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Abstract

In this paper we prove a complete panel of consistency results for the discrete de Rham (DDR)
complex introduced in the companion paper [10]], including primal and adjoint consistency for the
discrete vector calculus operators, and consistency of the corresponding potentials. The theoretical
results are showcased by performing a full convergence analysis for a DDR approximation of a
magnetostatics model. Numerical results on three-dimensional polyhedral meshes complete the
exposition.
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1 Introduction

We prove complete consistency results for the discrete de Rham (DDR) complex introduced in the
companion paper [10]]. Specifically, the first set of results concerns primal consistency of the local
discrete vector calculus operators introduced in [10, Section [3.3]] and of the corresponding potentials
defined in Section below. The second set of results concerns adjoint consistency, that relates to the
ability to approximate formal adjoint operators, and therefore requires to estimate the residuals of global
integration by parts formulas.

For specific space dimensions, polynomial degrees, and operators, consistency results that bear
relations to ours can be found in the literature on polytopal methods.

Starting from low-order methods, consistency results for Compatible Discrete Operator approxima-
tions of the Poisson problem based on nodal unknowns can be found in [5]; see in particular the proof
of Theorem 3.3 therein, which contains an adjoint consistency result for a gradient reconstructed from
vertex values. In the same framework, an adjoint consistency estimate for a discrete curl constructed
from edge values can be found in [6, Lemma 2.3]. A rather complete set of consistency results for
Mimetic Finite Difference operators can be found in [4]], where they appear as intermediate steps in the
error analyses of Chapters 5-7. A notable exception is provided by the adjoint consistency of the curl
operator, which is not needed in the error estimate of [4, Theorem 7.3] since the authors consider an
approximation of the current density based on the knowledge of a vector potential.

Moving to arbitrary-order methods, error estimates that involve the adjoint consistency of a gradient
and the consistency of the corresponding potential have been recently derived in 7] in the framework of
the Hl—conforming Virtual Element method. The same method is considered in [9, Section 3.2], where
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a different analysis is proposed based on the third Strang lemma. The estimate of the consistency error
in [9, Theorem 19] involves, in particular, the adjoint consistency of a discrete gradient reconstructed as
the gradient of a scalar polynomial rather than a vector-valued polynomial. We note, in passing, that the
concept of adjoint consistency for (discrete) gradients is directly related to the notion of limit-conformity
in the Gradient Discretisation Method [15]], a generic framework which encompasses several polytopal
methods. Primal and dual consistency estimates for a discrete divergence and the corresponding
vector potential similar (but not identical) to the ones considered here have been established in [|14]]
in the framework of Mixed High-Order methods. Note that these methods, the H'-conforming Virtual
Element method, and the Mixed High-Order method, do not lead to a discrete de Rham complex.
In the framework of arbitrary-order compatible discretisations, on the other hand, primal consistency
results for the curl appear as intermediate results in [3|], where an error analysis for a Virtual Element
approximation of magnetostatics is carried out assuming interpolation estimates for three-dimensional
vector valued virtual spaces; see Remark 4.4 therein. However, [3|] does not establish any adjoint
consistency property of the discrete curl (the formulation of magnetostatics considered in this reference
does not require this).

The results presented in this paper are, to the best of our knowledge, the first ones to span the full
set of discrete vector calculus operators for an arbitrary-order discrete de Rham complex on polyhedral
meshes. The key ingredients to establish primal consistency are the polynomial consistency of discrete
vector calculus operators along with the corresponding potentials, and their boundedness when applied
to the interpolates of smooth functions. The proofs of adjoint consistency, on the other hand, rely on
operator-specific techniques, all grounded in discrete integration by parts formulas for the corresponding
potential reconstructions (see (3.1I)) along with Remark [3] for the gradient, (3.6) for the curl, and (3.10)
for the divergence). Specifically, the key point for the adjoint consistency of the gradient are estimates
for local H'-like seminorms of the scalar potentials. The adjoint consistency of curl requires, on the
other hand, the construction of liftings of the discrete face potentials that satisfy an orthogonality and a
boundedness condition. These reconstructions are inspired by the minimal reconstruction operators of
[4, Chapter 3], with a key novelty provided by a curl correction which ensures the well-posedness of the
reconstruction inside mesh elements.

In order to showcase the theoretical results derived here and in the companion paper [10], we carry
out a full convergence analysis for a DDR approximation of magnetostatics. This is, to the best of our
knowledge, the first full theoretical result of this kind for arbitrary-order polytopal methods.

The rest of this paper is organised as follows. In Section 2] we briefly recall the key elements of the
setting introduced in [[10]. Section[3|contains the statement of the primal and adjoint consistency results,
whose proofs are given in Section[d] The application of the theoretical tools to the error analysis of a
DDR approximation of magnetostatics is considered in Section 5] where numerical evidence supporting
the error estimates is also provided. Finally, Appendix [A] contains an in-depth and novel study of the
div—curl problems defining the curl liftings on polytopal elements: well-posedness, orthogonality and
boundedness properties.

2 Setting

We briefly recall here the setting introduced in the companion paper [10], to which we refer for a more
detailed description of the following notions.

2.1 Mesh and orientation

Let H C R* be a countable set with 0 as its unique accumulation point. Let Q c R? denote an
open connected polyhedral set and (Mj,),cqs a family of meshes indexed by their size . We write
My =T, U Fp U ER UV, with 7, the set of elements T, F, the set of faces F, &, the set of edges E,
and V), the set of vertices V. We additionally denote by T;’ the subset of ¥, collecting the faces that
lie on the boundary dQ of Q. It is assumed that (7, F1,), e matches the regularity conditions in [[12,



Definition 1.9] (with p € (0, 1) denoting the mesh regularity parameter), and that elements and faces are
simply connected with Lipschitz continuous boundary. For T € 75, we set ¥y = {F € ¥, : F C 0T}
and, forY € 7, U F,, Ey = {E € &, : E C dY}. The real number Ay denotes the diameter of a mesh
element, face, oredge Y € 7, U F, U &,

Each face F € ¥, is equipped with a unit normal vector nr, and each edge E € &;, with a
unit tangent vector fg. Given F € ¥, and E € Ef, we also denote by ngg the unit vector nor-
mal to E lying in the plane of F. The families of numbers {wrr € {-1,1} : T € 7}, F € ¥} and
{wrg € {-1,1} : F € F, E € Ef} collect relative orientations selected so that: for all T € 7, and all
F € 1, wrpnp points out of T and, for all F € ¥, and all E € Ef, wppnrpE points out of F. Given
F € Fy, the tangent gradient, divergence, two-dimensional vector and scalar curl operators are denoted
by grady, divp, rotr and rotg, respectively.

2.2 Polynomial spaces

Let{ > —1beaninteger. ForY € 7, U%, U&y,, with n the dimension of Y, we denote by PL(Y) the space
of polynomial functions over Y of total degree < ¢, and we set P¢(Y) = P{(Y)". The L2-orthogonal
projector on P¢(Y) is ﬂi,’y, and ni,’y : L2(Y) — PY(Y) is its vector-valued counterpart. The set
PL(Ey) is made of all continuous functions over the mesh skeleton |J Ec&), E that are polynomial of
total degree < £ on each E € &,.

For all Y € 7, U ¥, denote by xy a point inside Y such that ¥ contains a ball centered at xy and of

diameter phy. For any mesh face F' € ¥, any mesh element T € 7, and any integer £ > —1, we define

G'(F) =grad, P**'(F), G“'(F):=(x—xp)*P"(F),

R (F) = rotr P (F), RO(F) = (x —xp)P(F),

(2.1)
G“(T) = grad P\ (T), GN(T) = (x —xp) x PN(D),
RUT) = curl PH(T), REUT) = (x —x7)PIN(T)

where (x — xg)* denotes the vector x — x  rotated by an angle —r/2 in the plane spanned by F and
orientedby np. If Y = F orY =T, the following direct (but not necessarily orthogonal) decompositions
hold:

PUY) =6 (V) @ G4 (Y) =RI(Y) @ R (Y). (2.2)

With obvious notations, the L2-orthogonal projectors on the subspaces appearing in these decomposi-

tions are denoted by n"g’y, ncg"jy, 71'5{},, and ”;éfy' The local Nédélec and Raviart-Thomas spaces over
Y are denoted by
N =67 ') o G%(Y), RTIQY) =RTN(Y) @ RE(Y). (2.3)

As detailed in [10, Lemma , the knowledge of the L2-projections of a polynomial z € P¢(Y) on
each element of the space pairs (G (Y), G (Y)) or (R'(Y), R%(Y)) appearing in (2.2) enables the
recovery of z. Specifically, for Y € 7, U %, X € {G, R}, and (v, w) € X’ (Y) x X (Y), letting

‘,R'f\,’Y (v,w) = (Id - nf\,’yn';’fy)_l (v — nf\,’yw) +(Id - ”;fy”f\',y)_l (v — n;fyw) 2.4)
we have
ey (R4 y(v.w)) =v  and njfy Rey W) =w  V.w) e X' (V) xX>(Y),  (25)
z=RYy (w4215, Vee ), (2.6)
and
RSy W2y = Wl + Wiy, Y0.w) € XA) x X4(D). 2.7)
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Above, writing a < b in place of a < Cb with C depending only on €, the mesh regularity parameter
p of [[12, Definition 1.9], and the considered polynomial degree, we have used a ~ b with the meaning
of “a < b and b < a”. Both shorthand notations < and ~ will be used throughout the paper.

2.3 Discrete spaces

The discrete counterpart of the space H! (Q) in the DDR sequence is

X’g‘md,h = {gh = ((gr)re7,, (GF)Fes,» qE,)
gr € P*¥UT) forall T € T, qr € P*(F) for all F € ¥, and qe, € PCkH(Sh)},

and the corresponding interpolator /¥ :Co(Q) — Xk ,, 18 such that, for all ¢ € Co(Q),

—grad,h * —grad,

k . k-1 k-1 k
Loaa,nq = ((”P r911)1 7> (Tp 4 |F)F 7y qe,) € Xorad,no 2.8)

where ﬂ]%t};(qah)w = 7r7> Eq|E forall E € &, and gg, (xv) = q(xv) forall V € V},
with xy denoting the coordinates vector of the vertex V. The discrete H(curl; Q) space is
gurl’h = {KT = ((VR,T’ vCR,T)T SV (VR,F’ v;Q,F)FGﬁ,’ (VE)EGSh) :

(YRT: VRr) € R*1(T) x REK(T) for all T € 75,
(VR F. VR ) € R¥1(F) x REK(F) for all F € 7, and v € PX(E) forall E € Sh},

with interpolator I¥ CY(Q) - X X urt,p, Such that, for all v € c(Q),

=curl,h *

_ k - k
I Lo = ((ﬂ]qce,}v|r,7r3é’TV|T)Tefrh,(ﬂlch}vt,F,ﬂ;é’FVt,F)Feﬁ,(ﬂ]é,E(WE’tE))Eea,,),
where, for all F' € F,, v = np X (v|r X nr) denotes the orthogonal projection of v on the plane
spanned by F. The role of H(div; Q) is played, at the discrete level, by
k
Xiivn - {V =(vgr.vg Ires VF)Fes,) -

(vgr» vcg’T) e G (T) x G (T) forall T € T, and vp € PX(F) forall F € 7-';,},
with interpolator I¥ Ly, ‘HY(Q) - X'giv’ ,, such that, for all v € H' (Q),

Iy, v = ((ﬂg}v|T,ﬂ°g’]fTV|T)Tefrh, (7 p(V1F - MF))Ferr). (2.9)
Finally, the discrete counterpart of L?(Q) in the DDR sequence is

PX(Th) = {qn e LX(Q) : (qn)jr € PX(T) forall T € T},
equipped with the global L2-orthogonal projector 7r LZ(Q) — P*(T5,) such that, for all ¢ € L2(Q),
(np’hq)g = P,quT forall T € 7;,.

