diagonal with negative components, 𝑈𝑇 is upper triangular, 𝐴𝑇𝐺  is 
orthogonal and 𝐴𝐺  is defined by equation (35): 
 

𝐴𝐺 =
1

𝜅
𝐷𝐺 + 𝜅𝐼𝑚𝐺 + [𝑈𝐺]

𝑇𝑈𝐺 
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where 𝐷𝐺  is diagonal with positive components and 𝑈𝐺 is upper triangular. 
 

Equation (36), with 𝐴𝐺  given by (35), allows computing the low-size vector 𝑋(𝑇)(𝑡) ∈
ℝ𝑚 as a function of heat flux variation 𝛿𝜑(𝑡) and explicit parameters 𝑘𝑡ℎ and 𝜅. 
 

• The output equation (39) for computing the observable temperature vector 𝛿𝑇𝑜𝑏𝑠 ∈

ℝ𝑁𝑜𝑏𝑠  from 𝑋(𝑇)(𝑡) ∈ ℝ𝑚: 
 

𝛿𝑇𝑜𝑏𝑠(𝑡) = 𝐻𝑋
(𝑇)(𝑡) 

 

The initial thermal condition (20) of the linearized continuous problem implies 𝛿𝑇𝑜𝑏𝑠(𝑡 = 0) =

0 and hence 𝑋(𝑇)(𝑡 = 0) = 0 according to equation (39). Equation (36) in initial steady state 

is satisfied for 𝑋(𝑇)(𝑡 = 0) = 0 and 𝛿𝜑(𝑡 = 0) = 0. 

 

5 Data generation and ROMs identification 
 

Vector functions 𝑋(𝑇)(𝑡) and 𝛿𝑇𝑜𝑏𝑠(𝑡) depend on parameters 𝑘𝑡ℎ and 𝜅. In the ROM 

identification process, notations 𝑋(𝑇)(𝑗, 𝑡) and 𝛿𝑇𝑜𝑏𝑠(𝑗, 𝑡) correspond respectively to the 

vector functions 𝑋(𝑇)(𝑡) and 𝛿𝑇𝑜𝑏𝑠(𝑡) associated with a particular couple (𝑘𝑡ℎ, 𝜅)𝑗. 

 

5.1 Data generation 
 

The identification of the ROM constitutive parameters requires some input-output data: 

• a chosen heat flux signal 𝛿𝜑𝑑𝑎𝑡𝑎(𝑡), corresponding in practice to discrete values 

𝛿𝜑𝑑𝑎𝑡𝑎(𝑡𝑘), 𝑘 ∈ [1;𝑁𝑡
𝑖𝑑] , as well as a set of couples (𝑘𝑡ℎ, 𝜅)𝑗

𝑑𝑎𝑡𝑎 , 𝑗 ∈ [1; 𝑁𝑐
𝑖𝑑]; 

• the resulting observable temperatures [𝛿𝑇𝑜𝑏𝑠
𝑑𝑎𝑡𝑎]

𝑖
(𝑗, 𝑡𝑘), 𝑖 ∈ [1; 𝑁𝑜𝑏𝑠], 𝑗 ∈

[1; 𝑁𝑐
𝑖𝑑], 𝑘 ∈ [1; 𝑁𝑡

𝑖𝑑]. In the present work, temperature data are computed with the 

Finite Volumes detailed model briefly presented in section 6.1. 

It is worth noticing that although the ROM general form is independent of geometry and 

parameters 𝜌, 𝐶𝑝, 𝑛, the temperature data resulting from different geometries and/or 

different values of 𝜌, 𝐶𝑝, 𝑛, would, of course, lead to different ROMs. 

 

5.2 ROMs identification 

5.2.1 Optimization problem for the order 𝒎 ROM 

In order to effectively build a ROM of order 𝑚, elements of its constitutive matrices and 

vectors need to be computed. In the framework of the Modal Identification Method, rather 
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than taking their analytic form into account, their elements are identified through an 

algorithm using optimization techniques. The ROM construction is therefore recast into a 

parameter estimation problem. Parameters to be identified are components of: 

• 𝐷𝑇 ∈ ℝ
𝑚×𝑚 diagonal, 𝑈𝑇 ∈ ℝ

𝑚×𝑚 upper triangular, 𝐴𝑇𝐺 ∈ ℝ
𝑚×𝑚 orthogonal, 𝐵 ∈

ℝ𝑚, 𝐷𝐺 ∈ ℝ
𝑚×𝑚 diagonal and 𝑈𝐺 ∈ ℝ

𝑚×𝑚 upper triangular in equations (35) and (36); 

• 𝐻 ∈ ℝ𝑁𝑜𝑏𝑠×𝑚 in output equation (39). 

For a given order 𝑚, the number of unknown parameters is hence: 

𝑁𝑝𝑎𝑟𝑎𝑚(𝑚) = 2𝑚
2 + 4𝑚 + 𝑁𝑜𝑏𝑠𝑚 

Except for elements of matrix 𝐻 whose identification is processed differently, unknown 

parameters to be identified are gathered into vector 𝜃 of size 𝑁𝜃(𝑚) = 2𝑚
2 + 4𝑚. 

All parameters are identified through the minimization of a functional 𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻) based on 

the quadratic deviation between: 

• the temperature [𝛿𝑇𝑜𝑏𝑠] computed with the ROM on the one hand (hence depending 
on 𝜃 and 𝐻), and 

• the corresponding temperature data [𝛿𝑇𝑜𝑏𝑠
𝑑𝑎𝑡𝑎], computed here with the reference 

detailed model (DM) on the other hand, 

for the same applied heat flux signal 𝛿𝜑𝑑𝑎𝑡𝑎(𝑡𝑘), 𝑘 ∈ [1;𝑁𝑡
𝑖𝑑]  and the same set of couples 

(𝑘𝑡ℎ, 𝜅)𝑗
𝑑𝑎𝑡𝑎, 𝑗 ∈ [1; 𝑁𝑐

𝑖𝑑]. 

For a given order 𝑚, the quadratic functional 𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻) therefore writes: 

𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻) = ∑∑∑([𝛿𝑇𝑜𝑏𝑠]𝑖(𝑗, 𝑡𝑘, 𝜃, 𝐻) − [𝛿𝑇𝑜𝑏𝑠

𝑑𝑎𝑡𝑎]
𝑖
(𝑗, 𝑡𝑘))

2
𝑁𝑡
𝑖𝑑

𝑘=1

𝑁𝑐
𝑖𝑑

𝑗=1

𝑁𝑜𝑏𝑠

𝑖=1

 (40)  

 

In order to assess the quality of the identified ROM, the mean quadratic discrepancy 𝜎𝑖𝑑
(𝑚) 

between data from DM and corresponding values computed by ROM is computed: 

𝜎𝑖𝑑
(𝑚) = √

𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻)

𝑁𝑜𝑏𝑠𝑁𝑐
𝑖𝑑𝑁𝑡

𝑖𝑑
 (41)  

 

5.2.2 Identification procedure for ROM of order 𝒎 

Equations (35), (36) and (39) show that ROM outputs 𝛿𝑇𝑜𝑏𝑠 have nonlinear dependency on 

𝐷𝑇 , 𝑈𝑇 , 𝐴𝑇𝐺 , 𝐵, 𝐷𝐺 , 𝑈𝐺 and hence on 𝜃, whereas they depend linearly on 𝐻. As a consequence, 

two types of optimization methods are used for the minimization of 𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻) through a 

two-step approach. Both optimization algorithms are briefly described in section 2 of the 

appendix. A nonlinear iterative method is employed for the estimation of vector 𝜃. A Particle 

Swarm Optimization (PSO) algorithm [14] has been used in the present work (cf. section 2.1 
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of appendix). At each iteration of the PSO algorithm, matrix 𝐻 is computed via Ordinary Least 

Squares (cf. section 2.2 of appendix). 

