
HAL Id: hal-03103458
https://hal.science/hal-03103458

Submitted on 25 Nov 2021

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Logical time control of concurrent DES
Jean-Luc Béchennec, Didier Lime, Olivier H. Roux

To cite this version:
Jean-Luc Béchennec, Didier Lime, Olivier H. Roux. Logical time control of concurrent DES. Discrete
Event Dynamic Systems, 2021, �10.1007/s10626-020-00333-x�. �hal-03103458�

https://hal.science/hal-03103458
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Logical Time Control of concurrent DES

Jean-Luc Béchennec1 ⋅ Didier Lime2 ⋅ Olivier (H.)
Roux2

the date of receipt and acceptance should be inserted later

Abstract The synthesis of controllers for reactive systems can be done by computing win-
ning strategies in two-player games. Timed (game) Automata are an appropriate formalism
to model real-time embedded systems but are not easy to use for controller synthesis for two
reasons: i) timed models require the knowledge of the precise timings of the system; for ex-
ample, if an action must occur in the future, the deadline of this occurrence must be known,
ii) in practice, the dense state space makes the computation of the controller often impos-
sible for complex systems. This paper introduces an extension of untimed game automata
with logical time. The new semantics introduces two new types of uncontrollable actions:
delayed actions which are possibly avoidable, and ineluctable actions which will eventually
happen if nothing is done to abort it. The controller synthesis problem is adapted to this new
semantics. This paper focuses specifically on the reachability and safety objectives and gives
algorithms to generate a controller. The paper then extends these results to Game Petri Nets
which can express concurrent timed behaviors and where an avoidable transition can lose its
avoidability by the elapsing of time. The usefulness of this new model is illustrated by a real
device driver synthesis example.

Keywords Finite automata ⋅ Game theory ⋅ Controller synthesis ⋅ Timed systems

1 Introduction

The theory of supervisory control has been well developed since about 30 years ago with
the seminal works of [26,23,18]. It has become a basic paradigm for the control of discrete
event systems (DES) modeled as finite state machines.

1
CNRS, LS2N, Nantes France
E-mail: jean-luc.bechennec@ls2n.fr

2
Ecole Centrale de Nantes, LS2N, Nantes France
E-mail: didier.lime@ec-nantes.fr
E-mail: olivier-h.roux@ec-nantes.fr

2 Jean-Luc Béchennec1 et al.

Since [23], different formalisms have been considered to model (un)controllable actions
and control problems. Formulating control problems as two-player games have provided effi-
cient solutions [24]. In this setting, the controller is modeled by a player and the environment
by its opponent. Determining whether a controller exists amounts to determine if it can win
and computing a winning strategy is equivalent to synthesizing a controller. However, these
turn-based games [24] where one player chooses their action before the other chooses theirs,
are sequential and do not allow to model concurrency. Therefore, concurrent games [14,
16,1] have been proposed, for which, at each round of the game, player 1 (the controller)
and player 2 (the environment) independently and simultaneously choose moves, and both
choices are used to determine the next state of the game.

Besides the controllable and uncontrollable actions used in untimed frameworks, con-
trolled systems often rely on additional behavioral capabilities, based in particular on two
important notions: delays and urgency. Without delays, we cannot express the fact that some
actions (such as analog conversions, or emissions of messages on a communication bus) take
time, and that the controller can perform actions during that time, even aborting the current
environment operation. In that case, the controller must make use of some kind of urgency.
In addition, without urgency, we cannot model ineluctable behaviors (such as the eventual
arrival of a product at the end of the conveyor belt on which it is placed) of the environment
since, in untimed games, the environment is expected to play every move at its disposal to
make the controller fails, including choosing not to play.

The model of timed automata [3] and timed games [15] is an appropriate formalism
to express and model these timed properties. In a timed game, the time at which the two
players (controller and environment), play their moves is taken explicitly into account. Their
level of expressiveness and well-known controller synthesis techniques and tools [2,6] allow
the modeling of systems with complex interactions while providing a formal proof of the
behavior of the system. Yet, the computational complexity of the involved algorithms limits
the size of the systems that can be addressed in practice.

Moreover, these timed formalisms require a good understanding of all the components
of the system, including the knowledge of the timings of the actions of both players. These
timings are rarely known precisely. Moreover, when these timings are known, or at least
bounds on those timings, the complexity of the timed controller synthesis algorithms is still
a problem.

Hence, it would be very interesting to derive a controller without explicit timed models
(i.e. without precise timing quantification) while keeping the notion of urgency and delay.
The behavior we would like to capture can be reduced into two types of uncontrollable ac-
tions:

– Delayed (avoidable) actions, which take time to complete or cannot happen immediately,
such as writing to an external memory, sending a message on a bus, performing a specific
computation on a hardware dedicated unit, etc. These actions usually come with some
kind of abortion mechanism, so they are avoidable from a certain point of view. They are
modeled in an explicit timed context by guard constraints with non-zero lower bounds
on clocks.

– Ineluctable actions, which are known to happen in a nominal context: the end of a trans-
mission or a conversion, or, more generally, an acknowledgment of the reception of a
command. An ineluctable action is guaranteed to happen eventually if nothing is done
to abort it, which differs from the notion of fairness. In the untimed context, it is not suf-
ficient to consider these actions as controllable. First, except if it is explicitly avoidable,
an ineluctable action cannot be prevented by the controller, even if it leads to losing the

Logical Time Control of concurrent DES 3

game. Second, when there is a choice between two controllable actions, the controller
chooses, but when it is between two ineluctable actions, the environment chooses.

Finally, since an avoidable uncontrollable action is avoidable because it is assumed to
take some time, a strategy for the controller wishing to avoid that action is to act urgently.

Our contribution.We propose to extend the framework of untimed games with avoidability
and ineluctability for uncontrollable actions and with urgency for controllable actions:

– an avoidable (delayed) action cannot happen immediately so that the controller can per-
form an urgent action to avoid it if needed.

– an ineluctable action is guaranteed to happen eventually if nothing else is done to abort
it, and the controller may want to rely on it.

We revisit the controller synthesis problem for reachability and safety games in this con-
text, leading to what we call logical time games, in which players can play their actions
immediately (urgently) or not. As a consequence, moves by the players carry information
both on the action played and the timing at which they are played.

We then extend these logical time games in order to express concurrent timed behaviors
with game Petri Nets.

This paper is organised as follows:
We first give in Section 2, the basic definitions and notations for logical time games.

By using these notations, we justify our new model in Section 3. Then, in Section 4, we
solve the controller synthesis problem for logical time games. In Section 5, Section 6 and
Section 7, we respectively focus on reachability games, safety games and safe reachability
games. In Section 8 we extend these results to Game Petri Nets. We discuss the complexity
of the winning state computation algorithm implemented in our tool ROMÉO in section 10.
Finally, in Section 11 we illustrate our method on a case study based on a Microchip CAN
controller.

This article is an extension of [4,5], with mainly the addition of the complete proofs, the
safe reachability games, and the setting of Game Petri Nets. The case-study has also been
updated to use Game Petri Nets.

2 Logical time games

In this section we propose a variant of the traditional untimed game automata with new
logical-time semantics capturing avoidability and ineluctability.

