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Convergence and almost sure properties in Hardy spaces of Dirichlet series

1. Introduction 1.1. λ-Dirichlet series and their convergence. A general Dirichlet series is a series n a n e -λns where (a n ) ⊂ C N , s ∈ C and λ = (λ n ) is an increasing sequence of nonnegative real numbers tending to +∞, called a frequency. We shall denote by D(λ) the space of all formal λ-Dirichlet series. The two most natural examples are (λ n ) = (n) which gives rise to power series and (λ n ) = (log n), the case of ordinary Dirichlet series. A proeminent problem at the beginning of the twentieth century was the study of the convergence of these series, starting from the following theorem of Bohr [START_REF] Bohr | Über die gleichmäßige Konvergenz Dirichletscher Reihen[END_REF] on ordinary Dirichlet series: let D = n a n n -s be a somewhere convergent ordinary Dirichlet series having a holomorphic and bounded extension to the half-plane C 0 . Then D converges uniformly on each halfplace C ε for all ε > 0. Here, C θ means the right half-plane [Res > θ]. An important effort was done to extend this result to general frequencies. Two sufficient conditions were isolated firstly by Bohr [START_REF] Bohr | Über die gleichmäßige Konvergenz Dirichletscher Reihen[END_REF] and then by Landau [START_REF] Landau | Über die gleichmäßige Konvergenz Dirichletscher Reihen[END_REF]. Following the terminology of [START_REF] Schoolmann | On Bohr's theorem for general Dirichlet series[END_REF], we say that a frequency satisfies (BC) provided (BC) ∃ > 0, ∃C > 0, ∀n ∈ N, λ n+1 -λ n ≥ Ce -λn .

A frequency λ satisfies (LC) provided (LC) ∀δ > 0, ∃C > 0, ∀n ∈ N, λ n+1 -λ n ≥ Ce -e δλn .

Of course, (BC) is a stronger condition than (LC), and Landau has shown that any frequency satisfying (LC) verifies Bohr's theorem: all Dirichlet series D = n a n e -λns belonging to D ext ∞ (λ), the space of somewhere convergent λ-Dirichlet series which allow a holomorphic and bounded extension to C 0 , converge uniformly to C ε , for all ε > 0. This problem was studied again recently in [START_REF] Choi | Banach spaces of general Dirichlet series[END_REF] and [START_REF] Schoolmann | On Bohr's theorem for general Dirichlet series[END_REF] in connection with Banach spaces of Dirichlet series and quantitative estimates. Define by D ∞ (λ) the subspace of D ext ∞ (λ) of Dirichet series which converge on C 0 (in general, D ∞ (λ) can be a proper subspace of D ext ∞ (λ) if λ does not satisfy Bohr's theorem) and define S N :

D ext ∞ (λ) → D ∞ (λ), +∞ 1
a n e -λns → N 1 a n e -λns the N -th partial sum operator. In [START_REF] Schoolmann | On Bohr's theorem for general Dirichlet series[END_REF], a thorough study of the norm of S N is done (the case of ordinary Dirichlet series was settled in [START_REF] Bayart | Hardy spaces of Dirichlet series and their composition operators[END_REF]), leading to consequences on the existence of a Montel's theorem in D ext ∞ (λ) or on the completeness of D ∞ (λ). Our first main result is an extension of the results of [START_REF] Bohr | Über die gleichmäßige Konvergenz Dirichletscher Reihen[END_REF][START_REF] Landau | Über die gleichmäßige Konvergenz Dirichletscher Reihen[END_REF][START_REF] Schoolmann | On Bohr's theorem for general Dirichlet series[END_REF]: we provide a new class of frequencies, that we will call (NC) (see Definition 2.2) such that Bohr's theorem, and all its consequences, are true. Like (BC) or (LC), this class of frequencies quantifies how fast λ goes to +∞ and how close its terms are, but in a less demanding way since (NC) is strictly weaker than (LC). Our method of proof also differs from that of [START_REF] Schoolmann | On Bohr's theorem for general Dirichlet series[END_REF]. In [START_REF] Schoolmann | On Bohr's theorem for general Dirichlet series[END_REF], the estimation of S N is based on Riesz means of λ-Dirichlet polynomials: recall that for a sequence of complex numbers (c n ) and for k > 0, the finite sum

R λ,k x ( n c n ) := λn<x 1 - λ n x k c n
is called the first (λ, k)-Riesz mean of n c n of length x > 0. I. Schoolmann uses approximation of D by R λ,k x (D) for a suitable choice of k to deduce its result on S N . Our alternate approach is based on mollifiers and on a formula of convolution due to Saksman for ordinary Dirichlet series.

1.2. Hardy spaces of λ-Dirichlet series: Banach spaces and harmonic analysis. Our second approach deals with Hardy spaces of Dirichlet series. For ordinary Dirichlet series, they have been introduced and studied in [START_REF] Hedenmalm | A Hilbert space of Dirichlet series and a system of dilated functions in L 2 ([0, 1])[END_REF] (see also [START_REF] Bayart | Hardy spaces of Dirichlet series and their composition operators[END_REF]) and this has caused an important renew of interest for this subject. The general case has been introduced and investigated very recently in [START_REF]Hp-theory of general Dirichlet series[END_REF][START_REF]Variants of a theorem of Helson for general Dirichlet series[END_REF][START_REF]Riesz means in Hardy spaces on Dirichlet groups[END_REF]. For p ∈ [1, +∞), the Hardy space H p (λ) may be defined as follows: given a λ-Dirichlet polynomial D = N n=1 a n e -λns , define its H p -norm by

D p p := lim T →+∞ 1 2T T -T |D(it)| p dt.
Then H p (λ) is the completion of the set of λ-Dirichlet polynomials for this norm. However, this internal description is often not sufficient to get the main properties of H p (λ) and we need a group approach. Let G be a compact abelian group and let β : (R, +) → G be a continuous homomorphism with dense range. Then we say that (G, β) is a λ-Dirichlet group provided, for all n ∈ N, there exists h λn ∈ Ĝ such that h λn • β = e -iλn• . The space H λ p (G), p ∈ [1, +∞] is then defined as the subspace of L p (G) of functions f such that supp( f ) ⊂ {h λn : n ∈ N}. Now define the Bohr map B by

B : H λ p (G) → D(λ) f → f (h λn )e -λns
and set H p (λ) = B(H λ p (G)) with Bf p := f p . Then it has been shown in [START_REF]Hp-theory of general Dirichlet series[END_REF] that • given a frequency λ, there always exists a λ-Dirichlet group (G, β); • the Hardy space H p (λ) does not depend on the choosen λ-Dirichlet group;

• when p = +∞, it coincides with H p (λ) defined internally.

Our second aim in this paper is solve some of the problems on the spaces H p (λ) raised in [START_REF] Defant | Hardy spaces of general Dirichlet series -a survey[END_REF] and to exhibit new properties of them. In particular, we investigate properties of H p (λ) coming from functional analysis and harmonic analysis.

As an example, let us discuss a famous therorem of Helson [START_REF]Compact groups and Dirichlet series[END_REF] which ensures, in our terminology, that if λ satisfies (BC) and D = n a n e -λns belongs to H 2 (λ), then for almost all homomorphisms ω : (R, +) → T, the Dirichlet series n a n ω(λ n )e -λns converges on C 0 . This has been extended to the Hardy spaces H p ((log n)) for p ≥ 1 by Bayart in [START_REF] Bayart | Hardy spaces of Dirichlet series and their composition operators[END_REF] and this result is at the heart of many further investigations on these spaces (e.g. composition operators, Volterra operators). Therefore, it is a challenge to put it in the general framework of H p (λ) or, equivalenty -via the Bohr transform -of H λ p (G). When λ satisfies (BC), this has been done in [START_REF]Variants of a theorem of Helson for general Dirichlet series[END_REF], adding moreover the maximal inequality.

Theorem A (Defant-Schoolmann). Let λ satisfy (BC), let (G, β) be a λ-Dirichlet group. For every u > 0, there exists a constant C := C(u, λ) such that, for all 1 ≤ p ≤ +∞ and for all f ∈ H λ p (G),

(1) sup

σ≥u sup N N n=1 f (h λn )e -σλn h λn p ≤ C f p .
In particular, for every u > 0, +∞ 1 f (h λn )e -uλn h λn converges almost everywhere on G.