2.4 Local discrete vector calculus operators

Given e € {grad, curl, div} and a mesh entity ¥ appearing in the definition of X ’: ,» We denote by X k v
the restriction of this space to Y, gathering the polynomial components on Y and on the geometrical
entities on dY. The corresponding local interpolator is denoted by /' ’f v



2.4.1 Gradients

Throughout the rest of the paper, for E € &, and q € Xgrad , Weset gg = (qg,)|E € Xk
P*1(E). Forany E € &, the edge gradient Gk

grad E~

— PX(E) is such that, for all g € X*

grad E —grad,E’

Ghar = qf,

where the derivative is taken along E according to the orientation of ¢g. For all F € ¥, the face

gradient G}, : X£ 4 » — P (F) is such that, forall ¢ . = (¢r, qer) € Xpea p»

‘/Gﬁ"qF’wF=_/CIFdiVFWF+ Z wFE/CISF(WF'nFE) Vwr € PE(F).
F - F E

Ec&F

The scalar trace yk“ Xk — P**1(F) is such that, for all q, € Xk

—grad,F —grad,F>

/’)/;{7+1q diVFVFZ_/G;(?zF'VF"' Z wFE/ng(vF-nFE) VVF ERC’k+2(F). (210)
F Ec&F E
Remark 1 (Validity of (Z.10)). Relation (2.10) also holds for all v € RT**(F); see [10] Remark@].

Finally, for all T € 7}, the element gradient Gk Xk — Pk (T) is such that, for all 4, =

—grad, T
(g7, (4F)Ferrsder) € Xgraars

/G?qT-wT =—/quiva+ Z wTF/yf:”q (wr - np) Ywr ePk(T). (2.11)
s 1

T FeFr
24.2 Curls
Forall F € %y, the face curl C : cuﬂF — P*(F)issuchthat, forally, = (v F, v R (VE)Eegr) €
Xeurt -

'/C?KF rF:/VR,F'rOtFrF_ Z wFE/VErF Vrr € PR(F). (2.12)
F F E

EE(SF

The tangential trace yf‘ X k — PK(F) is such that, for all v €X K recalling the definition

Zcurl,FF ZcurlLF°

(2-4) of the recovery operator with (X, Y) = (R, F),

k — ok k ¢
YorVYF = ERR,F (yt,R,FKF’ vR,F)’

where 7t rFVE € R¥(F) is defined by

/YfR pYp - Totp rFZ‘/CIIf{F rr + Z wFE/VEFF Vrr € PORL(F). (2.13)
F 7 F E

Ec&Er

Remark 2 (Validity of (2.13)). We note that this relation actually holds for all rr € P**!(F) and also
with 'y{‘F instead of yfR 5 see [[10l Remark .

Finally, for all T € 7j, the element curl Ck : X* — PX(T) is such that, for all y, =

—curl, T
(VR Vi ps VRF VR p)Fer, (VE)EeE,) € Xfuru,

/C;KT.wrz‘/le’T.curle+ Z wTF/y{jFKF.(wanF) Vwr € PK(T). (2.14)
T T FeFr F



2.4.3 Divergence
For all T € 7j, the element divergence D? ngT — PX(T) is defined by: For all Vp =

(v.r.vG s (VF)Fer) € Xz

/DiKT rr :—/vQ,T -gradrr + Z wTF/vFrT Yrr eSDk(T). (2.15)
T T F

FeFr
2.5 Global sequence
The global discrete gradient G Gk gra an = Xk Xeur > curl C Curl n Xﬁiv’ ,» and divergence
Dk X glv = P*(7) are obtained by projecting the local operators onto the corresponding spaces:
Forall (¢,,v,.w,) € Xgrad 0% Xearn X Xy o

Q’;‘,gh = ((ﬂ (G5 4, )7T (G} 4, ))Teﬁ’(ﬂ' 1 (G 4, )7T (e} 4,.)Fes, (GrqE)EeE, ),
Chy), = ((n 1 (Cryp), 7y <c vT)>Ter,;,<c Ve )Fes,):
(Dhﬁh)lT = DTET VT € Tp.

Following our previous notation for local spaces and interpolator, we will use the following notations
for the restrictions of these discrete gradients and curl operators to mesh elements and faces:

Qlfsz:(ﬂ];eF(G q )77 (G 6] )s (GEQE)EGTE)
Ghq, = (mhey(Ghq ). 75 (Gha ), (nhe b (Ghg ). w53 (Ghq Drerr (GEqr)Ees,),

cva (w3 (Chvp), 7 (Chvy). (CE vF)Fesz)

The global sequence reads:

ra p_s Dk
R = gradh —> curlh —> _dwh — PR(T) —2 {0}. (2.16)

It is proved in [10] that this sequence has exactness properties (the specific nature of which depends
on the topology of €, as for the continuous de Rham sequence), and that the discrete operators satisfy
Poincaré inequalities.

3 Consistency results

3.1 Potential reconstructions and L>-products on discrete spaces

Let T € 7. In this section, we define polynomial potential reconstructions on the discrete spaces X, 7
with e € {grad, curl,div}. These potentials have polynomial consistency properties, and enable the
construction of discrete L?-inner products on DDR spaces that are also polynomially consistent.

3.1.1 Scalar potential on X* Xorad,T

k+1 Xk

arad. T Xgrad.r P*+1(T) is such that, for all q, € Xk

The scalar potential reconstruction P Korad, T

'/P]gcl-“;qu divvr Z—/G;EqT'VT+ Z wTnyf;”qF(vrnF) Yvr ERC’]HZ(T), 3.1)
T T - FeFr F -

with yll‘;l defined by (2.10). This relation defines P{g(;;lld,T 4, uniquely since div : RSK*2(T) — PK1(T)
is an isomorphism by []1, Corollary 7.3].



Remark 3 (Validity of (3-1)). The definition (2Z.IT) of GX and the identity div curl = 0 show that both
sides of vanish when v € R¥(T). Hence, actually holds for any vy € R*(T) @ R&*2(T) =
PK(T) + R&**2(T), the second equality following from REX(T) ¢ R“¥*2(T) and the decomposition
2.2).

Using the polynomial consistency properties GX. (7 {g‘rad’Tq) = grad g and v (Ig.q £ 9) F) =q|F,
valid for all ¢ € P**1(T) (see [10, Eqs. (3.13) and (3-11))]), the following polynomial consistency of

Pé:;d - is obtained:

k+1 (Ik

PharIseard) =a Vg ePD). (3.2)

Moreover, applying (3.1) to vy € R%¥(T) (which is possible since R“¥(T) c R®***(T)), using the
definition (2.T1) of G; with wy = v, and recalling that div : R>*(T) — £*~1(T) is onto, we obtain

k=1 ( pk+l _
Tp,T (Pgr+ad,TQT) =dqr Vq € XgradT (3.3)
3.1.2 Vector potential on ﬁurl T
The vector potential reconstruction Pcu]rl X Igurl,T — Pk (T) is such that, for all v, € X Xeurl. 7>
k k

Penr?r =Ry T(Pcurl RTYTVRT): (3.4)
where Pc arr¥r € R¥(T) is defined, using the isomorphism curl : G&**1(T) — R*(T) (see [10]
Eq. @T0)]), by
‘/Pﬁurl,R,TKT -eurlwr = / Cryy -wr = Z WrFE / Yipvp - (wr xng)  Ywr € G,

T T F

FeFr
(3.5)

cart,7)- Formula (3.5) can be extended to test

functions in the Nédélec space N1 (T) defined by (2.3). To check it, simply notice that both sides vanish
whenever wr € G*(T) (use curl grad = 0 and the definition (Z:14) of CX). Since nR - (P’C‘url’T vy) =

P i{url,R,T_T (see (3.4) and (2.5)), we infer that

Remark 4 (Discrete integration by parts formula for P*

/TPfurLTKT ~eurlzr = /T CiKT “ZT — Z wTFLYﬁFKF'(ZT XnF) Vzr € NN(T). (3.6)

FeFr

Applying (3.6) to vT =1 i‘uﬂ v withv € Pk (T), using the consistency properties 'yf’ F (1 ’c‘url’ V) =
n’;, #Vur =vir and Cf k(1% curl, Tv) = curlv (see [10, Egs. (3.22) and (3.26)]), and integrating by parts,
and since curl Nk+1(T) — R¥(T) is onto (due to the isomorphism property [10, Eq. @-10)]), we

see that nR T [Pcurl r (!ﬁurl )] = Jr’;z’Tv. The definition (3.4) and the property (2.5)) of the recovery
operator also yield 7 [Pi‘llrl - (!ﬁuﬂjv)] ;ekTv As a consequence,
Pﬁurl T (Icurl Tv) =V Vv € Pk(T)- (3-7)

Following similar arguments as in the proof of [[10, Proposition[I3]], we also have

k-1 k _ c,k k _.C
7T'R T (Pcurl,TKT) =VRT and ﬂR T (Pcurl,TKT) - VR,T va € Xcurl T (38)



3.1.3 Vector potential on X Xivr

The vector potential reconstruction PX . ¢ — Pk (T) is such that, for all w.. € X

div,T * =div,T —div,T"

k Y k c
Py 7 W = g‘Rg,T (Pdiv,g,Tﬁrv wg,T)’

where PX W, € Qk(T) is defined by

div,G,T

‘/Pgiv,g,TmT . gradrT = —/ D%‘ET rr + Z WTF / WE T VI‘T S PO’kH(T). (39)
T T Fe¥r F

Remark 5 (Discrete integration by parts formula for P* div,7)- Observing that Pk dv.G.T = P’;w
([2-3)) and that (3.9) holds for any r7 € P**1(T) (as can be proved taking r7 constant in T and observing

that both sides of this equation vanish due to the definition (2:I5) of DX), we infer

r (use

/Pﬁiv’TmT -gradrr =—/D§~ET rr+ Y wTF/wF e Vrr e PNT). (3.10)
T T FeFr F

Writing (3-10) for w,. = IX .w withw € RT**1(T), observing that DX (!glv W) =7k (divw) =

divw by [10, Eq. (3.36)] andn’;, rWip-np) =wp-npforall F € ¥ by [10, Eq. (A.4)], and integrating

by parts the right-hand side of the resulting expression, we infer 7% G.T [P div.T (I k

I, rw)]| = 7 pwisince

[P {jw o ]glv w)| = #%;",w by definition of Pdlv . | §1V T and (2.5), we deduce that
P](;lvT(!(]iclv Tw) = ”I;;’,Tw Vw € RTkH(T) (311)

Moreover, following similar arguments as in [[10, Proposition [I5]] we get
k _ k _ k
(Pdlv yud T) =WwgrT and ﬂ. (PdwT T) - WCQ,T VWT € Xchv T (3.12)

3.1.4 Discrete L>-products

We now define discrete L2-inner products on the DDR spaces. These products are all constructed in a
similar way: by assembling local contributions composed of a consistent term based on the potential
reconstructions and a stabilisation term that provides a control of the polynomial components on the lower

dimensional geometrical objects. Specifically, each L2-product (-, Jerad,h : Xk Xorad,n X Xk Xoraan — R,

(s )eurl,ir X’c‘url n X X’c‘url » — R, and (v, )div,h - ng n X Xﬁw , — Ris the sum over T € 7 of its
local counterpart defined by:

— k+1 k+1 k
(ET’QT)gl‘ad,T T / Pgrad Tl Pgrad Tq + Sgrad, T (ET’QT) V(rT’ q ) € Xgrad T x Xgrad T