Let C and U be the two players called controller and environment, respectively.

Definition 1 (Game structure) A game structure is a tuple  = (Q, q0, AC , AU , A⊙U ,
A▴U , �) where:

– Q is a set of states
– q0 ∈ Q is the initial state
– AC and AU are two disjoint sets of actions for the controller and the environment, re-

spectively.
– A⊙U ⊆ AU and A▴U ⊆ AU are the subsets of avoidable and ineluctable actions, respec-

tively. Note that these subsets are independent, and their intersection is not necessarily
empty.

– � ∶ Q× (AC ∪AU) ×Q a set of edges between states. We denote q
a
←→ q′ for (q, a, q′) ∈ �.

4 Jean-Luc Béchennec1 et al.

For the sake of simplicity, we assume the underlying finite automaton is deterministic.
A⊙U ⊆ AU and A▴U ⊆ AU are the subsets of avoidable and ineluctable actions. We also

denoteA⊙▴U ,A⊙▴U ,A⊙▴U ,A⊙▴U ,A⊙U andA▴U , the other subsets ofAU based on these two notions.
As an example, A▴U is the subset of actions of AU which are not ineluctable but can be either
avoidable or not and A⊙▴U is the subset of actions of AU which are not avoidable and not
ineluctable.

2.1 Graphical notations

For the following figures, we will use the following notations illustrated in Figure 1:
– States are represented by circles, and the initial state is denoted q0.
– Controllable transitions are represented by solid arrows.
– Uncontrollable transitions are represented by dashed arrows.
– Avoidable transitions start with a circle.
– Ineluctable transitions end with a double arrowhead.

q0 q1

q2

q3

q4

q5

c

u

ua

ui uai

Fig. 1 Graphical notation example: Here q0 is the initial state, and c ∈ AC , u ∈ A⊙▴U , ua ∈ A⊙▴U , ui ∈
A⊙▴U and uai ∈ A⊙▴U .

2.2 Behaviors in game structures

The behaviors in game structures are timed behaviors, but only at a logical level, in which
we distinguish immediate actions from others: we thus denote by Δ the set {0, 0}, which
represents the logical time at which an action is played. It can be instantaneous (0), or
non-immediate (0). Semantically, ⟨a, 0⟩ means that the action a is performed immediately,
whereas in ⟨a, 0⟩, the action a is performed after a non-null time.

Avoidable actions

From a given state q an avoidable (and then non-immediate) action ⟨u, 0⟩ (as in Figure 4) can
be prevented by any other action c from the same state q by the timed action ⟨c, 0⟩.

Logical Time Control of concurrent DES 5

Ineluctable actions

From a given state, an ineluctable action u will eventually happen if we do not do anything
else from this state, that is to say, if we wait long enough. Note that it could still happen
immediately.

Avoidability and Ineluctability vs Fairness

An ineluctable action can also be avoidable from a given state, and the reachability game
shown in Figure 2 is winning by doing ⟨c, 0⟩.

q0 GBad
cu

Fig. 2 Avoidable actions (even when ineluctable) can be prevented by the controller

Moreover, like any non-avoidable uncontrollable action, a non-avoidable ineluctable ac-
tion cannot be prevented by a controllable action. The environment still has a choice of what
it wants to play when there is an ineluctable action, however. The important thing is that
it must play something, and to that extent, ineluctability could equally well be defined on
states, though from an applicative point of view it makes sense to keep it on actions as we
did.

This latter consideration also demonstrates how ineluctability is different from fairness.
With the general notion of fairness, one assumes that all edges, or states, or some other
features are considered infinitely often. Ineluctability does not imply anything like this: in
Figure 3, the environment might very well decide to always play the loop and never the
ineluctable action. In that sense it is not assumed to be fair, neither weakly nor strongly. It
follows that the two leftmost reachability games in that figure are not winning.

Note that the time at which the loop is taken does not need to be 0. The rightmost game
in Figure 3 is actually a timed automaton with a single clock x, which is reset to 0 on the
loop and cannot exceed 2 when in q0. Also, it must be greater than or equal to 2 to proceed
to G. This is a model we want to abstract with the leftmost automaton: the invariant implies
that the environment must play (but does not prescribe which action) and if the environment
always chooses the loop at any time before x is 2 then the guard of the transition to G is
actually never satisfied.

Note that we try here to show the conceptual differences between fairness and ineluctabil-
ity but we do not claim that neither of them can simulate the other using more complex
constructions. This is left as an open problem.

q0 G

u

ui q0 G

q1
u1u2

ui q0 G

u, x← 0

ui, x ≥ 2

x ≤ 2

Fig. 3 Ineluctability is not fairness.

6 Jean-Luc Béchennec1 et al.

2.3 Predecessor, successor and run

ForΣ ⊆ AC∪AU , we define the predecessor and successor functions preΣ ∶ 2Q → 2Q, sucΣ ∶
2Q → 2Q. Let X ⊆ Q, ∀q ∈ Q, q ∈ preΣ(X) iff ∃a ∈ Σ and q′ ∈ X, s.t. q

a
←→ q′, and

∀q′ ∈ Q, q′ ∈ sucΣ(X) iff ∃a ∈ Σ and q ∈ X, s.t. q
a
←→ q′. When Σ = AC ∪ AU , we omit Σ

and simply write pre(X) and suc(X).
A run of a game structure is a sequence q0 ⟨a1, d1⟩ q1 ⟨a2, d2⟩ q2… with ai ∈ AC ∪AU ,

di ∈ Δ, qi ∈ Q, and such that qi
ai
←→ qi+1 for all i ≥ 0. We denote by  the set of runs, and by

 the set of finite runs. Note that a finite run always ends with a state.
For a run r ∈ , we define First(r) the first state of r, States(r) the set of states which

appear in r, andAct(r) the set of actions which appear in r. If r ∈ , we defineLast(r) the last
state of r. We define the length |r| of a run r as the size of the subsequence ⟨a1, d1⟩⟨a2, d2⟩….

ForR ⊆  andX ⊆ Q, we denote byR|X the subset ofR such that∀r ∈ R|X ,States(r) ⊆
X.

3 Justification for this new model

For the examples used in this section, we consider a reachability game (formally defined in
Section 5) starting in q0 where the goal is to reach a state denoted G.

3.1 Avoidable actions

The problem of avoidable (delayable) actions can be solved by using timed models such as
timed automata. The avoidable actions can be translated directly into guards with a non-
zero lower bound on clocks as depicted in Figures 4.a and 4.b. Hence, timed games [21,15]
allow solving the controller synthesis problem for reachability or safety objectives. In [25],
the authors consider an abstraction of timed automata [3] where a transition � represents
the fact that some time elapses. The authors argue that the abstract timed transitions (�) can
be considered as controllable for the purposes of controller synthesis. This abstraction does
not require explicit delays and if � represents non-null elapsing of time, from a state q0, an
action � followed by an uncontrollable action u is equivalent to an avoidable action u from q0
as depicted in Figure 4.c. In [25], this abstraction is generated by a quotient of the timed game
automata by a time-abstracting bisimulation and can be viewed as a game graph on which
the complexity of the controller synthesis algorithm is quadratic in the size of the graph.