When λ satisfies (LC), the almost everywhere statement is known to be true, as well as the maximal inequality for p > 1 with a constant now depending on p. When p = 1, it is valid if we replace the L 1 (G)-norm by the weak L 1 (G)-norm. We shall prove that inequality (1) remains true even on the weaker assumption that λ satisfies (NC), even for p = 1, and with a constant independent of p. Our approach, which seems less technical than that of [START_REF]Variants of a theorem of Helson for general Dirichlet series[END_REF], is based again on a version of Saksman's convolution formula and on a Carleson-Hunt type maximal inequality of independent interest.

1.3. H p (λ) as a Banach space of holomorphic functions. The results announced in the previous section indicate that the spaces H p (λ) seem to behave well if we look at their almost sure properties. The classical case H p ((log n)) was also investigated as a Banach space of holomorphic function. Even in that case, it is a nontrivial problem to determine the optimal half-plane of convergence of elements in H p (λ), namely to compute

σ Hp(λ) := inf{σ ∈ R : σ c (D) ≤ σ for all D ∈ H p (λ)}
where, for a Dirichlet series D ∈ D(λ), σ c (D) := inf{σ ∈ R : D converges on C σ }. This has been settled in [START_REF] Bayart | Hardy spaces of Dirichlet series and their composition operators[END_REF], using that σ H 2 ((log n)) = 1/2 (easy by the Cauchy-Schwarz inequality) and that T σ ( n a n e -λs ) = n a n e -σλn e -λns maps H p ((log n)) into H q ((log n)) for all p, q ∈ [1, +∞) and all σ > 0. The argument is based on multiplicativity (namely on the fact that the natural λ-Dirichlet group for (log n) is the infinite polytorus T ∞ ) and on a hypercontractive estimate for the Poisson kernel acting on the Hardy spaces H p (T) of the disk. We will show that there is no hope to get such a result for general frequencies λ even if they satisfy (BC). For instance, if we will be able to prove that for all frequencies σ H 1 (λ) ≤ 2σ H 2 (λ) , we will nevertheless point out that, even if we assume (BC), this is optimal and in particulat that we may have σ H 1 (λ) > σ H 2 (λ) . We will also exhibit a sequence λ, which still satisfies (BC), such that T σ maps boundedly H 2 (λ) into H 2k (λ) if and only if σ ≥ (k -1)/2k. In particular, it seems very hard to compute σ Hp(λ) in the general case and the behaviour of H p (λ) as a space of holomorphic function seems more difficult to predict if we assume only growth and separation conditions on λ. Given (G, β) a λ-Dirichlet group we shall denote by Pol λ (G) the set of polynomials with spectrum in λ, namely finite sums n k=1 a k h λ k with λ k ∈ G for each k = 1, . . . , n. We shall also use the following result: for all f : G → C measurable, for almost all ω ∈ G, the function

f ω := f (ωβ(•)) : R → C is measurable. If additionally f ∈ L ∞ (G), then for almost all ω ∈ G, f ω ∈ L ∞ (R) with f ω ∞ ≤ f ∞ . Moreover, if f ∈ L 1 (G)
, then f ω is locally integrable for almost all ω ∈ G, and for g ∈ L 1 (R), the convolution

g f ω (t) := R f (ωβ(t -y))g(y)dy
is almost everywhere defined on R and measurable (see [START_REF]Hp-theory of general Dirichlet series[END_REF]Lemma 3.11]).

Preliminaries

2.1.

A new class of frequencies. We introduce our new condition, more general than (LC), under which most of our results will be satisfied. We first reformulate (LC).

Lemma 2.1. A frequency λ satisfies (LC) if and only if there exists C > 0 such that, for all δ > 0, for all n ∈ N,

log λ n+1 + λ n λ n+1 -λ n ≤ Ce δλn .
Proof. Assume first that λ satisfies (LC) and let δ > 0. Then there exists C > 0 such that, for all n ∈ N, λ n+1 -λ n ≥ Ce -e δ 2 λn

. Let n ∈ N and set

ξ n = λ n + Ce -e δ 2 λn
. Since the function x → (x + λ n )/(x -λ n ) is decreasing on (λ n , +∞), one gets

λ n+1 + λ n λ n+1 -λ n ≤ ξ n + λ n ξ n -λ n ≤ C -1 2λ n + Ce -e δ 2 λn e e δ 2 λn
≤ C e e δλn .

The converse implication is easier and left to the reader.

The main idea to introduce (NC) is to allow to compare the position of λ n with λ m for some m > n and not only with λ n+1 .

Definition 2.2. We say that a frequency λ satisfies (NC) if, for all δ > 0, there exists C > 0 such that, for all n ≥ 1, there exists m > n such that

(NC) log λ m + λ n λ m -λ n + (m -n) ≤ Ce δλn .
Condition (NC) provides a nontrivial extension of (LC).

Example 2.3. Let λ be defined by λ 2 n +k = n 2 + ke -e n 2 for k = 0, . . . , 2 n -1. Then L(λ) = +∞, λ satisfies (NC) and λ is not the finite union of frequencies satisfying (LC).

Proof. Let δ > 0, n ∈ N, k ∈ {0, . . . , 2 n -1}, then provided n is large enough

log λ 2 n+1 + λ 2 n +k λ 2 n+1 -λ 2 n +k + (2 n+1 -2 n -k) ≤ log 2(n + 1) 2 + 2 n ≤ Ce δn 2 ≤ Ce δλ 2 n +k
for some C > 0. Moreover, if λ was the finite union of λ 1 , . . . , λ p , each λ j satisfying (LC), then at least one of the λ j , say λ 1 , will contain an infinite number of consecutive terms

λ 1 m = λ 2 n +k , λ 1 m+1 = λ 2 n +k with 1 ≤ k -k ≤ p and k, k ∈ {0, . . . , 2 n -1}. For these m, log λ 1 m+1 + λ 1 m λ 1 m+1 -λ 1 m ≥ e n 2 -log p ≥ Ce λ 1 m /2
contradicting that λ 1 satisfies (LC).

2.2. Saksman's vertical convolution formula. Saksman's vertical convolution formula was introduced to express weighted sums of ordinary Dirichlet series using an integral. It says essentially that if D = n a n n -s is an ordinary Dirichlet series and ψ is in L 1 with ψ compactly supported, then

+∞ n=1 a n ψ(log n)n -s = R D(s + it)ψ(t)dt
with a sense that has to be made precise. It was used in [START_REF] Bayart | Approximation numbers of composition operators on H p spaces of Dirichlet series[END_REF] for Dirichlet series in H 1 and in [START_REF] Queffélec | Espaces de séries de Dirichlet et leurs opérateurs de composition[END_REF] for Dirichlet series in H ∞ . We shall extend it to general Dirichlet series and we will use it as a much more flexible substitute of Perron's formula.

Theorem 2.4. Let ψ ∈ L 1 (R) be such that ψ is compactly supported and let λ be a frequency with (G, β) an associated λ-Dirichlet group.

(a) Let D = n a n e -λns ∈ D ext ∞ (λ) with bounded and holomorphic extension to C 0 denoted by f . Then for all s ∈ C with e(s) > 0

+∞ n=1 a n ψ(λ n )e -λns = R f (s + it)ψ(t)dt. (b) Let f = n a n h λn ∈ H λ 1 (G). Then for almost all ω ∈ G, +∞ n=1 a n ψ(λ n )h λn (ω) = R f ω (t)ψ(t)dt.
In the sequel, for D = n a n e -λns ∈ D ext ∞ (λ), respectively for f = n a n h λn in H λ 1 (G), and for ψ ∈ L 1 (R) compactly supported, we shall denote

R ψ (D) := n a n ψ(λ n )e -λns R ψ (f ) := n a n ψ(λ n )h λn .
Proof. (a) Observe first that the equality is true provided D is a Dirichlet polynomial and that the two members of the equality define an analytic function on C 0 . Assume first that L(λ) < +∞. Then σ a (D) < +∞ and for s > σ a (D), the formula is true just by exchanging the sum and the integral. We conclude by analytic continuation. When L(λ) = +∞, the proof is more difficult. We use (see [START_REF] Hardy | The general theory of Dirichlet series[END_REF]Theorem 41 p. 53] or [START_REF]Dirichlet series[END_REF]Theorem 22]) that there exist a half-plane C θ , θ > 0, and a sequence of λ-Dirichlet polynomials D j = +∞ n=1 a j n e -λns such that (a j n ) tends to a n as j tends to +∞ for any n and (D j ) converges uniformly to f on C θ . Since each D j is a Dirichlet polynomial, we know that for all s ∈ C θ and all j ∈ N,

+∞ n=1 a j n ψ(λ n )e -λns = R D j (s + it)ψ(t)dt.
Letting j to +∞ in the previous inequality for a fixed s ∈ C θ , since the sum on the left handside is finite ( ψ has compact support), and by uniform convergence, we get the result on C θ . We conclude again by analytic continuation. (b) When f ∈ Pol λ (G), the equality follows immediately by interverting a finite sum and an integral, and the definition of the objects that come into play:

R ψ (f )(ω) = R n a n e -itλn ψ(t)h λn (ω)dt = R n a n h λn (β(t))h λn (ω)ψ(t)dt = R f ω (t)ψ(t)dt
(here the equality is valid for all ω ∈ G).