(3.13a)

._ k
(Wrs ¥ )eurl,T = -/T P ¥Wr 'PcurlT Yy +Serl, T (Wp,vy) V(wr,vp) € X —curl T ><Xcurl T>

(3.13b)
(W Vg )div,r = /T Pgiv,TKT 'Pgiv,TKT + Sdiv,7 (W, V) V(wp,vy) € X —dl T Xlﬁw T>
(3.13¢)



where the symmetric, positive semidefinite stabilisation bilinear forms s. 7, ® € {grad, curl, div}, are
defined as follows:

Sead 1 (7:0,) 3= ) hr /F (Parrr = vE're) (Phray - vEa,) (3.14)
Fefr
2 k+1 Kl
+ Z h / Pgr+adT rE) (Pg:;ld,TgF_QE)>
Ecér

Seurl,7 (Wp, V) ° ZhF/ (Pcur]TwT)tF thwF) ((PcurlT_T)tF thvF) (3.15)

Fe¥fr
+ B | (P pwp - te - Pt v tp -
E curl,L 7 F E WE curl,7=—F E VE)>

where we recall that the index t, F' denotes the tangential trace on F, and

Sdiv,T (Wp,Vy) = Z hF/ dlvaT np — WF) (Png"T nF—vF) (3.16)
Fe¥r

These local stabilisation bilinear forms s, 7 are polynomialy consistent, i.e., they vanish whenever one
of their arguments is the interpolate of a polynomial of total degree < k + 1 for e = grad, or < k
for e € {curl,div}. Further consistency properties for interpolates of smooth functions are stated in
Theorem [§]

For e € {grad, curl, div}, we denote by ||-||l..r the norm on X ’f’T induced by the corresponding

local discrete L2-product (-, -)e 7, and by ||-||s.» the norm on X ’f ,, corresponding to the global discrete
L2-product (-, )e.p
3.2 Primal consistency

In this section we state consistency results for the discrete potentials, vector calculus operators, and
stabilisation bilinear forms. Because of the nature of the interpolator on X art,7 (Which requires higher

regularity of functions), we introduce the following notation: For T € 7;, and v € H™>*(k+1.2) (1)

|V|H(k+1,2)(T) = { |V|Hk+1(T) ifk>1 (317)

The corresponding global broken seminorm |'|H(k+1,2)(7l~1) is such that, for all v € H(k”’z)('ﬁl),

1/2
|V|H(k+1,2)(7;1) = (ZTG% |v|i1<k+1’2) (T)) . The proofs of the following theorems are postponed to
Sectiond.3]

Theorem 6 (Consistency of the potential reconstructions). It holds, for all T € Ty,

1P Uaa7q) = dllizcry S 5P lqleen ) Vg € H2(T), (3.18)
”PcurlT(!furl rv) - Vi) S h§+1|V|H<k+1,2> (1) vy € XL () (3.19)
1P, 7 (L 7w) = Wiz ) S A Wlge gy Vw e H*(T). (3.20)

Theorem 7 (Primal consistency of the discrete vector calculus operators). It holds, for all T € Ty,

G} (Iyraa.r9) — gradqlly2ry < B+ gl r), Vg € H*(T), (3:21)
ICF (T 7v) — curl vl 2y < AF curlvlgen 7y, Vv € HX(T) st curlv e HYY(T), (3.22)
1D} (L, 7w) — divwllizry < 5 divwlgen oy, Yw € HY(T) 5.t divw e HYN(T).  (3.23)
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Theorem 8 (Consistency of stabilisation forms). For all T € Ty, the stabilisation forms defined by
(B.14)—(B.16) satisfy the following consistency properties:

1

Serad. 7 (1 aa 79 Loraa 707 S W52 1q i ) Vg € HY(T), (3.24)
1

Scurl, T (lfurl,TV, !Ic{url,Tv)z < h§"+1|v|H<k+|,2) (T) Vv € Hmax(k+1,2)(T)’ (3~25)
1

saiv.r (L 7w, Ly 7)< 5wl ) vw e HU(T). (3.26)

3.3 Adjoint consistency

Whenever a (formal) integration by parts is used to write the weak formulation of a PDE problem
underpinning its discretisation, a form of adjoint consistency is required in the convergence analysis.
We state here the adjoint consistency of the operators in the DDR sequence (2.16). Since this sequence
does not incorporate boundary conditions, the corresponding adjoint consistency will be based on
essential boundary conditions. The regularity requirements will be expressed in terms of the broken
Sobolev spaces and norms such that, for any € > 1,

1

2
HY () = {g € L*(Q) : gir e H(T) forall T € T} and  glye(q;) = (Z |g|T|§I,(T)) .
T <7,

The corresponding seminorms for vector-valued functions is denoted, as usual, using boldface letters.
We denote in what follows by H(l)(Q), H, (div; Q), and Hy(curl; Q) the subspaces of H! (Q), H(div; Q),
and H(curl; Q) spanned by functions whose trace, normal trace, and tangential trace vanish on 9Q,
respectively.

Theorem 9 (Adjoint consistency for the gradient). Let Egiy j, (C0 (Q) N Hy(div; Q) x X k — R

“—grad,h
k
be such that, for all 4q, € Xorad i

k k . k+1
(!curl,Tv|T’QTgT)curl,T + L divy Pgrad,TzT

Eaivn(v.q,) = Z

TeT,

Then, it holds, for all v € C°(Q) N Hy(div; Q) such that v € H™>* L2 (70y and all q, € g’g;a aw

(Eaivn (v, 4, )] < W4 Y lgun ) 1G4, lleurtns (3.27)
Proof. See Sectiond.4.1] |

Theorem 10 (Adjoint consistency for the curl). Let Eeurt i @ (C°(Q) N Hp(curl; Q)) x Xﬁm . — Rbe
such that, for all (w,v,) € (C°(Q) N Hy(curl; Q)) x X*

Zcurl,’

8curl,h(w’ Kh) = Z (!giv,TW|T’g§~KT)div,T - / curlw - P]gurl,TKT . (3.28)
Te7;, T
Then, for all w € C°(Q) N Hy(curl; Q) such that w € H*(T;) and all v, € X%, ;.
|Scur1,h(w,gh)| < th (|W|Hk+1(7;1) + |w|Hk+2(7;l)) (”Kh”curl,h + ||Q£Kh”div,h) . (3~29)
Proof. See Sectiond.4.2] i
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Theorem 11 (Adjoint consistency for the divergence). Let Sgrad’h : (CO Q) n Hcl) (Q)) x ng , — R
be such that, for all (q,v,) € (C°(Q) N H}(Q)) x XX

—div,h’
Egraan(q,v,) = / 7 g Dy, + > /gradq A (3.30)
TeT, 7€
Then, for all g € C°(Q) N Hé (Q) such that g € H**?(T) and all v, € Xé‘w W
|8grad,h(Qs Kh)l < hk+l |Q|Hk+2(7;§) “Kh ”div,h- (331)
Proof. See Section O

4 Proofs of the consistency results

In this section, after establishing some preliminary results, we prove the primal and adjoint consistency
results stated in Section 3]

4.1 Component norms and bounds on potentials

.. 2 k k k . .
We recall the definition of the component L“-norm on X Xorad T Xeun,r and X5 o introduced in [10,

Section [4.1]], and which correspond to the L2-norms of the components of the vectors of polynomials,
with scaling appropriate to the dimensions of the geometrical objects on which these components are
defined:

1/2
gy Neraa.r = (lar sy + Y el lar)  forall ¢, € Xoars

FET

2 2 2
where llg, lgraa.r = (107 P2 + Y hEllgelits ) forall F e 77,
EGSF

1/2
. 2 k
Iy plleurtr = (1971227, + 195 1Py + D hElY gl ) forall vy € Xb, o,
F ey
= (4.1)

I/2
where [[|v ;- [lleurt, 7 = (”V‘R F”LZ(F) +]vik F||L2(F) Z hE”VEHiZ(E)) forall F € Fr,
EE(SF

and
2 2 k
Iwrllar = (Wg.r 12 ) + 195 2120 + D hrelwrls ) forall wy e Xk, .
Fefr

The next proposition follows from (2.7) and [10, Lemma@], in a similar way as in the proof of |11}
Proposition 13].

Proposition 12 (Boundedness of local potentials). It holds, for all T € Ty, and all F € Fr,

”7;{;161 ||L2(F) < I”q |||gradF and ”ngd TCI ||L2(T) < |||q I”gradT Vq € Xgrad T 4.2)
||7’t F_F”LZ(F) |||VF|||curl F and ||Pcur1 TVr ||L2(T) |||VT |||curl T VKT € Xf.m T> (4.3)
1Py 7wz 2y < MWy lllaiv.r Vwp € X5 p. (44

For e € {grad, curl, div}, using triangle inequalities as in |11} Proposition 14], invoking the bounds
of Proposition |12} the projection properties (3.3), (3.8) (and similar for yt 7 see [10, Proposmon I)
or (3.12), and recalhng (2.7), we have the norm equivalence: For all T € 7,

lz Mo = llzpller V2, € X5, 4.5)
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Lemma 13 (Boundedness of local interpolators). It holds, for all T € Ty,

% rad. 7 9llgraa,r < Nglliz(ry + Arlqla oy + h%l‘Ile(T) Vg € HX(T), (4.6)
—g

”l—curl TV|||curl,T < ||V||L2(T) + hr |V|H'(T) + h%‘llez(T) Vv € HZ(T), 4.7)

NEE, o willaier S IWllae + or Wl vw € H(7). (48)

Proof. The definition of I* erad,r (see (Z)) clearly shows that |||Igrad 7 qllgraa,r < |T|"> maxr |g|. By
[12, Eq. (5.110)], it holds

2
_1
max|q| 5 |7172 ) Wy |l r).
r=0

which concludes the proof of (4.6). The estimate (4.7)) is obtained the same way. As for (4.8)), by the
continuous trace inequality of [12, Lemma 1.31], we have
_1 1
||7717(>,F(W np)le iy < ||W||L2(F) S hy? ||W||L2(T) + hf:|W|H1(T)-

Using this bound in the definition (2.9) of !giv + yields (4.8). O

4.2 Links between discrete vector potentials and vector calculus operators

Proposition 14 (Link between discrete vector potentials and vector calculus operators). Forall T € Ty,
it holds

k k
Ponr(Gra,)=Gra, V4, € Xguars 4.9)
k k k
Py, r(Cr "T) =Cryy Vyp € Xcurl T (4.10)
Proof 1. Proof of @9). By the second projection property in (3.8), we have 77 [Pcurl (G gT)] =
7rR T (G; q, ). To infer the conclusion, it then suffices to prove that
k k k k k
TR | P eurt.r (QTQT)] =R T (GTQT) 4.11)

and invoke (2.6). To prove @11)), we take z7 € N**!(T) and apply @D with v, = G?q Using the

inclusion Im Gk C Ker Ck (see [10, Remark ) and the relation 7t F (G';q ) = Gk Fdy valid for all
F € Fr (see [10 Proposmon [15])), we obtain

/Pffuﬂr(GTq ) -eurlzy = - ZwTF/ F4, - (@rxnp) = / Gjq, - curlzy,
r Fe¥r T

the conclusion following from the link between element and face gradient, see [10, Proposition[T]]. By
the isomorphism curl : G&**1(T) — RX(T) of [10, Eq. Z-I0)] and since G=**1(T) ¢ N**1(T), this
establishes (4.11) and concludes the proof of (#.9).