Figure 1 gives the identification procedure for a ROM of given order 𝑚 in the Modal 

Identification Method. The stopping criterion is usually based on the fact that 𝜎𝑖𝑑
(𝑚) does not 

decrease for a large number of successive iterations. 
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Figure 1. Summary of the identification procedure for a ROM of given order 𝑚 
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5.2.3 The global procedure for building a series of ROMs of successive orders 

First of all 𝒥𝑖𝑑
(1)(𝜃, 𝐻) is minimized in order to obtain 𝜃 and 𝐻 associated with a single term in 

approximation of variables (equation (22) for temperature and equation (25) for incident 

radiation) and thus defining a ROM of order 𝑚 = 1. A ROM of order 𝑚 = 2 is then built by 

minimizing 𝒥𝑖𝑑
(2)(𝜃, 𝐻) which leads to larger 𝜃 and 𝐻 associated with two terms in 

approximation of variables. ROMs of higher order are then built by incrementing order 𝑚 and 

minimizing corresponding functional 𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻) until a predefined stopping criterion is 

satisfied. The global procedure is summarized as follows: 

1. 𝑚 ← 1 

2. Minimization of 𝒥𝑖𝑑
(1)(𝜃, 𝐻): identification of 𝜃,𝐻 for order 1 ROM 

3. 𝑚 ← 𝑚 + 1 

4. Minimization of 𝒥𝑖𝑑
(𝑚+1)(𝜃, 𝐻): identification of new 𝜃, 𝐻 for order 𝑚 + 1 ROM 

5. Test of stopping criterion: 2 possibilities: 

5.1 if 𝜎𝑖𝑑
(𝑚+1) ≈ 𝜎𝑖𝑑

(𝑚) then STOP else go to 3 

5.2 if 𝜎𝑖𝑑
(𝑚) reaches the wished accuracy, then STOP else go to 3 

 

As vector 𝜃 is estimated via an iterative method (here PSO), an initial guess for 𝜃 is required. 

As matrix 𝐻 is computed by Ordinary Least Squares at each iteration of the PSO algorithm, no 

initial guess is needed for 𝐻. 

For 𝑚=1, 𝐷𝑇 , 𝑈𝑇 , 𝐴𝑇𝐺 , 𝐵, 𝐷𝐺 , 𝑈𝐺  come down to simple scalars, the ROM is thus defined by only 

6 parameters. Only 5 of them are unknown as orthogonal matrix 𝐴𝑇𝐺  is equal to 1. They are 

randomly initialized with respect to constraints applied in section 4.4. 

When identifying the order 𝑚 + 1 ROM (𝑚 ≥ 1), the parameters of the order 𝑚 ROM 

previously identified are used as an initial guess for the corresponding unknown parameters 

in the order 𝑚 + 1 ROM. In order to ensure this initial 𝑚 + 1 ROM gives the same solutions 

as the order 𝑚 ROM, the other parameters are initially set to zero, except for matrix 𝐴𝑇𝐺  for 

which [𝐴𝑇𝐺]𝑚+1,𝑚+1
𝑖𝑛𝑖𝑡 = 1 in order to guarantee that 𝐴𝑇𝐺  in the order 𝑚 + 1 ROM is initially 

orthogonal. 

For initializing the identification of the order 𝑚+ 1 ROM, we therefore set: 

[𝐷𝑇]
𝑖𝑛𝑖𝑡 =

[
 
 
 
 
 [𝐷𝑇]1 0
0 ⋱

⋯ 0
⋱ ⋮

⋮ ⋱
0 ⋯

⋱ 0
0 [𝐷𝑇]𝑚⏟              

[𝐷𝑇]𝑜𝑟𝑑𝑒𝑟 𝑚 𝑅𝑂𝑀

0
⋮
⋮
0

0 ⋯⋯ ⋯⋯ 0 0]
 
 
 
 
 

     and     [𝑈𝑇]
𝑖𝑛𝑖𝑡 =

[
 
 
 
 
 [𝑈𝑇]11 ⋯

0 ⋱
⋯ [𝑈𝑇]1𝑚
⋱ ⋮

⋮ ⋱
0 ⋯

⋱ ⋮
0 [𝑈𝑇]𝑚𝑚⏟                

[𝑈𝑇]𝑜𝑟𝑑𝑒𝑟 𝑚 𝑅𝑂𝑀

0
⋮
⋮
0

0 ⋯⋯ ⋯⋯ 0 0]
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Initialization of [𝐷𝑇]
𝑖𝑛𝑖𝑡  and [𝑈𝑇]

𝑖𝑛𝑖𝑡 is processed in a similar way. 

Initially, matrices 𝐷𝑇 , 𝑈𝑇 , 𝐷𝐺 , 𝑈𝐺  are hence only semi-definite. 

We also set: 

[𝐴𝑇𝐺]
𝑖𝑛𝑖𝑡 =

[
 
 
 
 
 [𝐴𝑇𝐺]11 ⋯

⋮ ⋱
⋯ [𝐴𝑇𝐺]1𝑚
⋱ ⋮

⋮ ⋱
[𝐴𝑇𝐺]𝑚1 ⋯

⋱ ⋮
⋯ [𝐴𝑇𝐺]𝑚𝑚⏟                  

[𝐴𝑇𝐺]𝑜𝑟𝑑𝑒𝑟 𝑚 𝑅𝑂𝑀

0
⋮
⋮
0

0 ⋯⋯ ⋯⋯ 0 1]
 
 
 
 
 

     and     [𝐵]𝑖𝑛𝑖𝑡 =

[
 
 
 
 

𝐵1
⋮
𝐵𝑚⏟

[𝐵]𝑜𝑟𝑑𝑒𝑟 𝑚 𝑅𝑂𝑀

0 ]
 
 
 
 

 

The functional 𝒥𝑖𝑑
(𝑚+1)(𝜃, 𝐻) to be minimized hence starts from the value obtained for 

𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻) and then decreases throughout iterations. 

The series of ROMs of order 1 to 𝑚𝑚𝑎𝑥 (𝑚𝑚𝑎𝑥 depending on the stopping criterion) is 

therefore built recursively, the ROM of order 𝑚 ≥ 1 being used to start the identification of 

the ROM of order 𝑚 + 1. The ROM of order 𝑚 is neither a truncation of the ROM of order 

𝑚 + 1 nor a truncation of the ROM of order 𝑚𝑚𝑎𝑥. 