Let now f ∈ H λ 1 (G). Then G R |f ω (t)ψ(t)|dt ≤ f 1 ψ 1 .
Therefore, for almost all ω ∈ G, the function t → f ω (t)ψ(t) belongs to L 1 (R) and the operator S ψ :

H λ 1 (G) → L 1 (G, L 1 (R)), f → [ω → f ω (•)ψ(•)] is continuous. If (f n ) is a sequence in Pol λ (G) tending to f ∈ H λ 1 (G), then there exists a sequence (n k ) such that, for a.e. ω ∈ G, S ψ (f n k )(ω) → S ψ (f )(ω) in L 1 (R) R ψ (f n k )(ω) → R ψ (f )(ω) (recall that the sum defining R ψ is finite). Since R ψ (f n k )(ω) = R S ψ (f n k )(ω)
for all k and all ω ∈ G, we get the conclusion by taking the limit.

Remark 2.5. The statement of Theorem 2.4 remains true provided ψ is not compactly supported but still satisfies n | ψ(λ n )| < +∞.

Remark 2.6. To obtain Theorem 2.4, in both cases, we use the density of polynomials for a suitable topology. In H λ 1 (G), this is trivial which is not the case in D ∞ ext (λ). More specifically we intend to use Theorem 2.4 to obtain results that do not seem easily reachable using Riesz means. Therefore it is intesting to obtain a proof of Theorem 2.4 that do not use Riesz means. This is the case if we use [START_REF]Dirichlet series[END_REF]Theorem 22]. We thank A. Defant and I. Schoolmann for pointing out to me this reference.

Remark 2.7. Part (b) of the vertical convolution formula is more precised than the statement established and used in [START_REF] Bayart | Approximation numbers of composition operators on H p spaces of Dirichlet series[END_REF]. The equivalent statement in this context would be that, for all

f ∈ H λ 1 (G), +∞ n=1 a n ψ(n)h λn = R T t f ψ(t)dt,
where

T t : H λ 1 (G) → H λ 1 (G), f → f (β(t)•) is an onto isometry of H λ 1 (G)
and the right handside denotes a vector-valued integral in H λ 1 (G). We will need a pointwise statement in order to obtain maximal inequalities.

2.3.

Riesz means and Saksman's vertical convolution formula. We now show how the results on (λ, k)-Riesz means will follow from our results coming from Saksman's vertical convolution formula. This is a consequence of the following easy proposition. Proposition 2.8. Let α > 0. Then there exists an L 1 (R)-function ψ such that, for all

t ∈ R, ψ(x) = (1 -|x|) α provided |x| < 1, ψ(x) = 0 otherwise. Proof. Define u(x) = (1 -|x|) α 1 [-1,1] (x). Then u is piecewise C 1 , its derivative u (x) = ±α(1 -|x|) α-1 1 [-1,1] (x) belongs to L 1 (
R) and thus we know that, for all t = 0, û(t) = 1 it u (t). Now, it is easy to see that u belongs to L 1+ε (R) ∩ L 1 (R) for some ε > 0. Hence, u belongs to L q (R) for some q < +∞. In particular, by Hölder's inequality, û belongs to L 1 , so that we may apply the inverse Fourier transform to get the statement.

In the sequel, for λ a frequency, α > 0, (G, β) a λ-Dirichlet group and N > 0, we shall use the following notations:

R λ,α N (f ) = λn≤N f (h λn ) 1 - λ n N α h λn R λ,α N (D) = λn≤N a n 1 - λ n N α e -λns
where f ∈ H λ 1 (G) and D = n a n e -λns ∈ D(λ). Many of the results of [START_REF] Schoolmann | On Bohr's theorem for general Dirichlet series[END_REF][START_REF]Variants of a theorem of Helson for general Dirichlet series[END_REF][START_REF]Riesz means in Hardy spaces on Dirichlet groups[END_REF]] are based on a detailed study of these operators R λ,α N . We shall extend them via the convolution formula to other operators R ψ , allowing better results with a different choice of ψ.

Bohr's theorem under (NC)

3.1. The case of D ext ∞ (λ). In his study of Bohr's theorem [START_REF] Schoolmann | On Bohr's theorem for general Dirichlet series[END_REF], I. Schoolmann used that, for all D = n a n e -λns ∈ D ext ∞ (λ) with extension f , the sequence of its Riesz means of order k

R k x (D) = λn<x a n 1 - λ n x k e -λns
converge uniformly to f on each halfplane C ε , for all ε > 0, as x → +∞. We now show that we may replace the function ψ such that ψ(t) = (1 -|t|) k 1 [-1,1] (t) by any function L 1 -function ψ such that ψ has compact support.

Lemma 3.1. Let λ be a frequency, let ψ ∈ L 1 (R) be such that ψ has compact support and let D = n a n e -λns ∈ D ext ∞ (λ) with extension f . Then

R ψ (D) ∞ ≤ ψ 1 f ∞ . Moreover, if R ψ = 1,denoting by ψ N (•) = N ψ(N •), the sequence of λ-Dirichlet polyno- mials (R ψ N (D)) converges uniformly to f on each half-plane C ε , for all ε > 0.
Proof. The inequality follows immediately from Theorem 2.4. The statement on uniform convergence follows as well from this formula and from standard results on mollifiers, provided we know that f is uniformly continuous on C ε . Again, this can be deduced from the fact that on this half-plane, f is the uniform limit of λ-Dirichlet polynomials, which are themselves uniformly continuous.

We shall now apply this to a suitable choice of ψ in order to get good estimates of the norm of the projection S N . Theorem 3.2. Let λ be a frequency. There exists C > 0 such that, for all M > N ≥ 1,

S N D ext ∞ (λ)→D∞(λ) ≤ C log λ M + λ N λ M -λ N + (M -N -1) . Proof. We set h = λ M -λ N 2
. Let u be the function equal to 1 on [-λ N , λ N ], to 0 on R\(-λ M , λ M ), and which is affine on (-λ M , λ N ) and on (λ N , λ M ). The function u may be written

u = 1 [-λ N -h,λ N +h] 1 2h 1 [-h,h] .
This formula allows us to compute the Fourier transform of u which is equal to

u(t) = 2 sin((λ N + h)t) t • sin(ht) ht
which is an L 1 function. Moreover

u 1 ≤ 4 +∞ 0 sin((λ N + h)t) t × sin(ht) ht dt ≤ 4 +∞ 0 sin λ N +h h x x × sin(x) x dx ≤ 4 1 0 sin λ N +h h x x dx + 4 +∞ 1 1 x 2 dx ≤ C log λ N + h h + 4 = C log λ M + λ N λ M -λ N + 4
where we have used well-known estimates of the L 1 -norm of the sinus cardinal function.

We then applied Lemma 3.1 to ψ ∈ L 1 defined by ψ = u. By the Fourier inverse formula,

M -1 n=1 a n ψ(λ n )e -λns ∞ ≤ C log λ M + λ N λ M -λ N + 4 f ∞ .
We get the conclusion by writing

N n=1 a n e -λns = M -1 n=1 a n ψ(λ n )e -λns - M -1 n=N +1 a n ψ(λ n )e -λns
and by using that

|a n | ≤ f ∞ (see [21, Corollary 3.9]) and ψ ∞ ≤ 1.
From the Bohr-Cahen formula to compute the abscissa of uniform convergence of a λ-Dirichlet series,

σ u (D) ≤ lim sup N log sup t∈R N n=1 a n e -λnit λ N
we get the following corollary. Corollary 3.3. Let λ be a frequency satisfying (NC). Then λ satisfies Bohr's theorem.

Let us now compare Theorem 3.2 with the results of [START_REF] Schoolmann | On Bohr's theorem for general Dirichlet series[END_REF]. There it is shown that, for all N ≥ 1 and all k ∈ (0, 1],

S N D ext ∞ (λ)→D∞(λ) ≤ C k λ N +1 λ N +1 -λ N 1/k .
The right hand side is optimal for k =

1 log λ N +1 λ N +1 -λ N which implies that S N D ext ∞ (λ)→D∞(λ) ≤ C log λ N +1 λ N +1 -λ N .
Hence, we get the case M = N + 1 of Theorem 3.2.

