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Abstract

In this paper we prove a complete panel of consistency results for the discrete de Rham (DDR)
complex introduced in the companion paper [10], including primal and adjoint consistency for the
discrete vector calculus operators, and consistency of the corresponding potentials. The theoretical
results are showcased by performing a full convergence analysis for a DDR approximation of a
magnetostatics model. Numerical results on three-dimensional polyhedral meshes complete the
exposition.
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1 Introduction
We prove complete consistency results for the discrete de Rham (DDR) complex introduced in the
companion paper [10]. Specifically, the first set of results concerns primal consistency of the local
discrete vector calculus operators introduced in [10, Section 3.3] and of the corresponding potentials
defined in Section 3.1 below. The second set of results concerns adjoint consistency, that relates to the
ability to approximate formal adjoint operators, and therefore requires to estimate the residuals of global
integration by parts formulas.

For specific space dimensions, polynomial degrees, and operators, consistency results that bear
relations to ours can be found in the literature on polytopal methods.

Starting from low-order methods, consistency results for Compatible Discrete Operator approxima-
tions of the Poisson problem based on nodal unknowns can be found in [5]; see in particular the proof
of Theorem 3.3 therein, which contains an adjoint consistency result for a gradient reconstructed from
vertex values. In the same framework, an adjoint consistency estimate for a discrete curl constructed
from edge values can be found in [6, Lemma 2.3]. A rather complete set of consistency results for
Mimetic Finite Difference operators can be found in [4], where they appear as intermediate steps in the
error analyses of Chapters 5–7. A notable exception is provided by the adjoint consistency of the curl
operator, which is not needed in the error estimate of [4, Theorem 7.3] since the authors consider an
approximation of the current density based on the knowledge of a vector potential.

Moving to arbitrary-order methods, error estimates that involve the adjoint consistency of a gradient
and the consistency of the corresponding potential have been recently derived in [7] in the framework of
the H1-conforming Virtual Element method. The same method is considered in [9, Section 3.2], where
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a different analysis is proposed based on the third Strang lemma. The estimate of the consistency error
in [9, Theorem 19] involves, in particular, the adjoint consistency of a discrete gradient reconstructed as
the gradient of a scalar polynomial rather than a vector-valued polynomial. We note, in passing, that the
concept of adjoint consistency for (discrete) gradients is directly related to the notion of limit-conformity
in the Gradient Discretisation Method [15], a generic framework which encompasses several polytopal
methods. Primal and dual consistency estimates for a discrete divergence and the corresponding
vector potential similar (but not identical) to the ones considered here have been established in [14]
in the framework of Mixed High-Order methods. Note that these methods, the H1-conforming Virtual
Element method, and the Mixed High-Order method, do not lead to a discrete de Rham complex.
In the framework of arbitrary-order compatible discretisations, on the other hand, primal consistency
results for the curl appear as intermediate results in [3], where an error analysis for a Virtual Element
approximation of magnetostatics is carried out assuming interpolation estimates for three-dimensional
vector valued virtual spaces; see Remark 4.4 therein. However, [3] does not establish any adjoint
consistency property of the discrete curl (the formulation of magnetostatics considered in this reference
does not require this).

The results presented in this paper are, to the best of our knowledge, the first ones to span the full
set of discrete vector calculus operators for an arbitrary-order discrete de Rham complex on polyhedral
meshes. The key ingredients to establish primal consistency are the polynomial consistency of discrete
vector calculus operators along with the corresponding potentials, and their boundedness when applied
to the interpolates of smooth functions. The proofs of adjoint consistency, on the other hand, rely on
operator-specific techniques, all grounded in discrete integration by parts formulas for the corresponding
potential reconstructions (see (3.1) along with Remark 3 for the gradient, (3.6) for the curl, and (3.10)
for the divergence). Specifically, the key point for the adjoint consistency of the gradient are estimates
for local H1-like seminorms of the scalar potentials. The adjoint consistency of curl requires, on the
other hand, the construction of liftings of the discrete face potentials that satisfy an orthogonality and a
boundedness condition. These reconstructions are inspired by the minimal reconstruction operators of
[4, Chapter 3], with a key novelty provided by a curl correction which ensures the well-posedness of the
reconstruction inside mesh elements.

In order to showcase the theoretical results derived here and in the companion paper [10], we carry
out a full convergence analysis for a DDR approximation of magnetostatics. This is, to the best of our
knowledge, the first full theoretical result of this kind for arbitrary-order polytopal methods.

The rest of this paper is organised as follows. In Section 2 we briefly recall the key elements of the
setting introduced in [10]. Section 3 contains the statement of the primal and adjoint consistency results,
whose proofs are given in Section 4. The application of the theoretical tools to the error analysis of a
DDR approximation of magnetostatics is considered in Section 5, where numerical evidence supporting
the error estimates is also provided. Finally, Appendix A contains an in-depth and novel study of the
div–curl problems defining the curl liftings on polytopal elements: well-posedness, orthogonality and
boundedness properties.

2 Setting
We briefly recall here the setting introduced in the companion paper [10], to which we refer for a more
detailed description of the following notions.

2.1 Mesh and orientation
Let H ⊂ R∗+ be a countable set with 0 as its unique accumulation point. Let Ω ⊂ R3 denote an
open connected polyhedral set and (Mℎ)ℎ∈H a family of meshes indexed by their size ℎ. We write
Mℎ ≔ Tℎ ∪ Fℎ ∪ Eℎ ∪Vℎ with Tℎ the set of elements ) , Fℎ the set of faces �, Eℎ the set of edges � ,
and Vℎ the set of vertices + . We additionally denote by F b

ℎ
the subset of Fℎ collecting the faces that

lie on the boundary mΩ of Ω. It is assumed that (Tℎ, Fℎ)ℎ∈H matches the regularity conditions in [12,
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Definition 1.9] (with d ∈ (0, 1) denoting the mesh regularity parameter), and that elements and faces are
simply connected with Lipschitz continuous boundary. For ) ∈ Tℎ, we set F) ≔ {� ∈ Fℎ : � ⊂ m)}
and, for . ∈ Tℎ ∪ Fℎ, E. ≔ {� ∈ Eℎ : � ⊂ m. }. The real number ℎ. denotes the diameter of a mesh
element, face, or edge . ∈ Tℎ ∪ Fℎ ∪ Eℎ.

Each face � ∈ Fℎ is equipped with a unit normal vector n� , and each edge � ∈ Eℎ with a
unit tangent vector t� . Given � ∈ Fℎ and � ∈ E� , we also denote by n�� the unit vector nor-
mal to � lying in the plane of �. The families of numbers {l) � ∈ {−1, 1} : ) ∈ Tℎ, � ∈ F) } and
{l�� ∈ {−1, 1} : � ∈ Fℎ, � ∈ E� } collect relative orientations selected so that: for all ) ∈ Tℎ and all
� ∈ F) , l) � n� points out of ) and, for all � ∈ Fℎ and all � ∈ E� , l��n�� points out of �. Given
� ∈ Fℎ, the tangent gradient, divergence, two-dimensional vector and scalar curl operators are denoted
by grad� , div� , rot� and rot� , respectively.

2.2 Polynomial spaces
Let ℓ ≥ −1 be an integer. For. ∈ Tℎ∪Fℎ∪Eℎ, with = the dimension of. , we denote byPℓ (. ) the space
of polynomial functions over . of total degree ≤ ℓ, and we set Pℓ (. ) = Pℓ (. )=. The L2-orthogonal
projector on Pℓ (. ) is cℓP,. , and 0ℓ

P,.
: L2(. ) → P

ℓ (. ) is its vector-valued counterpart. The set
Pℓc (Eℎ) is made of all continuous functions over the mesh skeleton

⋃
� ∈Eℎ � that are polynomial of

total degree ≤ ℓ on each � ∈ Eℎ.
For all . ∈ Tℎ ∪ Fℎ, denote by x. a point inside . such that . contains a ball centered at x. and of

diameter dℎ. . For any mesh face � ∈ Fℎ, any mesh element ) ∈ Tℎ, and any integer ℓ ≥ −1, we define

G
ℓ (�) ≔ grad� Pℓ+1(�), G

c,ℓ (�) ≔ (x − x� )⊥Pℓ−1(�),
R
ℓ (�) ≔ rot� Pℓ+1(�), R

c,ℓ (�) ≔ (x − x� )Pℓ−1(�),
G
ℓ ()) ≔ gradPℓ+1()), G

c,ℓ ()) ≔ (x − x) ) ×Pℓ−1()),
R
ℓ ()) ≔ curlPℓ+1()), R

c,ℓ ()) ≔ (x − x) )Pℓ−1())

(2.1)

where (x − x� )⊥ denotes the vector x − x� rotated by an angle −c/2 in the plane spanned by � and
oriented by n� . If. = � or. = ) , the following direct (but not necessarily orthogonal) decompositions
hold:

P
ℓ (. ) = G

ℓ (. ) ⊕ G
c,ℓ (. ) = R

ℓ (. ) ⊕ R
c,ℓ (. ). (2.2)

With obvious notations, the L2-orthogonal projectors on the subspaces appearing in these decomposi-
tions are denoted by 0ℓ

G,.
, 0c,ℓ

G,.
, 0ℓ

R,.
, and 0c,ℓ

R,.
. The local Nédélec and Raviart–Thomas spaces over

. are denoted by

N
ℓ (. ) ≔ G

ℓ−1(. ) ⊕ G
c,ℓ (. ), RT

ℓ (. ) ≔ R
ℓ−1(. ) ⊕ R

c,ℓ (. ). (2.3)

As detailed in [10, Lemma 4], the knowledge of the L2-projections of a polynomial z ∈ Pℓ (. ) on
each element of the space pairs (Gℓ (. ),Gc,ℓ (. )) or (Rℓ (. ),Rc,ℓ (. )) appearing in (2.2) enables the
recovery of z. Specifically, for . ∈ Tℎ ∪ Fℎ, X ∈ {G,R}, and (v, w) ∈ Xℓ (. ) ×Xc,ℓ (. ), letting

ℜℓ
X,.
(v, w) ≔ (Id − 0ℓ

X,.
0c,ℓ
X,.
)−1(v − 0ℓ

X,.
w) + (Id − 0c,ℓ

X,.
0ℓ
X,.
)−1(v − 0c,ℓ

X,.
w) (2.4)

we have

0ℓ
X,.

(
ℜℓ

X,.
(v, w)

)
= v and 0c,ℓ

X,.

(
ℜℓ

X,.
(v, w)

)
= w ∀(v, w) ∈ Xℓ (. ) ×Xc,ℓ (. ), (2.5)

z = ℜℓ
X,.
(0ℓ

X,.
z, 0c,ℓ

X,.
z) ∀z ∈ Pℓ (. ), (2.6)

and
‖ℜℓ

X,.
(v, w)‖L2 (. ) ' ‖v‖L2 (. ) + ‖w‖L2 (. ) ∀(v, w) ∈ Xℓ (. ) ×Xc,ℓ (. ). (2.7)
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Above, writing 0 . 1 in place of 0 ≤ �1 with � depending only on Ω, the mesh regularity parameter
d of [12, Definition 1.9], and the considered polynomial degree, we have used 0 ' 1 with the meaning
of “0 . 1 and 1 . 0”. Both shorthand notations . and ' will be used throughout the paper.

2.3 Discrete spaces
The discrete counterpart of the space H1(Ω) in the DDR sequence is

- :grad,ℎ ≔
{
@
ℎ
=

(
(@) )) ∈Tℎ , (@� )� ∈Fℎ , @Eℎ

)
:

@) ∈ P:−1()) for all ) ∈ Tℎ, @� ∈ P:−1(�) for all � ∈ Fℎ, and @Eℎ ∈ P:+1c (Eℎ)
}
,

and the corresponding interpolator �:grad,ℎ : C
0(Ω) → - :grad,ℎ is such that, for all @ ∈ C

0(Ω),

�:grad,ℎ@ ≔
(
(c:−1P,) @ |) )) ∈Tℎ , (c

:−1
P,�@ |� )� ∈Fℎ , @Eℎ

)
∈ - :grad,ℎ,

where c:−1P,� (@Eℎ ) |� = c
:−1
P,�@ |� for all � ∈ Eℎ and @Eℎ (x+ ) = @(x+ ) for all + ∈ Vℎ,

(2.8)

with x+ denoting the coordinates vector of the vertex + . The discrete H(curl;Ω) space is

^:curl,ℎ ≔
{
v
)
=

(
(vR,) , vcR,) )) ∈Tℎ , (vR,� , v

c
R,�
)� ∈Fℎ , (E� )� ∈Eℎ

)
:

(vR,) , vcR,) ) ∈ R
:−1()) ×Rc,: ()) for all ) ∈ Tℎ,

(vR,� , vcR,� ) ∈ R
:−1(�) ×Rc,: (�) for all � ∈ Fℎ, and E� ∈ P: (�) for all � ∈ Eℎ

}
,

with interpolator O:curl,ℎ : C
0(Ω) → ^:curl,ℎ such that, for all v ∈ C0(Ω),

O:curl,ℎv ≔
(
(0:−1

R,)
v |) , 0

c,:
R,)

v |) )) ∈Tℎ , (0:−1R,�
vt,� , 0

c,:
R,�

vt,� )� ∈Fℎ , (c:P,� (v |� · t� ))� ∈Eℎ
)
,

where, for all � ∈ Fℎ, vt,� ≔ n� × (v |� × n� ) denotes the orthogonal projection of v on the plane
spanned by �. The role of H(div;Ω) is played, at the discrete level, by

^:div,ℎ ≔
{
v
)
=

(
(vG,) , vcG,) )) ∈Tℎ , (E� )� ∈Fℎ

)
:

(vG,) , vcG,) ) ∈ G
:−1()) ×Gc,: ()) for all ) ∈ Tℎ and E� ∈ P: (�) for all � ∈ Fℎ

}
,

with interpolator O:div,ℎ : H
1(Ω) → ^:div,ℎ such that, for all v ∈ H1(Ω),

O:div,ℎv ≔
(
(0:−1

G,)
v |) , 0

c,:
G,)

v |) )) ∈Tℎ , (c:P,� (v |� · n� ))� ∈F)
)
. (2.9)

Finally, the discrete counterpart of L2(Ω) in the DDR sequence is

P: (Tℎ) ≔
{
@ℎ ∈ L2(Ω) : (@ℎ) |) ∈ P: ()) for all ) ∈ Tℎ

}
,

equipped with the global L2-orthogonal projector c:P,ℎ : L
2(Ω) → P: (Tℎ) such that, for all @ ∈ L2(Ω),

(c:P,ℎ@) |) ≔ c:P,) @ |) for all ) ∈ Tℎ.