The concept of avoidable uncontrollable action addresses concerns similar to that of
(controllable) forcible action from [11]. A forcible action can preempt the elapsing of time
and therefore happen immediately, which is very much what the controller strategy to avoid
an avoidable uncontrollable action will be. Yet, in practice, forcible actions are part of the
framework called timed DES, in which time is modeled explicitly by tick events. In our
formalism, time is modeled implicitly, and also much less precisely, allowing for models
that are smaller and easier to analyze.

3.2 Ineluctable actions

In our games, by default, players have the option not to play. Ineluctable actions locally re-
move this possibility for the environment. They model things that are known to happen in a

Logical Time Control of concurrent DES 7

4.a) 4.b) TA 4.c)

q0 G

Bad

u

c q0 G

Bad

x > 0, u

c q0 G

q�

Bad

u

c
�

Fig. 4 Avoidable uncontrollable actions can be prevented by the controller

nominal context: the end of a transmission or a conversion, or more generally an acknowl-
edgment of the reception of a command.

Ineluctable actions vs controllable actions. In the untimed context, it is not sufficient to
consider these actions as controllable. First, an ineluctable action cannot be prevented by
the controller, even if it leads to losing the game (see Figure 5). Second, when there is a
choice between two controllable actions, the controller chooses but when it is between two
ineluctable actions, the environment chooses. For example, in Figure 6, assume the emission
of a message on a communication bus (action c). It can lead to an immediate success (action
u2) or it can first fail (action u1) and can become a success later. It is ineluctable that either
u1 or u2 occurs, but the choice between u1 and u2 does not belong to the controller who has
to ensure that both states q1 and q2 are winning.

q0 G

Bad

c

u

Fig. 5 Ineluctable actions cannot be prevented by the controller

q0 q1 G

q2 G

c u2

u1

w

Fig. 6 Ineluctable actions are not selected by the controller

We could try to replace ineluctable actions with both a normal uncontrollable action and
a controllable action with the same source and target as in Figure 7. The idea would be that
the environment can still choose what action it wants to play but if it tries to do nothing the
controller can choose instead, effectively forcing the environment to play. This trick works

8 Jean-Luc Béchennec1 et al.

q0 G

Bad

u1

u2

q0 G

Bad

u1

c

u2

Fig. 7 Ineluctable actions cannot be forced by the controller

when there are no avoidable actions but the games in Figure 7 are counter-examples for the
general case: the original game on the left is actually losing because the environment can de-
lay its move until it can play the avoidable action. But in the transformed game on the right,
the controller can play action c immediately, effectively forcing the modeled ineluctable ac-
tion to happen at time 0 and avoiding the losing action, and thus the game is winning.

Ineluctable actions vs timed actions. In the timed context, ineluctability cannot be translated
as-is into and from timed automata. We can use invariants on locations to force the environ-
ment to play, but this requires the knowledge of an upper bound on the delay, which is often
not possible.

Moreover, invariants apply to all players, including the controller, whereas ineluctable
actions only restrict the behavior of the environment. In [13], Timed Games are based on
Timed Automata with invariants that are restricted to constraints of the form x ≤ k (where
x is a clock and k is a constant). However, the environment can decide not to take action if
an invariant requires to leave a state and the controller can do so.

Although this has not been done in the literature, it is possible to extend Timed Game
Automata in order to take into account ineluctability, for example, by extending the notion
of deadline or urgency [10]. However, reachability and safety timed games are decidable but
are EXPTIME-complete and the symbolic states manipulated by the algorithms are regions
or zones that are too powerful for untimed models and limit the size of the systems that can
be addressed in practice.

Our model eliminates the need to put explicit values on time invariants and only restricts
the behavior of the environment and not that of the controller.

4 Controller synthesis

In this section, we will solve the controller synthesis problem using our modified semantics.
The goal is to derive a strategy for the controller to restrict the behavior of the game. Those
strategies prescribe either a set of controllable moves that should be done either immediately,
or with no timing restriction, or to wait and do nothing until some action happens, which is
represented by an empty set.

Let us recallC andU are the two players called controller and environment, respectively.

Definition 2 (Strategy) A strategy si for player i ∈ {C,U} is a function si ∶  → 2(Ai×Δ).
It is said to be memoryless if it only depends on the current state of the run, i.e. si ∶ Q →
2(Ai×Δ). We impose that if ⟨a, d⟩ ∈ s(r), then a is indeed possible from Last(r).

When both ⟨a, 0⟩ and ⟨a, 0⟩ are in s(r), we write ⟨a, 0 + 0⟩ ∈ s(r) for short.

Logical Time Control of concurrent DES 9

Definition 3 (Strategies with ineluctable and avoidable actions) Let sU ∶  → 2(AU×Δ)
be a strategy of the environment and let r be a run in the game, with Last(r) = q.

If there exists a ∈ A▴U , d ∈ Δ, and a state q
′ such that q

⟨a, d⟩
←→ q′ then sU (r) ≠ ∅.

If there exists a ∈ A⊙U , d ∈ Δ, and a state q
′ such that q

⟨a, d⟩
←→ q′, and if ⟨a, d⟩ ∈ sU (r), then

d = 0.

Starting from a run consisting of some state (usually the initial state), both players in-
ductively build a set of runs (because of non-determinism) by playing their strategies. Since
we are interested in the strategies for the controller to win whatever the (legal) strategy of
the environment is, we directly define outcomes of a strategy of the controller as the union
over all strategies of the environment of all such sets of runs.

Definition 4 (Outcome) Let  = (Q, q0, AC , AU , A⊙U , A
▴
U , �) be a game structure, r one of

its runs, and sC a strategy for the controller. The outcome Outcome(q, sC) of sC from state q
is the subset of  defined inductively by:

– q ∈ Outcome(q, sC)

– If r ∈ Outcome(q, sC) is finite, r′ = r
⟨a, d⟩
←→ q′ ∈ Outcome(q, sC) if r′ ∈  and one of the

following holds true:
– a ∈ A⊙U and if ∃⟨a′, 0⟩ ∈ sC (r), then d = 0;
– a ∈ A⊙U and ∃⟨a′, 0⟩ ∈ sC (r).
– ⟨a, d⟩ ∈ sC (r).

– An infinite run belongs toOutcome(q, sC) if all its finite prefixes also belong toOutcome(q, sC)

Intuitively, we are interested in runs that are long enough to have a chance to fulfill the
objective. Maximality distinguishes those runs that are the longest that the controller can
produce through its actions (possibly with diverting moves from the environment) or by
relying on the ineluctable actions of the environment.

A run r ismaximal in a set of runsR if either it is finite and there is no a ∈ AC ∪A▴U , and

no q′ ∈ Q such that r
a
←→ q′ ∈ R, or it is infinite and none of its finite prefixes are maximal.

We denote byMaxOutcome(q, sC) the set of runs that are maximal in Outcome(q, sC).
The control synthesis problem can be stated using winning conditions, also called ob-

jectives. For a given game structure , a winning condition C is a set of allowed runs. We
call the pair (, C) a game.

In such a game, a strategy s for the controller is winning from state q ifMaxOutcome(q, s) ⊆
C . A state q is winning if there exists a winning strategy from q. The game itself is winning
if q0 is winning.