 

6 Application: heat flux on cylindrical STM sample 
 

6.1 The considered configuration and the reference model 
 

We consider a cylinder of diameter 𝑅 and width 𝑒 with black boundary surfaces, initially at 

thermal equilibrium with the environment (𝑇0 = 𝑇𝑎 = 300 𝐾). The sizes are given in Figure 2. 

The heat exchange coefficient is ℎ = 5 𝑊.𝑚−2. 𝐾−1. Starting from 𝑡 = 0, a time-varying 

localized heat flux density 𝜑(𝑡) is imposed on the front face (𝑧 = 0), between 𝑟 = 0 and 𝑟 =

𝑅𝜑(𝑡). Heat transfer within the medium is assumed to be two-dimensional axisymmetric. As 

the medium is assumed to be optically thick, the P1 method can be used and the present 

physical problem is described accurately by equations (5) and (6). 

Boundary conditions are given as follows, 𝑛𝑧⃗⃗⃗⃗  and 𝑛𝑟⃗⃗⃗⃗  being respectively the normal unit vectors 

in the 𝑧 and 𝑟 directions: 

∀(𝑟, 𝑡): 

at 𝑧 =  0: {
𝑘𝑡ℎ ∇⃗⃗ 𝑇 ∙ 𝑛𝑧⃗⃗⃗⃗ +

1

3𝜅
∇⃗⃗ 𝐺 ∙ 𝑛𝑧⃗⃗⃗⃗ = 𝛾(𝑟)𝜑(𝑡) + ℎ(𝑇0 − 𝑇)

2

3
∇⃗⃗ 𝐺 ∙ 𝑛𝑧⃗⃗⃗⃗ + 𝜅𝐺 = 4𝜅𝑛

2𝜎𝑇4
  

at 𝑧 =  𝐻: { 
𝑘𝑡ℎ∇⃗⃗ 𝑇 ∙ 𝑛𝑧⃗⃗⃗⃗ +

1

3𝜅
∇⃗⃗ 𝐺 ∙ 𝑛𝑧⃗⃗⃗⃗ = ℎ(𝑇0 − 𝑇)

2

3
∇⃗⃗ 𝐺 ∙ 𝑛𝑧⃗⃗⃗⃗ + 𝜅𝐺 = 4𝜅𝑛

2𝜎𝑇4
 

Where 𝛾(𝑟) = 1 if 𝑟 ≤ 𝑅𝜑(𝑡) and 𝛾(𝑟) = 0 if 𝑟 > 𝑅𝜑(𝑡). 
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∀(𝑧, 𝑡): 

at 𝑟 =  0: {
𝑘𝑡ℎ(∇⃗⃗ 𝑇 ∙ 𝑛𝑟⃗⃗⃗⃗ ) +

1

3𝜅
(∇⃗⃗ 𝐺 ∙ 𝑛𝑟⃗⃗⃗⃗ ) = 0          

2

3
(∇⃗⃗ 𝐺 ∙ 𝑛𝑟⃗⃗⃗⃗ ) + 𝜅𝐺 = 4𝜅𝑛

2𝜎𝑇4           
  

at 𝑟 =  𝑅: {
𝑘𝑡ℎ(∇⃗⃗ 𝑇 ∙ 𝑛𝑟⃗⃗⃗⃗ ) +

1

3𝜅
(∇⃗⃗ 𝐺 ∙ 𝑛𝑟⃗⃗⃗⃗ ) = ℎ(𝑇0 − 𝑇)

2

3
(∇⃗⃗ 𝐺 ∙ 𝑛𝑟⃗⃗⃗⃗ ) + 𝜅𝐺 = 4𝜅𝑛

2𝜎𝑇4                      
 

These boundary conditions correspond to equations (7) and (8). 

 

 
Figure 2. Sketch of the considered axisymmetric test problem 

 

According to a previous study [17], an iterative resolution of the coupled energy conservation 

equation and the radiative transfer equation is implemented by using the finite volume 

method [20]. A second-order centered scheme is used to approximate the space derivative of 

both temperature and incident radiation. An implicit first-order scheme is used to 

approximate the time derivative of temperature. The tridiagonal equation system obtained is 

solved iteratively, using the Thomas algorithm [21], in two steps: (i) the conduction part is 

solved assuming the incident radiation known, (ii) the radiation part is solved considering the 

temperature field obtained at the previous step, until convergence. Validation tests for this 

reference model were performed and presented in [17] [18]. 

It is worth noticing that although the general form of the ROMs equations is independent of 

the geometry, ROMs are built using data simulated for a given geometric configuration. For 

other geometries, ROMs of similar form but with different parameter values need to be built 

from new data. 
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6.2 Identification of a series of ROMs 
 

Instead of a Cartesian regular mesh of the (𝑘𝑡ℎ, 𝜅) parameter space, an Improved Hypercube 

Sampling (IHS) approach [22] has been used in order to cover the space with a limited number 

of (𝑘𝑡ℎ, 𝜅) couples. Using IHS the coordinates in the parameters space are regularly spaced 

out but the set is formed so that any two distinct (𝑘𝑡ℎ, 𝜅) couples do not share a common 𝑘𝑡ℎ 

or 𝜅 value and in such way that the parameter space is covered as uniformly as possible. 

Chosen ranges of parameter values are 𝑘𝑡ℎ ∈ ]0; 2[ 𝑊.𝑚
−1. 𝐾−1 and 𝜅 ∈ ]0; 2000[ 𝑚−1. 

The input data for the identification of a series of ROMs are the set of 𝑁𝑐
𝑖𝑑 = 100 couples 

(𝑘𝑡ℎ, 𝜅) depicted by red dots in Figure 3. The heat flux signal 𝛿𝜑𝑑𝑎𝑡𝑎(𝑡) used for the 

identification of the ROM constitutive parameters is shown in red in Figure 4. It is composed 

of a step signal of magnitude 5 𝑘𝑊.𝑚−2 during 1 𝑠 followed by a zero signal up to 2.5 𝑠. The 

output data are the corresponding 100 temperature evolutions 𝛿𝑇𝑜𝑏𝑠
𝑑𝑎𝑡𝑎(𝑡) at the center of the 

heated face (𝑁𝑜𝑏𝑠 = 1), computed with the detailed model (DM). The time step used for the 

DM computations is 2.5 × 10−5 𝑠. The heat flux signal 𝛿𝜑𝑑𝑎𝑡𝑎(𝑡) and the 100 temperature 

signals 𝛿𝑇𝑜𝑏𝑠
𝑑𝑎𝑡𝑎(𝑡) are then sampled with a time step 2.5 × 10−2 𝑠, so that only 𝑁𝑡

𝑖𝑑 = 101 

instants are used for the ROMs identification. 

 

  
Figure 3. (𝑘𝑡ℎ, 𝜅) couples used for ROMs 

identification and validation. 
Figure 4. Heat flux densities used for ROMs 

identification and validation. 