3.2.

The case of H ∞ (λ). So far, we have defined three spaces which are candidates for being the H ∞ -space of λ-Dirichlet series:

D ∞ (λ), D ext ∞ (λ)
, and H ∞ (λ). We know that we always have the canonical inclusion [START_REF]Riesz means in Hardy spaces on Dirichlet groups[END_REF]Theorem 2.17]) and that, when λ satisfies Bohr's theorem, the three spaces are equal. Observe also that H ∞ (λ) is the only space that is always complete. Thus, Theorem 3.2 does not always provide an answer for estimating the norm of S N as an operator on H ∞ (λ). Fortunately, the proof extends easily using the second (and easiest part) of Theorem 2.4. Theorem 3.4. Let λ be a frequency. There exists C > 0 such that, for all M > N ≥ 1,

D ∞ (λ) ⊂ D ext ∞ (λ) ⊂ H ∞ (λ) (see
S N H∞(λ)→D∞(λ) ≤ C log λ M + λ N λ M -λ N + (M -N -1) .
Proof. We do the proof in

H λ ∞ (G). Let f = n a n h λn ∈ H λ ∞ (G).
We pick the same function ψ and observe, that for almost all ω ∈ G,

+∞ n=1 a n ψ(λ n )h λn (ω) ≤ R |f ω (it)ψ(t)|dt ≤ C log λ M + λ N λ M -λ N + 4 f ∞
and we conclude as above.

4. Maximal inequalities in H λ p (G) 4.1. Helson's theorem under (NC). In this section, we prove the following theorem, which improves the main result of [START_REF]Variants of a theorem of Helson for general Dirichlet series[END_REF] and answers an open question of [START_REF] Defant | Hardy spaces of general Dirichlet series -a survey[END_REF]. In particular, for every u > 0, +∞ 1 f (h λn )e -uλn h λn converges almost everywhere on G.

Let us explain the strategy for the proof. When p > 1, the almost everywhere convergence is known to hold without any assumption on λ. This is a consequence of the Carleson-Hunt type result proved in [START_REF]Variants of a theorem of Helson for general Dirichlet series[END_REF]: for all frequencies λ, for all (G, β) a λ-Dirichlet group, for all p ∈ (1, +∞), there exists C(p) > 0 such that for all f ∈ H λ p (G),

G sup n |S n f (ω)| p dω 1/p ≤ C(p) f p where S n (f ) = n k=1 f (h λ k )h λ k (2) 
is the partial sum operator (the constant C(p) does not even depend on λ). We shall prove a variant of ( 2) under (NC), namely

(3) G sup n e -δλn |S n f (ω)| p dω 1/p ≤ C(λ, δ) f p
valid for all p ≥ 1, all δ > 0 and all f ∈ H λ p (G), with a constant C(λ, δ) independent of p. The proof of (3) will be done for p = 1 and for p = +∞ and will be finished by interpolation. Unfortunately, it is in general false that [H λ p 0 (G), H λ p 1 (G)] θ = H λ p θ (G) (see [START_REF] Bayart | Interpolation of Hardy spaces of Dirichlet series[END_REF]) and we will use an auxiliary operator defined on the whole L 1 (G). We begin by establishing several lemmas. First, we shall prove that we may require additional properties on a sequence satisfying (NC). Lemma 4.2. Let λ be a frequency satisfying (NC). Then there exists a frequency λ such that λ ⊂ λ and, for all δ > 0, there exists C > 0 such that, for all n ∈ N, there exists m > n with

log(λ m + λ n ) ≤ Ce δλ n (4) -log(λ m -λ n ) ≤ Ce δλ n (5) m -n ≤ Ce δλ n . ( 6 
)
Proof. We construct inductively λ as follows. We set λ 1 = λ 1 . Assume that the sequence λ has been built until step n, namely that we have constructed λ 1 , . . . , λ kn with λ kn = λ n . If λ n+1 ≤ λ n + 1, then we set λ kn+1 = λ n+1 and k n+1 = k n + 1. Otherwise, we include as many terms λ kn+1 , . . . , λ k n+1 as necessary so that, for all j = k n + 1, . . . , k n+1 -1, 1/2 ≤ λ j+1 -λ j ≤ 1 and λ k n+1 = λ n+1 . Namely, we add terms in the sequence λ when there is a gap greater than 1 between two successive terms, and the difference between two consecutive terms of λ is now less than 1. Let us show that the sequence λ satisfies the above conclusion. Let λ n be any term of the sequence λ . If λ n does not belong to λ, then we have just to consider

m = n + 1. Otherwise, if λ n = λ k for some k ≤ n, there exists l > k such that log λ l + λ k λ l -λ k ≤ Ce δλ k (7) l -k ≤ Ce δλ k . Set m = n + (l -k) and observe that we have log(λ m + λ n ) ≤ log Ce δλ n + 2λ n ≤ C e δλ n .
If there is no gap between λ k and λ l , then λ m = λ l and (7) implies

-log(λ m -λ n ) = -log(λ l -λ k ) ≤ Ce δλ k = Ce δλ n .
If there is a gap between λ k and λ l , then λ m -λ n ≥ 1/2, and (5) holds trivially.

In the sequel, when we will pick a frequency λ satisfying (NC), we will in fact assume that it satisfies the stronger properties given by Lemma 4.2.

For a > 0 and h > 0, we shall denote by ψ a,h the function defined by

ψ a,h (t) = sin((a + h)t) t × sin(ht) ht .
The estimation of the L 1 -norm of ψ a,h was a crucial point in order to apply Saksman's convolution formula during the proof of Theorem 3.2. In order to obtain our maximal estimates, we will need a similar inequality allowing now a and h to vary.

Lemma 4.3. Let a : R → (0, +∞) and h : R → (0, +∞) be two measurable functions.

Assume that there exists κ > 0 such that a(t) + h(t) ≤ κ and h(t

) ≥ κ -1 for all t ∈ R. Then R ψ a(t),h(t) (t) dt ≤ 4 + 4 log κ.
Proof. It suffices to observe that

• when 0 < |t| ≤ κ -1 , then ψ a(t),h(t) (t) ≤ |a(t) + h(t)| × 1 ≤ κ. • when κ -1 ≤ |t| ≤ κ, then ψ a(t),h(t) (t) ≤ 1 |t| × 1 = 1 |t| .
• when |t| ≥ κ, then

ψ a(t),h(t) (t) ≤ 1 h(t)t 2 ≤ κ t 2 .
We now fix a frequency λ satisfying (NC) and δ > 0. Let C > 0 and m : N → N be such that m(n) > n for all n ∈ N and (4), ( 5), ( 6) are satisfied for m = m(n). For n ∈ N, we shall denote by h n = (λ m(n) -λ n )/2 and by φ n the function φ n = ψ λn,hn . Let us recall that R φn is defined on

H λ 1 (G) by (8) R φn (f ) = k f (h λ k ) φ n (λ k )h λ k .
By the vertical convolution formula, we also know that R φn is given by, for a.e. ω ∈ G,

(9) R φn (f )(ω) = R f (ωβ(t))φ n (t)dt.
Now the right hand side of the previous equality is well-defined for all functions in L 1 (G). Thus we will think at R φn as the operator on L 1 (G) defined by [START_REF] Defant | Hardy spaces of general Dirichlet series -a survey[END_REF], keeping in mind that it also verifies [START_REF] Defant | Optimal comparison of the p-norms of Dirichlet polynomials[END_REF] for f ∈ H λ 1 (G). In this context, we shall prove the following maximal inequality on R φn : Lemma 4.4. For all δ > 0, there exists C > 0 such that, for all p ∈ [1, +∞], for all N ∈ N, for all f ∈ L p (G),

G sup n≤N |R φn f (ω)| p dω 1/p ≤ Ce δλ N f p .
Proof. We start with the case p = 1. It is enough to prove it for f ∈ C(G). Define n : G → {1, . . . , N }, ω → n(ω) by

n(ω) = inf l ∈ {1, . . . , N } : |R φ l f (ω)| = sup n≤N |R φn f (ω)| .