2. Proof of (@.10). The second projection property in (3.12) ensures that 7r [PdlvT Civ,)] =
(Ck vT) As before, it therefore remains to analyse the projections on gk(T) Apply (3.10) to

wT = C 7V, and a generic rr € Pk+1(T), and use the inclusion Im Ck c Ker Dk (see [[10} Proposition

-)toget
/ div,T (Ck r) - gradrr = Z wTF‘/FCII’(’KF rT :/TCHT -gradrr,

F€7:T

where the conclusion is obtained applying the link between element and face curls of [10, Proposition

. This establishes that n’é’ [Pl r - (Chv,)] = n’é’T (Ckv,), proving (@-10). O
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Corollary 15 (Bound on discrete gradients and curl). For all F € Fp, it holds

1GEq, 12y, + O helGhaells sy < 1G5 Nt VY, € Ko (@12)
EcEF

Forall T € Ty, it holds

1GE g, 22+ > helGha, s+ Y WEIGEGEI ) < IGE G, llewrt 7

FE?T EGST
Vq € Xgrad > (4.13)
ICFer 32y + D hENCEYEIEs ) < €Y laivy 7 € Xewrt7- (4.14)
FeFr
Proof. The definitions of |||-|||lcurl,7> | lllcurl, 7> Q;‘, and Q; show that the edge gradient contributions in

the left-hand sides of {@.12)) and (.13)) are bounded by the corresponding right-hand sides. To bound
the face and element gradient contributions in the left-hand sides of (@.12)) and (4.13), simply apply
@3 toy, = Q;ZT, use yéF o G% = Gk (see [10, Proposition ) and (4.9). The estimate (4.14) is
established in a similar way. m|

4.3 Primal consistency

Proof of Theorem|[6] Let us start with (3.18). Since H*(T) ¢ C%(T), the mapping Pg;ld rol ’g‘ra ar
H?(T) — P*1(T) is well-defined and, owing to (3.2), it is a projector. Moreover, combining (&.6)) and

(@2), it satisfies the L?>(T)-boundedness

||P§:;d T(_grad D)2y < lallizqy + hrlglg ) + h%|Q|H2(T) Vg € H¥(T).

The approximation property (3.18) is thus a direct consequence of [12, Lemma 1.43]. The proofs of
(3.19) (for k > 1) and (3.20) are similar, using the fact that the considered operators are projectors
onto P*(T) (see and (3.11)) and invoking Proposition |12/ and Lemma |13|to establish their L

boundedness. In the case k = 0, since P(c)url rol Surl,T requires the H?-regularity of its argument, with

2 >k + 1, (3.19) cannot be deduced directly from [12, Lemma 1.43]. However using the bounds @.3))

and a direct proof can be done by introducing 7r2, y = Pgurl T (lgurl T P oY)

0 0
HPcurlT(IcurlTv) V||L2(T) < ”Pcurl T [—curl r(v— ”P,T")] ||L2(T) +7p v - "”LZ(T)

0 2 0
Slv- ”P,T"”LZ(T) +hr|v = 7p 1Vl ) + W7V = 7p 2Vl )

and (3.19) follows using the approximation properties of ﬂp > the fact that the H'(T)- and H*(T)-

seminorms of 7, ,.v vanish, and the definition (3:17) of |-|gus1.2 1) o

ProofofTheorem[Z Let us prove (3.21). For any q, € X’grad - taking wr = , in (2.11) and
using Cauchy—Schwarz inequalities along with dlscrete inverse and trace 1nequa11tles 1t 1s inferred, after
simplification,

_ —1
165 g o) < A7t lar ey + D By lizey S b7 ligllgraa.r
Fe¥fr

where the conclusion follows from the estimate on yk“ in (@.2) and from the definition of ||| |[|grad,7 -

As a result, for any » € H>(T), making 4, r and invoking (4.6)), we infer

k
grad T

IG5 (L’gmd,rr)lle(T) < W IFlle2ry + [Pl ) + B Il .- (4.15)
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Letting now ¢ € H**?(T), we use the polynomial consistency [10, Eq. (3-13)] of G~ followed by a
triangle inequality to write

||G§(llg(rad,rq) gradq”Lz(T) <||G [—gradT(q ”PTq]||L2(T)+||grad(”¢>Tq ‘I)||L2(T)

and conclude using (.13) with r = g — 7Tk+1 79 for the first term in the right-hand side followed by the
approximation propertles of 7rkJrl (see [12 Theorem 1.45)).

To prove (3.22)), we notice that CX T L) = Pl 7 [CF (L rv)] = . [!gw 7 (curly)] owing
to (@.10) along w1th the commutation property [10, Eq. (3.35)], and conclude using the approximation
properties (3.20) with w = curlv.

Finally, (3:23) is a straightforward consequence of the commutation property DX (I gw Tw) =
JTI;),T (div w) stated in [10, Eq. (3.36)] together with [12, Theorem 1.45]. O

Remark 16 (Alternative proof of (3.21)). When ¢ € C'(T) is such that grad g € H™>*(**1.2)(T) the
proof of (3:21) can be done following similar arguments as for (3:22), i.e., we write G& (I¥ Loraa, 74q) =

k k k :
Pt 7 |Gy (Ig]rad 79)| = Pt L.+ (grad g) | using @9) followed by [[10, Eq. (3:34)], and con-
clude using the approximation properties (3.19) with v = grad g. This argument, however, requires
additional regularity on g with respect to the one used above.

Proof of Theorem[S] We only prove (3.25)), the other consistency properties being established inasimilar
way. Letv € H"(*¥+1.2)(T') ' By the polynomial consistency [10, Eq. (3.22)] of 7{‘ rand (3.7) of Pi‘uﬂ T ,

it is easily checked that, for all z7 € Pk(T) and all w, € Xcurl 7> it holds Scurl, 7 (I* Iorzr, wr) =
Applying this with z7 = ﬂ’;) ;v we infer

k
Scurl T(IcurlTv’!curlTv) - Scul'IT(IcurlT(v ﬂ-?’ Tv)’—curlT(v 7l'¢, Tv)) ~ ”lI urlT(v 7l'¢, Tv)”|curl T°

the conclusion following from the definition of ||-||curt,7 and the norm equivalence (.5)). Invoking then

@.7) we infer

k k 1 k k 2 k
Seurl, T (Leurt, 7V Lean 1) S IV = 7 p¥lli2 iy + hr|v = 7 vl o) + b v = 7 2Vl 1)

and the estimate (3.25)) follows from the approximation properties of 7r7, 7> see [12, Theorem 1.45],
and the definition (3.17) of |-|gk+1.2 (1> using in the case k = 0 the same arguments as in the proof of
Theorem [6 o
4.4 Adjoint consistency

4.4.1 Adjoint consistency for the gradient

Lemma 17 (Estimates on local H'-seminorms of potentials). For all F € ¥, and all 4, € Xk it

hold “—grad, F’
olds
lgradyi' g 5>+ D hE Ve 4, = a1 gy < 1G5, un - (4.16)
EE(()F
Forall T € 75, and all 4, € Xgrad 7 it holds
lgrad Py 10, 52y + D, 1o |1 Pamar @y = VE 4, o ey < NGE 0 Moun 1 (4.17)
Fefr
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Proof. The proof follows arguments similar to [I0, Lemma [29].

1. Proof of @.16). Let qF eX ’g‘rad - and define A, s € R as the average of g, over dF. Introducing
Ag.oF = yf}“(!'g‘md rAg.or) (see [10, Eq. (3T1)]), using g =~ hy and card(Ef) < 1, and invoking a

k+1 (q
—F

discrete trace inequality on y, — Ag.0F), we have

D e g, - ae R S D) hEgE = Agor g + B IYET (g, — Ag.or) 122 ) (418)
E€8F EESF

Since gg,. is continuous, recalling that g = (gg, )| for all E € EF and using a Poincaré—Wirtinger
inequality along 0 F followed by the definition @.1)) of ||||||curt, 7 yields

Z hEIHQE an”LZ(E) < hF Z ”G qE”LZ(E) ~ |||G 61 ”lcurlF (419)
EG(SF EESF
We now turn to the second term in @1I8). Selectvy € R“***(F) suchthatdivyp = y&+! (QF - llg(rad,FAqﬁF)-
By the L2-estimate on v coming from [10, Lemma , the discrete trace inequality of |12, Lemma
1.32], and the consistency property [10, Eq. (3:10)] of G¥., we have

1

2
IvEll2r) +( Z hE||VF||L2(E)) hF||7k+1(_ — I aa rAgor) 2 r)s
Ec&p

k k k
GF (ZF - igrad,FAq’aF) = GFZF‘

Hence, applying the definition (2:10) of y&*! to 4, 1k L Agar € XK taking v above as a test

—grad,F
function, and using Cauchy—Schwarz 1nequa11tles we obtain

—grad,F’

k 1 2 k k+1 k

1
2
(Z hg'llge — Aqg, aFHLz(E)) hF||7’k+l(gF lgradFAq,aF)”LZ(F)-
EGSF

Simplifying and recalling @12) and @I9), we infer ||yk*! (q - Agor) e S hF|||GFq leurt, F
which, plugged together with (#.19) into (4.18), gives the followmg estimate on the second term in the

left-hand side of (4.16):

D ke, - qe R ) S NGKG, e - (4.20)
Ec&Ef

Integrating by parts the definition (2-10) of y%*! applied to v € P*(F) (see Remark , we have
/ gradp ’}’k+1_F "VF = / Fq "VF+ Z WFE / (7k+1 —q&:)(VF - nFE).
EcéEF

Making vr = gradp yk”qF, using Cauchy—Schwarz inequalities, (¢.12)), a discrete trace inequality,
and (@.20) then yields the bound on the first term in the left-hand side of (4.16).

2. Proof of @.17). The ideas are similar to those used to prove (4.16), provided we can establish a
Poincaré—Writinger inequality for face potentials (which is not straightforward given their discontinuity).

Let 1
AanZ_—— E I;AqF with AqF kl
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denote the average over 97 of the piecewise polynomial function defined by ()/"Jrl

using triangle and Cauchy—Schwarz inequalities,

q )F€7:T. We write,

D P ara, — v g ey £ D R IVE g, — A r Iy
Fefr Fe¥fr
+ A = Aqar Ty + D M IPoardy = Aqor D = T+ To+Ta. (421)
F€7_T FETT

The first term is estlmated using a Poincaré-Wirtinger inequality on y% q and invoking (4.16)) together
with the definition (4.1)) of [||-|[|curt,7 to get

2
Tis Y A (hF||gradFv,’f~”gF||Lz(F)) < D helGhg N r < NGEG W27 (422)
Fefr Fefr

For the second term in (4.21), we follow the same steps as in [10, Lemma [29], working from face
to face through common edges and using ({.16) to get T, < |||G q, 1 cur,r- Finally, for T3, we

apply the definition (3.1)) of Pg;’aldT(qT - [’g‘deAq or) with vy € RC k2(T) such that divvy =
Pk+1

grad, T(q Igrad Tq, or) and |lvr ||L2(T) hr ”Pgrad T (q —érad TAq,aT)”LZ(T), see [[10, Lemma
. Using the consistency properties (3.2)) of Pg:ald 7 (10, Eq. (B13)] of GX and [10, Eq. B-TT)] of
0% F”, and a discrete trace inequality, this gives

_1
||P§:alqu Agorllizry S hT||G§QT||L2(T) +hr Z he |l ?161 = Agarlliz ey
Fefr
TR
< hr|lG5 4, Newrrr + hr (fzf + it;) , (4.23)

where the second line follows from (4.13)), and a triangle inequality to write

1
Z h 2||7’k+1_ —Agorllizr) < Z h 2||7k+1_F_Aq,F||L2(F)+ Z hp’ |Ag.F = Ag.or 2 (r)-
FeFr FeFr FeFr

Using discrete trace inequalities and the previous estimates on ¥ and I, @) leads to