 

A series of ROMs of order 𝑚 = 1 to 6 has been constructed by applying the identification 

procedure described in section 5.2 and using these input-output data. The value of the mean 

quadratic error 𝜎𝑖𝑑
(𝑚) between DM and ROM, defined by equations (41) and (40), is shown in 

Figure 5 as a function of ROM order 𝑚 (red curve). As expected, 𝜎𝑖𝑑
(𝑚) decreases with the order 

𝑚, down to 0.029 K for 𝑚 = 6. ROMs of higher orders did not lead to further improvement. 
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In order to add insight to the global quantity 𝜎𝑖𝑑
(𝑚) on all 100 (𝑘𝑡ℎ, 𝜅) couples, the quantity 

𝜎𝑖𝑑,𝑐𝑜𝑢𝑝𝑙𝑒
(𝑚) (𝑗), 𝑗 ∈ [1; 𝑁𝑐

𝑖𝑑 = 100], related to each (𝑘𝑡ℎ, 𝜅) couple, is defined as: 

𝜎𝑖𝑑,𝑐𝑜𝑢𝑝𝑙𝑒
(𝑚) (𝑗) = √

∑ ∑ ([𝛿𝑇𝑜𝑏𝑠]𝑖(𝑗, 𝑡𝑘, 𝜃, 𝐻) − [𝛿𝑇𝑜𝑏𝑠
𝑑𝑎𝑡𝑎]𝑖(𝑗, 𝑡𝑘))

2𝑁𝑡
𝑖𝑑

𝑘=1
𝑁𝑜𝑏𝑠
𝑖=1

𝑁𝑜𝑏𝑠𝑁𝑡
𝑖𝑑

, 𝑗 ∈ [1; 𝑁𝑐
𝑖𝑑] 

Figure 6 shows values of 𝜎𝑖𝑑,𝑐𝑜𝑢𝑝𝑙𝑒
(6) , thus corresponding to the order 6 ROM, for all 100 (𝑘𝑡ℎ, 𝜅) 

couples used for ROMs identification. The lower 𝑘𝑡ℎ is, the larger the values of 𝜎𝑖𝑑,𝑐𝑜𝑢𝑝𝑙𝑒
(6)  are. 

The maximum value is 0.128 K corresponding to (𝑘𝑡ℎ, 𝜅)=(0.01,1350) and the minimum value 

is 0.012 K for the highest values of 𝑘𝑡ℎ. For 𝑘𝑡ℎ ≥ 0.25 W.m-1.K-1, values are less than 0.037 K. 

The color scale is common to this figure and all similar ones in the following, the minimum and 

maximum values of the color scale being respectively the minimum and maximum values 

among all cases, i.e. identification and the five validation tests. 

 

 

 

Figure 5. ROMs identification and 
validation tests: mean quadratic errors 

𝜎𝑖𝑑
(𝑚) and 𝜎𝑣𝑎𝑙

(𝑚) between DM and ROM as a 

function of ROM order 𝑚. 

Figure 6. ROMs identification: value of 

𝜎𝑖𝑑,𝑐𝑜𝑢𝑝𝑙𝑒
(6) (𝑗), 𝑗 ∈ [1; 𝑁𝑐

𝑖𝑑 = 100] for order 6 

ROM. 

 

In addition, temperature evolutions for 6 different (𝑘𝑡ℎ, 𝜅) couples are shown in Figure 7 and 

Figure 8 in order to assess the ability of the order 6 ROM to reproduce the DM outputs 

whatever the parameters values in the considered range. 
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Figure 7. Identification: temperatures 
computed by DM and order 6 ROM for 
(𝑘𝑡ℎ, 𝜅)=(0.01,1350), (0.03,1790) and 

(0.07,310) 

Figure 8. Identification: temperatures 

computed by DM and order 6 ROM for 

(𝑘𝑡ℎ, 𝜅)=(0.21,70), (1.71,30) and 

(1.89,1910) 

 

6.3 Validation of the identified ROMs 
Once the ROMs are identified, some test cases are conducted for the ROMs validation: a 

second set of 𝑁𝑐
𝑣𝑎𝑙  = 50 couples (𝑘𝑡ℎ, 𝜅) depicted by the black squares in Figure 3 is used as 

input data for the ROMs. Five different tests, hereafter referred to as test 1 to test 5, are 

performed, each one with a different applied heat flux density signal: 

1. 𝛿𝜑𝑡𝑒𝑠𝑡1(𝑡) = 𝛿𝜑𝑑𝑎𝑡𝑎(𝑡) used for the identification phase, shown in red in Figure 4: 
step signal of magnitude 5 𝑘𝑊.𝑚−2 during 1 𝑠 followed by a zero signal up to 2.5 𝑠; 

2. 𝛿𝜑𝑡𝑒𝑠𝑡2(𝑡) shown in green in Figure 4: step signal of magnitude 4 𝑘𝑊.𝑚−2 during 1.5 
𝑠 followed by a zero signal up to 3 𝑠; 

3. 𝛿𝜑𝑡𝑒𝑠𝑡3(𝑡) shown in blue in Figure 4: step signal of magnitude 6 𝑘𝑊.𝑚−2 during 0.75 
𝑠 followed by a zero signal up to 2 𝑠; 

4. 𝛿𝜑𝑡𝑒𝑠𝑡4(𝑡) shown in black in Figure 4: step signal of magnitude 10 𝑘𝑊.𝑚−2 during 
0.75 𝑠 followed by a zero signal up to 2.5 𝑠; 

5. 𝛿𝜑𝑡𝑒𝑠𝑡5(𝑡) shown in cyan in Figure 4: step signal of magnitude 7 𝑘𝑊.𝑚−2 during 0.5 𝑠 
followed by a zero signal up to 1 𝑠, then step signal of magnitude 3 𝑘𝑊.𝑚−2 during 
0.5 𝑠 followed by a zero signal up to 2 𝑠. 

 

The ROMs tested are exactly the ones that have been identified in section 6.2. 

For each validation test, the resulting 50 temperature evolutions 𝛿𝑇𝑜𝑏𝑠
𝑡𝑒𝑠𝑡(𝑡) at the center of 

the front face are compared with temperatures computed with the DM for the same input 

parameters and heat flux signal. The time sampling is the same as for data used for ROMs 

identification. The mean quadratic global error 𝜎𝑣𝑎𝑙
(𝑚) between DM and ROM of order 𝑚 as well 
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as the mean quadratic error 𝜎𝑣𝑎𝑙,𝑐𝑜𝑢𝑝𝑙𝑒
(𝑚) (𝑗), 𝑗 ∈ [1; 𝑁𝑐

𝑣𝑎𝑙 = 50] associated to each (𝑘𝑡ℎ, 𝜅) 

couple, are defined similarly as 𝜎𝑖𝑑
(𝑚) and 𝜎𝑖𝑑,𝑐𝑜𝑢𝑝𝑙𝑒

(𝑚) (𝑗), 𝑗 ∈ [1; 𝑁𝑐
𝑖𝑑 = 100], respectively. 

The value of 𝜎𝑣𝑎𝑙
(𝑚) is shown in Figure 5 as a function of ROM order 𝑚 for test 1 (dot-dashed 

red curve), test 2 (green curve), test 3 (blue curve), test 4 (black curve) and test 5 (cyan curve). 

As for the identification phase, 𝜎𝑣𝑎𝑙
(𝑚) decreases with the order 𝑚. 