2.4 Local discrete vector calculus operators
Given • ∈ {grad, curl, div} and a mesh entity . appearing in the definition of - :•,ℎ, we denote by -

:
•,.

the restriction of this space to . , gathering the polynomial components on . and on the geometrical
entities on m. . The corresponding local interpolator is denoted by �:•,. .
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2.4.1 Gradients

Throughout the rest of the paper, for � ∈ Eℎ and @
ℎ
∈ - :grad,ℎ we set @� ≔ (@Eℎ ) |� ∈ - :grad,� =

P:+1(�). For any � ∈ Eℎ, the edge gradient �:� : -
:
grad,� → P

: (�) is such that, for all @� ∈ - :grad,� ,

�:�@� ≔ @′� ,

where the derivative is taken along � according to the orientation of t� . For all � ∈ Fℎ, the face
gradient G:

�
: - :grad,� → P

: (�) is such that, for all @
�
= (@� , @E� ) ∈ - :grad,� ,∫

�

G:�@� · w� = −
∫
�

@� div� w� +
∑
� ∈E�

l��

∫
�

@E� (w� · n�� ) ∀w� ∈ P: (�).

The scalar trace W:+1
�
: - :grad,� → P

:+1(�) is such that, for all @
�
∈ - :grad,� ,∫

�

W:+1� @
�
div� v� = −

∫
�

G:�@� · v� +
∑
� ∈E�

l��

∫
�

@E� (v� · n�� ) ∀v� ∈ Rc,:+2(�). (2.10)

Remark 1 (Validity of (2.10)). Relation (2.10) also holds for all v� ∈ RT
:+1(�); see [10, Remark 9].

Finally, for all ) ∈ Tℎ, the element gradient G:
)
: - :grad,) → P

: ()) is such that, for all @
)
=

(@) , (@� )� ∈F) , @E) ) ∈ - :grad,) ,∫
)

G:) @) · w) = −
∫
)

@) divw) +
∑
� ∈F)

l) �

∫
�

W:+1� @
�
(w) · n� ) ∀w) ∈ P: ()). (2.11)

2.4.2 Curls

For all � ∈ Fℎ, the face curl�:� : ^
:
curl,� → P: (�) is such that, for all v� =

(
vR,� , v

c
R,�

, (E� )� ∈E�
)
∈

^:curl,� , ∫
�

�:� v� A� =

∫
�

vR,� · rot� A� −
∑
� ∈E�

l��

∫
�

E�A� ∀A� ∈ P: (�). (2.12)

The tangential trace $:t,� : ^
:
curl,� → P

: (�) is such that, for all v
�
∈ ^:curl,� , recalling the definition

(2.4) of the recovery operator with (X, . ) = (R, �),

$:t,� v� ≔ ℜ:
R,�
($:t,R,� v� , v

c
R,�
),

where $:t,R,� v� ∈ R
: (�) is defined by∫

�

$:t,R,� v� · rot� A� =
∫
�

�:� v� A� +
∑
� ∈E�

l��

∫
�

E�A� ∀A� ∈ P0,:+1(�). (2.13)

Remark 2 (Validity of (2.13)). We note that this relation actually holds for all A� ∈ P:+1(�) and also
with $:t,� instead of $:t,R,� ; see [10, Remark 14].

Finally, for all ) ∈ Tℎ, the element curl C:
)
: ^:curl,) → P

: ()) is such that, for all v
)
=(

vR,) , v
c
R,)

, (vR,� , vcR,� )� ∈F) , (E� )� ∈E)
)
∈ ^:curl,) ,∫

)

C:) v) · w) =
∫
)

vR,) · curlw) +
∑
� ∈F)

l) �

∫
�

$:t,� v� · (w) × n� ) ∀w) ∈ P: ()). (2.14)
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2.4.3 Divergence

For all ) ∈ Tℎ, the element divergence �:
)
: ^:div,) → P: ()) is defined by: For all v

)
=(

vG,) , v
c
G,)

, (E� )� ∈F)
)
∈ ^:div,) ,∫

)

�:) v) A) = −
∫
)

vG,) · grad A) +
∑
� ∈F)

l) �

∫
�

E�A) ∀A) ∈ P: ()). (2.15)

2.5 Global sequence
The global discrete gradient M:

ℎ
: - :grad,ℎ → ^:curl,ℎ, curl I

:
ℎ
: ^:curl,ℎ → ^:div,ℎ, and divergence

�:
ℎ
: ^:div,ℎ → P

: (Tℎ) are obtained by projecting the local operators onto the corresponding spaces:
For all (@

ℎ
, v
ℎ
, w

ℎ
) ∈ - :grad,ℎ × ^:curl,ℎ × ^:div,ℎ,

M:
ℎ
@
ℎ
≔

(
(0:−1

R,)
(G:) @) ), 0

c,:
R,)
(G:) @) ))) ∈Tℎ , (0

:−1
R,�
(G:�@� ), 0

c,:
R,�
(G:�@� ))� ∈Fℎ , (�

:
�@� )� ∈Eℎ

)
,

I:
ℎ
v
ℎ
≔

(
(0:−1

G,)
(C:) v) ), 0

c,:
G,)
(C:) v) ))) ∈Tℎ , (�

:
� v� )� ∈Fℎ

)
,

(�:ℎwℎ) |) ≔ �:) w) ∀) ∈ Tℎ .

Following our previous notation for local spaces and interpolator, we will use the following notations
for the restrictions of these discrete gradients and curl operators to mesh elements and faces:

M:
�
@
�
=

(
0:−1
R,�
(G:�@� ), 0

c,:
R,�
(G:�@� ), (�

:
�@� )� ∈F�

)
,

M:
)
@
)
=

(
0:−1
R,)
(G:) @) ), 0

c,:
R,)
(G:) @) ), (0

:−1
R,�
(G:�@� ), 0

c,:
R,�
(G:�@� ))� ∈F) , (�

:
�@� )� ∈E)

)
,

I:
)
v
)
=

(
0:−1
G,)
(C:) v) ), 0

c,:
G,)
(C:) v) ), (�

:
� v� )� ∈F)

)
.

The global sequence reads:

R - :grad,ℎ ^:curl,ℎ ^:div,ℎ P: (Tℎ) {0}.
� :grad,ℎ M:

ℎ
I:
ℎ

�:
ℎ 0 (2.16)

It is proved in [10] that this sequence has exactness properties (the specific nature of which depends
on the topology of Ω, as for the continuous de Rham sequence), and that the discrete operators satisfy
Poincaré inequalities.

3 Consistency results
3.1 Potential reconstructions and L2-products on discrete spaces
Let ) ∈ Tℎ. In this section, we define polynomial potential reconstructions on the discrete spaces -•,)
with • ∈ {grad, curl, div}. These potentials have polynomial consistency properties, and enable the
construction of discrete L2-inner products on DDR spaces that are also polynomially consistent.

3.1.1 Scalar potential on - :grad,)

The scalar potential reconstruction %:+1grad,) : -
:
grad,) → P

:+1()) is such that, for all @
)
∈ - :grad,) ,∫

)

%:+1grad,) @)
div v) = −

∫
)

G:) @) · v) +
∑
� ∈F)

l) �

∫
�

W:+1� @
�
(v) · n� ) ∀v) ∈ Rc,:+2()), (3.1)

with W:+1
�

defined by (2.10). This relation defines %:+1grad,) @)
uniquely since div : Rc,:+2()) → P:+1())

is an isomorphism by [1, Corollary 7.3].
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Remark 3 (Validity of (3.1)). The definition (2.11) of G:
)
and the identity div curl = 0 show that both

sides of (3.1) vanish when v) ∈ R: ()). Hence, (3.1) actually holds for any v) ∈ R: ()) ⊕Rc,:+2()) =
P
: ()) + Rc,:+2()), the second equality following from R

c,: ()) ⊂ R
c,:+2()) and the decomposition

(2.2).
Using the polynomial consistency properties G:

)

(
�:grad,) @

)
= grad @ and W:+1

�

(
�:grad,�@ |�

)
= @ |� ,

valid for all @ ∈ P:+1()) (see [10, Eqs. (3.13) and (3.11)]), the following polynomial consistency of
%:+1grad,) is obtained:

%:+1grad,)
(
�:grad,) @

)
= @ ∀@ ∈ P:+1()). (3.2)

Moreover, applying (3.1) to v) ∈ R
c,: ()) (which is possible since R

c,: ()) ⊂ R
c,:+2())), using the

definition (2.11) of G:
)
with w) = v) , and recalling that div : Rc,: ()) → P:−1()) is onto, we obtain

c:−1P,)
(
%:+1grad,) @)

)
= @) ∀@

)
∈ - :grad,) . (3.3)

3.1.2 Vector potential on ^:curl,)

The vector potential reconstruction V:curl,) : ^
:
curl,) → P

: ()) is such that, for all v
)
∈ ^:curl,) ,

V:curl,) v) ≔ ℜ:
R,)
(V:curl,R,) v) , v

c
R,)
), (3.4)

where V:curl,R,) v) ∈ R
: ()) is defined, using the isomorphism curl : Gc,:+1()) → R

: ()) (see [10,
Eq. (2.10)]), by∫
)

V:curl,R,) v) · curlw) =
∫
)

C:) v) · w) −
∑
� ∈F)

l) �

∫
�

$:t,� v� · (w) × n� ) ∀w) ∈ Gc,:+1()).

(3.5)
Remark 4 (Discrete integration by parts formula for V:curl,) ). Formula (3.5) can be extended to test
functions in theNédélec spaceN:+1()) defined by (2.3). To check it, simply notice that both sides vanish
whenever w) ∈ G: ()) (use curl grad = 0 and the definition (2.14) of C:

)
). Since 0:

R,)

(
V:curl,) v)

)
=

V:curl,R,) v) (see (3.4) and (2.5)), we infer that∫
)

V:curl,) v) · curl z) =
∫
)

C:) v) · z) −
∑
� ∈F)

l) �

∫
�

$:t,� v� · (z) × n� ) ∀z) ∈ N:+1()). (3.6)

Applying (3.6) to v
)
= O:curl,) v with v ∈ P: ()), using the consistency properties $:t,�

(
O:curl,� v

)
=

0:
P,�

vt,� = vt,� and C:
)

(
O:curl,) v

)
= curl v (see [10, Eqs. (3.22) and (3.26)]), and integrating by parts,

and since curl : N:+1()) → R
: ()) is onto (due to the isomorphism property [10, Eq. (2.10)]), we

see that 0:
R,)

[
V:curl,)

(
O:curl,) v

) ]
= 0:

R,)
v. The definition (3.4) and the property (2.5) of the recovery

operator also yield 0c,:
R,)

[
V:curl,)

(
O:curl,) v

) ]
= 0c,:

R,)
v. As a consequence,

V:curl,)
(
O:curl,) v

)
= v ∀v ∈ P: ()). (3.7)

Following similar arguments as in the proof of [10, Proposition 15], we also have

0:−1
R,)

(
V:curl,) v)

)
= vR,) and 0c,:

R,)

(
V:curl,) v)

)
= vc

R,)
∀v
)
∈ ^:curl,) . (3.8)
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3.1.3 Vector potential on ^:div,)

The vector potential reconstruction V:div,) : ^
:
div,) → P

: ()) is such that, for all w
)
∈ ^:div,) ,

V:div,) w) = ℜ
:
G,)
(V:div,G,) w) , w

c
G,)
),

where V:div,G,) w) ∈ G
: ()) is defined by∫

)

V:div,G,) w) · grad A) = −
∫
)

�:) w) A) +
∑
� ∈F)

l) �

∫
�

F� A) ∀A) ∈ P0,:+1()). (3.9)

Remark 5 (Discrete integration by parts formula for V:div,) ). Observing that V
:
div,G,) = 0:

G,)
V:div,) (use

(2.5)) and that (3.9) holds for any A) ∈ P:+1()) (as can be proved taking A) constant in ) and observing
that both sides of this equation vanish due to the definition (2.15) of �:

)
), we infer∫

)

V:div,) w) · grad A) = −
∫
)

�:) w) A) +
∑
� ∈F)

l) �

∫
�

F� A) ∀A) ∈ P:+1()). (3.10)

Writing (3.10) for w
)
= O:div,) w with w ∈ RT

:+1()), observing that �:
)

(
O:div,) w

)
= c:P,) (divw) =

divw by [10, Eq. (3.36)] and c:P,� (w |� ·n� ) = w |� ·n� for all � ∈ F) by [10, Eq. (A.4)], and integrating
by parts the right-hand side of the resulting expression, we infer 0:

G,)

[
V:div,)

(
O:div,) w

) ]
= 0:

G,)
w; since

0c,:
G,)

[
V:div,)

(
O:div,) w

) ]
= 0c,:

G,)
w by definition of V:div,) , O

:
div,) and (2.5), we deduce that

V:div,)
(
O:div,) w

)
= 0:

P,)
w ∀w ∈ RT

:+1()). (3.11)

Moreover, following similar arguments as in [10, Proposition 15] we get

0:−1
G,)

(
V:div,) w)

)
= wG,) and 0c,:

G,)

(
V:div,) w)

)
= wc

G,)
∀w

)
∈ ^:div,) . (3.12)