The function n is measurable and

G sup n≤N |R φn (f )(ω)|dω = G |R φ n(ω) (f )(ω)|dω ≤ R G |f (ωβ(t))| • |ψ λ n(ω) ,h n(ω) (t)|dωdt.
In the inner integral we do the change of variables ω = ωβ(t) so that

G sup n≤N |R φn (f )(ω)|dω ≤ R G |f (ω )| • |ψ λ n(ω •β(t) -1 ) ,h n(ω •β(t) -1 ) (t)|dωdt ≤ G |f (ω )| R |ψ λ n(ω •β(t) -1 ) ,h n(ω •β(t) -1 ) (t)|dtdω.
We now use Lemma 4.3 together with (4) and ( 5). This yields

G sup n≤N |R φn (f )(ω)|dω ≤ C G |f (ω )|e δλ N dω = Ce δλ N f 1 .
We then do the case p = +∞. Let f ∈ L ∞ (G). Then

sup ω∈G sup n≤N |R φn f (ω)| = sup n≤N sup ω∈G R |f (ωβ(t))| • |ψ λn,hn (t)|dt ≤ sup n≤N ψ λn,hn 1 f ∞ ≤ Ce δλ N f ∞ .
We then conclude by interpolation.

We deduce from the above work a weighted Carleson-Hunt maximal inequality for H λ 1 (G)functions, which seems interesting for itself when p = 1 (for p ∈ (1, +∞), an unweighted Carleson-Hunt inequality is true, the point here is that the constant does not depend on p). This statement was inspired by [START_REF] Bayart | Multifractal analysis of the divergence of Fourier series, the extreme cases[END_REF] where a similar result in the (much easier) case of H 1 (T) was essential to do a multifractal analysis of the divergence of Fourier series of functions of H 1 (T). Theorem 4.5. Let λ satisfying (NC). For all δ > 0 there exists C > 0 such that, for all N ∈ N, for all p ≥ 1, for all f ∈ H λ p (G),

G sup n≤N |S n f (ω)| p dω 1/p ≤ Ce δλ N .
Proof. We argue as in the proof of Theorem 3.2, namely we write for a fixed n ∈ N,

|S n f (ω)| ≤ |R φn f (ω)| + m(n) -n ≤ |R φ(n) f (ω)| + Ce δλn .
Therefore,

sup n≤N |S n f (ω)| ≤ sup n≤N |R φn (f )(ω)| + Ce δλ N
and we conclude by taking the L p (G)-norm.

We are now ready for the proof of Theorem 4.1.

Proof of Theorem 4.1. We first proceed with the case p ∈ [1, +∞). We may assume that f ∈ P ol λ (G). Let δ = u/3. For σ ≥ u, using Lemma 3.4 of [START_REF]Variants of a theorem of Helson for general Dirichlet series[END_REF], we have For ω ∈ G, we define

n(ω) = inf l ≥ 0 : e -2δλ l l n=1 f (h λn )h λn = sup N e -2δλ N N n=1
f (h λn )h λn which is measurable. For k ≥ 0, we set

A k = {n : λ n ∈ [k, k + 1)} , G k = {ω ∈ G : n(ω) ∈ A k } , I(σ) = G sup σ>u sup N N n=1
f (h λn )e -σλn h λn p dω.

We can write

I(σ) ≤ C(u) p k≥0 G k sup N e -2δλ N N n=1 f (h λn )h λn p dω ≤ C(u) p k≥0 G k sup N ∈A k e -2δλ N N n=1 f (h λn )h λn p dω ≤ C(u) p k≥0 G k e -2δpk sup N ∈A k N n=1 f (h λn )h λn p dω ≤ C(u, λ) p k≥0 e -2δpk e δp(k+1) f p p ≤ C(u, λ) p f p p .
As for the proof of Lemma 4.4, the proof is easier for p = ∞ and is left to the reader.

If we analyze the previous proof carefully, we observe that we have obtained the following (slightly stronger) variant of Theorem 4.5.

Corollary 4.6. Let λ satisfying (NC). For all δ > 0, there exists C > 0 such that, for all

p ≥ 1, for all f ∈ H λ p (G), G sup N S N f (ω) e δλ N p dω 1/p ≤ C(δ) f p .
When λ satisfies (BC), it is possible to improve this inequality.

Proposition 4.7. Let λ satisfy (BC). For all α > 1, there exists C > 1 such that, for all p ≥ 1, for all f ∈ H λ p (G),

G sup N S N f (ω) λ α N p dω 1/p ≤ C(α) f p .
Proof. We just sketch the proof. If λ satisfies (BC), then we know that there exists C > 0 such that, for all n ∈ N, log(λ n+1 -λ n ) ≥ -Cλ n . Adding terms if necessary, we can also assume that log(λ n+1 + λ n ) ≤ Cλ n . Arguing exactly as in the proof of Theorem 4.5, we can prove the existence of C > 0 such that, for all f ∈ H λ p (G), for all n ∈ N,

G sup n≤N |S n f (ω)| p dω ≤ Cλ p N . Let now α > 1, fix f ∈ Pol λ (G) and define, for ω ∈ G, n(ω) = inf l ≥ 0 : λ -α l l n=1 f (h λn )h λn = sup N λ -α N N n=1 f (h λn )h λn A k = {n : λ n ∈ [2 k , 2 k+1 )} G k = {w : n(ω) ∈ A k }. Then G sup N S N f (ω) λ α N p dω = k G k sup N S N f (ω) λ α N p dω = k G k sup N ∈A k S N f (ω) λ α N p dω ≤ k 2 -pkα G sup λ N ≤2 k+1 |S N f (ω)| p dω ≤ C k 2 -pkα 2 p(k+1) f p p .
Question 4.8. We know that λ satisfies Bohr's theorem if and only if for all δ > 0, there exists C > 0 such that, for all f ∈ H λ ∞ (G), for all N ≥ 1, ( 10)

sup n≤N n k=1 f (h λ k )h λ k (ω) L∞(G) ≤ Ce δλ N f ∞ .
We have shown that if λ satisfies (NC), then it satisfies the previous inequality. To prove that Helson's theorem is satisfied (and even to prove that the relevant maximal inequality holds true), it is sufficient to prove that, for all δ > 0, there exists C > 0 such that, for all f ∈ H λ 1 (G), for all N ≥ 1, [START_REF]Riesz means in Hardy spaces on Dirichlet groups[END_REF] sup

n≤N n k=1 f (h λ k )h λ k (ω) L 1 (G) ≤ Ce δλ N f 1 .
Again we have shown that if λ satisfies (NC), then (11) is true. It seems natural to ask whether (11) always follows from [START_REF]Hp-theory of general Dirichlet series[END_REF] or, equivalently, if any frequency λ satifying Bohr's theorem also satisfies Helson's theorem. Inequalities in H 1 (λ) have already been deduced for their vector-valued counterpart in H ∞ (λ) in [START_REF]Hp-theory of general Dirichlet series[END_REF]. At first glance, it seems that this argument cannot be applied here.

4.2.

Failure of Helson's theorem for p = 1. Since for p > 1, for any frequency λ, for any (G, β) a λ-Dirichlet group, for any g ∈ H λ p (G), the series +∞ n=1 f (h λn )h λn converges almost everywhere on G (this follows from the Carleson-Hunt theorem of [START_REF]Variants of a theorem of Helson for general Dirichlet series[END_REF]), it is natural to ask whether Theorem 4.1 remains true without any assumption on λ. We show that this is not the case. Theorem 4.9. There exists a frequency λ, a λ-Dirichlet group (G, β) and f ∈ H λ 1 (G) such that, for all u > 0, the series +∞ n=1 f (h λn )e -uλn h λn diverges almost everywhere on G.

As we might guess, the proof will use the results of Kolmogorov on a.e. divergent Fourier series in L 1 (T) (see for instance [START_REF] Zygmund | Trigonometric series[END_REF]).

Lemma 4.10. Let A, δ > 0. There exists P ∈ H 1 (T) a polynomial and E ⊂ T measurable such that

• P 1 ≤ δ. • m T (E) ≥ 1 -δ (
here, m T denotes the Lebesgue measure on T).

• for all z ∈ E, there exists n(z) ∈ N such that |S n(z) P (z)| ≥ A.