For test 1 the heat flux signal is the same as the one used for the ROMs construction. For each 

one of the 6 ROMs, 𝜎𝑣𝑎𝑙
(𝑚) for test 1 is very close to 𝜎𝑖𝑑

(𝑚) obtained at the end of the identification 

phase, which shows the robustness of the ROMs as regards to the input (𝑘𝑡ℎ, 𝜅) values. In 

particular, for 𝑚 = 6, 𝜎𝑣𝑎𝑙
(6) = 0.031 K for test 1. The distribution of 𝜎𝑣𝑎𝑙,𝑐𝑜𝑢𝑝𝑙𝑒

(6)  is also very close 

to the one obtained in the identification phase. In particular, for the couple (𝑘𝑡ℎ, 𝜅) = 

(0.02,1020), 𝜎𝑣𝑎𝑙,𝑐𝑜𝑢𝑝𝑙𝑒
(6)  = 0.134 K for test 1 and the minimum value is 0.012 K for the highest 

values of 𝑘𝑡ℎ. 

Both tests 2 and 3 correspond to a heat flux signal and supplied energy different, though not 

significantly, from test 1. Both lead to values of 𝜎𝑣𝑎𝑙
(𝑚) close to the ones obtained for test 1. The 

error for test 2 is even slightly smaller. In particular, for 𝑚 = 6, 𝜎𝑣𝑎𝑙
(6) reaches 0.026 K for test 2 

and 0.044 K for test 3. For the couple (𝑘𝑡ℎ, 𝜅) = (0.02,1020), 𝜎𝑣𝑎𝑙,𝑐𝑜𝑢𝑝𝑙𝑒
(6)  = 0.090 K for test 2 and 

0.197 K for test 3. Minimum values of 𝜎𝑣𝑎𝑙,𝑐𝑜𝑢𝑝𝑙𝑒
(6)  are 0.012 K for test 2 and 0.015 K for test 3. 

For test 4, the heat flux magnitude is twice as large as the one used for test 1 and even if the 

step duration is shorter, the resulting temperatures at the center of the front face are much 

higher compared to those reached for both identification and test 1. For instance, 

temperature reaches 347 K for 𝑘𝑡ℎ = 0.02 W.m-1.K-1 and 𝜅 = 1020 m-1. For a 47 K temperature 

increase, the validity of the linearization becomes questionable (4(𝑇0(𝑥))
3
𝛿𝑇(𝑥, 𝑡)=5.08x109 

K4 and 6(𝑇0(𝑥))
2
(𝛿𝑇(𝑥, 𝑡))

2
=1.19x109 K4 in the expansion of (𝑇0(𝑥) + 𝛿𝑇(𝑥, 𝑡))

4
). Hence, 

not surprisingly, for the couple (𝑘𝑡ℎ, 𝜅) = (0.02,1020), 𝜎𝑣𝑎𝑙,𝑐𝑜𝑢𝑝𝑙𝑒
(6)  = 0.408 K for test 4 whereas 

it is 0.128 K for ROM identification and 0.134 K for test 1. The minimum value of 𝜎𝑣𝑎𝑙,𝑐𝑜𝑢𝑝𝑙𝑒
(6)  is 

0.024 K. In a more general way, for all ROMs, 𝜎𝑣𝑎𝑙
(𝑚) for test 4 is higher than 𝜎𝑣𝑎𝑙

(𝑚) for test 1. In 

particular, for 𝑚 = 6, 𝜎𝑣𝑎𝑙
(𝑚) reaches 0.078 K for test 4. However, these results show the 

robustness of the ROMs when pushed to their limits of validity. 

Test 5, which corresponds to two successive sequences, each one consisting of a step and a 

relaxation, exhibits similar trends: 𝜎𝑣𝑎𝑙
(6) = 0.066 K and 𝜎𝑣𝑎𝑙,𝑐𝑜𝑢𝑝𝑙𝑒

(6)  ranges between 0.024 K and 

0.287 K for the couple (𝑘𝑡ℎ, 𝜅) = (0.02,1020). 

Figure 9 (test 4) and Figure 10 (test 5) show the values of 𝜎𝑖𝑑,𝑐𝑜𝑢𝑝𝑙𝑒
(6) , thus corresponding to the 

order 6 ROM, for all 50 (𝑘𝑡ℎ, 𝜅) couples used for ROMs identification. Both figures show 

distributions similar to the one for the order 6 ROM identification (see Figure 6) but with slight 

differences, especially for the maximum values as mentioned above. 
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Figure 9. Validation test 4: value of 

𝜎𝑣𝑎𝑙,𝑐𝑜𝑢𝑝𝑙𝑒
(6) (𝑗), 𝑗 ∈ [1; 𝑁𝑐

𝑖𝑑 = 50] for order 6 

ROM. 

Figure 10. Validation test 5: value of 

𝜎𝑣𝑎𝑙,𝑐𝑜𝑢𝑝𝑙𝑒
(6) (𝑗), 𝑗 ∈ [1; 𝑁𝑐

𝑖𝑑 = 50] for order 6 

ROM. 

 

In addition, temperature evolutions for 6 different (𝑘𝑡ℎ, 𝜅) test couples are shown for test 4 

and test 5 which are the two hardest ones among the five test cases. Figure 11 and Figure 12 

are relative to test 4 whereas Figure 13 and Figure 14 correspond to test 5. As for the 

identification phase, the order 6 ROM is able to reproduce the DM outputs for both tests 

regardless the parameters values in the considered range. 

 

  
Figure 11. Validation test 4: temperatures 

computed by DM and order 6 ROM for 
(𝑘𝑡ℎ, 𝜅)=(0.02,1020), (0.06,660) and 

(0.26,1820) 

Figure 12. Validation test 4: temperatures 

computed by DM and order 6 ROM for 

(𝑘𝑡ℎ, 𝜅)=(0.46,20), (0.94,900) and 

(1.98,1220) 
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Figure 13. Validation test 5: temperatures 

computed by DM and order 6 ROM for 
(𝑘𝑡ℎ, 𝜅)=(0.02,1020), (0.06,660) and 

(0.26,1820) 

Figure 14. Validation test 5: temperatures 

computed by DM and order 6 ROM for 

(𝑘𝑡ℎ, 𝜅)=(0.46,20), (0.94,900) and 

(1.98,1220) 

 

6.4 Computing time 

Due to stability constraints, the time step for the DM is 2.5 × 10−5 𝑠. With this time step, the 

computing time for a single simulation of 2.5 s duration is about 103 s with the DM on a 

standard PC (i5@2.3GHz, 8Go RAM). A particular form has been developed for the linear 

ROMs in order to ensure their stability (see section 4.3), which consequently allows using 

larger time steps. With a 2.5 × 10−2 𝑠 time step, the computing time is only 10-3 s with a ROM 

(the size of the ROM does not make any significant difference here). At equal time steps, the 

ROMs thus allow a factor gain of about 103 compared to the DM. 