5 Reachability games

A reachability objective of the controller is to force the game to reach a certain set of states.
Formally:

Definition 5 (Reachability objective)
Let  = (Q, q0, AC , AU , A⊙U , A

▴
U , �) be a game structure, and Goal ⊆ Q a set of goal states.

The reachability winning condition (or objective) Reach(Goal) for Goal is the set of runs r
that are maximal in and such that States(r) ∩ Goal ≠ ∅.

10 Jean-Luc Béchennec1 et al.

For example, for the game of Figure 8, the objective is to reach the state G and we have
Goal = {G} and Reach(Goal) = {q0 ⟨c, d1⟩ q1 ⟨u, d2⟩ G ∣ d1, d2 ∈ Δ}.

q0 q1 G
c u

Fig. 8 The objective is to reach the state G.

5.1 Computing the strategy

The computation of the strategy is obtained from the set of winning states. A state is winning
for the controller if it is possible to reach a goal state from the strategy i.e. if the controller has
a strategy to reach a goal state against all strategies of the environment. The main algorithm
for computing winning strategies for reachability games is a backward fixed-point algorithm
over the controllable predecessor function.

Intuitively, a state s is a controllable predecessor of X if the following conditions are
met:

– there is an action which is guaranteed to happen (either controllable or uncontrollable
ineluctable) and leads to X;

– all other actions of the environment cannot prevent the game to reach a state in X.

Definition 6 (Controllable predecessors)
Let  = (Q, q0, AC , AU , A

⊙
U , A

▴
U , �) be a game structure, and X ⊆ Q a set of states. The

controllable predecessors �(X) of X is the subset of Q defined by:

�(X) = preAC (X) ⧵ preA⊙U (X)

∪ preA▴U (X) ⧵ preAU (X)
(1)

The two parts of the formula represent two different ways to win:

– if there is a controllable action from s to a state in X, all uncontrollable actions must
either be avoidable, or also lead to states in X

– if there is an ineluctable uncontrollable action, all other uncontrollable actions must also
lead to a state in X.

Given this new definition of �, for Goal ⊆ Q the set of winning states for the winning
condition Reach(Goal) is computed using the following classic backward fixed-point algo-
rithm 1: 0 = Goal and n+1 = n ∪ �(n). When it exists, the final fixed-point set of
winning states is noted .

Lemma 1 Let (, C) be a reachability game. Let q1 and q2 be two states of . Let s1 be a
memoryless strategy that is winning from q1 and s2 be a memoryless strategy that is winning
from q2. LetQ1 be the set of states of runs r inOutcome(q1, s1) such that States(r)∩Goal = ∅
(i.e. the states that are traversed before reaching Goal).

Let s be the memoryless strategy defined by: for all q ∈ Q, if q ∈ Q1 then s(q) = s1(q),
otherwise s(q) = s2(q). Then s is winning from both q1 and q2.

Logical Time Control of concurrent DES 11

Algorithm 1 Winning states computation algorithm for reachability game
Input:  = (Q, q0, AC , AU , A⊙U , A

▴
U , �),Goal ⊆ Q

Output: 
 ← Goal
while �() ⊈ do

 ←  ∪ �()
end while
return 

Proof The fact that s is winning from q1 is obvious. Now, from q2 this is also quite straightfor-
ward. Let r be a run inMaxOutcome(q2, s). If States(r)∩Q1 = ∅ then r ∈ MaxOutcome(q2, s2)
and therefore it eventually goes through Goal. Otherwise, we can write r as r2r1, with r2 ∈
Outcome(q2, s2), Last(r2) ∈ Q1 and r1 ∈ Outcome(Last(r2), s1). Since Last(r2) ∈ Q1, and
since from there we follow the s1, then for sure r1 eventually goes through Goal.

Lemma 2 If q ∈ n (i.e. the value of  at the end of the n-th iteration of the while loop)
then there exists a winning memoryless strategy from q that permits to win in n action steps
or less.

Proof By induction on n.
Base case: before the first iteration of the while loop,0 = Goal, and q ∈ Goal implies

that we have a strategy to win without doing anything. It is indeed equivalent to having a run
with no action step from q to Goal.

Induction step: suppose the property holds for some n ≥ 0. Let q ∈ n+1. Then either
q ∈n or q ∈ �(n).

If q ∈n, then the induction hypothesis directly gives the result.
If q ∉n and therefore q ∈ �(n). Two more cases arise:

– either q ∈ preAC (n)⧵preA⊙U (n): then there exists some a ∈ AC and qa ∈n such that

q
a
←→ qa. Let {b1,… , bp} be the set of uncontrollable, non-ineluctable actions possible in

q and let qi be the state such that q
bi
←→ qi for all i. Then qi ∈n, because q ∉ preA⊙U (n).

By the induction hypothesis, we know that there are memoryless winning strategies sa
from qa, and si for each of the qi’s. By Lemma 1, we can merge all those strategies in
one memoryless strategy s′. Now, we exhibit a winning strategy: let s be the memoryless
strategy such that s(q) = {⟨a, 0⟩} and s(q′) = s′(q′) for all q′ ≠ q. Let us prove that s is
indeed winning from q.
Let r be a run in MaxOutcome(q, s). Note that the run consisting of only q cannot be
maximal since a ∈ AC . Therefore we have at least one action in r. Consider the first of
those and call it x:
– First suppose that x ∈ AC . Then we must have x = a because s says to play a in q.

Now, remark that since q ∉n, it is clear that it never appears in the outcomes of s′
from qa or any of the qb’s, so the outcomes of s and s′ from those states are the same.
Consequently, all maximal runs from q that start with a will eventually go through
Goal because s′ is winning.

– Suppose now that x ∈ AU . Then we must have x ∈ A⊙U because s says to play
immediately in q. Furthermore, the state reached by taking x is one of the qi’s defined
above, fromwhich s′ is winning, andwith the same argument as in the previous point,
the maximal runs that start with x also eventually go through Goal.

12 Jean-Luc Béchennec1 et al.

– or q ∈ preA▴U (n) ⧵ preAU (n). This case is fairly similar to the previous one: we know

there exists some a ∈ A▴U and qa ∈ n such that q
a
←→ qa. Let {b1,… , bp} be the set of

uncontrollable actions possible in q and let qi be the state such that q
bi
←→ qi for all i. Then

qi ∈ n, because q ∉ preAU (n). By the induction hypothesis, we know that there are
memoryless winning strategies sa from qa, and si for each of the qi’s. By Lemma 1, we
can merge all those strategies in one memoryless strategy s′.
Let s be the memoryless strategy such that s(q) = ∅ and s(q′) = s′(q′) for all q′ ≠ q. We
prove that s is winning from q.
Let r be a run in MaxOutcome(q, s). Note that the run consisting of only q cannot be
maximal since a ∈ A▴U . Therefore we have at least one action in r. Consider the first of
those and call it x. Since the strategy says to wait, we cannot have x ∈ AC . So x ∈ AU ,
and the state reached by taking x is one of the qi’s above and we get the result with the
same reasoning as before.

Lemma 3 If there exists a winning strategy from state q that permits to win in n action steps
or less, then q ∈n.