3.1.4 Discrete L2-products

We now define discrete L2-inner products on the DDR spaces. These products are all constructed in a
similar way: by assembling local contributions composed of a consistent term based on the potential
reconstructions and a stabilisation term that provides a control of the polynomial components on the lower
dimensional geometrical objects. Specifically, each L2-product (·, ·)grad,ℎ : - :grad,ℎ × -

:
grad,ℎ → R,

(·, ·)curl,ℎ : ^:curl,ℎ × ^:curl,ℎ → R, and (·, ·)div,ℎ : ^
:
div,ℎ × ^:div,ℎ → R is the sum over ) ∈ Tℎ of its

local counterpart defined by:

(A) , @) )grad,) ≔

∫
)

%:+1grad,) A) %
:+1
grad,) @)

+ sgrad,) (A) , @) ) ∀(A) , @) ) ∈ -
:
grad,) × -

:
grad,) ,

(3.13a)

(w
)
, v
)
)curl,) ≔

∫
)

V:curl,) w) · V
:
curl,) v) + scurl,) (w) , v) ) ∀(w) , v) ) ∈ ^:curl,) × ^:curl,) ,

(3.13b)

(w
)
, v
)
)div,) ≔

∫
)

V:div,) w) · V
:
div,) v) + sdiv,) (w) , v) ) ∀(w

)
, v
)
) ∈ ^:div,) × ^:div,) ,

(3.13c)
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where the symmetric, positive semidefinite stabilisation bilinear forms s•,) , • ∈ {grad, curl, div}, are
defined as follows:

sgrad,) (A) , @) ) ≔
∑
� ∈F)

ℎ�

∫
�

(
%:+1grad,) A) − W

:+1
� A�

) (
%:+1grad,) @)

− W:+1� @
�

)
+

∑
� ∈E)

ℎ2�

∫
�

(
%:+1grad,) A� − A�

) (
%:+1grad,) @�

− @�
)
,

(3.14)

scurl,) (w) , v) ) ≔
∑
� ∈F)

ℎ�

∫
�

(
(V:curl,) w) )t,� − $

:
t,�w�

)
·
(
(V:curl,) v) )t,� − $

:
t,� v�

)
+

∑
� ∈E)

ℎ2�

∫
�

(
V:curl,) w� · t� − F�

) (
V:curl,) v� · t� − E�

)
,

(3.15)

where we recall that the index t, � denotes the tangential trace on �, and

sdiv,) (w) , v) ) ≔
∑
� ∈F)

ℎ�

∫
�

(
V:div,) w) · n� − F�

) (
V:div,) v) · n� − E�

)
. (3.16)

These local stabilisation bilinear forms s•,) are polynomialy consistent, i.e., they vanish whenever one
of their arguments is the interpolate of a polynomial of total degree ≤ : + 1 for • = grad, or ≤ :

for • ∈ {curl, div}. Further consistency properties for interpolates of smooth functions are stated in
Theorem 8

For • ∈ {grad, curl, div}, we denote by ‖·‖•,) the norm on - :•,) induced by the corresponding
local discrete L2-product (·, ·)•,) , and by ‖·‖•,ℎ the norm on - :•,ℎ corresponding to the global discrete
L2-product (·, ·)•,ℎ.
3.2 Primal consistency
In this section we state consistency results for the discrete potentials, vector calculus operators, and
stabilisation bilinear forms. Because of the nature of the interpolator on ^:curl,) (which requires higher
regularity of functions), we introduce the following notation: For ) ∈ Tℎ and v ∈ Hmax(:+1,2) ()),

|v |H(:+1,2) () ) ≔
{
|v |H1 () ) + ℎ) |v |H2 () ) if : = 0,
|v |H:+1 () ) if : ≥ 1. (3.17)

The corresponding global broken seminorm |·|H(:+1,2) (Tℎ) is such that, for all v ∈ H(:+1,2) (Tℎ),

|v |H(:+1,2) (Tℎ) ≔
(∑

) ∈Tℎ |v |2H(:+1,2) () )
)1/2

. The proofs of the following theorems are postponed to
Section 4.3.

Theorem 6 (Consistency of the potential reconstructions). It holds, for all ) ∈ Tℎ,

‖%:+1grad,)
(
�:grad,) @

)
− @‖L2 () ) . ℎ:+2) |@ |H:+2 () ) ∀@ ∈ H:+2()), (3.18)

‖V:curl,)
(
O:curl,) v

)
− v‖L2 () ) . ℎ

:+1
) |v |H(:+1,2) () ) ∀v ∈ Hmax(:+1,2) ()), (3.19)

‖V:div,)
(
O:div,) w

)
− w‖L2 () ) . ℎ

:+1
) |w |H:+1 () ) ∀w ∈ H:+1()). (3.20)

Theorem 7 (Primal consistency of the discrete vector calculus operators). It holds, for all ) ∈ Tℎ,

‖G:)
(
�:grad,) @

)
− grad @‖L2 () ) . ℎ

:+1
) |@ |H:+2 () ) , ∀@ ∈ H:+2()), (3.21)

‖C:)
(
O:curl,) v

)
− curl v‖L2 () ) . ℎ

:+1
) | curl v |H:+1 () ) , ∀v ∈ H2()) s.t. curl v ∈ H:+1()), (3.22)

‖�:)
(
O:div,) w

)
− divw‖L2 () ) . ℎ:+1) | divw |H:+1 () ) , ∀w ∈ H1()) s.t. divw ∈ H:+1()). (3.23)
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Theorem 8 (Consistency of stabilisation forms). For all ) ∈ Tℎ, the stabilisation forms defined by
(3.14)–(3.16) satisfy the following consistency properties:

sgrad,) (�:grad,) @, �
:
grad,) @)

1
2 . ℎ:+2) |@ |H:+2 () ) ∀@ ∈ H:+2()), (3.24)

scurl,) (O:curl,) v, O
:
curl,) v)

1
2 . ℎ:+1) |v |H(:+1,2) () ) ∀v ∈ Hmax(:+1,2) ()), (3.25)

sdiv,) (O:div,) w, O
:
div,) w)

1
2 . ℎ:+1) |w |H:+1 () ) ∀w ∈ H:+1()). (3.26)

3.3 Adjoint consistency
Whenever a (formal) integration by parts is used to write the weak formulation of a PDE problem
underpinning its discretisation, a form of adjoint consistency is required in the convergence analysis.
We state here the adjoint consistency of the operators in the DDR sequence (2.16). Since this sequence
does not incorporate boundary conditions, the corresponding adjoint consistency will be based on
essential boundary conditions. The regularity requirements will be expressed in terms of the broken
Sobolev spaces and norms such that, for any ℓ ≥ 1,

Hℓ (Tℎ) ≔
{
6 ∈ L2(Ω) : 6 |) ∈ Hℓ ()) for all ) ∈ Tℎ

}
and |6 |Hℓ (Tℎ) ≔

( ∑
) ∈Tℎ

|6 |) |2Hℓ () )

) 1
2

.

The corresponding seminorms for vector-valued functions is denoted, as usual, using boldface letters.
We denote in what follows by H10(Ω), H0(div;Ω), and H0(curl;Ω) the subspaces of H1(Ω), H(div;Ω),
and H(curl;Ω) spanned by functions whose trace, normal trace, and tangential trace vanish on mΩ,
respectively.

Theorem 9 (Adjoint consistency for the gradient). Let Ẽdiv,ℎ :
(
C0(Ω) ∩ H0(div;Ω)

)
× - :grad,ℎ → R

be such that, for all @
ℎ
∈ - :grad,ℎ,

Ẽdiv,ℎ (v, @
ℎ
) ≔

∑
) ∈Tℎ

[
(O:curl,) v |) ,M

:
)
@
)
)curl,) +

∫
)

div v %:+1grad,) @)

]
.

Then, it holds, for all v ∈ C0(Ω) ∩H0(div;Ω) such that v ∈ Hmax(:+1,2) (Tℎ) and all @
ℎ
∈ - :grad,ℎ,

|Ẽdiv,ℎ (v, @
ℎ
) | . ℎ:+1 |v |H(:+1,2) (Tℎ) ‖M

:
ℎ
@
ℎ
‖curl,ℎ, (3.27)

Proof. See Section 4.4.1. �

Theorem 10 (Adjoint consistency for the curl). Let Ẽcurl,ℎ :
(
C0(Ω) ∩H0(curl;Ω)

)
× ^:curl,ℎ → R be

such that, for all (w, v
ℎ
) ∈

(
C0(Ω) ∩H0(curl;Ω)

)
× ^:curl,ℎ,

Ẽcurl,ℎ (w, vℎ) ≔
∑
) ∈Tℎ

[
(O:div,) w |) ,I

:
)
v
)
)div,) −

∫
)

curlw · V:curl,) v)

]
. (3.28)

Then, for all w ∈ C0(Ω) ∩H0(curl;Ω) such that w ∈ H:+2(Tℎ) and all vℎ ∈ ^:curl,ℎ,

|Ẽcurl,ℎ (w, vℎ) | . ℎ
:+1

(
|w |H:+1 (Tℎ) + |w |H:+2 (Tℎ)

) (
‖v
ℎ
‖curl,ℎ + ‖I:ℎvℎ ‖div,ℎ

)
. (3.29)

Proof. See Section 4.4.2. �
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Theorem 11 (Adjoint consistency for the divergence). Let Ẽgrad,ℎ :
(
C0(Ω) ∩ �10 (Ω)

)
× ^:div,ℎ → R

be such that, for all (@, v
ℎ
) ∈

(
C0(Ω) ∩ �10 (Ω)

)
× ^:div,ℎ,

Ẽgrad,ℎ (@, vℎ) ≔
∫
Ω

c:P,ℎ@ �
:
ℎvℎ +

∑
) ∈Tℎ

∫
Ω

grad @ · V:div,) v) . (3.30)

Then, for all @ ∈ C0(Ω) ∩ �10 (Ω) such that @ ∈ H
:+2(Tℎ) and all vℎ ∈ ^:div,ℎ,

|Ẽgrad,ℎ (@, vℎ) | . ℎ
:+1 |@ |H:+2 (Tℎ) ‖vℎ ‖div,ℎ . (3.31)

Proof. See Section 4.4.3. �

4 Proofs of the consistency results
In this section, after establishing some preliminary results, we prove the primal and adjoint consistency
results stated in Section 3.

4.1 Component norms and bounds on potentials
We recall the definition of the component L2-norm on - :grad,) , ^

:
curl,) and ^:div,) introduced in [10,

Section 4.1], and which correspond to the L2-norms of the components of the vectors of polynomials,
with scaling appropriate to the dimensions of the geometrical objects on which these components are
defined:

|||@
)
|||grad,) ≔

(
‖@) ‖2L2 () ) +

∑
� ∈F)

ℎ� |||@
�
|||2grad,�

)1/2
for all @

)
∈ - :grad,) ,

where |||@
�
|||grad,� ≔

(
‖@� ‖2L2 (� ) +

∑
� ∈E�

ℎ� ‖@� ‖2L2 (�)
)1/2

for all � ∈ F) ,

|||v
)
|||curl,) ≔

(
‖vR,) ‖2L2 () ) + ‖v

c
R,)
‖2L2 () ) +

∑
� ∈F)

ℎ� |||v� |||
2
curl,�

)1/2
for all v

)
∈ ^:curl,) ,

where |||v
�
|||curl,� ≔

(
‖vR,� ‖2L2 (� ) + ‖v

c
R,�
‖2L2 (� ) +

∑
� ∈E�

ℎ� ‖E� ‖2L2 (�)
)1/2

for all � ∈ F) ,
(4.1)

and

|||w
)
|||div,) ≔

(
‖wG,) ‖2L2 () ) + ‖w

c
G,)
‖2L2 () ) +

∑
� ∈F)

ℎ� ‖F� ‖2L2 (� )
)1/2

for all w
)
∈ ^:div,) .

The next proposition follows from (2.7) and [10, Lemma 31], in a similar way as in the proof of [11,
Proposition 13].

Proposition 12 (Boundedness of local potentials). It holds, for all ) ∈ Tℎ and all � ∈ F) ,

‖W:+1� @
�
‖L2 (� ) . |||@� |||grad,� and ‖%:+1grad,) @)

‖L2 () ) . |||@) |||grad,) ∀@
)
∈ - :grad,) , (4.2)

‖$:t,� v� ‖L2 (� ) . |||v� |||curl,� and ‖V:curl,) v) ‖L2 () ) . |||v) |||curl,) ∀v
)
∈ ^:curl,) , (4.3)

‖V:div,) w) ‖L2 () ) . |||w) |||div,) ∀w
)
∈ ^:div,) . (4.4)

For • ∈ {grad, curl, div}, using triangle inequalities as in [11, Proposition 14], invoking the bounds
of Proposition 12, the projection properties (3.3), (3.8) (and similar for $:t,� , see [10, Proposition 15])
or (3.12), and recalling (2.7), we have the norm equivalence: For all ) ∈ Tℎ

|||I
)
|||•,) ' ‖I) ‖•,) ∀I

)
∈ - :•,) . (4.5)
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Lemma 13 (Boundedness of local interpolators). It holds, for all ) ∈ Tℎ,

|||�:grad,) @ |||grad,) . ‖@‖L2 () ) + ℎ) |@ |H1 () ) + ℎ2) |@ |H2 () ) ∀@ ∈ H2()), (4.6)

|||O:curl,) v |||curl,) . ‖v‖L2 () ) + ℎ) |v |H1 () ) + ℎ
2
) |v |H2 () ) ∀v ∈ H2()), (4.7)

|||O:div,) w |||div,) . ‖w‖L2 () ) + ℎ) |w |H1 () ) ∀w ∈ H1()). (4.8)

Proof. The definition of �:grad,) (see (2.8)) clearly shows that |||�:grad,) @ |||grad,) . |) |1/2max) |@ |. By
[12, Eq. (5.110)], it holds

max
)
|@ | . |) |− 12

2∑
A=0

ℎA) |@ |HA () ) ,

which concludes the proof of (4.6). The estimate (4.7) is obtained the same way. As for (4.8), by the
continuous trace inequality of [12, Lemma 1.31], we have

‖c:P,� (w · n� )‖L2 (� ) ≤ ‖w‖L2 (� ) . ℎ
− 12
�
‖w‖L2 () ) + ℎ

1
2
�
|w |H1 () ) .