 

7 Conclusion 
 

In the frame of heat transfer by conduction and radiation across gray semi-transparent media 

for which radiative transfers can be modelled by P1 approximation, and in the context of 

temperature variations of limited magnitude (a few tenths of K), the construction of linear 

Reduced Order Models (ROMs), i.e. involving a small number of equations, by the Modal 

Identification Method (MIM), has been presented and performed. ROMs are explicitly 

parametrized by thermal conductivity 𝑘𝑡ℎ and effective absorption coefficient 𝜅 and are 

identified via the minimization of a quadratic functional based on the difference between the 

outputs (computed temperatures) of a reference model and those of the ROMs, for the same 

inputs (here a set of (𝑘𝑡ℎ, 𝜅) couples and an applied time-varying applied heat flux density). 

The approach has been applied to a test problem. This illustrative example mimics a “flash-

type” experiment: a heat flux is applied on the central front part of a cylindrical sample and 
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the temperature at the center of the heated face is the observable quantity. The ranges of 𝑘𝑡ℎ 

and 𝜅 values include the values found in the literature for PMMA. The reference detailed 

model (DM) is a two-dimensional axisymmetric unsteady nonlinear model. First, a series of 

ROMs of order 1 to 6 has been built using a set of (𝑘𝑡ℎ, 𝜅) couples. Once identified, the ROMs 

have been tested with another set of couples and several applied heat flux signals different 

from the one used for the ROMs construction. These tests showed the ability of the ROMs to 

reproduce the nonlinear reference model behavior, even when pushed to their limits of 

validity. The accuracy of the ROM increases with the ROM order, up to order 6. Further 

improvement has not been noticed. In view of the very low computing times of the ROMs 

compared to the reference DM, they certainly can be used for solving in a fast manner an 

inverse problem aiming at the estimation of thermal conductivity and effective absorption 

coefficient, provided that sensitivities of observed temperature with respect to these 

parameters are large enough. Nonlinear ROMs for applications involving larger temperature 

variations, and thus higher radiative contributions, will be developed in future works. 

 

Appendix 

1 Galerkin projections of energy and radiative transfer equations 
 

1.1 Galerkin projection of energy equation 
 

Let us introduce the residue ℛ𝐸(𝑥, 𝑡) of energy equation (16): 

ℛ𝐸(𝑥, 𝑡) = 𝜌𝐶𝑝
𝜕𝛿𝑇

𝜕𝑡
(𝑥, 𝑡) − ∇⃗⃗ . (𝑘𝑡ℎ ∇⃗⃗ 𝛿𝑇(𝑥, 𝑡)) − ∇⃗⃗ . (

1

3𝜅
∇⃗⃗ 𝛿𝐺(𝑥, 𝑡)) (A.1)  

 

The Galerkin projection consists in forcing the residue ℛ𝐸(𝑥, 𝑡), written with approximations 

(22) for 𝛿𝑇(𝑥, 𝑡) and (25) for 𝛿𝐺(𝑥, 𝑡), to be orthogonal to each 𝜙𝑘
(𝑇)(𝑥), 𝑘 ∈ {1, … ,𝑚𝑇}, so 

that the projection of the residue onto the subspace of ℒ2(Ω) generated by the 𝜙𝑘
(𝑇)

 is null. 

According to (23), this writes: 

〈ℛ𝐸(𝑥, 𝑡), 𝜙𝑘
(𝑇)(𝑥)〉 = ∫ℛ𝐸(𝑥, 𝑡)𝜙𝑘

(𝑇)(𝑥)𝑑Ω

 

Ω

= 0        ∀ 𝑘 ∈ {1,… ,𝑚𝑇} (A.2)  

 

Which, based on (A.1), leads to: 

∫𝜌𝐶𝑝
𝜕𝛿𝑇

𝜕𝑡
(𝑥, 𝑡)𝜙𝑘

(𝑇)(𝑥)𝑑Ω

 

Ω⏟                  
ℐ

−∫ ∇⃗⃗ . (𝑘𝑡ℎ∇⃗⃗ 𝛿𝑇(𝑥, 𝑡) +
1

3𝜅
∇⃗⃗ 𝛿𝐺(𝑥, 𝑡))𝜙𝑘

(𝑇)(𝑥)𝑑Ω

 

Ω⏟                                
𝒟

= 0        ∀ 𝑘 ∈ {1,… ,𝑚𝑇} 

(A.3)  

 



 

30 
 

ℐ is the inertia term and 𝒟 gathers heat conduction and radiation fluxes in the medium. 

The following steps, not detailed here, are then performed on equation (A.3): 

• 𝒟 is integrated by parts using Green formula ∫ 𝑓∇⃗⃗ . �⃗� 𝑑Ω
 

Ω
= ∫ 𝑓�⃗� . �⃗� 𝑑Γ

 

Γ
− ∫ �⃗� . ∇⃗⃗ 𝑓𝑑Ω

 

Ω
; 

• Thermal boundary condition (18) is introduced in the arising boundary term; 

• Approximations (22) for 𝛿𝑇(𝑥, 𝑡) and (25) for 𝛿𝐺(𝑥, 𝑡) are injected where necessary, 

taking into account orthonormality of the 𝜙𝑘
(𝑇)(𝑥), 𝑘 ∈ {1, … ,𝑚𝑇} (see eq.(24)). 

 

After taking out thermal conductivity 𝑘𝑡ℎ and effective absorption coefficient 𝜅 from integrals 

in order to make them appear as explicit parameters, equation (A.3) can be written as: 

𝑑𝑎𝑘
(𝑇)(𝑡)

𝑑𝑡
− 𝑘𝑡ℎ∑(𝑀𝑇𝑑)𝑘𝑖𝑎𝑖

(𝑇)(𝑡)

𝑚𝑇

𝑖=1

−∑(𝑀𝑇ℎ)𝑘𝑖𝑎𝑖
(𝑇)(𝑡)

𝑚𝑇

𝑖=1

−
1

𝜅
∑(𝑀𝑇𝐺)𝑘𝑖𝑎𝑖

(𝐺)(𝑡)

𝑚𝐺

𝑖=1

− 𝑉𝑘𝛿𝜑(𝑡) = 0     ∀𝑘 ∈ [1;𝑚𝑇]

 (A.4)  

 

Or, in matrix-vector form: 

𝑑𝑎(𝑇)(𝑡)

𝑑𝑡
= (𝑘𝑡ℎ𝑀𝑇𝑑 +𝑀𝑇ℎ)𝑎

(𝑇)(𝑡) +
1

𝜅
𝑀𝑇𝐺𝑎

(𝐺)(𝑡) + 𝑉𝛿𝜑(𝑡) (A.5)  

 

Where: 

(𝑀𝑇𝑑)𝑘𝑖 = −
1

𝜌𝐶𝑝
∫ ∇⃗⃗ 𝜙𝑖

(𝑇)(𝑥). ∇⃗⃗ 𝜙𝑘
(𝑇)(𝑥)𝑑Ω

 

Ω

        ∀(𝑘, 𝑖) ∈ {1,… ,𝑚𝑇}
2 (A.6)  

(𝑀𝑇ℎ)𝑘𝑖 = −
1

𝜌𝐶𝑝
∫ℎ(𝑥)𝜙𝑖

(𝑇)(𝑥)𝜙𝑘
(𝑇)(𝑥)𝑑Γ

 

Γ

        ∀(𝑘, 𝑖) ∈ {1,… ,𝑚𝑇}
2 (A.7)  