=2 pk+1 2 k

Plugging this bound together with the estimates on ¥ and ¥, into @]) concludes the proof of the
bound on the second term in the right-hand side of To bound the first term in the left-hand side of

@.17), we proceed as for grad yk”q in Step 1, using an integration by parts in the definition (3.1)
of P'g‘;';d 74 and selecting the test function vy = grad P'g‘;';d 74, (see Remark . O

Proof of Theorem[9} Tt holds, by definition (3.13b) of the local discrete L?-product in X _curl , and @.9),

Ediv.n (v, gh)
k k k k X
= Z /; Pcurl T (!curl,TV) . GTgT + Scurl, T (!curl’Tv”,QTgT) + / divy Pgrad 4, (4.24)
TeT

Using Remark we have, for all wy € PX(T),

‘/‘P{g(:;)lquT diva+‘/7:G]7(ng'wT_ Z wTF‘/F“’y?j-lgF(anF):O

Fefr
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Subtracting this quantity from (4.24), we obtain

Eaivn(v.q,) = Z

TeT,

3

TeTn

k k k k k
‘/T (Pcurl T (!curl,Tv) - wT) ’ GTQT + Scurl,7 (!curl,Tv T > QTQT)]

/div(v - WT)ngd,TﬁT + wrF / (wr —v) - "F7k+1_
eT

F

where v is introduced in the boundary term by single-valuedness of the discrete trace, and using
v - np =0 whenever F € T}t’ . Integrating by parts the third term in the right-hand side of the above
expression, we obtain

Eaivn(v.q,) = Z

TeT,

£y [ /(V_WT) grad Py 1q. + wTF/(wT—V) ne (v, — Pamard, )]-
T €T, FeFr

k k k
-/T (Pcurl T (!curl,Tv) - wT) ’ GTq + Scurl T(—curl Tv|T’QTgT)]

(4.25)

_ -k
We set wr = T

1.45] to see that

. . . k .
v and use (3.19) and the approximation properties of g, ;. stated in [[12, Theorem

1
k k k 3 k k+1
||Pcur1T(!cur1T") 7 Vil IV =7p pvliz ) + E hillv =mp pvll2py S by Ilgeeno) ()
Fefr

Using Cauchy—Schwarz inequalities on the integrals and on the stabilisation bilinear form in #.25),
the bound (@.13)) together with the norm equivalence (4.3), and the consistency property (3.25)) of the
stabilisation term, we arrive at

S k+1 k k+1 k+1
|8div,h(v’gh)’ < Z hT+ |V|H(k+1,2>(T)”QTlelcurl,T + Z hT+ |V|H(k+l,2>(T)HgradPg:ad,TgT”LZ(T)

TeT, T €Ty,
k+ kel g k+
eSS lgean gy B S g, - Pihra, .
TeT, Fefr
The conclusion follows from the estimate , and Cauchy—Schwarz inequalities on the sums. O

4.4.2 Adjoint consistency for the curl

The proof of the adjoint consistency for the curl hinges on liftings defined as solutions of local problems.
For any F € , the face lifting Reun.r : XX — H(rot; F) N H(div; F) is such that, for all

F € Xcurl > Reurl,FV = ¢KF + grad Yy, v;:ﬁrl;; € H(rot; F) N H(div; F) such that
rotp ¢, =Cpyp  inF, (4.26a)
divp ¢, =0 inF, (4.26b)
¢KF -tg =VE onall E € &, (4.26¢)

while ¢, € C°(F) is such that

- / Yy, divezp = /(yfngF - ¢VF) - ZF Vzr € REM(F). (4.27)
F F -
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— H(curl; 7) N H(div; T) is such that, for all

Let now T € 7;. The curl correction ot : furl T

eX

—curl,7°
divéry, = —divChy, inT, (4.282)
curl 67y, =0 inT, (4.28b)
Oryvy -np :ClligF—CﬁgT “nF onall F € Fr. (4.28¢)

The curl correction lifts the difference between the face curl C 1],‘, v and the normal component of the
element curl CK 7V as a function defined over T Its role is to ensure the well-posedness of the problem
defining the element lifting Reyn,T - XX — H(curl; T) N H(div; T') such that, for all y,. € X«

curl,T curl,T°

curl Reur1, 7y, = C;KT +0rVv, inT, (4.29a)
div Rcurl,TKT =0 inT, (4.29b)
(Rcurl,TKT )t,F = Rcurl,FKF onall F € Fr. (4.29¢)

In Appendix [A]we prove that these lifting operators are well-defined, and that they satisfy the following
two key properties:
* Orthogonality of the face lifting: For all F € ¥y,

[k = Ranrr) zr =0 Vpzr) € Xy xRTSUE: (430
F
* Boundedness of the element lifting: For all T € 7y,

”Rcurl,TKT ||L2(T)+” curl Rewn,TV ||L2(T) ”VT Il curt, T+||C Yr llaiv,7 Vv, € Lur] - (4.31)

Lemma 18 (Approximation properties of A**!1(T) on polyhedral elements). For all T € T;, and all
w € H*2(T), there exists zp € N**'(T) such that

Iw =2z 2y S B3 (Wl o) + WLz 7)) (4.32)

|| curlw — curllele(T) < hI;~+1|W|Hk+2(T). (4.33)

Proof. By the mesh regularity assumption, there is a simplex S ¢ T whose inradius is > h7. Following
the arguments in the proof of [[12| Lemma 1.25], we infer the norm equivalence

lgllizesy = llgllizery Vg € PUT). (4.34)

Let us take z7 as the Nédélec interpolant in A**1(S) of w; z7 can be uniquely extended as an element
of N¥*1(T). By the arguments in the proof of |16, Theorem 3.14 and Corollary 3.17], and since S C 7,
it holds

Iw = zrlli2cs) S A5 (IWlgen oy + W lge )

(4.35)
| curlw — curlzr [l 2 () < h§~+l|W|Hk+2(T).

1

We then write, introducing 71"“r w and using triangle inequalities,

lw —zrll2¢r) < llw - 7f W||L2(T) + ||7r7> ¥ —zrlle
K+
S htt |W|Hk+'(T) + ||7TP,TW —zrllis)

S h];~+1(|W|Hk+1(T) + |W|Hk+2(T)),
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where we have used the approximation property of 7rk+1 together with the norm equivalence (4.34)) in
the second equality, and concluded by introducing w and invoking (4.35)) to write

k+1 k+1

Imp 7w —z2rlli2s) < e 7w —wlizs) + llw —zrllp2 s

< hiH! |w|Hk+1 ) + BT (Wl oy + W lgrea )

This concludes the proof of (4.32)). The proof of (4.33)) is done in a similar way, introducing curl(7rk w)

and using the approximation property || carl w — curl(np Tw) L2y S hT Uw [ ggre (T)- O

Proof of Theorem[I0} For all T € T, select zr € N**1(T) given by Lemma Using (3.13¢) to
expand (-, )div,» together with (@10), and recalling (3-6), we see that it holds, for all v, € X*

—curl,h’

Eeurln(W.v;) = ) / (Pl (L rwir) = 2r) - Chvp + ) saivr (L, 7 wir- Crvy)

Ter, YT TeT,
wTF/(ZT XnFp) - 7’t (4'36)

+ Z /curl(zT—W) PcurlTvT Z

TeT;, TeT, FeFr
= EZI+EI:2+3:3+3;4.

Using Cauchy—Schwarz and triangle inequalities, it is readily inferred for the first term

Tl s | D (IPhy 7 T ) = wliZa )+ lw - zTan(T))] ( > ||c"vT||Lzm)
TeTh TeT,
< ! (|W|Hk+1(77,) + |W|Hk+2(7;l)) “gﬁzhndiv,h, (4.37)

where the conclusion follows using the approximation properties (3.20) and (4.32) to bound the first
factor, and along with the norm equivalence to bound the second.

For T,, combining the consistency property (3.26)) of sgiy 7 with discrete Cauchy—Schwarz inequal-
ities and the definition of the ||-||4iy,,-norm readily gives

%ol < B Wlggien () 1€, laiv - (4.38)

For I3, Cauchy—Schwarz inequalities, the approximation property (4.35), and the definition of the
norm ||[|curt,» yield

[Tsl < | D lleurl(zr - w)”Lz(T)) (lePcuﬂT_Tlle(T) < W Wl g5 10 lleurt - (4.39)
TeT, T<T,

Let us now consider the last term in the right-hand side of (4.36). Since (z7)r X nF € RT*(F)
(see [10, Proposition ), by we can replace 7{" Y7 by Reurl, FV in the boundary integral.
Using the fact that both Reurt, rv - and the (rotated) tangential component of w are continuous across
interfaces, along with the fact that wr,r + wr,r = 0 for all F € ¥}, between two elements 77, 7>, and
wip X np =0 forall F € F°, we then have

Ty = Z Z wrF /F(ZT — W) Xnp - Reun FY

TeT, FeFr

(/ (ZT - W) curl Royn TV — /curl(ZT - W) : Rcurl,TKT
TeT; T
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where the conclusion follows recalling that, by definition @.29), Reurt,rvy = (Reur, 7V )i r for all
T € 9, and all F € ¥, and by integrating by parts. Using Cauchy—Schwarz inequalities, it is inferred
1

2

[T4] <

> (lzr = wis ., + Il corl(zr - w)||izm)]
TeT,
1

2
2 2
Z (” curl Reyri, 7V |IL2(T) + ||Rcurl,TKT HLZ(T)” '
TeT,

X

The approximation properties (#.33)) of z7 along with the boundedness (4.31) of Reuri, 7V, yield
1Tl < B (Wl ) + 9 heen ) ) (12 leurtn + 1€, lavan) (4.40)

Plugging (4.37)-(@.40) into (4.36), (3.29) follows. ]

4.4.3 Adjoint consistency for the divergence

Proof of Theorem[I I} Combining the definition (3.30) of the adjoint consistency error for the divergence
with (3.10) summed over T € 7}, we infer that it holds, for all (¢,v,) as in the theorem and all
qn € P (T5) with g7 = (qp)r forall T € Ty,

8grad,h (g, Kh) =

k k k
> /T(p;,/Tq —qr)Dryy +/Tgrad(q —ar) Phoovr+ ) wTF/F(qT —q)VF],

TeT, Fefr

where the cancellation of ﬂ];, o 1s justified by its definition along with D’}KT e PK(T), while the
insertion of ¢ into the boundary integral is possible thanks to its single-valuedness at interfaces along
with the fact that it vanishes on Q. Taking absolute values and using Cauchy—Schwarz inequalities in

the right-hand side along with hp ~ hy forall T € 7;, and all F' € F7, we infer

1

2
(Earaan(a.2,)| < | D (h72lla = arliagr, + | grad(q = gr)l2, , + 7' llar - q||§T)}
TeTn

2

TeT,

(4.41)

1

2
h%‘llDl;"KTlliZ(T) + HPgiv,TKTHiZ(T) + Z hF”VF”iZ(F))] .
Fefr

X

Taking g such that g7 = n’;;rqug for all T € 75, and using the approximation properties of the L?-

orthogonal projector [[12, Theorem 1.45], it is inferred that the first factor in the right-hand side of (@.41)
is < Rkl lg] HE2 (77,) - Moving to the second factor, we use, for all T € 73, [|14, Lemma 8] followed by the
local seminorm equivalence (4.3)) to write Ay ||D’} vollizy S vy llaive < 11vg lldiv,7 - The same norm
equivalence and the definition of the ||-||4iy,7-norm also yields ||P§1V’TKT ||i2 ) +Xrer hrllvi ||i2 (F) <
lv; Ildiv,7- The second factor in the right-hand side of (#.41) is therefore < [|v, |laiv,», and the proof is
complete. |

S Convergence analysis for a DDR discretisation of magnetostatics

We analyse in this section the DDR approximation of the following magnetostatics model, in which the
unknowns are the magnetic field H € H(curl; Q) and the vector potential A € H(div; Q):
uH —curlA =0, carlH=J, divA=0 in Q,

5.1
Axn=0 on 0Q.
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The free current J belongs to curl H(curl; 2) and we assume, for the sake of simplicity, that the magnetic
permeability u is piecewise-constant on the considered meshes, with u € [u—, u,] for some constant
numbers 0 < p_ < u,.