Using this bound in the definition (2.9) of O:div,) yields (4.8). �

4.2 Links between discrete vector potentials and vector calculus operators
Proposition 14 (Link between discrete vector potentials and vector calculus operators). For all ) ∈ Tℎ,
it holds

V:curl,)
(
M:
)
@
)

)
= G:) @) ∀@

)
∈ - :grad,) , (4.9)

V:div,)
(
I:
)
v
)

)
= C:) v) ∀v

)
∈ ^:curl,) . (4.10)

Proof. 1. Proof of (4.9). By the second projection property in (3.8), we have 0c,:
R,)

[
V:curl,)

(
M:
)
@
)

) ]
=

0c,:
R,)

(
G:
)
@
)

)
. To infer the conclusion, it then suffices to prove that

0:
R,)

[
V:curl,)

(
M:
)
@
)

) ]
= 0:

R,)

(
G:) @)

)
(4.11)

and invoke (2.6). To prove (4.11), we take z) ∈ N:+1()) and apply (3.6) with v
)
= M:

)
@
)
. Using the

inclusion ImM:
)
⊂ KerC:

)
(see [10, Remark 21]) and the relation $:t,�

(
M:
�
@
�

)
= G:

�
@
�
valid for all

� ∈ F) (see [10, Proposition 15]), we obtain∫
)

V:curl,)
(
M:
)
@
)

)
· curl z) = −

∑
� ∈F)

l) �

∫
�

G:�@� · (z) × n� ) =
∫
)

G:) @) · curl z) ,

the conclusion following from the link between element and face gradient, see [10, Proposition 11]. By
the isomorphism curl : Gc,:+1()) → R

: ()) of [10, Eq. (2.10)] and since Gc,:+1()) ⊂ N
:+1()), this

establishes (4.11) and concludes the proof of (4.9).

2. Proof of (4.10). The second projection property in (3.12) ensures that 0c,:
G,)

[
V:div,)

(
I:
)
v
)

) ]
=

0c,:
G,)

(
C:
)
v
)

)
. As before, it therefore remains to analyse the projections on G

: ()). Apply (3.10) to
w
)
= I:

)
v
)
and a generic A) ∈ P:+1()), and use the inclusion ImI:

)
⊂ Ker�:

)
(see [10, Proposition

17]) to get ∫
)

V:div,)
(
I:
)
v
)

)
· grad A) =

∑
� ∈F)

l) �

∫
�

�:� v� A) =

∫
)

C:) v) · grad A) ,

where the conclusion is obtained applying the link between element and face curls of [10, Proposition
16]. This establishes that 0:

G,)

[
V:div,)

(
I:
)
v
)

) ]
= 0:

G,)

(
C:
)
v
)

)
, proving (4.10). �
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Corollary 15 (Bound on discrete gradients and curl). For all � ∈ Fℎ, it holds

‖G:�@� ‖
2
L2 (� ) +

∑
� ∈E�

ℎ� ‖�:�@� ‖2L2 (�) . |||M
:
�
@
�
|||curl,� ∀@

�
∈ - :grad,� . (4.12)

For all ) ∈ Tℎ, it holds

‖G:) @) ‖
2
L2 () ) +

∑
� ∈F)

ℎ� ‖G:�@� ‖
2
L2 (� ) +

∑
� ∈E)

ℎ2� ‖�:�@� ‖2L2 (�) . |||M
:
)
@
)
|||curl,)

∀@
)
∈ - :grad,) , (4.13)

‖C:) v) ‖
2
L2 () ) +

∑
� ∈F)

ℎ� ‖�:� v� ‖
2
L2 (� ) . |||I

:
)
v
)
|||div,) ∀v

)
∈ ^:curl,) . (4.14)

Proof. The definitions of |||·|||curl,� , |||·|||curl,) , M:
�
and M:

)
show that the edge gradient contributions in

the left-hand sides of (4.12) and (4.13) are bounded by the corresponding right-hand sides. To bound
the face and element gradient contributions in the left-hand sides of (4.12) and (4.13), simply apply
(4.3) to v

)
= M:

)
@
)
, use $:t,� ◦ M

:
�
= G:

�
(see [10, Proposition 15]) and (4.9). The estimate (4.14) is

established in a similar way. �

4.3 Primal consistency

Proof of Theorem 6. Let us start with (3.18). Since H2()) ⊂ C0()), the mapping %:+1grad,) ◦ �
:
grad,) :

H2()) → P:+1()) is well-defined and, owing to (3.2), it is a projector. Moreover, combining (4.6) and
(4.2), it satisfies the L2())-boundedness

‖%:+1grad,)
(
�:grad,) @

)
‖L2 () ) . ‖@‖L2 () ) + ℎ) |@ |H1 () ) + ℎ2) |@ |H2 () ) ∀@ ∈ H2()).

The approximation property (3.18) is thus a direct consequence of [12, Lemma 1.43]. The proofs of
(3.19) (for : ≥ 1) and (3.20) are similar, using the fact that the considered operators are projectors
onto P

: ()) (see (3.7) and (3.11)) and invoking Proposition 12 and Lemma 13 to establish their L2-
boundedness. In the case : = 0, since V0curl,) ◦ O

0
curl,) requires the H2-regularity of its argument, with

2 > : + 1, (3.19) cannot be deduced directly from [12, Lemma 1.43]. However, using the bounds (4.3)
and (4.7) a direct proof can be done by introducing 00

P,)
v = V0curl,)

(
O0curl,) 0

0
P,)

v
)
:

‖V0curl,)
(
O0curl,) v

)
− v‖L2 () ) ≤ ‖V

0
curl,)

[
O0curl,) (v − 00

P,)
v)

]
‖L2 () ) + ‖0

0
P,)

v − v‖L2 () )
. ‖v − 00

P,)
v‖L2 () ) + ℎ) |v − 00

P,)
v |H1 () ) + ℎ

2
) |v − 00

P,)
v |H2 () ) ,

and (3.19) follows using the approximation properties of 00
P,)

, the fact that the H1())- and H2())-
seminorms of 00

P,)
v vanish, and the definition (3.17) of |·|H(:+1,2) () ) . �

Proof of Theorem 7. Let us prove (3.21). For any @
)
∈ - :grad,) , taking w) = G:

)
@
)
in (2.11) and

using Cauchy–Schwarz inequalities along with discrete inverse and trace inequalities, it is inferred, after
simplification,

‖G:) @) ‖L2 () ) . ℎ
−1
) ‖@) ‖L2 () ) +

∑
� ∈F)

ℎ
−1/2
�
‖W:+1� @

�
‖L2 (� ) . ℎ−1) |||@ |||grad,) ,

where the conclusion follows from the estimate on W:+1
�
@
�
in (4.2) and from the definition of |||·|||grad,) .

As a result, for any A ∈ H2()), making @
)
= �:grad,) A and invoking (4.6), we infer

‖G:)
(
�:grad,) A

)
‖L2 () ) . ℎ

−1
) ‖A ‖L2 () ) + |A |H1 () ) + ℎ) |A |H2 () ) . (4.15)
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Letting now @ ∈ H:+2()), we use the polynomial consistency [10, Eq. (3.13)] of G:
)
followed by a

triangle inequality to write

‖G:)
(
�:grad,) @

)
− grad @‖L2 () ) ≤ ‖G

:
)

[
�:grad,)

(
@ − c:+1P,) @

) ]
‖L2 () ) + ‖ grad

(
c:+1P,) @ − @

)
‖L2 () )

and conclude using (4.15) with A = @ − c:+1P,) @ for the first term in the right-hand side followed by the
approximation properties of c:+1P,) (see [12, Theorem 1.45]).

To prove (3.22), we notice thatC:
)

(
O:curl,) v

)
= V:div,)

[
I:
)

(
O:curl,) v

) ]
= V:div,)

[
O:div,)

(
curl v

) ]
owing

to (4.10) along with the commutation property [10, Eq. (3.35)], and conclude using the approximation
properties (3.20) with w = curl v.

Finally, (3.23) is a straightforward consequence of the commutation property �:
)

(
O:div,) w

)
=

c:P,) (divw) stated in [10, Eq. (3.36)] together with [12, Theorem 1.45]. �

Remark 16 (Alternative proof of (3.21)). When @ ∈ C1()) is such that grad @ ∈ Hmax(:+1,2) ()), the
proof of (3.21) can be done following similar arguments as for (3.22), i.e., we write G:

)

(
�:grad,) @

)
=

V:curl,)
[
M:
)

(
�:grad,) @

) ]
= V:curl,)

[
O:curl,)

(
grad @

) ]
using (4.9) followed by [10, Eq. (3.34)], and con-

clude using the approximation properties (3.19) with v = grad @. This argument, however, requires
additional regularity on @ with respect to the one used above.

Proof of Theorem 8. Weonly prove (3.25), the other consistency properties being established in a similar
way. Let v ∈ Hmax(:+1,2) ()). By the polynomial consistency [10, Eq. (3.22)] of $:t,� and (3.7) of V:curl,) ,
it is easily checked that, for all z) ∈ P

: ()) and all w
)
∈ ^:curl,) , it holds scurl,) (O:curl,) z) , w) ) = 0.

Applying this with z) = 0:
P,)

v we infer

scurl,) (O:curl,) v, O
:
curl,) v) = scurl,) (O:curl,) (v−0

:
P,)

v), O:curl,) (v−0
:
P,)

v)) . |||O:curl,) (v−0
:
P,)

v) |||2curl,) ,

the conclusion following from the definition of ‖·‖curl,) and the norm equivalence (4.5). Invoking then
(4.7) we infer

scurl,) (O:curl,) v, O
:
curl,) v)

1
2 . ‖v − 0:

P,)
v‖L2 () ) + ℎ) |v − 0:

P,)
v |H1 () ) + ℎ

2
) |v − 0:

P,)
v |H2 () )

and the estimate (3.25) follows from the approximation properties of 0:
P,)

, see [12, Theorem 1.45],
and the definition (3.17) of |·|H(:+1,2) () ) , using in the case : = 0 the same arguments as in the proof of
Theorem 6. �

4.4 Adjoint consistency
4.4.1 Adjoint consistency for the gradient

Lemma 17 (Estimates on local H1-seminorms of potentials). For all � ∈ Fℎ and all @
�
∈ - :grad,� , it

holds
‖ grad W:+1� @

�
‖2L2 (� ) +

∑
� ∈E�

ℎ−1� ‖W:+1� @
�
− @� ‖2L2 (�) . |||M

:
�
@
�
|||2curl,� . (4.16)

For all ) ∈ Tℎ and all @
)
∈ - :grad,) , it holds

‖ grad %:+1grad,) @)
‖2L2 () ) +

∑
� ∈F)

ℎ−1� ‖%:+1grad,) @)
− W:+1� @

�
‖2L2 (� ) . |||M

:
)
@
)
|||2curl,) . (4.17)
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Proof. The proof follows arguments similar to [10, Lemma 29].

1. Proof of (4.16). Let @
�
∈ - :grad,� and define �@,m� ∈ R as the average of @E� over m�. Introducing

�@,m� = W
:+1
�

(
�:grad,� �@,m�

)
(see [10, Eq. (3.11)]), using ℎ� ' ℎ� and card(E� ) . 1, and invoking a

discrete trace inequality on W:+1
�

(
@
�
− �@,m�

)
, we have∑

� ∈E�
ℎ−1� ‖W:+1� @

�
− @� ‖2L2 (�) .

∑
� ∈E�

ℎ−1� ‖@� − �@,m� ‖2L2 (�) + ℎ
−2
� ‖W:+1�

(
@
�
− �@,m�

)
‖2L2 (� ) . (4.18)

Since @E� is continuous, recalling that @� = (@Eℎ ) |� for all � ∈ E� and using a Poincaré–Wirtinger
inequality along m� followed by the definition (4.1) of |||·|||curl,� yields∑

� ∈E�
ℎ−1� ‖@� − �@,m� ‖2L2 (�) . ℎ�

∑
� ∈E�

‖�:�@� ‖2L2 (�) . |||M
:
�
@
�
|||2curl,� . (4.19)

Wenow turn to the second term in (4.18). Select v� ∈ Rc,:+2(�) such thatdiv v� = W:+1�

(
@
�
− �:grad,� �@,m�

)
.

By the L2-estimate on v� coming from [10, Lemma 31], the discrete trace inequality of [12, Lemma
1.32], and the consistency property [10, Eq. (3.10)] of G:

�
, we have

‖v� ‖L2 (� ) +
( ∑
� ∈E�

ℎ� ‖v� ‖2L2 (�)

) 1
2

. ℎ� ‖W:+1�

(
@
�
− �:grad,� �@,m�

)
‖L2 (� ) ,

G:�
(
@
�
− �:grad,� �@,m�

)
= G:�@� .

Hence, applying the definition (2.10) of W:+1
�

to @
�
− �:grad,� �@,m� ∈ -

:
grad,� , taking v� above as a test

function, and using Cauchy–Schwarz inequalities, we obtain

‖W:+1�

(
@
�
− �:grad,� �@,m�

)
‖2L2 (� ) . ℎ� ‖G

:
�@�
‖L2 (� ) ‖W

:+1
�

(
@
�
− �:grad,� �@,m�

)
‖L2 (� )

+
( ∑
� ∈E�

ℎ−1� ‖@� − �@,m� ‖2L2 (�)

) 1
2

ℎ� ‖W:+1�

(
@
�
− �:grad,� �@,m�

)
‖L2 (� ) .