(𝑀𝑇𝐺)𝑘𝑖 = −
1

3𝜌𝐶𝑝
∫ ∇⃗⃗ 𝜙𝑖

(𝐺)(𝑥). ∇⃗⃗ 𝜙𝑘
(𝑇)(𝑥)𝑑Ω

 

Ω

        ∀𝑘 ∈ {1,… ,𝑚𝑇}, ∀𝑖

∈ {1,… ,𝑚𝐺} 

(A.8)  

𝑉𝑘 =
1

𝜌𝐶𝑝
∫𝛾(𝑥)𝜙𝑘

(𝑇)(𝑥)𝑑Γ

 

Γ

        ∀𝑘 ∈ {1,… ,𝑚𝑇} (A.9)  

 

1.2 Galerkin projection of Radiative Transfer Equation 
 

Let us call ℛ𝑅(𝑥, 𝑡) the residue of linearized RTE (17). The corresponding Galerkin projection 

writes: 

〈ℛ𝑅(𝑥, 𝑡), 𝜙𝑘
(𝐺)(𝑥)〉 = ∫𝑅𝑅(𝑥, 𝑡)𝜙𝑘

(𝐺)(𝑥)𝑑Ω

 

Ω

= 0        ∀𝑘 ∈ {1,… ,𝑚𝐺} (A.10)  
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Which, based on linearized RTE (17), leads to: 

〈𝑅𝑅(𝑥, 𝑡), 𝜙𝑘
(𝐺)(𝑥)〉 = ∫ ∇⃗⃗ . (

1

3𝜅
∇⃗⃗ 𝛿𝐺(𝑥, 𝑡)) 𝜙𝑘

(𝐺)(𝑥)𝑑Ω

 

Ω⏟                    
ℒ

 

−∫𝜅 (𝛿𝐺(𝑥, 𝑡) − 16𝑛2𝜎(𝑇0(𝑥))
3
𝛿𝑇(𝑥, 𝑡))𝜙𝑘

(𝐺)(𝑥)𝑑Ω

 

Ω⏟                                  
𝒩

= 0       ∀𝑘 ∈ [1;𝑚𝐺] 

(A.11)  

 

The following steps, not detailed here too, are then performed on equation (A.11): 

• ℒ is integrated by parts using Green formula ∫ 𝑓∇⃗⃗ . �⃗� 𝑑Ω
 

Ω
= ∫ 𝑓�⃗� . �⃗� 𝑑Γ

 

Γ
− ∫ �⃗� . ∇⃗⃗ 𝑓𝑑Ω

 

Ω
; 

• Radiative boundary condition (19) is introduced in the arising boundary term; 

• Approximations (22) for 𝛿𝑇(𝑥, 𝑡) and (25) for 𝛿𝐺(𝑥, 𝑡) are injected where necessary, 

taking into account orthonormality of the 𝜙𝑘
(𝐺)(𝑥), 𝑘 ∈ {1,… ,𝑚𝐺} (see eq.(26)). 

 

After taking out effective absorption coefficient 𝜅 from integrals in order to make it appear as 

an explicit parameter, equation (A.11) can be written as: 

1

𝜅
∑(𝑀𝐺0)𝑘𝑖𝑎𝑖

(𝐺)(𝑡)

𝑚𝐺

𝑖=1

+ 𝜅𝑎𝑘
(𝐺)(𝑡) +∑(𝑀𝐺2)𝑘𝑖𝑎𝑖

(𝐺)(𝑡)

𝑚𝐺

𝑖=1

= 𝜅∑(𝑀𝐺𝑇1)𝑘𝑖𝑎𝑖
(𝑇)(𝑡)

𝑚𝑇

𝑖=1

+∑(𝑀𝐺𝑇2)𝑘𝑖𝑎𝑖
(𝑇)(𝑡)

𝑚𝑇

𝑖=1

     ∀𝑘 ∈ [1;𝑚𝐺]

 (A.12)  

 

Or, in matrix-vector form with 𝐼𝑚𝐺  as the identity matrix of size 𝑚𝐺 ×𝑚𝐺: 

(
1

𝜅
𝑀𝐺0 + 𝜅𝐼𝑚𝐺 +𝑀𝐺2) 𝑎

(𝐺)(𝑡) = (𝜅𝑀𝐺𝑇1 +𝑀𝐺𝑇2)𝑎
(𝑇)(𝑡) (A.13)  

 

Where: 

(𝑀𝐺0)𝑘𝑖 =
1

3
∫ ∇⃗⃗ 𝜙𝑖

(𝐺)(𝑥). ∇⃗⃗ 𝜙𝑘
(𝐺)(𝑥)𝑑Ω

 

Ω

        ∀(𝑘, 𝑖) ∈ [1;𝑚𝐺]
2 (A.14)  

(𝑀𝐺2)𝑘𝑖 =
1

2
∫𝜙𝑖

(𝐺)(𝑥)𝜙𝑘
(𝐺)(𝑥)𝑑Γ

 

Γ

        ∀(𝑘, 𝑖) ∈ [1;𝑚𝐺]
2 (A.15)  

(𝑀𝐺𝑇1)𝑘𝑖 = 16 ∫𝑛
2𝜎(𝑇0(𝑥))

3
𝜙𝑖
(𝑇)(𝑥)𝜙𝑘

(𝐺)(𝑥)𝑑Ω

 

Ω

        ∀𝑘 ∈ [1;𝑚𝐺], ∀𝑖

∈ [1;𝑚𝑇] 

(A.16)  

(𝑀𝐺𝑇2)𝑘𝑖 = 8∫𝑛
2𝜎(𝑇0(𝑥))

3
𝜙𝑖
(𝑇)(𝑥)𝜙𝑘

(𝐺)(𝑥)𝑑Γ

 

Γ

        ∀𝑘 ∈ [1;𝑚𝐺], ∀𝑖 ∈ [1;𝑚𝑇] (A.17)  



 

32 
 

 

2 ROMs construction: optimization algorithms 
 

2.1 Particle Swarm Optimization (PSO) for vector 𝜽 
 

A Particle Swarm Optimization (PSO) algorithm [14] has been used for the estimation of vector 

𝜃. Our home-made PSO code uses a circular neighborhood of size 3. A swarm of 𝑁𝑝=20 

particles has been used. At iteration 𝑘 + 1 of the PSO algorithm, pseudo-velocity 𝑣𝑗
𝑝,𝑘+1 and 

position 𝜃𝑗
𝑝,𝑘+1 of particle 𝑝 in direction 𝑗 of the unknown parameters space of dimension 

𝑁𝜃(𝑚) are updated according to the following sequence: 

𝑣𝑗
𝑝,𝑘+1 = 𝜒𝑣𝑗

𝑝,𝑘 + 𝜆 𝑟𝑎𝑛𝑑𝑝(𝜃𝑗
𝑝,𝑏𝑒𝑠𝑡 − 𝜃𝑗

𝑝,𝑘) + 𝜆 𝑟𝑎𝑛𝑑𝑔(𝜃𝑗
𝑝,𝑔
− 𝜃𝑗

𝑝,𝑘) 

𝜃𝑗
𝑝,𝑘+1 = 𝜃𝑗

𝑝,𝑘 + 𝑣𝑗
𝑝,𝑘+1 

𝜃𝑝,𝑏𝑒𝑠𝑡 is the best position found by particle 𝑝 and 𝜃𝑝,𝑔 is the best position found by its 

informants, up-to-date. 𝑟𝑎𝑛𝑑𝑝 and 𝑟𝑎𝑛𝑑𝑔 are random numbers taken from a uniform 

distribution in [0:1]. Parameters 𝜒 = 0.729 and 𝜆 = 1.494 have been used. This set was 

previously tested in [22]. 