5.1 Scheme

As shown in [11]], a scheme based on the discrete de Rham tools can be written by replacing, in the weak
formulation of (5.1)), the continuous L2-products by discrete ones built on the local products Denote

by ,uT the constant value of y over T € 75, and define the bilinear forms ay, : Xk Xeurn X L urlh R,

k k .
by : url n X de , — R,and cp : th n X Xﬁv’h — R as follows: For all Qh’éh e XX arl.h and all
k
WiV € Xgiy po

an(v,,4,) = Z pr Wps € JewTs  ba(d,,v,) = (Q',igh,zh)div,h,

TeT,
) k k
ch(Wy,v,) ':/Dhﬂh Dyy,,.
Q

The discrete problem then reads: Find H, € X ur, Ad A, € X k v., Such that

an(Hy.¢,) —bu(£,,A,) =0 V¢, € Xuri p
5.2)
bh(gh’zh)-'-ch(éh’zh): Z /J Ple VKh EXglvh (
TeTy, T

The equations of this problem can be recast in the standard Variational form A, ((H,,A,), (£ WY n) =

Lh({ ,¥,), where Ay, : (XCllrl n X ng h)2 — Rand Ly, : _curl n X Xﬁw , — R are the bilinear and
linear forms respectively, such that

An((v),,w),)s (éh’Kh)) : ah(yh’é ) — bh(£ W) +br(v,,v,) +en(w),,v,),

Ln(g,.v,) = Z /J Py rVr-

Teq, *T

5.2 Error estimate

We establish an error estimate using the stability results of the companion paper [10] and the consistency
results presented in Section [3] To measure the error, we introduce the following H(curl; Q)- and

H(div; Q)-like norms on XX , and XK | respectively:

—curl, =div,h’

D=

. k 2
1€, lcurt i = (an (€, £,) +ICAE, W3] VL, € Kby

1
k 2 k
llavan = (1213 n + 105,12 g ) Vo, € XE

Theorem 19 (Error estimate for the magnetostatics problem). Assume that both the first and second
Betti numbers of Q are zero (i.e., Q is not crossed by any tunnel and does not enclose any void).
Then, there exists a unique solution (H,,A,) € Xcurl X Xﬁiv’h to (5.2). Moreover, letting (H,A) €

H(curl; Q) x H(div; Q) be the weak solution to (5.1) and assuming that H € C’(Q) N H*?(7;,) and
A € C°(Q) x H*2(73,), we have

IH,, = I Hpcurt, 1 + 1A, = 15, Allgiv.i.n
s hk+1 (| CurlHlHk+1(7;l) + |H|H(k+l’2)(7;,) + |A|Hk+1(7;l) + |A|Hk+2(7;l)) N (53)

where the hidden constant in < only depends on Q, k, the mesh regularity parameter, and u_, p,.
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Proof. As shown in the proof of [11, Theorem 10], the exactness of the rightmost part of the sequence
@D, which holds owing to [[10, Egs. (3.44) and @D], and the Poincaré inequaliti_es for g’;l and
Dy, (see [10, Theorems [26| and ) enable a reproduction of the arguments of the continuous inf-sup
condition (see, e.g., [13, Section 2] or [[1, Theorem 4.9]) to see that Aj, satisfies a uniform inf-sup
condition with respect to the norm on Xk url. iy X inv’h induced by ||| ,cur1,1,» and ||-|lgiv,1,5-

Using the Third Strang Lemma [9] we therefore obtain (3.3)) provided we can prove that the
consistency error

8h<<H,A>;<gh,zh>> L&, . vy) = An (L, H. I, ,A), (&,7,))

satisfies, for all ({ v,) €X rl n X de o

En((H,A); (éh’zh)) < hk*! (| curlH|Hk+1(7I-1) + |H|H(k+"2)(Th) + |A|Hk+l(7;l) + |A|H"’+2(7il))
X (18, lcurt, .+ 12y laiv.r.n) - (54)

Expanding according to the respective definitions Ay, Ly, ap, by, and ¢y, we have

En((H,A);(£,.v,) =Eni((H,A);({,.v,))
+En2((H,A); (£,.v,)) +En3(H,A);(4,.v,)), (5.5)

with

En1((H, A); (£,.v,)) = » ( / J- P vy —(CA(I (_cuﬂTH),zT)div,T),

T<Th
. . k k k
Ena(H. A (g0, = = 3 [ DAL, -A)Db,
TeT,
8h,3((H’A);(£h’Kh)) - Z ('uT(_cur]TH’éT)curl,T —(Q§ ’—le A)dlv T)
TeT,

Let us first estimate &y 1. Recalling that J = curl H and expanding (-, -)giy,7 according to its
definition (3.13b), we have

Eni((H.A):(,.v,))

= Z /T(curlH Png[Ck curlTH)]) Plng Yr SdlvT(C (curlTH)’KT)]

T €Tn
Z/ curlH Ch ( IfurlTH)) <Py v Z saiv.r (I, 7 (curl H), )
TeT, T<T,

where the second line comes from the relation (#10) and the commutation formula C% (I¥ Ly H) =

_div T (curl H), see [10, Eq. (3.35)]. Using Cauchy—Schwarz inequalities on the integrals, on sqiy 1, and
on the sums over T € 7}, and recalling the consistency properties (3.22)) and (3.26), we infer

En1((H,A);(£,.v,)) < W curd H gron 2 119, laiv.- (5.6)

To handle &, we invoke the commutation formula [10, Eq. (3.36)] to see that DX (!’ngA) =
- (divA) =0, and thus

Ena((H,A); (£, .v,)) =0. (5.7
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Finally, we turn to &, 3. Since A € Hy(curl; Q) the adjoint consistency Theorem [I0] enables
us to replace, in this consistency error, the term (C { [ _dlv 7 A)div,r With fT curl A - Plc(urng

fT urH - Pcurl’T £ - up to a term that is controlled, i.e.,

Ens((H,A):(,.v,))

IA

Z (,UT(_cuﬂTH,gT)curl,T _,UT‘/TH'Pi(url,TéT)

TeT,

k
+h*! (|A|H’*’+1(771) + |A|Hk+2(‘7;l)) ||£h||u,curl,1,h

- Z (,UT‘/T[P urlT(IfurlTH) H] Pk rlT{ +SC“1'1T( url,TH’éT)

TeT,

1 (|l ) + 1AL ) 1€, o1

IA

where we have used ||£h||c“r"h + ||Qfl£h||div,h < ||£h||”’c“rl’l’h and the second inequality comes from
expanding (-, -)eurt,r according to its definition. Cauchy—Schwarz inequalities and the consistency

properties (3.19) and (3.25)) then lead to
8h,3((H, A)§ (éh,zh)) < hk+1|H|H(k+1,2>(7;1) ”gh“curl,h'*'hk-'-l (|A|Hk+1(7;L) + |A|Hk+2(frh)) ||£h||y,curl,1,h-

Plugging this estimate together with (5.6) and (5.7) into (3.5)), we infer that (5.4)) holds, which concludes
the proof. O

5.3 Numerical tests

We present here the results of some numerical tests obtained with the DDR scheme (5.2) for the
magnetostatics model (5.1), focusing on comparing outputs obtained using either the complements
(2.1)), hereafter denoted by (K), or the orthogonal complements of [11} [13]], denoted by (L). Both
versions of the DDR complex, and related schemes, have been implemented in the HArDCore3D C++
framework (see https://github.com/jdroniou/HArDCore), using linear algebra facilities from
the Eigen3 library (see http://eigen.tuxfamily.org) and the Intel MKL PARDISO library (see
https://software.intel.com/en-us/mkl) for the resolution of the global sparse linear system.
All tests were run on a 16-inch 2019 MacBook Pro equipped with an 8-core Intel Core 19 processor
(I9-9980HK) and 32Gb of RAM and running macOS Big Sur version 11.1. We consider a constant
permeability u = 1, and the same exact smooth solution and mesh families as in [[11, Section 4.4].

Figure [I] presents the errors, for various values of k, computed in the relative discrete H(curl; ) x
H(div; Q) norm:

)"

(1", - H| +14,

—le hA”le 1,h
)"

—curl h ueurl, 1,k

(”—curl h H,u curl,1,h + ||—d1v hA”div,l,h

In the case of the Koszul complements, Theorem |19} E states that this error should decrease as O(h*¥+!)
with the mesh size. No such estimate is known for the DDR scheme using orthogonal complements and,
due to the lack of key properties of these complements (hierarchical inclusions, structure of traces), it is
not clear whether the analysis carried out in the rest of this paper could be adapted to such complements.
Nonetheless, the graphs in Figure [T| show that both schemes converge with an order k + 1. The errors
between (K) and (L) are essentially indistinguishable, except for £ > 1 on tetrahedral meshes, where
(1) leads to slightly larger errors than (K) — about twice as large on the finest mesh with k£ = 3.

The assembly of the (L)-DDR scheme requires, for any Y € 75, U 77, to compute bases for the L?-
orthogonal complements in P¢ (¥) of G¢(Y) and R’ (Y), which is done by computing the kernels of local
matrices through a full pivot LU algorithm [11, Section 5.1]. On the contrary, in the (K) version, explicit
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Figure 1: Relative error estimates in discrete H(curl; Q) x H(div;Q) norm vs. &, for the Koszul
complements of (2.1) [(K), continuous lines], and the orthogonal complements of [13]][(L), dashed
lines].
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Mesh card(7,) card(F,) card(&Ep)

Cubic_Cells 4 096 13 056 13 872
Tetgen_Cube-0 2925 6 228 3965
Voro-small-0 2197 15 969 27 546
Voro-small-1 356 2376 4042

(a) Number of relevant mesh entities

Mesh diIn(zgurl,h) dim(gurl,h) diIn(zzurl,h) dim(gurl,h)
Cubic_Cells 13 872 83 296 207 504 398 784
Tetgen_Cube-0 3956 38 314 105 594 214 580
Voro-small-0 27 546 111 787 243 345 —
Voro-small-1 4042 16 636 36 474 64 624
(b) Dimension of the space X Ic(url, h for k € {0,..., 3}
Mesh dim(Xg, ,) dim(Xg,,) dim(X3, ) dim(X3, ,)

Cubic_Cells 13 056 63 744 160 256 314 880
Tetgen_Cube-0 6228 36 234 95 868 193 905

Voro-small-0 15 969 61 089 139 754 —

Voro-small-1 2 376 9264 21376 39 780

(c) Dimension of the space X' giv n for k € {0,..., 3}

Table 1: Dimension of meshes and spaces considered for the evaluation of computational times in the
numerical tests of Section 5.3]

bases for G (Y) and R®!(Y) can be devised; even though these bases are then orthonormalised to
ensure a better numerical stability of the scheme (especially on non-isotropic elements, see the discussion
in [[12 Section B.1.1] on this topic), the computational cost of creating the polynomial bases in (L)
is expected to be larger than in (K). Figure [2] compares the processor times for the two DDR schemes
required for (a) the creation of the bases for local polynomial spaces and (b) the model construction
(computation of the discrete operators, potentials, and L2-products, and global system assembly). We
do not compare the linear system resolution times as they are very close for both schemes. In all the
cases, the finest mesh of each sequence is considered; see Table[I] In the left column of Figure 2] we
report the total CPU time, which constitutes the most reliable measure to assess performance. Since our
code relies on multi-threading, we also report, in the right column, wall-clock times, which are more
representative of real-life performance on the selected architecture. Wall-clock times are subject to
outside influences, such as the impact of other processes, and should therefore be regarded with caution.