Simplifying and recalling (4.12) and (4.19), we infer ‖W:+1
�

(
@
�
− �@,m�

)
‖L2 (� ) . ℎ� |||M:

�
@
�
|||curl,�

which, plugged together with (4.19) into (4.18), gives the following estimate on the second term in the
left-hand side of (4.16): ∑

� ∈E�
ℎ−1� ‖W:+1� @

�
− @� ‖2L2 (�) . |||M

:
�
@
�
|||2curl,� . (4.20)

Integrating by parts the definition (2.10) of W:+1
�

applied to v� ∈ P: (�) (see Remark 1), we have∫
�

grad� W:+1� @
�
· v� =

∫
�

G:�@� · v� +
∑
� ∈E�

l��

∫
�

(W:+1� @
�
− @E� ) (v� · n�� ).

Making v� = grad� W:+1�
@
�
, using Cauchy–Schwarz inequalities, (4.12), a discrete trace inequality,

and (4.20) then yields the bound on the first term in the left-hand side of (4.16).

2. Proof of (4.17). The ideas are similar to those used to prove (4.16), provided we can establish a
Poincaré–Writinger inequality for face potentials (which is not straightforward given their discontinuity).
Let

�@,m) ≔
1
|m) |

∑
� ∈F)

|� |�@,� with �@,� ≔
1
|� |

∫
�

W:+1� @
�

15



denote the average over m) of the piecewise polynomial function defined by (W:+1
�
@
�
)� ∈F) . We write,

using triangle and Cauchy–Schwarz inequalities,∑
� ∈F)

ℎ−1� ‖%:+1grad,) @)
− W:+1� @

�
‖2L2 (� ) .

∑
� ∈F)

ℎ−1� ‖W:+1� @
�
− �@,� ‖2L2 (� )

+
∑
� ∈F)

ℎ−1� ‖�@,� − �@,m) ‖2L2 (� ) +
∑
� ∈F)

ℎ−1� ‖%:+1grad,) @)
− �@,m) ‖2L2 (� ) ≕ T1 + T2 + T3. (4.21)

The first term is estimated using a Poincaré–Wirtinger inequality on W:+1
�
@
�
and invoking (4.16) together

with the definition (4.1) of |||·|||curl,) to get

T1 .
∑
� ∈F)

ℎ−1�

(
ℎ� ‖ grad� W:+1� @

�
‖L2 (� )

)2
.

∑
� ∈F)

ℎ� |||M:
�
@
�
|||2curl,� . |||M

:
)
@
)
|||2curl,) . (4.22)

For the second term in (4.21), we follow the same steps as in [10, Lemma 29], working from face
to face through common edges and using (4.16) to get T2 . |||M:

)
@
)
|||2curl,) . Finally, for T3, we

apply the definition (3.1) of %:+1grad,)
(
@
)
− �:grad,) �@,m)

)
with v) ∈ R

c,:+2()) such that div v) =

%:+1grad,) (@) − �
:
grad,) �@,m) ) and ‖v) ‖L2 () ) . ℎ) ‖%

:+1
grad,) (@) − �

:
grad,) �@,m) )‖L2 () ) , see [10, Lemma

31]. Using the consistency properties (3.2) of %:+1grad,) , [10, Eq. (3.13)] of G:
)
and [10, Eq. (3.11)] of

W:+1
�

, and a discrete trace inequality, this gives

‖%:+1grad,) @)
− �@,m) ‖L2 () ) . ℎ) ‖G:) @) ‖L2 () ) + ℎ)

∑
� ∈F)

ℎ
− 12
�
‖W:+1� @

�
− �@,m) ‖L2 (� )

. ℎ) |||M:
)
@
)
|||curl,) + ℎ)

(
T
1
2
1 + T

1
2
2

)
, (4.23)

where the second line follows from (4.13), and a triangle inequality to write∑
� ∈F)

ℎ
− 12
�
‖W:+1� @

�
− �@,m) ‖L2 (� ) ≤

∑
� ∈F)

ℎ
− 12
�
‖W:+1� @

�
− �@,� ‖L2 (� ) +

∑
� ∈F)

ℎ
− 12
�
‖�@,� − �@,m) ‖L2 (� ) .

Using discrete trace inequalities and the previous estimates on T1 and T2, (4.23) leads to

T3 . ℎ
−2
) ‖%:+1grad,) @)

− �@,m) ‖2L2 () ) . |||M
:
)
@
)
|||2curl,)

Plugging this bound together with the estimates on T1 and T2 into (4.21) concludes the proof of the
bound on the second term in the right-hand side of (4.17) To bound the first term in the left-hand side of
(4.17), we proceed as for grad� W:+1�

@
�
in Step 1, using an integration by parts in the definition (3.1)

of %:+1grad,) @)
and selecting the test function v) = grad %:+1grad,) @)

(see Remark 3). �

Proof of Theorem 9. It holds, by definition (3.13b) of the local discrete L2-product in ^:curl,ℎ and (4.9),

Ẽdiv,ℎ (v, @
ℎ
)

=
∑
) ∈Tℎ

[∫
)

V:curl,)
(
O:curl,) v

)
· G:) @) + scurl,) (O:curl,) v |) ,M

:
)
@
)
) +

∫
)

div v %:+1grad,) @)

]
. (4.24)

Using Remark 3, we have, for all w) ∈ P: ()),∫
)

%:+1grad,) @)
divw) +

∫
)

G:) @) · w) −
∑
� ∈F)

l) �

∫
�

W:+1� @
�
(w) · n� ) = 0.
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Subtracting this quantity from (4.24), we obtain

Ẽdiv,ℎ (v, @
ℎ
) =

∑
) ∈Tℎ

[ ∫
)

(
V:curl,)

(
O:curl,) v

)
− w)

)
· G:) @) + scurl,) (O:curl,) v |) ,M

:
)
@
)
)
]

+
∑
) ∈Tℎ

[ ∫
)

div(v − w) )%:+1grad,) @)
+

∑
� ∈F)

l) �

∫
�

(w) − v) · n�W:+1� @
�

]
,

where v is introduced in the boundary term by single-valuedness of the discrete trace, and using
v |� · n� = 0 whenever � ∈ F bℎ . Integrating by parts the third term in the right-hand side of the above
expression, we obtain

Ẽdiv,ℎ (v, @
ℎ
) =

∑
) ∈Tℎ

[ ∫
)

(
V:curl,)

(
O:curl,) v

)
− w)

)
· G:) @) + scurl,) (O:curl,) v |) ,M

:
)
@
)
)
]

+
∑
) ∈Tℎ

[
−

∫
)

(v − w) ) · grad %:+1grad,) @)
+

∑
� ∈F)

l) �

∫
�

(w) − v) · n� (W:+1� @
�
− %:+1grad,) @)

)
]
.

(4.25)

We set w) = 0:
P,)

v and use (3.19) and the approximation properties of 0:
P,)

stated in [12, Theorem
1.45] to see that

‖V:curl,)
(
O:curl,) v

)
− 0:

P,)
v‖L2 () ) + ‖v − 0

:
P,)

v‖L2 () ) +
∑
� ∈F)

ℎ
1
2
�
‖v − 0:

P,)
v‖L2 (� ) . ℎ

:+1
) |v |H(:+1,2) () ) .

Using Cauchy–Schwarz inequalities on the integrals and on the stabilisation bilinear form in (4.25),
the bound (4.13) together with the norm equivalence (4.5), and the consistency property (3.25) of the
stabilisation term, we arrive at���Ẽdiv,ℎ (v, @

ℎ
)
��� ≤ ∑

) ∈Tℎ
ℎ:+1) |v |H(:+1,2) () ) ‖M

:
)
@
)
‖curl,) +

∑
) ∈Tℎ

ℎ:+1) |v |H(:+1,2) () ) ‖ grad %:+1grad,) @)
‖L2 () )

+
∑
) ∈Tℎ

∑
� ∈F)

ℎ:+1) |v |H(:+1,2) () ) ℎ
− 12
�
‖W:+1� @

�
− %:+1grad,) @)

‖L2 (� ) .

The conclusion follows from the estimate (4.17), and Cauchy–Schwarz inequalities on the sums. �

4.4.2 Adjoint consistency for the curl

The proof of the adjoint consistency for the curl hinges on liftings defined as solutions of local problems.
For any � ∈ Fℎ, the face lifting Xcurl,� : ^:curl,� → H(rot; �) ∩ H(div; �) is such that, for all
v
�
∈ ^:curl,� , Xcurl,� v� = 5v

�
+ grad� kv

�
with 5v

�
∈ H(rot; �) ∩H(div; �) such that

rot� 5v
�
= �:� v� in �, (4.26a)

div� 5v
�
= 0 in �, (4.26b)

5v
�
· t� = E� on all � ∈ E� , (4.26c)

while kv
�
∈ �∞c (�) is such that

−
∫
�

kv
�
div� z� =

∫
�

($:t,� v� − 5v
�
) · z� ∀z� ∈ Rc,:+1(�). (4.27)
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Let now ) ∈ Tℎ. The curl correction %) : ^:curl,) → H(curl;)) ∩ H(div;)) is such that, for all
v
)
∈ ^:curl,) ,

div %) v) = − divC:) v) in ), (4.28a)
curl %) v) = 0 in ), (4.28b)
%) v) · n� = �

:
� v� − C:) v) · n� on all � ∈ F) . (4.28c)

The curl correction lifts the difference between the face curl �:
�
v
�
and the normal component of the

element curl C:
)
v
)
as a function defined over ) . Its role is to ensure the well-posedness of the problem

defining the element lifting Xcurl,) : ^:curl,) → H(curl;)) ∩H(div;)) such that, for all v
)
∈ ^:curl,) ,

curl Xcurl,) v) = C:) v) + %) v) in ), (4.29a)
div Xcurl,) v) = 0 in ), (4.29b)
(Xcurl,) v) )t,� = Xcurl,� v� on all � ∈ F) . (4.29c)

In Appendix A we prove that these lifting operators are well-defined, and that they satisfy the following
two key properties:

• Orthogonality of the face lifting: For all � ∈ Fℎ,∫
�

($:t,� v� − Xcurl,� v� ) · z� = 0 ∀(v
�
, z� ) ∈ ^:curl,� ×RT

:+1(�); (4.30)

• Boundedness of the element lifting: For all ) ∈ Tℎ,

‖Xcurl,) v) ‖L2 () )+‖ curl Xcurl,) v) ‖L2 () ) . ‖v) ‖curl,) +‖I:) v) ‖div,) ∀v
)
∈ ^:curl,) . (4.31)

Lemma 18 (Approximation properties of N:+1()) on polyhedral elements). For all ) ∈ Tℎ and all
w ∈ H:+2()), there exists z) ∈ N:+1()) such that

‖w − z) ‖L2 () ) . ℎ
:+1
)

(
|w |H:+1 () ) + |w |H:+2 () )

)
, (4.32)

‖ curlw − curl z) ‖L2 () ) . ℎ
:+1
) |w |H:+2 () ) . (4.33)

Proof. By the mesh regularity assumption, there is a simplex ( ⊂ ) whose inradius is & ℎ) . Following
the arguments in the proof of [12, Lemma 1.25], we infer the norm equivalence

‖@‖L2 (() ' ‖@‖L2 () ) ∀@ ∈ P:+1()). (4.34)

Let us take z) as the Nédélec interpolant in N
:+1(() of w; z) can be uniquely extended as an element

ofN:+1()). By the arguments in the proof of [16, Theorem 3.14 and Corollary 3.17], and since ( ⊂ ) ,
it holds

‖w − z) ‖L2 (() . ℎ
:+1
)

(
|w |H:+1 () ) + |w |H:+2 () )

)
,

‖ curlw − curl z) ‖L2 (() . ℎ
:+1
) |w |H:+2 () ) .

(4.35)

We then write, introducing 0:+1
P,)

w and using triangle inequalities,

‖w − z) ‖L2 () ) . ‖w − 0:+1
P,)

w‖L2 () ) + ‖0
:+1
P,)

w − z) ‖L2 () )
. ℎ:+1) |w |H:+1 () ) + ‖0

:+1
P,)

w − z) ‖L2 (()
. ℎ:+1) ( |w |H:+1 () ) + |w |H:+2 () ) ),
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where we have used the approximation property of 0:+1
P,)

together with the norm equivalence (4.34) in
the second equality, and concluded by introducing w and invoking (4.35) to write

‖0:+1
P,)

w − z) ‖L2 (() ≤ ‖0
:+1
P,)

w − w‖L2 (() + ‖w − z) ‖L2 (()
. ℎ:+1) |w |H:+1 () ) + ℎ

:+1
) ( |w |H:+1 () ) + |w |H:+2 () ) ).

This concludes the proof of (4.32). The proof of (4.33) is done in a similarway, introducing curl(0:+1
P,)

w)
and using the approximation property ‖ curlw − curl(0:+1

P,)
w)‖L2 () ) . ℎ:+1)

|w |H:+2 () ) . �

Proof of Theorem 10. For all ) ∈ Tℎ, select z) ∈ N
:+1()) given by Lemma 18. Using (3.13c) to

expand (·, ·)div,ℎ together with (4.10), and recalling (3.6), we see that it holds, for all vℎ ∈ ^:curl,ℎ,

Ẽcurl,ℎ (w, vℎ) =
∑
) ∈Tℎ

∫
)

(
V:div,) (O

:
div,) w |) ) − z)

)
· C:) v) +

∑
) ∈Tℎ

sdiv,) (O:div,) w |) ,I
:
)
v
)
)

+
∑
) ∈Tℎ

∫
)

curl(z) − w) · V:curl,) v) +
∑
) ∈Tℎ

∑
� ∈F)

l) �

∫
�

(z) × n� ) · $:t,� v�

≕ T1 + T2 + T3 + T4.

(4.36)

Using Cauchy–Schwarz and triangle inequalities, it is readily inferred for the first term

|T1 | .
[ ∑
) ∈Tℎ

(
‖V:div,) (O

:
div,) w) − w‖2L2 () ) + ‖w − z) ‖2L2 () )

)] 12 ( ∑
) ∈Tℎ

‖C:) v) ‖
2
L2 () )

) 1
2

. ℎ:+1
(
|w |H:+1 (Tℎ) + |w |H:+2 (Tℎ)

)
‖I:

ℎ
v
ℎ
‖div,ℎ, (4.37)

where the conclusion follows using the approximation properties (3.20) and (4.32) to bound the first
factor, and (4.14) along with the norm equivalence (4.5) to bound the second.