Proof By induction on n.
Base case: If we can win without changing states, it must be the case that q ∈ Goal =0.
Induction step: suppose the property holds for some n ≥ 0. Suppose that we have a

winning strategy s from state q such that all runs inMaxOutcome(q, s) reachGoal in at most
n + 1 steps.

Consider the possible actions from q. If they are all uncontrollable and not ineluctable, or
there is also controllable transitions but s(q) = ∅, then q is itself a maximal run and therefore
q ∈ Goal =0, which implies that q ∈n+1. Otherwise:

– either there is at least one controllable action a in s(q). Then it will be present in the
outcome of s from q, leading to a state qa, and then, since s is winning from q it is also
from qa, but in at most n steps. So we can apply the induction hypothesis and conclude
that q ∈ preAC (n).
By definition of the outcome, uncontrollable, non-ineluctable actions always appear in
the outcome of s from q and, with the same reasoning, they all lead to states in n. So
q ∉ preA⊙U (n). And finally q ∈n+1.

– or there is no controllable action in s(q) but there is at least an ineluctable uncontrollable
action x possible from q. So x appears in the outcome of s from q and, as before, q ∈
preA▴U (n). Similarly all possible uncontrollable actions appear in the outcome (since the
strategymust be to wait) and, again as before, they therefore all lead ton. Consequently,
q ∈n+1.

From Lemmas 2 and 3, we can deduce the following two results:

Theorem 1 (Completeness and Soundness) q ∈ if and only if q is winning.

Proof If q is winning then there is a strategy from q that permits to win in a finite number
of steps. So, by Lemma 3, q ∈ n for some n. Reciprocally, if q ∈  , it is in n for some
n and, by Lemma 2, it is winning.

Theorem 2 (Memoryless strategies) If the game is winning then it is winning with a mem-
oryless strategy.

Logical Time Control of concurrent DES 13

Proof If the game is winning then its initial state q0 is winning with a strategy that permits
to win in a finite number of steps then, by Lemma 3, q0 is inn for some n and, by Lemma 2,
there is therefore a winning memoryless strategy from q0.

The proof of Lemma 2 shows how one can effectively build a memoryless winning strat-
egy when the game is winning: at each iteration, each new state added to has either at least
one controllable or one uncontrollable ineluctable transition to a state of  that was added
in a previous iteration. The strategy can be the set (or any of its subsets) of those controllable
actions. Those controllable actions are played at time 0 in the proof to keep it simple, but it
is clear that if no delayable action to is possible, they can also be played at time 0.

It is clear that this strategy also ensures that the goal states are reached in the minimal
number of steps possible.

Also, note that as always for reachability games, the canonical strategy that would always
allow moving to any state in  is not winning in general since it might allow loops within
 , and thus infinite runs never reaching to goal states.

q0 q1

q2 q4q3

Ga1

a2

u1

c1

c2

u3

u2

c3

i

Fig. 9 A reachability game. The objective is to reach the state G.

5.2 Reachability game example

Let us consider the reachability game  = (Q, q0, AC , AU , A
⊙
U , A

▴
U , �) of Figure 9 where

the objective is to reach the state G: Goal = {G}. By applying the backward fixed-point
algorithm 1: 0 = Goal andn+1 =n ∪ �(n), we obtain successively:

0 = {G}, �(0) = {q4},1 = {G, q4}, �(1) = {q3, q4},2 = {G, q3, q4},
�(2) = {q2, q3, q4},3 = {G, q2, q3, q4}, �(3) = {q0, q2, q3, q4},
4 = {G, q0, q2, q3, q4}, �(4) = {q0, q2, q3, q4}
A winning memoryless strategy is s(q0) = {⟨c1, 0⟩}, s(q3) = {⟨c2, 0⟩}, s(q4) = {⟨c3, 0+

0⟩} and s(q1) = s(q2) = s(G) = ∅.

6 Safety game

A safety objective for the controller is to force the game to stay in a specified set of states, or
equivalently, to avoid a set of states.

Definition 7 (Safety objective)
Let  = (Q, q0, AC , AU , A

⊙
U , A

▴
U , �) be a game structure and Safe ⊆ Q a set of safe states.

14 Jean-Luc Béchennec1 et al.

The safety objective for Safe is the set of all infinite maximal runs r of  such that States(r) ⊆
Safe.

Note that we exclude finite maximal runs from the objective because we do not want the
controller to win by deadlocking or by reaching an uncontrollable livelock i.e. a set of states
with no outgoing controllable transition. It means that when the environment decides not to
play, the controller must be able to move. Hence, the safety games of Figure 10 where all
the states are in the set of safe states, are losing. Indeed, for the game of Figure 10.a, we
have q0 ∉ �({q0}) and for the games of Figures 10.b and 10.c, we have q1 ∉ �({q0, q1, q2})
meaning that the environment can block in q1 (by not playing u1 since it is not ineluctable)
and to avoid q1, the controller must block in q0. A contrario, the games of Figure 11 are
winning.

10.a) 10.b) 10.c)

q0

u

q0 q1

q2

c1

u1 u2

q0 q1

q2

c1

u1 u2
c2

Fig. 10 All the states are safe but the games are not winning.

11.a) 11.b)

q0

u

c q0 q1

q2

c1

c2
u1 u2

Fig. 11 All the states are safe and the games are winning.

6.1 Computation of the strategy

The strategy is computed from the set of winning states. A state is winning for the controller
if it is possible to force the game to stay in Safe.

Given our new definition of �, the set of winning states for the controller is computed
using the following classic backward fixed-point algorithm 2:0 = Safe andn+1 =n ∩
�(n).

When it exists, the final fixed-point set is noted .
Like in Section 5, we can prove the soundness and completeness of Algorithm 2, by

proving the following two lemmas. The proofs are very similar to those of Section 5 and are
therefore omitted.

Logical Time Control of concurrent DES 15

Algorithm 2 Winning states computation algorithm for safety games
Input:  = (Q, q0, AC , AU , A⊙U , A

▴
U , �),Safe ⊆ Q

Output: 
 ← Safe
while  ⊈ �() do

 ←  ∩ �()
end while
return 

Lemma 4 If q ∈ n then there exists a memoryless strategy s such that for any prefix r of
length n of a run inMaxOutcome(q, s), we have States(r) ⊆ Safe.

Lemma 5 If there exists a strategy s and a run r such that for any prefix r′ of length n of a
run inMaxOutcome(q, s), we have States(r′) ⊆ Safe, then Last(r) ∈n.

From those two lemmas, the main results follow:

Theorem 3 (Completeness and Soundness) q ∈ if and only if q is winning.

Proof If q is winning then there is a strategy s from q such that prefixes r of any length of
runs in MaxOutcome(q, s) are such that States(r) ⊆ Safe. So, by Lemma 3, q ∈ n for all
n and, in particular, q ∈ . Reciprocally, if q ∈ , let n be such that  =n, then for all
m ≥ n, q ∈n. So for all m ≥ n, there is a memoryless strategy from q that stays in Safe for
at least m steps. Since there is only a finite number of states and of actions, there is only a
finite number of memoryless strategies on the game structure. So there is one that is winning
for an infinity of m ≥ n, which implies that no prefix of the maximal runs in its outcome ever
goes out of Safe, and therefore that strategy is winning.