As expected, (K) polynomial bases are faster to create than (L) polynomial bases, but not by a large
factor. There is a more pronounced difference when comparing the time for model construction, which
is mostly dedicated to the creation of the discrete vector calculus operators and potentials in &‘uﬂ, , and
ﬁiv, , (once these are created, assemblying the global linear system itself takes only a small fraction
of the total model construction time). One possible explanation for the largest model construction time
noticed with (L) complements is that the local systems defining the operators and potentials, solved using
the Eigen: :LDLT direct solver, have a worse condition number than those with Koszul complements.
Drawing more definitive conclusions is always difficult, as running times highly depend on specific
implementation choices, and our implementation is designed for flexibility rather than for efficiency on
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one given model. The results presented in this section seems to show, however, that the DDR complex
using Koszul complements is not only theoretically better (as it allows for complete consistency analysis
and error estimates), but also requires less computational resources. The comparison of CPU times and
wall clock times also confirms that the assembly step strongly benefits from parallel implementations.

A Curl lifting

We prove here that the face Reyp,r and element Reyp 7 liftings, detailed in Section are well
defined and satisfy the key properties (#.30) and (.31).

A.1 Face lifting Ry r
A.1.1 Existence of ¢Kp

Owing to (4.26b)), we look for ¢, =rotg g for some gp € H!(F). Using the property rotz (rotz) =
—divp(grady) = —Ap (which stems from [10, Eq. (2.1)]) and that roty gg (resp. tg) is gradg gr
(resp. npg) rotated by —m/2 in the plane spanned by F, we see that reduces to the following
Neumann problem on g

_AFC]F = C?KF in F,

(A1)
grad; qr - (wppnrg) = wppve VE € Ef.

Recalling that wpgnpg is the outer normal, in the plane spanned by F, to F' on E, we see that the
compatibility condition of this Neumann problem simply amounts to the definition (2.12)) of C f, with
rr = 1. There exists therefore a unique g € H'(F) solution of this problem with fF gr = 0. Using
qF as a test function in the weak formulation and applying Cauchy—Schwarz inequalities leads to

|l grady grl2, ) < ICEY el llar iz + ) el g e,
EESF
1

2
< helCEvplliz el grade gl p) + ( > hEquniz(E)) lgrady g2 ).
EESF

where the second line follows from the Poincaré-Wirtinger inequality ||gF [l 2(py < hrll gradgp gFllp2 (F)

together with the continuous trace inequality ||gF |l 2(g) S h;/ZHqF li2cr) + hgzll grady gr ||L2(F), see
[12, Remark 1.46 and Lemma 1.31]. As a consequence,

||¢KF ||L2(F) < ”Cllf"KF“LZ(F) + |||Kp|||curl,F~ (A.2)

A.1.2  Existence of y, .

Fix wr € CZ(F) such that wr = 1 on a ball B C F of radius =~ hf (the existence of such a ball
follows from the mesh regularity assumption) and 0 < wp < 1. We look for ¢, . under the form wrrp
with rp € P*(F). Since divp : REF1(F) - P*(F) is an isomorphism, denoting as in |10, Lemma
its inverse by (divg)~!, the relation is equivalent to

/ WErEWFE = /(YEFKF —-¢y,)- (divp) 'wr Vwr € PX(F).
F F -
Since wp > 0 is strictly positive on a ball, the mapping (rg, wr) — /F wprpwp is an inner product

on P¥(F) and there exists therefore a unique rr € P*(F) that satisfies this property. This establishes
the existence of Yy ..
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Figure 2: Comparison of CPU (left column) and wall times (right column), both measured in seconds,
for the computation of the DDR bases (‘“Polynomial bases”) and of the model construction (“Model”)
for Koszul (solid fill) and orthogonal (pattern fill) complements on the finest mesh of each sequence;

see Table E



Moreover, since @r = 1 on Br and ||| 2(p,.) and [|-||;2(f) are uniformly equivalent on PE(F) (see
the proof of |12, Lemma 1.25]), using wr = rg above leads to

2 2 k : -1
Irelle gy S | @rre < Mlvipve = @y, 2 1dive) " rellir
"=, FIL2(F) (F)

< (Y g lleurt,F + 1CEY iz () BEFE L2 ()
where the conclusion follows from a triangle inequality along with the boundedness (4.3) of 7f F and
the estimate (A.2)) for the first factor, and [10, Lemma [31]] for the second factor. Simplifying, we obtain

etz < he (Y g e, + ICEY £lli2(r))- (A.3)

A.1.3 Orthogonality property of Ry
We prove here the relation (4.30). Notice first that, since i, vanishes on dF and rotr grady = 0, by

(#.20) it holds

rotr (Reurl,FV ) = C;EKF and  (Reur,FVp) te =VE VE € &f. (A4)

Let 25 € R¥(F) and write z5 = roty rp with rp € POX1(F). By (Z.13) and Remark we have

k k
/Vt,FKF "ZF = /CFKFFF+ Z wFE/VErF
F F E

E€FE

= /rOtF(Rcurl,FKF)rF"' Z wFE/(Rcurl,FKF)'tE rF:/RCUrl,FKF'ZFa
F E F

EcFE

where the second equality follows from (A.4)), and the conclusion has been obtained using an integration
by parts. This proves that @30) holds for z € RX(F).
Let us now take z € R *1(F). Integrating the left-hand side of by parts yields

/gradwv’: “ZF = ‘/‘(‘ytk,FKF - ¢KF) *ZF-
F F

Since Reurl, ¥y = $y, + grad y, , this establishes that (4.30) also holds for zf € REK*1(F), which
completes the proof of this orthogonality relation since RT**! (F) = R*(F) @ R&*1(F).

A.2 Element lifting Rcyn. 7
A.2.1 Existence of 67,

Owing to [@#28b), we look for 67 v, under the form of a potential gradient grad gr with g7 € H'(T).
Equations (4.284) and (#.28c)) then show that g7 must solve the Neumann problem

Agr = —divChy, inT, As)
gradgr - (wrpnr) = wrr(Cpy, —Chky, -np) VF € Fr, '

where we recall that wr FnF is the outer normal to T on F. The compatibility condition of this problem

is
E wTF/(CIkDKF—CigT-np):—‘/diVC§KT =— E wrp/CigT-np,
F T F

FeFr T efr

which holds true owing to [10, Eq. (3.27)] with rr = 1. There exists therefore a unique gy € H'(T)
with fT gt = 0 solution to (A.5). Using g7 as a test function in the weak formulation of (A.3)) yields

lgrad gr 7, ;) < ICFvy 2 llgrad arlizr + D ICEY gy llar e
Fefr
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Using the Poincaré-Wirtinger and continuous trace inequalities as we did to obtain (A.2), and recalling
that 67y, = grad gr, we infer

%
167y 2y < IC5v2 Il +( > thc,’f-zTniz(F)) S ICF vy llaiv.r (A.6)
FeFr

where the conclusion follows from (4.14).
A.2.2  Existence of Reurl, 7V

The equation (#.29b) suggests to look for Reyr, 7V, = curlzr. Since adding a gradient to z7 does not
change its curl, we can look for z7 in the space

zr € (grad HY(T))* = {w € H(eurl; 7) : /

w-gradr=0 Vre Hl(T)} . (A7)
T

The equations (4.29a)) and then lead to a curl-curl problem on z7, whose variational form is:
Find z7 € (grad H'(T))* such that

k
curlzy - curlw = Crv,.+07rv,.) w—{w R Vor, W XN _
‘/T ar /T( 7V +OTVy) (Wr o1 Reunl,oTY 47> 6T>H;//2(6T)’H//1/2(6T)

vw € (grad H/(T))*, (A.8)

where wr o1 Reurl,orV 57 and wXn gy are the functions defined on OT by setting (wr o7 Reurl,oT V. o )IF =
(wrFReur,FY ) F and (w X ngr)|p == w|p X nfp forall F € ¥, Hl/;z(c')T) is the set of functions on
AT whose restriction to each face F € F7 belongs to H>(F), and whose tangential traces on the edges
are weakly continuous (see [2, Definition 3.1.2] for details), and H;l/ *(9T) is its dual space. Since the

solution to (A.T)) belongs to H”>(F) (see [8, Corollary 23.5]), the edge tangential trace property in (A.4)

ensures that wr g7 Reurl, o1V 4 indeed belongs to H'/;z(aT).

Owing to the Poincaré inequality (A.T3) and to the fact that (grad H'(7))* is a closed subspace
of H(curl; T), there exists a unique solution to (A.8). We now prove that zy satisfies for all
w € H(curl;T) = grad H'(T) @ (grad H'(T))*, which amounts to showing that the right-hand side
vanishes whenever w = grad r for some r € H!(T'). By density of smooth functions in H' (7'), we only
need to prove this result for » € C*(T). Plugging w = grad r in the right-hand side of (A.8), the duality
product can be written as standard integrals (since Reur, rV 5 € LZ(F ) for all F' € Fr) and, integrating
by parts, we obtain

/(C§5T+6TKT)-gradr— Z wTF/Rcurl,pKF-(gradrxnp)
T Ferr F

:—LW?’+ Z wTFL(C§KT+6TKT)'nFV

Fefr

- Z wTF/Rcurl,FZF “rotr (r|F)
F

Fefr

= Z wTF/ Crypr— Z wTF/rOtF(Rcurl,FKF) r\F
F F

Fe¥Fr Fe¥Fr

- Z Z wTFwFE/(Rcurl,FKF'tE) r'F,
E

F€7:T EE?E
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where we have used (4.284) to cancel the term in the first equality, and together with integrations
by parts on each face in the second equality. Recalling (A.4) and that wrp,wr g + wrpwrEe = 0 if
F1, F, are the two faces of T that share the edge E, the right-hand side above vanish, which shows that
(A.8) indeed holds for w = grad r, and thus for all w € H(curl; 7).

Since Reurl,7v; = curl zr, applying this relation to a generic w € C’(T) and integrating by parts
yields (#29a)); using then a generic w € C*(T) and again integrating by parts, we infer (#.29¢).

A.23 Boundon Ry r

We prove here the estimate (#.31). The estimate on curl Reyn, 7 v, follows from (#.29a), (.14) and
(A-6). It remains to bound the L?-norm of Reyr.1 v To do so, we use 8y, provided by Lemma
below and an integration by parts [2, Eq. (2.27)] to re-cast (A.8) as

/curlzT-curlw=/(C§3T+6TKT)-W+/curlw-gv —/w-curlgv .
T T T - Jr =

Making w = z7, we deduce

2 k k
leurl 2712, ) < 1€k Maw,r hrll curl 2zl 2 + Il eurlzr 2y (g leunr + 1€k llavr )

where we have invoked @.14)), (A.6), the Poincaré inequality (A.15), and (A.9) below. Simplifying,
using the norm equivalences (4.3), and recalling that Rcyr, 7 v, = curlzy concludes the proof of the

L2-estimate on Reurl.7 v, stated in (.31).