For T2, combining the consistency property (3.26) of sdiv,) with discrete Cauchy–Schwarz inequal-
ities and the definition of the ‖·‖div,ℎ-norm readily gives

|T2 | . ℎ:+1 |w |H:+1 (Tℎ) ‖I
:
ℎ
v
ℎ
‖div,ℎ . (4.38)

For T3, Cauchy–Schwarz inequalities, the approximation property (4.35), and the definition of the
norm ‖·‖curl,ℎ yield

|T3 | ≤
( ∑
) ∈Tℎ
‖ curl(z) − w)‖2L2 () )

) 1
2
( ∑
) ∈Tℎ
‖V:curl,) v) ‖

2
L2 () )

) 1
2

. ℎ:+1 |w |H:+2 (Tℎ) ‖vℎ ‖curl,ℎ . (4.39)

Let us now consider the last term in the right-hand side of (4.36). Since (z) ) |� × n� ∈ RT
:+1(�)

(see [10, Proposition 30]), by (4.30) we can replace $:t,� v) by Xcurl,� v� in the boundary integral.
Using the fact that both Xcurl,� v� and the (rotated) tangential component of w are continuous across
interfaces, along with the fact that l)1� + l)2� = 0 for all � ∈ Fℎ between two elements )1, )2, and
w |� × n� = 0 for all � ∈ F b

ℎ
, we then have

T4 =
∑
) ∈Tℎ

∑
� ∈F)

l) �

∫
�

(z) − w) × n� · Xcurl,� v�

=
∑
) ∈Tℎ

(∫
)

(z) − w) · curl Xcurl,) v) −
∫
)

curl(z) − w) · Xcurl,) v)

)
,
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where the conclusion follows recalling that, by definition (4.29), Xcurl,� v� = (Xcurl,) v) )t,� for all
) ∈ Tℎ and all � ∈ F) , and by integrating by parts. Using Cauchy–Schwarz inequalities, it is inferred

|T4 | ≤
[ ∑
) ∈Tℎ

(
‖z) − w‖2L2 () ) + ‖ curl(z) − w)‖2L2 () )

)] 12
×

[ ∑
) ∈Tℎ

(
‖ curl Xcurl,) v) ‖

2
L2 () ) + ‖Xcurl,) v) ‖

2
L2 () )

)] 12
.

The approximation properties (4.35) of z) along with the boundedness (4.31) of Xcurl,) v) yield

|T4 | . ℎ:+1
(
|w |H:+1 (Tℎ) + |w |H:+2 (Tℎ)

) (
‖v
ℎ
‖curl,ℎ + ‖I:ℎvℎ ‖div,ℎ

)
. (4.40)

Plugging (4.37)–(4.40) into (4.36), (3.29) follows. �

4.4.3 Adjoint consistency for the divergence

Proof of Theorem 11. Combining the definition (3.30) of the adjoint consistency error for the divergence
with (3.10) summed over ) ∈ Tℎ, we infer that it holds, for all (@, v

ℎ
) as in the theorem and all

@ℎ ∈ P:+1(Tℎ) with @) ≔ (@ℎ) |) for all ) ∈ Tℎ,

Ẽgrad,ℎ (@, vℎ) =∑
) ∈Tℎ

[∫
)

(
�
��c:P,) @ − @) )�

:
) v) +

∫
)

grad(@ − @) ) · V:div,) v) +
∑
� ∈F)

l) �

∫
�

(@) − @)E�

]
,

where the cancellation of c:P,) is justified by its definition along with �:
)
v
)
∈ P: ()), while the

insertion of @ into the boundary integral is possible thanks to its single-valuedness at interfaces along
with the fact that it vanishes on mΩ. Taking absolute values and using Cauchy–Schwarz inequalities in
the right-hand side along with ℎ� ' ℎ) for all ) ∈ Tℎ and all � ∈ F) , we infer��Ẽgrad,ℎ (@, vℎ)

�� . [ ∑
) ∈Tℎ

(
ℎ−2) ‖@ − @) ‖2L2 () ) + ‖ grad(@ − @) )‖2L2 () ) + ℎ

−1
) ‖@) − @‖2m)

)] 12
×

[ ∑
) ∈Tℎ

(
ℎ2) ‖�:) v) ‖

2
L2 () ) + ‖V

:
div,) v) ‖

2
L2 () ) +

∑
� ∈F)

ℎ� ‖E� ‖2L2 (� )

)] 1
2

.

(4.41)

Taking @ℎ such that @) = c:+1P,) @ |) for all ) ∈ Tℎ and using the approximation properties of the L2-
orthogonal projector [12, Theorem 1.45], it is inferred that the first factor in the right-hand side of (4.41)
is . ℎ:+1 |@ |H:+2 (Tℎ) . Moving to the second factor, we use, for all ) ∈ Tℎ, [14, Lemma 8] followed by the
local seminorm equivalence (4.5) to write ℎ) ‖�:) v) ‖L2 () ) . |||v) |||div,) . ‖v) ‖div,) . The same norm
equivalence and the definition of the ‖·‖div,) -norm also yields ‖V:div,) v) ‖

2
L2 () )+

∑
� ∈F) ℎ� ‖E� ‖2L2 (� ) .

‖v
)
‖div,) . The second factor in the right-hand side of (4.41) is therefore . ‖v

ℎ
‖div,ℎ, and the proof is

complete. �

5 Convergence analysis for a DDR discretisation of magnetostatics
We analyse in this section the DDR approximation of the following magnetostatics model, in which the
unknowns are the magnetic field N ∈ H(curl;Ω) and the vector potential G ∈ H(div;Ω):

`N − curl G = 0 , curl N = P , div G = 0 in Ω,
G × n = 0 on mΩ.

(5.1)
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The free current P belongs to curl H(curl;Ω) andwe assume, for the sake of simplicity, that themagnetic
permeability ` is piecewise-constant on the considered meshes, with ` ∈ [`−, `+] for some constant
numbers 0 < `− ≤ `+.
5.1 Scheme
As shown in [11], a scheme based on the discrete de Rham tools can be written by replacing, in the weak
formulation of (5.1), the continuous L2-products by discrete ones built on the local products. Denote
by `) the constant value of ` over ) ∈ Tℎ and define the bilinear forms 0ℎ : ^:curl,ℎ × ^:curl,ℎ → R,
1ℎ : ^:curl,ℎ × ^:div,ℎ → R, and 2ℎ : ^

:
div,ℎ × ^:div,ℎ → R as follows: For all 4

ℎ
, '
ℎ
∈ ^:curl,ℎ and all

w
ℎ
, v
ℎ
∈ ^:div,ℎ,

aℎ (4ℎ, 'ℎ) ≔
∑
) ∈Tℎ

`) (4) , ') )curl,) , bℎ ('
ℎ
, v
ℎ
) ≔ (I:

ℎ
'
ℎ
, v
ℎ
)div,ℎ,

cℎ (wℎ, vℎ) ≔
∫
Ω

�:ℎwℎ �
:
ℎvℎ .

The discrete problem then reads: Find Nℎ ∈ ^:curl,ℎ and Gℎ ∈ ^:div,ℎ such that

aℎ (Nℎ, 'ℎ
) − bℎ ('

ℎ
, Gℎ) = 0 ∀'

ℎ
∈ ^:curl,ℎ,

bℎ (Nℎ, vℎ) + cℎ (Gℎ, vℎ) =
∑
) ∈Tℎ

∫
)

P · V:div,) v) ∀v
ℎ
∈ ^:div,ℎ .

(5.2)

The equations of this problem can be recast in the standard variational formAℎ ((Nℎ, Gℎ), ('ℎ, vℎ)) =
Lℎ ('

ℎ
, v
ℎ
), where Aℎ : (^:curl,ℎ × ^:div,ℎ)

2 → R and Lℎ : ^:curl,ℎ × ^:div,ℎ → R are the bilinear and
linear forms, respectively, such that

Aℎ ((4ℎ, wℎ), ('ℎ, vℎ)) ≔ aℎ (4ℎ, 'ℎ) − bℎ ('ℎ, wℎ) + bℎ (4ℎ, vℎ) + cℎ (wℎ, vℎ),

Lℎ ('
ℎ
, v
ℎ
) ≔

∑
) ∈Tℎ

∫
)

P · V:div,) v) .

5.2 Error estimate
We establish an error estimate using the stability results of the companion paper [10] and the consistency
results presented in Section 3. To measure the error, we introduce the following H(curl;Ω)- and
H(div;Ω)-like norms on ^:curl,ℎ and ^:div,ℎ, respectively:

‖'
ℎ
‖`,curl,1,ℎ ≔

(
aℎ ('

ℎ
, '
ℎ
) + ‖I:

ℎ
'
ℎ
‖2div,ℎ

) 1
2 ∀'

ℎ
∈ ^:curl,ℎ,

‖v
ℎ
‖div,1,ℎ ≔

(
‖v
ℎ
‖2div,ℎ + ‖�

:
ℎvℎ ‖

2
L2 (Ω)

) 1
2 ∀v

ℎ
∈ ^:div,ℎ .

Theorem 19 (Error estimate for the magnetostatics problem). Assume that both the first and second
Betti numbers of Ω are zero (i.e., Ω is not crossed by any tunnel and does not enclose any void).
Then, there exists a unique solution (Nℎ, Gℎ) ∈ ^:curl,ℎ × ^:div,ℎ to (5.2). Moreover, letting (N, G) ∈
H(curl;Ω) × H(div;Ω) be the weak solution to (5.1) and assuming that N ∈ C0(Ω) ∩ H:+2(Tℎ) and
G ∈ C0(Ω) ×H:+2(Tℎ), we have

‖Nℎ − O:curl,ℎN‖`,curl,1,ℎ + ‖Gℎ − O:div,ℎG‖div,1,ℎ

. ℎ:+1
(
| curl N |H:+1 (Tℎ) + |N |H(:+1,2) (Tℎ) + |G|H:+1 (Tℎ) + |G|H:+2 (Tℎ)

)
, (5.3)

where the hidden constant in . only depends on Ω, : , the mesh regularity parameter, and `−, `+.

21



Proof. As shown in the proof of [11, Theorem 10], the exactness of the rightmost part of the sequence
(2.16), which holds owing to [10, Eqs. (3.44) and (3.41)], and the Poincaré inequalities for I:

ℎ
and

�:
ℎ
(see [10, Theorems 26 and 27]) enable a reproduction of the arguments of the continuous inf-sup

condition (see, e.g., [13, Section 2] or [1, Theorem 4.9]) to see that Aℎ satisfies a uniform inf-sup
condition with respect to the norm on ^:curl,ℎ × ^:div,ℎ induced by ‖·‖`,curl,1,ℎ and ‖·‖div,1,ℎ.

Using the Third Strang Lemma [9], we therefore obtain (5.3) provided we can prove that the
consistency error

Eℎ ((N, G); ('
ℎ
, v
ℎ
)) ≔ Lℎ ('

ℎ
, v
ℎ
) − Aℎ ((O:curl,ℎN, O

:
div,ℎG), ('ℎ, vℎ))

satisfies, for all ('
ℎ
, v
ℎ
) ∈ ^:curl,ℎ × ^:div,ℎ,

Eℎ ((N, G); ('
ℎ
, v
ℎ
)) . ℎ:+1

(
| curl N |H:+1 (Tℎ) + |N |H(:+1,2) (Tℎ) + |G|H:+1 (Tℎ) + |G|H:+2 (Tℎ)

)
×

(
‖'
ℎ
‖`,curl,1,ℎ + ‖vℎ ‖div,1,ℎ

)
. (5.4)

Expanding according to the respective definitions Aℎ, Lℎ, aℎ, bℎ, and cℎ, we have

Eℎ ((N, G); ('
ℎ
, v
ℎ
)) = Eℎ,1((N, G); ('

ℎ
, v
ℎ
))

+ Eℎ,2((N, G); ('
ℎ
, v
ℎ
)) + Eℎ,3((N, G); ('

ℎ
, v
ℎ
)), (5.5)

with

Eℎ,1((N, G); ('
ℎ
, v
ℎ
)) ≔

∑
) ∈Tℎ

(∫
)

P · V:div,) v) − (I
:
)

(
O:curl,)N

)
, v
)
)div,)

)
,

Eℎ,2((N, G); ('
ℎ
, v
ℎ
)) ≔ −

∑
) ∈Tℎ

∫
)

�:)
(
O:div,) G

)
�:) v)

Eℎ,3((N, G); ('
ℎ
, v
ℎ
)) ≔ −

∑
) ∈Tℎ

(
`) (O:curl,)N, ')

)curl,) − (I:) ') , O
:
div,) G)div,)

)
.