Theorem 4 (Memoryless strategies) If the game is winning, then it is winning with a mem-
oryless strategy.

For safety games, and following the previous results, it is clear that moving to any win-
ning state is always a winning strategy for the controller. We define a canonical memoryless
strategy ss ∶ → 2(AC×Δ) that does exactly this:

Let ss(q) = {⟨a, d⟩|a ∈ AC , q
a
←→ q′ ⇒ q′ ∈ }, with d = 0 if ∃a′ ∈ A⊙U , q

′′ ∉  and
d = 0 + 0 otherwise.

Permissive strategies are a key notion in supervisory control [23]. In reactive synthesis,
permissiveness is measured in terms of the set of behaviors allowed by the strategy [7]. Hence
most permissive strategies do not need to exist, depending on the type of winning objectives.

Theorem 5 Strategy ss is the most permissive winning strategy for the safety objective Safe,
i.e, for all winning strategies s′, Outcome(q0, s′) ⊆ Outcome(q0, ss).

Proof Ab absurdo. Assume that ss is not the most permissive winning strategy. Then there
exists a winning strategy s′ and a run in Outcome(q0, s′) ⧵ Outcome(q0, ss). Let r be the
longest prefix of that run that is in Outcome(q0, ss). Let q = Last(r). Then we have, for some

action a, q
⟨a, d⟩
←→ q′ ∈ Outcome(s′, q) and q

⟨a, d⟩
←→ q′ ∉ Outcome(ss, q).

Wemust have q′ ∈ or s′ cannot be winning because of Theorem 3. Then, by definition
of ss, it is not possible that a ∈ AC , so it must be the case that a ∈ AU . And, by definition of
Outcome, the only possibility is that a ∈ AU , d = 0+ 0, there is an action b ∈ AC , such that

16 Jean-Luc Béchennec1 et al.

⟨b, 0⟩ ∈ ss(r), and there is no such action in s′(r). This in turn implies that there is a third

action c ∈ A⊙U and a state q′′ such that q
⟨c, 0 + 0⟩

←→ q′′ and q′′ ∉  . Since there is no immediate

controllable action in s′(r) then clearly r
⟨c, 0 + 0⟩

←→ q′′ ∈ Outcome(q0, s′), which, by Theorem 3,
contradicts the fact that s′ is winning.

6.2 Safety game example

Let us consider the safety game  = (Q, q0, AC , AU , A
⊙
U , A

▴
U , �) of Figure 12 where the

objective is to avoid the state B. Hence Safe = {q0, q1, q2} is the set of safe states.
By applying the backward fixed-point algorithm 2:0 = Safe andn+1 =n∩�(n),

we obtain successively:
0 = {q0, q1, q2}, �(0) = {q0, q1}, 1 = {q0, q1}, �(1) = {q0, q1}.
The most permissive memoryless strategy is s(q0) = ∅ and s(q1) = {⟨c, 0⟩}.

q0 q1

q2

B

i
a

r u

c

v

Fig. 12 A winning safety game. The objective is to avoid the state B.

7 Safe reachability

From a practical point of view, reachability and safety must often be carried out jointly. The
goal is to reach an objective state while avoiding the states which are not safe.

Definition 8 (Safe reachability objective)
Let  = (Q, q0, AC , AU , A

⊙
U , A

▴
U , �) be a game structure, and Goal,Safe ⊆ Q respectively

sets of goal and safe states. The safe reachability winning condition (or objective) for Goal
and Safe is the set of runs r that are maximal in  and such that States(r) ∩ Goal ≠ ∅ and
States(r) ⊆ Safe.

It is not enough to apply successively the computation of the winning states for the reach-
ability game then for the safety game because if the strategy for reachability consists in going
through states which are not sure, these states will be removed by the safety game and the
objective state will no longer be reachable. Hence, for the game of Figure 13, without con-
sidering that B should be avoided, all the states are winning for the reachability game. So a
strategy to reach the state G consists in making c1 then c2 then c3 but the safety game then
withdraws the state B and the system blocks in the state q1.

Similarly, if we first apply the safety game, the strategy can consist in waiting for an
ineluctable action from a state which was safe if it is left immediately as illustrated in Figure

Logical Time Control of concurrent DES 17

13. If we successively apply the computation of the winning states for the safety game and
then for the reachability game, we first obtain that the safety game removes the stateB. Then,
a reachability game strategy consists in playing c4 and then waiting for the occurrence of u2
while this wait can allow the occurrence of u1 which would lead to B.

It is thus necessary to propose a fixed point dedicated to these kinds of properties.
The set of winning states for a safe reachability game can thus be calculated using the

backward fixed-point algorithm 3:
0 = Goal ∩ Safe and n+1 =n ∪ �(n) ∩ Safe.
When it exists, the final fixed-point set is noted .

q0 q2

q3

q1 B

G

c1

c2

c4

c5

c3

u4u3

u2

u1

Fig. 13 The objective is to reach the state G while avoiding the state B.

Algorithm 3 Winning states computation algorithm for safe reachability game
Input:  = (Q, q0, AC , AU , A⊙U , A

▴
U , �),Goal ⊆ Q,Safe ⊆ Q

Output: 
 ← Goal ∩ Safe
while �() ∩ Safe ⊈ do

 ←  ∪ �() ∩ Safe
end while
return 

The application of this algorithm on the game of Figure 13 will successively give:W0 =
{G} et W1 = {G, q0}. W2 = {G, q0, q3}.  = W3 = {G, q0, q3, q2}. The strategy to reach
the state G while avoiding the state B therefore consists in waiting in the state q0 for the
occurrence of the ineluctable action u4.

8 Game Petri Nets

We now extend the previous results to Game Petri Nets, which can express concurrency be-
tween transitions and logical time and where an avoidable transition can lose its avoidability
by the elapsing of time.

18 Jean-Luc Béchennec1 et al.

8.1 Petri Nets

Definition 9 (Petri Net) A Petri Net is a 4-tuple  = (P , T , P re, P ost, m0) where P is a
finite set of places, T is a finite set of transitions, Pre and Post are matrices ofℕ|P |×|T | called
the backward and forward incidence matrices, such that Pre(p, t) = n with n > 0 when there
is an arc from place p to transition t with weight n and Post(p, t) = n with n > 0 when there
is an arc from transition t to place p with weight n, and the vector m0 ∈ ℕ|P | is called the
initial marking.

Given a Petri Net = (P , T , P re, P ost, m0), we denote Pre(., t) (also written pre(t)) as
the vector (Pre(p1, t), P re(p2, t), ..., P re(p|P |, t)) i.e. the ttℎ column of the matrix Pre. The
same notation is used for Post(., t) (or post(t)).

Definition 10 (Marking) A marking of a Petri Net  = (P , T , P re, P ost, m0) is a vector
m ∈ ℕ|P |.