Lemma 20 (Lifting in H'(T)). There exists 8y, € H' (T) such that the tangential trace of 8y, on oT
is Reurl,or¥ o, and

gy, 2 +hrlleurl g, Nz < vy leutr + 1CEv, llaivr- (A9)
Proof. Recalling that

RCUF],@TK(')T = ¢K(3T + gradaT "bK()T’ (AIO)

with obvious notations (each of these functions, restricted to a face F' € Fr, corresponds to the function
obtained replacing 9T by F), we construct 8, = 8v, .4t 8, .y each addend corresponding to the
addends in the decomposition (A.10) of Reurt,o¥ g7 -

1. Construction of 8y, .4 We assume, for the moment, that -y = 1. By [8, Corollary 23.5] and inverse

inequalities on the polynomials C}‘,K r and (VE)ges, (recalling that 1 = hy =~ hp = hg forall F € Fr
and E € &r), there exists € € (0, /2) such that grady g € H'**€(F) and

k k
lgrady grllgne g S ICE2 R + ) Vel S ICEY ) + 12l
EcEr

Above, when invoking [8} Corollary 23.5], we have used the fact that, since € < 1/2, the H¢ (3 F)-norm is
equivalent to the sum of the H¢ (E)-norms over E € Fg. By construction, ¢L—ﬁ has strongly continuous
tangential traces on the edges of 7" so

2 Z 2 Z 2
< = T,
e T|H;//2(6T) N Fer |¢KF'H‘/Z(F) Fer |grad, CIF|H1/2(F)
T T

2
2 k
< > leradegrll, o5 3 (ICk el + v pllenr) -
FeFr Fefr
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Combined with (A.2)) and recalling that the local length scales are = 1, this leads to

k
160, i com + 18u, e ory < ICE V7 Nt + 17 llewn -
- 4

Since ¢26T belongs to H]/f(c?T), by [2, Theorem 3.1.3] there exists 8,4 € H'(T) such that the
tangential trace of 8y, .4 is ¢L9T and

k

This was done under the assumption that 47 = 1. Using a scaling argument, we infer from the estimate
above that, for an element T of generic diameter hr,

”g!T,(p”LZ(T) + hr || curl ng ,¢|IL2(T) < ”IQI;‘KT ”ldiv,T + I”KT |||curl,T- (A.11)

2. Construction of 8y, .y By definition, 8y, .y is the lifting of grad s ¢y . Recalling the construction

of each Yy, = WFIF, for F € 7, we can extend rf into a polynomial rrp € Pk(T) (for example, by
making r7r independent of the coordinate perpendicular to F). We then have, by (A.3)),

1 1 1
lrrellizery S B2Nrelizeey < hr [hEIY pllcur, e + RENCEY iz | - (A.12)

The smooth, compactly supported function @wr can be extended in T into @y F such that 0 < wrp < 1,
wrp has a compact support in a ball of radius ~ hr that does not touch the faces in Fr\{F}, and
|grad wrp| < h}l. Then, for each F € Fr, the chain rule yields

” grad(wTFrTF)”Lz(T) < || grad rTF”LZ(T) + h;llerF||L2(T) (A 13)

i 1
2 2 k
S hiplly plleun,F + A ICEY g lli2(r)s

where the second inequality follows from an inverse inequality and (A.12)). We then set

8,0 = », grad(wrprrr) € C(T).
FETT

By choice of the supports of (@rr)res, the tangential trace of 8y, .y ON each face F € Fr is
grad; (@rrrrr)F = gradg ¥, . Moreover, the estimate (A.13) gives

1
2
ey, wllize < | D (hF|||zF|||%uﬂ,F+hF||c§zF||iz(F))] < vy Newrn + M€, laiv.r . (A.14)

Fefr

Since 8y, .u is a gradient, we also have curl 8y, .u = 0 and thus, combining (A.11) and (A.14) yields
the estimate (A9) ong, =g, 4+8, y- i

Lemma 21 (Local Poincaré inequality for curl). With (grad H'(T))* defined by (A7), it holds
Wiz < brllcurdwll2gy  Yw e (gradH'(T))*. (A.15)

Proof. By [2, Theorem 3.4.1], for all v € H(div;T) such that divy = 0 and (v - ny, )97 = 0
(where (-, -)gr is the H (8T)—H% (0T) duality product and n7 is the outer normal to T'), there exists
z € H(curl; T) such thath z=0andv = curlz. Moreover, ||zl 27y < Collvlly27) = Coll curlz]| 27,
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and an inspection of the proof shows that Cy < hr (this estimate is obtained via a scaling argument, and
noticing that, if 47 = 1, the constants appearing in the proof of [2, Theorem 3.4.1] do not depend on T
under our mesh regularity assumptions).

Take w € (grad H'(T))* and let (W,,)men be a sequence in C®(7) which converges to w in
H(curl; T), see [2, Proposition 2.2.12]. Apply the result above to v = curlw,,, which satisfies the
requirements since, on each F € 7, we have curlw,, - n7r = rotg ((W,,); r) (Where nrp = (n7)|F
and, as before, (w,,); r is the tangential trace of w,, on F, oriented here according to nrr), and w,,
is continuous on d7. This yields z,, € H(curl;T) such that curl(w,, — z,,) = 0 and ||Zm||L2(T) <
hr || curl Wm||L2(T)- In particular, since the second Betti number of T is zero, w,, — z,, € grad H'(T),

and thus fT(wm —zm) - w = 0. Hence,

Jowmew = [ zmew < iz lonlhar < 19l brllcurl el
The conclusion follows by letting m — oo and simplifying by ||w |2 7). O

Acknowledgements

The authors acknowledge the support of Agence Nationale de la Recherche through the grant NEMESIS
(ANR-20-MRS2-0004-01). Daniele Di Pietro’s work was also supported by the fast4hho grant (ANR-
17-CE23-0019). Jérdme Droniou was partially supported by the Australian Government through the
Australian Research Council’s Discovery Projects funding scheme (grant number DP170100605).

References
[1]1 D. Arnold. Finite Element Exterior Calculus. STAM, 2018. po1:10.1137/1.9781611975543.

[2] F. Assous, P. Ciarlet, and S. Labrunie. Mathematical foundations of computational electro-
magnetism. Vol. 198. Applied Mathematical Sciences. Springer, Cham, 2018, pp. ix+458. por:
10.1007/978-3-319-70842-3.

[3] L.Beirdoda Veiga, F. Brezzi, F. Dassi, L. D. Marini, and A. Russo. “A family of three-dimensional
virtual elements with applications to magnetostatics”. In: SIAM J. Numer. Anal. 56.5 (2018),
pp. 2940-2962. por:[10. 1137/18M1169886.

[4] L. Beirdo da Veiga, K. Lipnikov, and G. Manzini. The mimetic finite difference method for
elliptic problems. Vol. 11. MS&A. Modeling, Simulation and Applications. Springer, Cham,
2014, pp. xvi+392. por:[10.1007/978-3-319-02663-3|

[5] J. Bonelle and A. Ern. “Analysis of compatible discrete operator schemes for elliptic problems
on polyhedral meshes”. In: ESAIM: Math. Model. Numer. Anal. 48 (2014), pp. 553-581. por:
10.1051/m2an/2013104.

[6] J.Bonelle and A. Ern. “Analysis of compatible discrete operator Schemes for the Stokes Equations
on Polyhedral Meshes”. In: IMA J. Numer. Anal. (2015). por1: 18.1093/imanum/dru®51.

[7] S. C. Brenner, Q. Guan, and L.-Y. Sung. “Some estimates for virtual element methods”. In:
Comput. Methods Appl. Math. 17.4 (2017), pp. 553-574. por: 10.1515/cmam-2017-0008.

[8] M. Dauge. Elliptic boundary value problems on corner domains. Vol. 1341. Lecture Notes in
Mathematics. Smoothness and asymptotics of solutions. Springer-Verlag, Berlin, 1988, pp. viii+259.
Dol:|10.1007/BFb0086682.

[9] D. A.Di Pietro and J. Droniou. “A third Strang lemma for schemes in fully discrete formulation”.
In: Calcolo 55.40 (2018). po1: 10.1007/s10092-018-0282-3.

32


https://doi.org/10.1137/1.9781611975543
https://doi.org/10.1007/978-3-319-70842-3
https://doi.org/10.1137/18M1169886
https://doi.org/10.1007/978-3-319-02663-3
https://doi.org/10.1051/m2an/2013104
https://doi.org/10.1093/imanum/dru051
https://doi.org/10.1515/cmam-2017-0008
https://doi.org/10.1007/BFb0086682
https://doi.org/10.1007/s10092-018-0282-3

[10]

[11]

[12]

[13]

[14]

[15]

[16]

D. A. Di Pietro and J. Droniou. An arbitrary-order discrete de Rham complex on polyhedral
meshes. Part I: Exactness and Poincaré inequalities. 2021.

D. A. Di Pietro and J. Droniou. “An arbitrary-order method for magnetostatics on polyhedral
meshes based on a discrete de Rham sequence”. In: J. Comput. Phys. (2020). Published online.
DOI:|10.1016/j.jcp.2020.109991.

D. A. Di Pietro and J. Droniou. The Hybrid High-Order method for polytopal meshes. Design,
analysis, and applications. Modeling, Simulation and Application 19. Springer International
Publishing, 2020. por: 10.1007,/978-3-030-37203-3.

D. A. Di Pietro, J. Droniou, and F. Rapetti. “Fully discrete polynomial de Rham sequences of
arbitrary degree on polygons and polyhedra”. In: Math. Models Methods Appl. Sci. 30.9 (2020),
pp. 1809-1855. por:|10.1142/50218202520500372

D. A. Di Pietro and A. Ern. “Arbitrary-order mixed methods for heterogeneous anisotropic
diffusion on general meshes”. In: IMA J. Numer. Anal. 37.1 (2017), pp. 40-63. por: 10. 10893/
imanum/drw03.

J. Droniou, R. Eymard, T. Gallouét, C. Guichard, and R. Herbin. The gradient discretisation
method. Vol. 82. Mathematics & Applications. Springer, 2018, 511p. por: 10. 1007 /978-3-
319-79042-8.

R. Hiptmair. “Finite elements in computational electromagnetism”. In: Acta Numer. 11 (2002),
pp. 237-339. po1:|10.1017/5S0962492902000041.

33


https://doi.org/10.1016/j.jcp.2020.109991
https://doi.org/10.1007/978-3-030-37203-3
https://doi.org/10.1142/S0218202520500372
https://doi.org/10.1093/imanum/drw003
https://doi.org/10.1093/imanum/drw003
https://doi.org/10.1007/978-3-319-79042-8
https://doi.org/10.1007/978-3-319-79042-8
https://doi.org/10.1017/S0962492902000041

	Introduction
	Setting
	Mesh and orientation
	Polynomial spaces
	Discrete spaces
	Local discrete vector calculus operators
	Gradients
	Curls
	Divergence

	Global sequence

	Consistency results
	Potential reconstructions and L2-products on discrete spaces
	Scalar potential on XgradT
	Vector potential on XcurlT
	Vector potential on XdivT
	Discrete L2-products

	Primal consistency
	Adjoint consistency

	Proofs of the consistency results
	Component norms and bounds on potentials
	Links between discrete vector potentials and vector calculus operators
	Primal consistency
	Adjoint consistency
	Adjoint consistency for the gradient
	Adjoint consistency for the curl
	Adjoint consistency for the divergence


	Convergence analysis for a DDR discretisation of magnetostatics
	Scheme
	Error estimate
	Numerical tests

	Curl lifting
	Face lifting 
	Existence of vF
	Existence of vF
	Orthogonality property of 

	Element lifting RcurlT
	Existence of dT
	Existence of RcurlT
	Bound on RcurlT