Proof. By induction on j ≥ 1, we construct a sequence of holomorphic polynomials (P j ) with deg(P j ) = d j , two sequences of positive real numbers (µ j ) and (ε j ) and a sequence (E j ) of measurable subsets of T such that the following properties are true for each j:

(a) m T (E j ) ≥ 1 -2 -j (b) P j 1 ≤ 2 -j (c) µ j > µ j-1 + d j-1 ε j-1 (d) the real numbers 2π, µ 1 , . . . , µ j , ε 1 , . . . , ε j are Q-independent ( 
e) for each z ∈ E j , there exists an integer n j (z) such that, for all u ∈ [0, j],

n j (z) k=0 P j (k)e -ukε j z k ≥ je jµ j .
Let us proceed with the construction. We choose for µ j any real number such that µ j > µ j-1 + d j-1 ε j-1 and the real numbers 2π, µ 1 , . . . , µ j , ε 1 , . . . , ε j-1 are independent over Q (when j = 1, we simply choose µ 1 > 2π with (2π, µ 1 ) independent over Q). We then apply Lemma 4.10 with A = (j + 1)e jµ j and δ = 2 -j to get a polynomial P j with degree d j and a subset E j ⊂ T satisfying (a) and (b). Since the functions (u, z) → n k=0 P j (k)e -ukε z k , for 0 ≤ n ≤ d j , converge uniformly on [0, j] × T to (u, z) → S n P (z) as ε → 0, we may choose ε j a sufficiently small positive real number such that (d) and (e) are satisfied. Define now λ = {µ j + kε j : j ≥ 1, 0 ≤ k ≤ d j }, G = +∞ j=1 T 2 endowed with the canonical product structure and define β : (R, +) → G, t → (e -itµ j , e -itε j ) j . By (d) and Kronecker's theorem, the homomorphism β has dense range. Moreover, let λ n ∈ λ. Then λ n = µ j + kε j for some j ≥ 1 and some 0 ≤ k ≤ d j . Write an element ω ∈ G as +∞ l=1 (w l , z l ) and define h λn (ω) = w j z k j . Then

h λn • β(t) = e -it(µ j +kε j ) = e -iλnt so that (G, β) is a λ-Dirichlet group. Now, define f j (ω) = w j P j (z j ) = d j k=0 P j (k)h µ j +kε j (ω).
We get

f j H λ 1 (G) = P j H 1 (T) so that the series f = j≥1 f j converges in H λ 1 (G). Let us also define F j = {ω ∈ G : z j ∈ E j }.
Then m G (F j ) = m T (E j ) ≥ 1-2 -j (here, m G denotes the Haar measure on G). Thus, if we set F = j 0 ≥1 j≥j 0 F j , then m G (F ) = 1. Pick now ω ∈ F . We may find j as large as we want such that ω ∈ F j . The construction of P j ensures that there exists 0 ≤ n j (z j ) ≤ d j such that, for all u ∈ [0, j],

n j (z j ) k=0 P j (k)e -u(µ j +kε j ) z k j ≥ j.

Setting N , resp. M , such that λ N = µ j-1 + d j-1 ε j-1 , resp. λ M = µ j + n j (z j )ε j , the previous inequality translates into

M n=N +1 f (h λn )e -uλn h λn (ω) ≥ j.
This easily yields the a.e. divergence of +∞ n=1 f (h λn )e -uλn h λn .

4.3.

Maximal inequalities for mollifiers. Since (S n f ) does not necessarily converge pointwise or even in norm for all functions in H λ 1 (G), Defant and Schoolmann looked in [START_REF]Riesz means in Hardy spaces on Dirichlet groups[END_REF] for a substitute by changing the summation method. They succeeded by choosing Riesz means. Precisely they showed (see [START_REF]Riesz means in Hardy spaces on Dirichlet groups[END_REF]Theorem 2.1]), through a maximal inequality, that for all frequencies λ, for all f ∈ H 1 λ (G), for all α > 0, the sequence (R λ,α N (f )(ω)) converges to f (ω) for almost all ω ∈ G. We extend this to a large class of mollifiers. Theorem 4.11. Let λ be a frequency, (G, β) a λ-Dirichlet group. Let ψ ∈ L 1 (R) be a continuous function (except at a finite number of points) such that ψ has compact support and there exists a nonincreasing function

g ∈ L 1 (0, +∞) such that |ψ(x)| ≤ g(|x|) for all x ∈ R. For N ≥ 1, define ψ N (•) = ψ(•/N ). Then R max,ψ (f ) := sup N |R ψ N (f )| defines a bounded sublinear operator from H λ 1 (G) into L 1,∞ (G). Moreover, if ψ = 1, then for all f ∈ H λ 1 (G), R ψ N (f )(ω) converges for almost every ω ∈ G to f (ω).
Proof. Again, the key point is the vertical convolution formula. Indeed, we know that for a.e.

ω ∈ G, R ψ N (f )(ω) = f ω ψ N (0).
For those ω, using [13, Theorem 2.1.10 and Remark 2.1.11],

sup

N |R ψ N (f )(ω)| ≤ sup N |f ω | ψ N (0) ≤ 2 g 1 M f (ω)
where [START_REF]Riesz means in Hardy spaces on Dirichlet groups[END_REF]Theorem 2.10], we can conclude about the first assertion of the theorem. The result on a.e. convergence is then a standard corollary of it, using that it is clearly true for polynomials since ψ(0) = 1. Remark 4.12. We can replace the assumption that ψ is compactly supported by the assumption that, for all

M (f )(ω) = sup T >0 1 2T T -T |f ω (t)|dt is the appropriate Hardy-Littlewood maximal operator. Since M maps H λ 1 (G) into L 1,∞ (G) by
N ≥ 1, n | ψ(λ n /N )| < +∞.
This last theorem covers many examples. For instance, for all 0 ≤ a < b, we may choose the function ψ ∈ L 1 (R) such that ψ = 1 on [-a, a], ψ = 0 on (-∞, -b) ∪ (b, +∞) and ψ is affine on (-b, -a) and on (a, b). As already observed during the proof of Theorem 3.2, the function ψ is given by

ψ(x) = C(a, b) sin a+b 2 x sin b-a 2 x x 2
which clearly satisfies the assumptions of Theorem 4.11. This is also the case for ψ(x) = e -|x| or ψ(x) = e -x 2 , provided the frequency λ satisfies | ψ(λ n /N )| < +∞ for all N ≥ 1. To show that our result covers Theorem 2.1 of [START_REF]Riesz means in Hardy spaces on Dirichlet groups[END_REF], we also have to show that for α > 0 the function ψ ∈ L 1 (R) that satisfies

ψ(t) = (1 -|t|) α 1 [-1,1] (t)
verifies the assumptions of Theorem 4.11. Let x > 0. We already have observed that

ψ(x) = 1 ix F ±α(1 -|t|) α-1 1 [-1,1] (x). Fix β > 0 such that |β(α -1)| < 1 and let x ≥ 1. Then |ψ(x)| ≤ 2α x 1 0 (1 -t) α-1 e itx dt ≤ 2α x 1 0 u α-1 e -iux du .
We split the integral into two parts. First,

x -β 0 u α-1 e -iux du ≤ 1 α x -αβ .
Second, integrating by parts,

1 x -β u α-1 e -iux du = -1 ix u α-1 e -iux 1 x -β + α -1 ix 1 x -β u α-2 e -iux du so that 1 x -β u α-1 e -iux du ≤ C 1 x + 1 x 1+(α-1)β .
Our choice of β guarantees that there is δ > 0 and C > 0 such that, for x ≥ 1,

|ψ(x)| ≤ C x 1+δ .
This shows that the assumptions of Theorem 4.11 are satisfied with

g(x) =    C x 1+δ , x ≥ 1 max( ψ ∞ , C), x ∈ [0, 1).
Remark 4.13. Lemma 4.4 and Theorem 4.11 are of course very close. The latter one is true for all frequencies λ, but we start from a fixed function ψ and it does not cover fully the case p = 1. Lemma 4.4 adapts at each step the L 1 -function to the frequency λ and to the function f . The price to pay is that we lose some factor e δλ N and that we cannot use general results on the Hardy-Littlewood maximal function.

Horizontal translations

In this section, we investigate the boundedness from H p (λ) into H q (λ), for q > p, of the horizontal translation map T σ ( n a n e -λns ) = n a n e -σλn e -λns . We are interested in this map to determine the exact value of σ Hp(λ) = inf{σ ∈ R : σ c (D) ≤ σ for all D ∈ H p (λ)} since it is easy to prove, using the Cauchy-Schwarz inequality, that σ H 2 (λ) = L(λ)/2. Recall that, when λ = (log n), σ Hp(λ) = 1/2 for all p ∈ [1, +∞). In the general case, it is always possible to majorize σ H 1 (λ) if we know σ H 2 (λ) .

Proposition 5.1. Let λ be a frequency. Then σ H 1 (λ) ≤ 2σ H 2 (λ) .

Proof. Let ε > 0. It is sufficient to prove that, for all f = j a j e -λ j s belonging to H 1 (λ), for all σ > 2σ H 2 (λ) + ε = L(λ) + ε, +∞ j=1 |a j |e -λ j σ < +∞.