Let us first estimate Eℎ,1. Recalling that P = curl N and expanding (·, ·)div,) according to its
definition (3.13b), we have

Eℎ,1((N, G); ('
ℎ
, v
ℎ
))

=
∑
) ∈Tℎ

[∫
)

(
curl N − V:div,)

[
I:
)

(
O:curl,)N

) ] )
· V:div,) v) − sdiv,) (I

:
)

(
O:curl,)N

)
, v
)
)
]

=
∑
) ∈Tℎ

∫
)

(
curl N − C:)

(
O:curl,)N

) )
· V:div,) v) −

∑
) ∈Tℎ

sdiv,) (O:div,) (curl N), v
)
)

where the second line comes from the relation (4.10) and the commutation formula I:
)

(
O:curl,)N

)
=

O:div,) (curl N), see [10, Eq. (3.35)]. Using Cauchy–Schwarz inequalities on the integrals, on sdiv,) , and
on the sums over ) ∈ Tℎ, and recalling the consistency properties (3.22) and (3.26), we infer

Eℎ,1((N, G); ('
ℎ
, v
ℎ
)) ≤ ℎ:+1 | curl N |H:+1 (Tℎ) ‖vℎ ‖div,ℎ . (5.6)

To handle Eℎ,2, we invoke the commutation formula [10, Eq. (3.36)] to see that �:
)

(
O:div,) G

)
=

c:P,) (div G) = 0, and thus
Eℎ,2((N, G); ('

ℎ
, v
ℎ
)) = 0. (5.7)
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Finally, we turn to Eℎ,3. Since G ∈ H0(curl;Ω), the adjoint consistency Theorem 10 enables
us to replace, in this consistency error, the term (I:

)
'
)
, O:div,) G)div,) with

∫
)

curl G · V:curl,) ')
=∫

)
`)N · V:curl,) ')

up to a term that is controlled, i.e.,

Eℎ,3((N, G); ('
ℎ
, v
ℎ
)) ≤ −

∑
) ∈Tℎ

(
`) (O:curl,)N, ')

)curl,) − `)
∫
)

N · V:curl,) ')

)
+ ℎ:+1

(
|G|H:+1 (Tℎ) + |G|H:+2 (Tℎ)

)
‖'
ℎ
‖`,curl,1,ℎ

≤ −
∑
) ∈Tℎ

(
`)

∫
)

[
V:curl,)

(
O:curl,)N

)
− N

]
· V:curl,) ')

+ scurl,) (O:curl,)N, ')
)
)

+ ℎ:+1
(
|G|H:+1 (Tℎ) + |G|H:+2 (Tℎ)

)
‖'
ℎ
‖`,curl,1,ℎ,

where we have used ‖'
ℎ
‖curl,ℎ + ‖I:ℎ'ℎ ‖div,ℎ . ‖'ℎ ‖`,curl,1,ℎ and the second inequality comes from

expanding (·, ·)curl,) according to its definition. Cauchy–Schwarz inequalities and the consistency
properties (3.19) and (3.25) then lead to

Eℎ,3((N, G); ('
ℎ
, v
ℎ
)) . ℎ:+1 |N |H(:+1,2) (Tℎ) ‖'ℎ ‖curl,ℎ+ℎ:+1

(
|G|H:+1 (Tℎ) + |G|H:+2 (Tℎ)

)
‖'
ℎ
‖`,curl,1,ℎ .

Plugging this estimate together with (5.6) and (5.7) into (5.5), we infer that (5.4) holds, which concludes
the proof. �

5.3 Numerical tests
We present here the results of some numerical tests obtained with the DDR scheme (5.2) for the
magnetostatics model (5.1), focusing on comparing outputs obtained using either the complements
(2.1), hereafter denoted by (K), or the orthogonal complements of [11, 13], denoted by (⊥). Both
versions of the DDR complex, and related schemes, have been implemented in the HArDCore3D C++
framework (see https://github.com/jdroniou/HArDCore), using linear algebra facilities from
the Eigen3 library (see http://eigen.tuxfamily.org) and the Intel MKL PARDISO library (see
https://software.intel.com/en-us/mkl) for the resolution of the global sparse linear system.
All tests were run on a 16-inch 2019 MacBook Pro equipped with an 8-core Intel Core i9 processor
(I9-9980HK) and 32Gb of RAM and running macOS Big Sur version 11.1. We consider a constant
permeability ` = 1, and the same exact smooth solution and mesh families as in [11, Section 4.4].

Figure 1 presents the errors, for various values of : , computed in the relative discrete H(curl;Ω) ×
H(div;Ω) norm: (

‖Nℎ − O:curl,ℎN‖2`,curl,1,ℎ + ‖Gℎ − O:div,ℎG‖
2
div,1,ℎ

)1/2(
‖O:curl,ℎN‖2`,curl,1,ℎ + ‖O

:
div,ℎG‖2div,1,ℎ

)1/2 .

In the case of the Koszul complements, Theorem 19 states that this error should decrease as O(ℎ:+1)
with the mesh size. No such estimate is known for the DDR scheme using orthogonal complements and,
due to the lack of key properties of these complements (hierarchical inclusions, structure of traces), it is
not clear whether the analysis carried out in the rest of this paper could be adapted to such complements.
Nonetheless, the graphs in Figure 1 show that both schemes converge with an order : + 1. The errors
between (K) and (⊥) are essentially indistinguishable, except for : ≥ 1 on tetrahedral meshes, where
(⊥) leads to slightly larger errors than (K) – about twice as large on the finest mesh with : = 3.

The assembly of the (⊥)-DDR scheme requires, for any . ∈ Tℎ ∪ Fℎ, to compute bases for the L2-
orthogonal complements inPℓ (. ) ofGℓ (. ) andRℓ (. ), which is done by computing the kernels of local
matrices through a full pivot LU algorithm [11, Section 5.1]. On the contrary, in the (K) version, explicit
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(a) “Cubic-Cells” mesh
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(b) “Tetgen-Cube-0” mesh

10−0.8 10−0.6 10−0.4 10−0.2

10−3

10−2

10−1

100

1

1

1

2

1

3

(c) “Voro-small-0” mesh
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(d) “Voro-small-1” mesh

Figure 1: Relative error estimates in discrete H(curl;Ω) × H(div;Ω) norm vs. ℎ, for the Koszul
complements of (2.1) [(K), continuous lines], and the orthogonal complements of [13][(⊥), dashed
lines].

24



Mesh card(Tℎ) card(Fℎ) card(Eℎ)
Cubic_Cells 4 096 13 056 13 872

Tetgen_Cube-0 2 925 6 228 3 965
Voro-small-0 2 197 15 969 27 546
Voro-small-1 356 2 376 4 042

(a) Number of relevant mesh entities

Mesh dim(^0curl,ℎ) dim(^1curl,ℎ) dim(^2curl,ℎ) dim(^3curl,ℎ)

Cubic_Cells 13 872 83 296 207 504 398 784
Tetgen_Cube-0 3 956 38 314 105 594 214 580
Voro-small-0 27 546 111 787 243 345 —
Voro-small-1 4 042 16 636 36 474 64 624

(b) Dimension of the space ^:curl,ℎ for : ∈ {0, . . . , 3}

Mesh dim(^0div,ℎ) dim(^1div,ℎ) dim(^2div,ℎ) dim(^3div,ℎ)

Cubic_Cells 13 056 63 744 160 256 314 880
Tetgen_Cube-0 6 228 36 234 95 868 193 905
Voro-small-0 15 969 61 089 139 754 —
Voro-small-1 2 376 9 264 21 376 39 780

(c) Dimension of the space ^:div,ℎ for : ∈ {0, . . . , 3}

Table 1: Dimension of meshes and spaces considered for the evaluation of computational times in the
numerical tests of Section 5.3.

bases for Gc,ℓ (. ) and R
c,ℓ (. ) can be devised; even though these bases are then orthonormalised to

ensure a better numerical stability of the scheme (especially on non-isotropic elements, see the discussion
in [12, Section B.1.1] on this topic), the computational cost of creating the polynomial bases in (⊥)
is expected to be larger than in (K). Figure 2 compares the processor times for the two DDR schemes
required for (a) the creation of the bases for local polynomial spaces and (b) the model construction
(computation of the discrete operators, potentials, and L2-products, and global system assembly). We
do not compare the linear system resolution times as they are very close for both schemes. In all the
cases, the finest mesh of each sequence is considered; see Table 1. In the left column of Figure 2 we
report the total CPU time, which constitutes the most reliable measure to assess performance. Since our
code relies on multi-threading, we also report, in the right column, wall-clock times, which are more
representative of real-life performance on the selected architecture. Wall-clock times are subject to
outside influences, such as the impact of other processes, and should therefore be regarded with caution.

As expected, (K) polynomial bases are faster to create than (⊥) polynomial bases, but not by a large
factor. There is a more pronounced difference when comparing the time for model construction, which
is mostly dedicated to the creation of the discrete vector calculus operators and potentials in ^:curl,ℎ and
^:div,ℎ (once these are created, assemblying the global linear system itself takes only a small fraction
of the total model construction time). One possible explanation for the largest model construction time
noticedwith (⊥) complements is that the local systems defining the operators and potentials, solved using
the Eigen::LDLT direct solver, have a worse condition number than those with Koszul complements.
Drawing more definitive conclusions is always difficult, as running times highly depend on specific
implementation choices, and our implementation is designed for flexibility rather than for efficiency on
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one given model. The results presented in this section seems to show, however, that the DDR complex
using Koszul complements is not only theoretically better (as it allows for complete consistency analysis
and error estimates), but also requires less computational resources. The comparison of CPU times and
wall clock times also confirms that the assembly step strongly benefits from parallel implementations.

A Curl lifting
We prove here that the face Xcurl,� and element Xcurl,) liftings, detailed in Section 4.4.2, are well
defined and satisfy the key properties (4.30) and (4.31).

A.1 Face lifting Xcurl,�

A.1.1 Existence of 5v
�

Owing to (4.26b), we look for 5v
�
= rot� @� for some @� ∈ H1(�). Using the property rot� (rot� ) =

− div� (grad� ) = −Δ� (which stems from [10, Eq. (2.1)]) and that rot� @� (resp. t� ) is grad� @�
(resp. n�� ) rotated by −c/2 in the plane spanned by �, we see that (4.26) reduces to the following
Neumann problem on @� :

−Δ�@� = �:� v� in �,
grad� @� · (l��n�� ) = l��E� ∀� ∈ E� .

(A.1)

Recalling that l��n�� is the outer normal, in the plane spanned by �, to � on � , we see that the
compatibility condition of this Neumann problem simply amounts to the definition (2.12) of �:

�
with

A� = 1. There exists therefore a unique @� ∈ H1(�) solution of this problem with
∫
�
@� = 0. Using

@� as a test function in the weak formulation and applying Cauchy–Schwarz inequalities leads to

‖ grad� @� ‖2L2 (� ) ≤ ‖�
:
� v� ‖L2 (� ) ‖@� ‖L2 (� ) +

∑
� ∈E�

‖E� ‖L2 (�) ‖@� ‖L2 (�)

. ℎ� ‖�:� v� ‖L2 (� ) ‖ grad� @� ‖L2 (� ) +
( ∑
� ∈E�

ℎ� ‖E� ‖2L2 (�)

) 1
2

‖ grad� @� ‖L2 (� ) ,

where the second line follows from thePoincaré–Wirtinger inequality ‖@� ‖L2 (� ) . ℎ� ‖ grad� @� ‖L2 (� )
together with the continuous trace inequality ‖@� ‖L2 (�) . ℎ

−1/2
�
‖@� ‖L2 (� ) + ℎ

1/2
�
‖ grad� @� ‖L2 (� ) , see

[12, Remark 1.46 and Lemma 1.31]. As a consequence,

‖5v
�
‖L2 (� ) . ‖�

:
� v� ‖L2 (� ) + |||v� |||curl,� . (A.2)

A.1.2 Existence of kv
�

Fix s� ∈ C∞2 (�) such that s� = 1 on a ball �� ⊂ � of radius ' ℎ� (the existence of such a ball
follows from the mesh regularity assumption) and 0 ≤ s� ≤ 1. We look for kv

�
under the forms�A�

with A� ∈ P: (�). Since div� : Rc,:+1(�) → P: (�) is an isomorphism, denoting as in [10, Lemma
31] its inverse by (div� )−1, the relation (4.27) is equivalent to∫

�

s�A�F� =

∫
�

($:t,� v� − 5v
�
) · (div� )−1F� ∀F� ∈ P: (�).

Since s� ≥ 0 is strictly positive on a ball, the mapping (A� , F� ) ↦→
∫
�
s�A�F� is an inner product

on P: (�) and there exists therefore a unique A� ∈ P: (�) that satisfies this property. This establishes
the existence of kv

�
.
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Figure 2: Comparison of CPU (left column) and wall times (right column), both measured in seconds,
for the computation of the DDR bases (“Polynomial bases”) and of the model construction (“Model”)
for Koszul (solid fill) and orthogonal (pattern fill) complements on the finest mesh of each sequence;
see Table 1.
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Moreover, sinces� = 1 on �� and ‖·‖L2 (�� ) and ‖·‖L2 (� ) are uniformly equivalent on P: (�) (see
the proof of [12, Lemma 1.25]), using F� = A� above leads to

‖A� ‖2L2 (� ) .
∫
�

s�A
2
� ≤ ‖$:t,� v� − 5v

�
‖L2 (� ) ‖(div� )

−1A� ‖L2 (� )

.
(
|||v

�
|||curl,� + ‖�:� v� ‖L2 (� )

)
ℎ� ‖A� ‖L2 (� ) ,

where the conclusion follows from a triangle inequality along with the boundedness (4.3) of $:t,� and
the estimate (A.2) for the first factor, and [10, Lemma 31] for the second factor. Simplifying, we obtain

‖A� ‖L2 (� ) . ℎ�
(
|||v

�
|||curl,� + ‖�:� v� ‖L2 (� )

)
. (A.3)

A.1.3 Orthogonality property of Xcurl,�

We prove here the relation (4.30). Notice first that, since kv
�
vanishes on m� and rot� grad� = 0, by

(4.26) it holds

rot� (Xcurl,� v� ) = �
:
� v� and (Xcurl,� v� ) · t� = E� ∀� ∈ E� . (A.4)

Let z� ∈ R: (�) and write z� = rot� A� with A� ∈ P0,:+1(�). By (2.13) and Remark 2, we have∫
�

$:t,� v� · z� =
∫
�

�:� v�A� +
∑
� ∈F�

l��

∫
�

E�A�

=

∫
�

rot� (Xcurl,� v� )A� +
∑
� ∈F�

l��

∫
�

(Xcurl,� v� ) · t� A� =
∫
�

Xcurl,� v� · z� ,

where the second equality follows from (A.4), and the conclusion has been obtained using an integration
by parts. This proves that (4.30) holds for z� ∈ R: (�).