If m ∈ ℕ|P | is a marking, m(pi) is the number of tokens in place pi and we have:

m ≤ m′ ⇔ ∀p ∈ P ,m(p) ≤ m′(p)

An example of Petri Net is given in Figure 14.

p1

p2

p3
t2

2

t1
3

m0 =
⎛

⎜

⎜

⎝

2
0
0

⎞

⎟

⎟

⎠

m0 is also noted by the set {p1, p1}

Pre =
⎛

⎜

⎜

⎝

1 1
0 2
0 0

⎞

⎟

⎟

⎠

Post =
⎛

⎜

⎜

⎝

0 0
3 0
0 1

⎞

⎟

⎟

⎠

Fig. 14 A Petri Net

Operational Semantics: Given a Petri Net , a transition t ∈ T is said enabled by a marking
m when m ≥ pre(t).

Definition 11 (PN Semantics) The semantics of PN is a transition system = (Q, q0,→)
where, Q = ℕ|P |, q0 = m0,→∈ Q × T ×Q such that,

m
ti
→ m′ ⇔

{

m ≥ pre(ti)
m′ = m − pre(ti) + post(ti)

This relation holds for sequences of transitions:

– m
w
→ m′ if w is the empty word and m = m′

– m
wt
→ m′ if ∃m′′, m

w
→ m′′ ∧ m′′

t
→ m′ where w ∈ T ∗ and t ∈ T .

Logical Time Control of concurrent DES 19

Given a marking m, reachability asks if it is reachable from m0. Formally,  reaches m
iff there exists a sequence w such that m0

w
→ m. We denote () the set (possibly infinite)

of reachable markings of .
A place in a Petri net is called k-bounded if it does not contain more than k tokens in all

reachable markings, including the initial marking. It is bounded if it is k-bounded for some
k. A Petri net is called k-bounded or bounded when all of its places are.

8.2 Game Petri Nets with logical time

8.2.1 Definitions

We first extend Petri Nets with avoidable and ineluctable transitions (PNAE).

Definition 12 (PNAE) A Petri Net with avoidable and ineluctable transitions (PNAE) is
a tuple ae = (P , T , T ⊙, T ▴, P re, P ost, m0) where  = (P , T , P re, P ost, m0) is a Petri
Net and T ⊙ ⊆ T and T ▴ ⊆ T are the subsets of avoidable and ineluctable transitions,
respectively.

Let C and U be the two players respectively called controller and environment.

Definition 13 (Game Petri Net) A Game Petri Net  is a tuple  = (P , TC , TU ,
T ⊙U , T

▴
U , P re, P ost, m0) where T = TU ∪ TC , TU ∩ TC = ∅, T⊙U ⊆ TU , T ▴U ⊆ TU and

 = (P , T , T ⊙U , T
▴
U , P re, P ost, m0) is a PNAE called the underlying Petri Net of  .

8.2.2 Some intuitions

We will define the semantics of Game Petri Net by an associated game structure. However,
Petri nets are a model for concurrency and in order to capture its semantics in a sequential
game structure, we have to take into account that an avoidable transition can lose its avoid-
ability by the elapsing of time.

p1 p2

p3 p4p5

t3 t1 t2

15.a) T⊙U = {t1, t2}

p1 p2

p3 p4p5

t3 t1 t2

15.b) T⊙U = {t1, t2}

Fig. 15 Time elapsing when firing avoidable transitions in Game Petri Nets

Consider the game Petri Net of Figure 15.a, t1 and t2 are avoidable, meaning that they are
non-immediate. Hence the firing of t2 implies that time has elapsed since the initial marking
and the remaining transition t1 can now fire immediately and is no more avoidable. On the
contrary, in Figure 15.b, after the firing of t2, the transition t1 is newly enabled and is then
avoidable in the marking {p1, p4}.

20 Jean-Luc Béchennec1 et al.

p1 p2

p3 p4p5

t3 t1 t2

16.a) T⊙U = {t1} and T ▴U = {t2}

p1 p2

p3 p4p5

t3 t1 t2

16.b) T⊙U = {t1} and T ▴U = {t2}

Fig. 16 Time elapsing when firing ineluctable transitions in Game Petri Nets

Time elapsing is less obvious when we consider the concurrency between an avoidable
transition and an ineluctable transition. Let us consider the game Petri Net of Figure 16.a.
The firing of the ineluctable transition t2 can be immediate or not. Then after the firing of t2,
the transition t1 may be still avoidable. However, consider that the strategy of the controller
is to do nothing in the marking {p1, p2} in order to wait for the firing of t2, leading to the
marking {p1, p4}. This waiting step can take some non-null time, and then it is consistent to
consider that the transition t1 is no more avoidable for the controller in the marking {p1, p4}.

On the contrary, for the Game Petri Net of Figure 16.b (as for Figure 15.b), the transition
t1 is newly enabled by the firing of t2 and is then also avoidable in the marking {p1, p4}.

8.2.3 Semantics of PNAE

The set of enabled transitions for a markingM is enabled(M) =
{

t |M ≥ pre(t)
}

Newly enabled transitions: Classically and as defined for time Petri Nets [8], a transition t is
newly enabled after firing ti from markingM if it is enabled byM ′ =M − pre(ti)+ post(ti)
but not byM − pre(ti). Also a transition is always newly enabled by its own firing.

Formally, the set of transitions that are newly enabled by the firing of ti from marking
M is:

↑enabled(M, ti) =
{

t |
(

M − pre(ti) + post(ti) ≥ pre(tk)
)

∧
(

(M − pre(ti) < pre(t)) ∨ (t = ti)
)}

The set of avoidable newly enabled transitions is then:

↑enabled⊙(M, ti) =↑enabled(M, ti) ∩ T ⊙

State of a PNAE: Given a PNAE  = (P , T , T ⊙, T ▴, P re, P ost, m0), a state of  is a pair
(m, s⊙) ∈ ℕ|P |×T⊙ wherem is a marking and s⊙ is the set of transitions which are avoidable
from this state i.e. the avoidable transitions that have not lost their avoidability.

Definition 14 (PNAESemantics)The semantics of a PNAE is a transition system =
(Q, q0,→) where, Q = ℕ|P | × T ⊙, q0 = (m0, {t ∈ T ⊙|m0 ≥ pre(t)} and →∈ Q × T × Q
such that,

(m, s⊙)
ti
→ (m′, s′⊙)⇔

⎧

⎪

⎨

⎪

⎩

m ≥ pre(ti)
m′ = m − pre(ti) + post(ti)
s′⊙ =↑enabled

⊙(M, ti) if ti ∈ T ⊙ ∪ T ▴ and
(

s⊙ ∩ enabled(M ′)
)

∪ ↑enabled⊙(M, ti) otherwise

Logical Time Control of concurrent DES 21

() is the set of reachable marking of . Moreover, reaches a state q = (m, s⊙) iff
there exists a sequence w such that q0

w
→ q. We denotes() the set of reachable states of

 . Since the set T ⊙ is finite, there is a finite number of subsets s⊙ and thens() is finite
iff() is finite i.e. is bounded.