Let J ≥ 1 be such that, for all j ≥ J, log(j)/λ j ≤ L(λ) + ε. Then

j |a j |e -λ j σ ≤ (J -1) f 1 + +∞ j=J f 1 e -σ
L(λ)+ε log(j) < +∞ by our assumption on σ.

It turns out that, even if we put strong growth and separation conditions on λ, we cannot go further. Theorem 5.2. There exists a frequency λ satisfying (BC) such that σ H 1 (λ) = 2σ H 2 (λ) and σ H 2 (λ) > 0.

Proof. For n ≥ 2, let δ n ∈ (2 -n-1 , 2 -n ] such that (2π, n, δ n ) are Z-independent. We set

λ 2 n +k = n + kδ n for n ≥ 1, k = 0, . . . , 2 n -1.
It is easy to check that L(λ) = log(2) so that σ H 2 (λ) = (log 2)/2. Moreover, it is also easy to check that λ satisfies (BC). Indeed, for n ≥ 2 and k = 0, . . . , 2 n -2,

λ 2 n +k+1 -λ 2 n +k = δ n ≥ 1 2 2 -n ≥ Ce -(log 2)λ 2 n +k
and similarly

λ 2 n+1 -λ 2 n+1 -1 ≥ 2 -n ≥ Ce -(log 2)λ 2 n+1 -1 .
Pick now any σ > σ H 1 (λ) . By the principle of uniform boundedness, there exists C 0 > 0 such that, for all D = j a j e -λ j s belonging to H 1 (λ), for all N ≥ 2,

N j=2

a j e -λ j σ ≤ C 0 D 1

Let n ≥ 2 and choose D = 2 n -1 k=0 e -λ 2 n +k s . Then (13)

2 n -1 k=0 e -λ 2 n +k σ ≥ 2 n e -σ(n+1) ≥ C 1 e (log 2-σ)n .

On the other hand, set λ = {n + kδ n : k ≥ 0} and observe that, using the internal description of the norm of H 1 ,

D H 1 (λ) = D H 1 (λ ) .
We shall compute D H 1 (λ ) using Fourier analysis. Indeed, since (2π, n, δ n ) are Zindependent, the map β : R → T 2 , t → (e -itn , e -itδn ) has dense range, so that (T 2 , β) is a λ -Dirichlet group. Therefore, ( 14)

D H 1 (λ ) = T 2 2 n -1 k=0 z 1 z k 2 dz 1 dz 2 ≤ C 2 n
by the classical estimate of the norm of the Dirichlet kernel. Hence, ( 12), ( 13) and ( 14) imply that, for all σ > σ H 1 (λ) , σ ≥ log(2). This yields σ H 1 (λ) ≥ 2σ H 2 (λ) .

In view of the previous results, it seems natural to study how arithmetical properties of the frequency λ can influence the values of σ for which T σ : H p (λ) → H q (λ), p < q, is bounded. We concentrate on the case p = 2 and q = 2k, k ≥ 1, because we can compute the norms using the coefficients. We define λ * λ as {λ l + λ k : l, k ≥ 0} and 

λ * k = λ * • • • * λ (with k factors).
λ n 1 + • • • + λ n k = µ l }) 2µ l .
Proposition 5.4. Let λ be a frequency and k ≥ 1. Then for σ > A(λ, k), T σ maps boundedly H 2 (λ) into H 2k (λ).

Proof. We shall prove a slightly stronger statement : if σ > 0 is such that there exists C > 0 such that for any µ > 0,

e -2µσ card{(n 1 , . . . , n k ) : λ n 1 + • • • + λ n k = µ} ≤ C, then T σ maps boundedly H 2 (λ) into H 2k (λ). Indeed, let D = n a n e -λns belonging to H 2 (λ). We write T σ (D) k = l b µ l e -µ l s where b µ l = λn 1 +•••+λn k =µ l a n 1 • • • a n k e -µ l σ .
We just need to prove that the sequence (b µ l ) is square summable, namely that for all square summable sequences (c µ l ), l b µ l c µ l is convergent, namely that

n 1 ,...,n k a n 1 • • • a n k e -(λn 1 +•••+λn k )σ c λn 1 +•••+λn k is convergent.
By the Cauchy-Schwarz inequality, since (a n ) is square summable, it is sufficient to prove that 

n 1 ,...,n k e -2λn 1 σ • • • e -2λn k σ |c λn 1 +•••+λn k | 2 < +∞. Rewriting this l |c µ l | 2 e -2µ l σ card{(n 1 , . . . , n k ) : λ n 1 + • • • + λ n k = µ l } <
) : λ n 1 + • • • + λ n k = µ} ≤ N k-1 exp (k -1)µ(L(λ) + ε) .
Taking the logarithm and letting µ to +∞, we find A(λ, k) ≤ (k-1)(L(λ)+ε)

2

, hence the inequality A(λ, k) ≤ (k-1)L(λ) 2 since ε is arbitrary.

Corollary 5.6. Let λ be a frequency such that L(λ) = 0. Then T σ maps boundedly H 2 (λ) into H q (λ) for all q ≥ 2. Proof. We first observe that (λ * ) k = λ. Pick now log n ∈ λ. We want to know the cardinal number of {(n 1 , . . . , n k ) ∈ N :

n 1 × • • • × n k = n}. Decompose n into a product of prime numbers, n = p α 1 1 • • • p αr r . Then each n k writes p α 1 (k) 1 • • • p αr(k) r with α j (1)+• • •+α j (r) = α j , 1 ≤ j ≤ r. Hence, (α j (1), • • • α j (r)
) is a weak composition of α j into k parts which can be done in α i +k-1 k-1 ways. In total, there are

r i=1 α i + k -1 k -1 ≤ r i=1 (α i + k) k
ways to write n as a product of k factors. Thus,

A(λ, k) ≤ lim sup n= r i=1 p α i i →+∞ r i=1 k log(α i + k) 2 r i=1 α i log(p i ) = 0.
We finish this section by exhibiting a frequency λ satisfying (BC) and such that, for all k ≥ 1, T σ maps H 2 (λ) into H 2k (λ) if and only if σ ≥ A(λ, k) = k-1 2k . We begin with two combinatorial lemmas. Lemma 5.9. Let b, c > 0, let n ∈ N and let λ j = b + jc, j ≥ 0. For all k ∈ N, there exist γ k ∈ (0, 1] and δ k > 0 such that, for all n ≥ 2 k , for all ∈

[(k -γ k )n, (k + γ k )n] ∩ N 0 , card (j 1 , . . . , j k ) ∈ {0, . . . , 2n} k : λ j 1 + • • • + λ j k = kb + c ≥ δ k n k-1 .
Proof. We define the sequences (γ k ) and (δ k ) by γ k = 2 -(k-1) and δ 1 = 1, δ k+1 = δ k • γ k+1 . We proceed by induction over k. The case k = 1 is trivial. Assume that the result has been proved for k and let us prove it for k + 1. Let n ≥ 2 k+1 . Choose j k+1 any integer in

[(1 -γ k+1 )n, (1 + γ k+1 )n] and ∈ [(k + 1 -γ k+1 )n, (k + 1 + γ k+1 )n] ∩ N 0 . Then (15) λ j 1 + • • • + λ j k+1 = (k + 1)b + c ⇐⇒ λ j 1 + • • • + λ j k = kb + ( -j k+1 )c. Now, | -j k+1 -kn| ≤ 2γ k+1 n = γ k n
so that there exist at least δ k n k-1 choices of (j 1 , . . . , j k ) such that ( 15) is true, j k+1 being fixed. Now, there are 2 γ k+1 n + 1 choices of j k+1 and since γ k+1 n -1 ≥ γ k+1 n/2 because γ k+1 n ≥ 2, we get the result. 16), we are reduced to estimate the number of 2k-tuples (m 1 , . . . , m k , j 1 , . . . , j k ) such that for all s = 1, . . . , k, 0 ≤ j s ≤ 2m s and, for all i = 1, . . . , l,

• there are α i elements in m 1 , . . . , m k which are equal to r i ;

• if φ i (1), . . . , φ i (α i ) are the indices of these elements, then (17)

j φ i (1) + • • • + j φ i (α i ) = β i .
We first choose the values of m 1 , . . . , m k . We choose the α 1 indices in {1, . . . , k} such that the corresponding m i are equal to r 1 . We then do the same for the α 2 elements equal to r 2 and so on until k -1 (the remaining m i are fixed and equal to r l ). Thus the number of choices for m 1 , . . . , m k is equal to

k α 1 × k -α 1 α 2 × • • • × k -(α 1 + • • • + α l-2 ) α l-1 .
Because l ≤ k and α 1 + • • • + α l = k, this number can be bounded from above by some number depending only on k. The integers m 1 , . . . , m k having been fixed, we now choose the integers j 1 , . . . , j k . For each i ∈ {1, . . . , l}, [START_REF]Compact groups and Dirichlet series[END_REF] implies that there are at most

In particular, log a µ l 2µ l ≥ (k -1) log m + log δ k 2(k log m + A k ) which shows that A(λ, k) ≥ k-1 2k . Furthermore,

T σ D [m] 2k = (T σ D [m] ) k 1/k 2 ≥ C k m • m 2(k-1) • m -2σk 1/2k ≥ C k m 1 2k + k-1 k -σ .
Therefore, the boundedness of T σ from H 2 (λ) into H 2k (λ) implies that

m 1 2k + k-1 k -σ ≤ C k √ 2m + 1
for all sufficiently large m, which itself yields σ ≥ k-1 2k . Question 5.12. Let p ≥ 2. Is it true that, for the previous sequence (λ n ), T σ maps H 2 (λ) into H p (λ) if and only if σ ≥ p-2 2p ?