Let us now take z� ∈ Rc,:+1(�). Integrating the left-hand side of (4.27) by parts yields∫
�

gradkv
�
· z� =

∫
�

($:t,� v� − 5v
�
) · z� .

Since Xcurl,� v� = 5v
�
+ gradkv

�
, this establishes that (4.30) also holds for z� ∈ R

c,:+1(�), which
completes the proof of this orthogonality relation since RT

:+1(�) = R
: (�) ⊕ R

c,:+1(�).
A.2 Element lifting Xcurl,)

A.2.1 Existence of %) v)
Owing to (4.28b), we look for %) v) under the form of a potential gradient grad @) with @) ∈ H1()).
Equations (4.28a) and (4.28c) then show that @) must solve the Neumann problem

Δ@) = − divC:) v) in ),
grad @) · (l) � n� ) = l) � (�:� v� − C:) v) · n� ) ∀� ∈ F) ,

(A.5)

where we recall that l) � n� is the outer normal to ) on �. The compatibility condition of this problem
is ∑

� ∈F)

l) �

∫
�

(�:� v� − C:) v) · n� ) = −
∫
)

divC:) v) = −
∑
) ∈F)

l) �

∫
�

C:) v) · n� ,

which holds true owing to [10, Eq. (3.27)] with A) = 1. There exists therefore a unique @) ∈ H1())
with

∫
)
@) = 0 solution to (A.5). Using @) as a test function in the weak formulation of (A.5) yields

‖ grad @) ‖2L2 () ) ≤ ‖C
:
) v) ‖L2 () ) ‖ grad @) ‖L2 () ) +

∑
� ∈F)

‖�:� v) ‖L2 (� ) ‖@) ‖L2 (� ) .
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Using the Poincaré–Wirtinger and continuous trace inequalities as we did to obtain (A.2), and recalling
that %) v) = grad @) , we infer

‖%) v) ‖L2 () ) . ‖C
:
) v) ‖L2 () ) +

( ∑
� ∈F)

ℎ� ‖�:� v) ‖
2
L2 (� )

) 1
2

. |||I:
)
v
)
|||div,) , (A.6)

where the conclusion follows from (4.14).

A.2.2 Existence of Xcurl,) v)

The equation (4.29b) suggests to look for Xcurl,) v) = curl z) . Since adding a gradient to z) does not
change its curl, we can look for z) in the space

z) ∈ (gradH1()))⊥ ≔
{
w ∈ H(curl;)) :

∫
)

w · grad A = 0 ∀A ∈ H1())
}
. (A.7)

The equations (4.29a) and (4.29c) then lead to a curl-curl problem on z) , whose variational form is:
Find z) ∈ (gradH1()))⊥ such that∫

)

curl z) · curlw =
∫
)

(C:) v) + %) v) ) · w − 〈l) m) Xcurl,m) vm) , w × nm) 〉H1/2
∥
(m) ) ,H−1/2

∥
(m) )

∀w ∈ (gradH1()))⊥, (A.8)

wherel) ,m) Xcurl,m) vm) andw×nm) are the functions defined on m) by setting (l) ,m) Xcurl,m) vm) ) |� ≔
(l) �Xcurl,� v� )t,� and (w × nm) ) |� ≔ w |� × n� for all � ∈ F) , H

1/2
∥
(m)) is the set of functions on

m) whose restriction to each face � ∈ F) belongs to H1/2(�), and whose tangential traces on the edges
are weakly continuous (see [2, Definition 3.1.2] for details), and H−1/2

∥
(m)) is its dual space. Since the

solution to (A.1) belongs to H3/2(�) (see [8, Corollary 23.5]), the edge tangential trace property in (A.4)
ensures that l) ,m) Xcurl,m) vm) indeed belongs to H1/2

∥
(m)).

Owing to the Poincaré inequality (A.15) and to the fact that (gradH1()))⊥ is a closed subspace
of H(curl;)), there exists a unique solution to (A.8). We now prove that z) satisfies (A.8) for all
w ∈ H(curl;)) = gradH1()) ⊕ (gradH1()))⊥, which amounts to showing that the right-hand side
vanishes whenever w = grad A for some A ∈ H1()). By density of smooth functions in H1()), we only
need to prove this result for A ∈ C∞()). Plugging w = grad A in the right-hand side of (A.8), the duality
product can be written as standard integrals (since Xcurl,� v� ∈ L2(�) for all � ∈ F) ) and, integrating
by parts, we obtain∫

)

(C:) v) + %) v) ) · grad A −
∑
� ∈F)

l) �

∫
�

Xcurl,� v� · (grad A × n� )

= −
∫
)
((((

((((
(

div(C:) v) + %) v) ) A +
∑
� ∈F)

l) �

∫
�

(C:) v) + %) v) ) · n� A

−
∑
� ∈F)

l) �

∫
�

Xcurl,� v� · rot� (A |� )

=
∑
� ∈F)

l) �

∫
�

�:� v� A −
∑
� ∈F)

l) �

∫
�

rot� (Xcurl,� v� ) A |�

−
∑
� ∈F)

∑
� ∈F�

l) �l��

∫
�

(Xcurl,� v� · t� ) A |� ,
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where we have used (4.28a) to cancel the term in the first equality, and (4.28c) together with integrations
by parts on each face in the second equality. Recalling (A.4) and that l) �1l�1� + l) �2l�2� = 0 if
�1, �2 are the two faces of ) that share the edge � , the right-hand side above vanish, which shows that
(A.8) indeed holds for w = grad A , and thus for all w ∈ H(curl;)).

Since Xcurl,) v) = curl z) , applying this relation to a generic w ∈ C∞2 ()) and integrating by parts
yields (4.29a); using then a generic w ∈ C∞()) and again integrating by parts, we infer (4.29c).
A.2.3 Bound on Xcurl,)

We prove here the estimate (4.31). The estimate on curl Xcurl,) v) follows from (4.29a), (4.14) and
(A.6). It remains to bound the L2-norm of Xcurl,) v) . To do so, we use gv

)
provided by Lemma 20

below and an integration by parts [2, Eq. (2.27)] to re-cast (A.8) as∫
)

curl z) · curlw =
∫
)

(C:) v) + %) v) ) · w +
∫
)

curlw · gv
)
−

∫
)

w · curl gv
)
.

Making w = z) , we deduce

‖ curl z) ‖2L2 () ) . |||I
:
)
v
)
|||div,) ℎ) ‖ curl z) ‖L2 () ) + ‖ curl z) ‖L2 () )

(
|||v
)
|||curl,) + |||I:) v) |||div,)

)
,

where we have invoked (4.14), (A.6), the Poincaré inequality (A.15), and (A.9) below. Simplifying,
using the norm equivalences (4.5), and recalling that Xcurl,) v) = curl z) concludes the proof of the
L2-estimate on Xcurl,) v) stated in (4.31).

Lemma 20 (Lifting in H1())). There exists gv
)
∈ H1()) such that the tangential trace of gv

)
on m)

is Xcurl,m) vm) , and

‖gv
)
‖L2 () ) + ℎ) ‖ curl gv

)
‖L2 () ) . |||v) |||curl,) + |||I:) v) |||div,) . (A.9)

Proof. Recalling that
Xcurl,m) vm) = 5v

m)
+ gradm) kv

m)
, (A.10)

with obvious notations (each of these functions, restricted to a face � ∈ F) , corresponds to the function
obtained replacing m) by �), we construct gv

)
= gv

)
,5 + gv

)
,k, each addend corresponding to the

addends in the decomposition (A.10) of Xcurl,m) vm) .

1. Construction of gv
)
,5. We assume, for the moment, that ℎ) = 1. By [8, Corollary 23.5] and inverse

inequalities on the polynomials �:
�
v
�
and (E� )� ∈F� (recalling that 1 = ℎ) ' ℎ� ' ℎ� for all � ∈ F)

and � ∈ E) ), there exists n ∈ (0, 1/2) such that grad� @� ∈ H1/2+n (�) and

‖ grad� @� ‖H1/2+n (� ) . ‖�
:
� v� ‖L2 (� ) +

∑
� ∈E�

‖E� ‖L2 (�) . ‖�:� v� ‖L2 (� ) + |||v� |||curl,� .

Above, when invoking [8, Corollary 23.5], we have used the fact that, since n < 1/2, theHn (m�)-norm is
equivalent to the sum of the Hn (�)-norms over � ∈ F� . By construction, 5v

m)
has strongly continuous

tangential traces on the edges of ) so

|5v
m)
|2
H1/2
∥
(m) )
.

∑
� ∈F)

|5v
�
|2
H1/2 (� )

=
∑
� ∈F)

| grad� @� |2H1/2 (� )

.
∑
� ∈F)

‖ grad� @� ‖2H1/2+n (� ) .
∑
� ∈F)

(
‖�:� v� ‖L2 (� ) + |||v� |||curl,�

)2
.
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Combined with (A.2) and recalling that the local length scales are ' 1, this leads to

‖5v
m)
‖L2 (m) ) + |5v

m)
|
H1/2
∥
(m) ) . |||I

:
)
v
)
|||div,) + |||v) |||curl,) .

Since 5v
m)

belongs to H1/2
∥
(m)), by [2, Theorem 3.1.3] there exists gv

)
,5 ∈ H1()) such that the

tangential trace of gv
)
,5 is 5v

m)
and

‖gv
)
,5 ‖L2 () ) + ‖ curl gv

)
,5 ‖L2 () ) . ‖5v

m)
‖L2 (m) ) + |5v

m)
|
H1/2
∥
(m) ) . |||I

:
)
v
)
|||div,) + |||v) |||curl,) .

This was done under the assumption that ℎ) = 1. Using a scaling argument, we infer from the estimate
above that, for an element ) of generic diameter ℎ) ,

‖gv
)
,5 ‖L2 () ) + ℎ) ‖ curl gv

)
,5 ‖L2 () ) . |||I

:
)
v
)
|||div,) + |||v) |||curl,) . (A.11)

2. Construction of gv
)
,k. By definition, gv

)
,k is the lifting of gradm) kv

m)
. Recalling the construction

of each kv
�
= s�A� , for � ∈ F) , we can extend A� into a polynomial A) � ∈ P: ()) (for example, by

making A) � independent of the coordinate perpendicular to �). We then have, by (A.3),

‖A) � ‖L2 () ) . ℎ
1
2
)
‖A� ‖L2 (� ) . ℎ)

(
ℎ
1
2
�
|||v

�
|||curl,� + ℎ

1
2
�
‖�:� v� ‖L2 (� )

)
. (A.12)

The smooth, compactly supported functions� can be extended in ) intos) � such that 0 ≤ s) � ≤ 1,
s) � has a compact support in a ball of radius ' ℎ) that does not touch the faces in F) \{�}, and
| grads) � | . ℎ−1) . Then, for each � ∈ F) , the chain rule yields

‖ grad(s) �A) � )‖L2 () ) . ‖ grad A) � ‖L2 () ) + ℎ
−1
) ‖A) � ‖L2 () )

. ℎ
1
2
�
|||v

�
|||curl,� + ℎ

1
2
�
‖�:� v� ‖L2 (� ) ,

(A.13)

where the second inequality follows from an inverse inequality and (A.12). We then set

gv
)
,k =

∑
� ∈F)

grad(s) �A) � ) ∈ C∞()).

By choice of the supports of (s) � )� ∈F) , the tangential trace of gv
)
,k on each face � ∈ F) is

grad� (s) �A) � ) |� = grad� kv
�
. Moreover, the estimate (A.13) gives

‖gv
)
,k ‖L2 () ) .

[ ∑
� ∈F)

(
ℎ� |||v� |||

2
curl,� + ℎ� ‖�

:
� v� ‖

2
L2 (� )

)] 12
. |||v

)
|||curl,) + |||I:) v) |||div,) . (A.14)

Since gv
)
,k is a gradient, we also have curl gv

)
,k = 0 and thus, combining (A.11) and (A.14) yields

the estimate (A.9) on gv
)
= gv

)
,5 + gv

)
,k. �

Lemma 21 (Local Poincaré inequality for curl). With (gradH1()))⊥ defined by (A.7), it holds

‖w‖L2 () ) . ℎ) ‖ curlw‖L2 () ) ∀w ∈ (gradH1()))⊥. (A.15)

Proof. By [2, Theorem 3.4.1], for all v ∈ H(div;)) such that div v = 0 and 〈v · n) , 1〉m) = 0
(where 〈·, ·〉m) is the H− 12 (m))–H 12 (m)) duality product and n) is the outer normal to )), there exists
z ∈ H(curl;)) such that

∫
)
z = 0 and v = curl z. Moreover, ‖z‖L2 () ) ≤ �0‖v‖L2 () ) = �0‖ curl z‖L2 () )
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and an inspection of the proof shows that �0 . ℎ) (this estimate is obtained via a scaling argument, and
noticing that, if ℎ) = 1, the constants appearing in the proof of [2, Theorem 3.4.1] do not depend on )
under our mesh regularity assumptions).

Take w ∈ (gradH1()))⊥ and let (w<)<∈N be a sequence in C∞()) which converges to w in
H(curl;)), see [2, Proposition 2.2.12]. Apply the result above to v = curlw<, which satisfies the
requirements since, on each � ∈ F) , we have curlw< · n) � = rot� ((w<)C ,� ) (where n) � = (n) ) |�
and, as before, (w<)C ,� is the tangential trace of w< on �, oriented here according to n) � ), and w<
is continuous on m) . This yields z< ∈ H(curl;)) such that curl(w< − z<) = 0 and ‖z<‖L2 () ) .
ℎ) ‖ curlw<‖L2 () ) . In particular, since the second Betti number of ) is zero, w< − z< ∈ gradH1()),
and thus

∫
)
(w< − z<) · w = 0. Hence,∫
)

w< · w =
∫
)

z< · w . ‖w‖L2 () ) ‖z<‖L2 () ) . ‖w‖L2 () )ℎ) ‖ curlw<‖L2 () ) .

The conclusion follows by letting < →∞ and simplifying by ‖w‖L2 () ) . �
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