A parallelized version has been used in the present work: equation (36) (with 𝐴𝐺  given by (35)) 

which corresponds to vector 𝜃 associated with each particle, is solved by a dedicated process, 

for all couples (𝑘𝑡ℎ, 𝜅)𝑗
𝑑𝑎𝑡𝑎, 𝑗 ∈ [1; 𝑁𝑐

𝑖𝑑] and all instants 𝑡𝑘, 𝑘 ∈ [1;𝑁𝑡
𝑖𝑑]. 

At each iteration of the PSO algorithm, after each update of the particles position, a non-

orthogonal matrix 𝐴𝑇𝐺
0  is formed. A 𝑄𝑅 factorization of 𝐴𝑇𝐺

0  is performed (using LAPACK 

subroutines) and 𝐴𝑇𝐺  in the ROM is set to be the orthogonal matrix 𝑄. 

 

2.2 Ordinary Least Squares for matrix 𝑯 
 

At each iteration of the PSO algorithm, for each particle of the swarm, parameters in 𝜃 are 

fixed: the low order state vector 𝑋(𝑇)(𝑡) ∈ ℝ𝑚 is computed for all couples (𝑘𝑡ℎ, 𝜅)𝑗
𝑑𝑎𝑡𝑎, 𝑗 ∈

[1; 𝑁𝑐
𝑖𝑑] at all instants 𝑡𝑘 , 𝑘 ∈ [1;𝑁𝑡

𝑖𝑑] by solving equation (36) with 𝛿𝜑𝑑𝑎𝑡𝑎(𝑡). The resolution 

of this linear system of equations involving symmetric matrices is performed using dedicated 

LAPACK subroutines. 

Matrix 𝕏 ∈ ℝ𝑚×(𝑁𝑐
𝑖𝑑𝑁𝑡

𝑖𝑑) is then formed: 

𝕏 = [𝑋(𝑇)(1, 𝑡1)⋯𝑋
(𝑇)(1, 𝑡𝑁𝑡𝑖𝑑

)⋯𝑋(𝑇)(𝑁𝑐
𝑖𝑑, 𝑡1)⋯𝑋

(𝑇)(𝑁𝑐
𝑖𝑑 , 𝑡𝑁𝑡𝑖𝑑

)] 

Matrix 𝕋𝑑𝑎𝑡𝑎 ∈ ℝ𝑁𝑜𝑏𝑠×(𝑁𝑐
𝑖𝑑𝑁𝑡

𝑖𝑑) is formed in a similar way: 
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𝕋𝑑𝑎𝑡𝑎 = [𝛿𝑇𝑜𝑏𝑠
𝑑𝑎𝑡𝑎(1, 𝑡1)⋯𝛿𝑇𝑜𝑏𝑠

𝑑𝑎𝑡𝑎(1, 𝑡𝑁𝑡𝑖𝑑
)⋯𝛿𝑇𝑜𝑏𝑠

𝑑𝑎𝑡𝑎(𝑁𝑐
𝑖𝑑, 𝑡1)⋯𝛿𝑇𝑜𝑏𝑠

𝑑𝑎𝑡𝑎(𝑁𝑐
𝑖𝑑 , 𝑡𝑁𝑡𝑖𝑑

)] 

Calling 𝕋 the corresponding matrix for the ROM, one has, according to output equation (39): 

𝕋 = 𝐻𝕏 (A.18)  

Using the Frobenius norm ‖𝑀‖𝐹 = (∑ ∑ 𝑀𝑖𝑗
2

𝑗𝑖 )
1 2⁄

 of a real valued matrix 𝑀 and equation 

(A.18), the quadratic functional 𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻) defined by equation (40) can also be written: 

𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻) = ‖𝕋 − 𝕋𝑑𝑎𝑡𝑎‖𝐹

2 = ‖𝕋𝑇 − 𝕋𝑑𝑎𝑡𝑎
𝑇
‖
𝐹

2

= ‖𝕏𝑇𝐻𝑇 −𝕋𝑑𝑎𝑡𝑎
𝑇
‖
𝐹

2

 

which also writes, using the 𝐿2 norm ‖𝑉‖2 = (∑ 𝑉𝑖
2

𝑖 )1 2⁄  of a real valued vector 𝑉: 

𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻) = ∑ ‖𝕏𝑇(𝐻𝑇)𝑗 − (𝕋

𝑑𝑎𝑡𝑎𝑇)
𝑗
‖
2

2
𝑁𝑜𝑏𝑠

𝑗=1

 

where (𝐻𝑇)𝑗 ∈ ℝ
𝑚 and (𝕋𝑑𝑎𝑡𝑎

𝑇
)
𝑗
∈ ℝ𝑁𝑐

𝑖𝑑𝑁𝑡
𝑖𝑑

 are respectively the 𝑗𝑡ℎ column of 𝐻𝑇 ∈

ℝ𝑚×𝑁𝑜𝑏𝑠 and 𝕋𝑑𝑎𝑡𝑎
𝑇
∈ ℝ(𝑁𝑐

𝑖𝑑𝑁𝑡
𝑖𝑑)×𝑁𝑜𝑏𝑠. 

So, for 𝜃 fixed, searching for 𝐻 minimizing 𝒥𝑖𝑑
(𝑚)(𝜃, 𝐻) is equivalent to minimizing each one of 

the ‖𝕏𝑇(𝐻𝑇)𝑗 − (𝕋
𝑑𝑎𝑡𝑎𝑇)

𝑗
‖
2

2

, 𝑗 ∈ [1; 𝑁𝑜𝑏𝑠]. 

𝕏𝑇 ∈ ℝ(𝑁𝑐
𝑖𝑑𝑁𝑡

𝑖𝑑)×𝑚 and (𝕋𝑑𝑎𝑡𝑎
𝑇
)
𝑗
∈ ℝ𝑁𝑐

𝑖𝑑𝑁𝑡
𝑖𝑑

 are known, hence under the condition 𝑁𝑐
𝑖𝑑𝑁𝑡

𝑖𝑑 ≥

𝑚 (easily fulfilled in practice since 𝑚 ranges between 1 to less than 10), the estimation of 

(𝐻𝑇)𝑗 ∈ ℝ
𝑚 using Ordinary Least Squares consists in solving: 

𝕏𝕏𝑇(𝐻𝑇)𝑗 = 𝕏(𝕋
𝑑𝑎𝑡𝑎𝑇)

𝑗
               𝑗 ∈ [1; 𝑁𝑜𝑏𝑠] 

Matrix 𝐻𝑇 is therefore estimated by simply solving: 

𝕏𝕏𝑇𝐻𝑇 = 𝕏𝕋𝑑𝑎𝑡𝑎
𝑇

 (A.19)  
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