6. Other results

6.1.

Norm of the projection in H 1 (λ). In [START_REF]Hp-theory of general Dirichlet series[END_REF], Defant and Schoolmann have shown, using a vector-valued argument, that for all frequencies λ and for all N ≥ 1, S N H 1 (λ)→H 1 (λ) ≤ S N H∞(λ)→H∞(λ) . We provide a different approach to estimate S N H 1 (λ)→H 1 (λ) , inspired by [START_REF] Bondarenko | Linear properties of H p spaces of Dirichlet series[END_REF]. where we have applied Hölder's inequality for (1 + ε)/ε and 1 + ε. Applying this to S N f , where f ∈ H λ 1 (G), we get

S N f 1 ≤ S N f 2ε 1+ε 2 S N f 1-ε 1+ε
1-ε . We now use a result of Helson [START_REF] Helson | Conjugate series and a theorem of Paley[END_REF], saying that

S N f 1-ε ≤ A ε f 1
where the constant A is absolute. Therefore, assuming f 1 = 1, after some simplifications, we get

S N f 1 ≤ A ε exp 2ε 1 -ε log(Λ N ) .
We conclude by choosing ε = 1/ log(Λ N ).

Corollary 6.2. There exists C > 0 such that, for all frequency λ, S N H 1 (λ)→H 1 (λ) ≤ C log(N ).

Proof. We get immediately that Λ N ≤ √ N by using the Cauchy-Schwarz inequality and the fact that |a n | ≤ D 1 for all D = N n=1 a n e -λns . This last corollary has an interest provided we are unable to prove that S N H∞(λ)→H∞(λ) is less than C log(N ). The best known estimation on S N H∞(λ)→H∞(λ) is given by Theorem 3.4 and indeed it provides worst estimations for some sequences λ. Indeed, pick the sequence λ defined in Example 2.3. Let N = 2 n for some n and pick M > N . Then, if M < 2 n+1 , then

log λ M + λ N λ M -λ N ≥ 1 2 e n 2
whereas, if M ≥ 2 n+1 , then M -N -1 ≥ 2 n -1.

A variant of Proposition 6.1 was already used in the classical case λ = (log n) to prove that S N H 1 →H 1 ≤ C log N log log N . A precise solution to the problem on how large can be Λ N in this case can be found in [START_REF] Defant | Optimal comparison of the p-norms of Dirichlet polynomials[END_REF].

1. 4 .

 4 Notations. Throughout this work, we shall use the following notations. For λ a frequency and D ∈ D(λ), the abscissa of absolute convergence of D and the abscissa of uniform convergence of D are defined by σ a (D) := inf{σ ∈ R : D converges absolutely on C σ } σ u (D) := inf{σ ∈ R : D converges uniformly on C σ }.σ a (D) -σ c (D).

Theorem 4 . 1 .

 41 Let λ satisfy (NC), let (G, β) be a λ-Dirichlet group. For every u > 0, there exists a constant C := C(u, λ) such that, for all 1 ≤ p ≤ +∞ and for all f ∈ H λ p (λn )e -σλn h λn p ≤ C f p .

f

  (h λn )e -σλn h λn p ≤ C(u) p sup N e -2δλ N N n=1 f (h λn )h λn p .

Definition 5 . 3 .

 53 Let λ be a frequency and k ≥ 1. Write λ * k = (µ l ) where the sequence (µ l ) is increasing. We set A(λ, k) = lim sup l→+∞ log (card {(n 1 , . . . , n k ) :

Question 5 . 7 . 4 ? 5 . 8 .

 57458 Let p ≥ 2 and let λ be a frequency. Does T σ maps H 2 (λ) into H p (λ) as soon as σ > (p-2)L(λ)Example Let λ = (log n). Then for all k ≥ 1, A(λ, k) = 0.

Lemma 5 . 10 .

 510 Let (b n ) and (c n ) be two sequences of positive real numbers such that the sequences(b 1 , . . . , b N , c 1 , . . . , c N ) are Z-independent for all N ≥ 1, 2n + 1 ≤ exp(b n ) and nc n ≤ 1 for each n ∈ N. Define a sequence (λ n ) by λ m 2 +j = b m + jc m , m ≥ 1, j = 0, . . . , 2m. Then for all k > 0 there exists C k > 0 such that, for all µ > 0, card (n 1 , . . . , n k ) ∈ N k : λ n 1 + • • • + λ n k = µ ≤ C k exp (k -1)µ k .Proof. If µ can be written µ = λ n 1 + • • • + λ n k for some sequence (n 1 , . . . , n k ), it can be uniquely written(16) µ = α 1 b r 1 + β 1 c r 1 + • • • + α l b r l + β l c r l with 1 ≤ l ≤ k, r 1 < r 2 < • • • < r l , α i ≥ 1, α 1 + • • • + α l = k and 0 ≤ β i ≤ 2α i r i . We will first estimate card (n 1 , . . . , n k ) ∈ N k : λ n 1 + • • • + λ n k =µ by a quantity depending on k, l, α i , r i and β i . In view of the definition of the sequence λ and of (

Proposition 6 . 1 .a n e -λns 1 :

 611 Let λ be a frequency. The, for all N ≥ 1,S N H 1 →H 1 ≤ C log(Λ N ) where Λ a 1 , . . . , a N ∈ C We work in H λ 1 (G) where (G, β) is a λ-Dirichlet group. Let g ∈ L 1 (G).Then, for ε ∈ (0, 1),

  +∞this follows from the assumption.Corollary 5.5. Let λ be a frequency, k ≥ 1 and σ > (k -1)L(λ)/2. Then T σ maps H 2 (λ) into H 2k (λ). ) k and n 1 , . . . , n k be such that λ n 1 + • • • + λ n k = µ.Then each λ n i is smaller than µ so that either n i ≤ N or n i ≤ exp(µ(L(λ) + ε)). Since the knowledge of n 1 , . . . , n k-1 determines the value of n k , we have card {(n 1 , . . . , n k

Proof. Let ε > 0. There exists N ≥ 1 such that, for all n ≥ N , log(n)/λ n ≤ L(λ) + ε. Let µ ∈ (λ *
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(2r i + 1) α i -1 choices for the values of j φ i (1) , . . . , j φ i (α i ) : indeed, each j φ i (t) belongs to {0, . . . , 2r i } and the last one is fixed when we know the values of the first α i -1 ones). Finally, we have found that

whre the last inequality follows from the assumption 2n + 1 ≤ exp(b n ) for all n ∈ N. Now we have l i=1 α i b r i ≤ µ and

hence the result.

Theorem 5.11. There exists a frequency (λ n ) satisfying (BC) such that for all k ≥ 1, T σ maps H 2 (λ) into H 2k (λ) if and only if σ ≥ k-1 2k = A(λ, k). Proof. Let (b n ) and (c n ) be two sequences of positive real numbers such that

We then define λ by λ m 2 +j = b m + jc m , m ≥ 1, j = 0, . . . , 2m. We may argue as in the proof of Theorem 5.2 to show that the frequency λ satisfies (BC). Using Proposition 5.4 (look at the first sentence of the proof) and Lemma 5.10, we get easily that T σ maps

Write λ * k as the increasing sequence (µ l ) and observe that

where a µ l = card (j 1 , . . . , j k ) ∈ {0, . . . , 2m} k : µ l = kb m + (j 1 + • • • + j k )c m . Lemma 5.9 tells us that, for m sufficiently large, there is at least γ k m terms of the sequence (µ l ) so that a µ l ≥ δ k m k-1 . Furthermore, for those µ l ,