8.2.4 Game structure of Game Petri Net

From a Game Petri Net, we can derive an associated game structure defined as follows:

Definition 15 (Game structure of Game Petri Net)
Let  = (P , TC , TU , T

⊙
U , T

▴
U , P re, P ost, m0), be a Game Petri Nets, be its underlying

Petri Net and = (Q, q0,→) its semantics.
The game structure of  is  = (Q, q0, AC , AU , A⊙U , A

▴
U , �) such that:

– Q = s() is a set of reachable states of 
– AC = TC
– A⊙U = T

⊙
U

– for each avoidable action a ∈ A⊙U , we create a copy a. The set of those copies is AU⊙ =
{a | a ∈ A⊙U}. We further define the subset of those copies that should be ineluctable:
A▴
U⊙
= {a | a ∈ A⊙U ∩ A

▴
U};

– A▴U = T
▴
U ∪ A

▴
U⊙

– AU = A▴U ∪ A
⊙
U ∪ AU⊙

– For all q = (m, s⊙) ∈ Q and q′ = (m′, s′⊙) ∈ Q, we have (q, t, q
′) ∈ � if

– t ∈ AC ∪ A▴U and q
t
→ q′

– t ∈ A⊙U ∩ s⊙ and q
t
→ q′

– t ∈ AU⊙ and ∃t′ ∈ A⊙U such that t′ ∉ s⊙ and q
t′
→ q′

If  is bounded, the game structure  associated with  is finite and we can now
define reachability objective, safety objective and compute strategies for  by using  as
in Sections 4, 5, 6 and 7.

8.2.5 Example

Let us consider the game Petri net of Figure 17. Its associated game structure is given in
Figure 18. In state q1, the transition t2 is no longer avoidable after the firing of the transition
t1 and its non-avoidable copy t2 is possible. Then the only strategy to reach q3 consists in
firing t4 immediately in the initial state q0.

8.3 Game Petri Nets for unbounded nets

If the underlying Petri Net of a Game Petri Nets is not bounded, the associated game structure,
as defined in Definition 15 is not finite. However, if the safety objective includes the k-
boundedness of the net, we only need the k-bounded part of the game structure to compute
the strategy. Actually, we do not need the successor of a state with a marking such that a
place is not k-bounded for this marking.

Recall that s() is the set of reachable states of a PNAE  . Let k
s () = {q =

(m, s⊙) ∈ s() | ∀p ∈ P ,m(p) ≤ k} the subset of k-bounded reachable states of  .

22 Jean-Luc Béchennec1 et al.

p1 p2

p3

p4

t1 t2

t3 t4

Fig. 17 A Game Petri Net Example. The goal is to reach a state with a token in p4

q0

(
⎛

⎜

⎜

⎜

⎝

1
1
0
0

⎞

⎟

⎟

⎟

⎠

,{t1, t2})

q1

(
⎛

⎜

⎜

⎜

⎝

0
1
1
0

⎞

⎟

⎟

⎟

⎠

,∅)

q2

(
⎛

⎜

⎜

⎜

⎝

1
0
0
0

⎞

⎟

⎟

⎟

⎠

,∅)

q3 (
⎛

⎜

⎜

⎜

⎝

0
0
0
1

⎞

⎟

⎟

⎟

⎠

,∅)q4(
⎛

⎜

⎜

⎜

⎝

0
0
1
0

⎞

⎟

⎟

⎟

⎠

,∅)

t1t2

t4 t3t1
t2

AC = {t3, t4}

A⊙U = {t1, t2}

AU⊙ = {t1, t2}

A▴
U⊙

= {t1}

A▴U = {t1, t1}

AU = {t1, t2, t1, t2}

The objective is to reach the state q3

Fig. 18 Game structure associated with the Game PN of Figure 17

For a Game Petri Net with unbounded underlying net and a k-boundedness safety objec-
tive, we can define a k-Game structure by the projection of the infinite game structure over
a finite set of markings Q as follows.

Definition 16 (k-Game structure of a Game Petri Net with unbounded underlying net
and k-boundedness objective)

Let  = (P , TC , TU , T
⊙
U , T

▴
U , P re, P ost, m0), be a Game Petri Net, be its underlying

Petri Net and = (Q, q0,→) its semantics.
Let  = (Q, q0, AC , AU , A⊙U , A

▴
U , �) the game structure of  as defined in Definition 15.

For a k-boundedness safety objective, the k-Game structure of  is k = (Qk, q0,
AC , AU , A

⊙
U , A

▴
U , �k) where:

– Qk = k
s () ∪ {q′ | q ∈ k

s (),∃t ∈ TU ∪ TCand q
t
→ q′}

– ∀q ∈ AU ∪ AC , ∀q ∈ Qk,∀q′ ∈ Qk, (q, t, q′) ∈ �k iff (q, t, q′) ∈ �

Note that, for a Petri net whose weights are equal to 1, we have Qk = k+1
s ().

8.4 Example

Let us consider the game Petri net of Figure 19 where the place p3 is not bounded. Its associ-
ated k-Game structure for a 2-bounded safety objective is given in Figure 20. The successor
of the state q6 = (

(

0
0
3

)

, ∅) is not in this k-game structure since its marking is not 2-bounded.
Note that the set AU⊙ is empty since in state q1, the transition t2 is still avoidable because it
is newly enabled by its own firing.

Logical Time Control of concurrent DES 23

A first strategy consists in firing t1 immediately and waiting in the state q2 until the firing
of t2 and then firing t4 in q3. A second strategy consists in waiting in the state q0 until the
firing of t2. In q1, t2 is avoidable then t1 can be fired immediately.

p1

p2

p3
t2t1

t32

3

t4

TC = {t1, t4}, TU = {t2, t3}, T⊙U = {t2} and T ▴U = {t2}

Fig. 19 A Game Petri Net with unbounded underlying PN (place P3 is not bounded)

q0

(
⎛

⎜

⎜

⎝

2
0
0

⎞

⎟

⎟

⎠

, {t2})

q1

(
⎛

⎜

⎜

⎝

1
0
1

⎞

⎟

⎟

⎠

, {t2})

q2

(
⎛

⎜

⎜

⎝

1
1
0

⎞

⎟

⎟

⎠

, {t2})

q3

(
⎛

⎜

⎜

⎝

0
1
1

⎞

⎟

⎟

⎠

, ∅)

q4

(
⎛

⎜

⎜

⎝

0
2
0

⎞

⎟

⎟

⎠

, ∅)

q5

(
⎛

⎜

⎜

⎝

0
0
2

⎞

⎟

⎟

⎠

, ∅)

q6

(
⎛

⎜

⎜

⎝

0
0
3

⎞

⎟

⎟

⎠

, ∅)

t2

t1 t1

t1

t4

t2

t2 t3
AC = {t1, t4}

A⊙U = {t2}
AU⊙ = A

▴
U⊙

= ∅

A▴U = {t2}

AU = {t2, t3}

The
safety objective is to avoid the state q6.

Fig. 20 k-Game structure associated with the Game PN of Figure 19 for a 2-bounded safety objective.

9 Concurrent composition of game structures

9.1 Definition and semantics

It is convenient to describe a system as a parallel composition of automata. In section 2
only monolithic automata are considered.Wewill consider concurrent compositions of game
structures as a particular case of game Petri nets.

It is well-known that an automaton is a particular case of ordinary Petri Net with one
token in the input place and where every transition has exactly one input place and one output
place. This Petri is either labeled or has equivalently a dedicated transition per occurrence of
a given action of the initial automaton (the ktℎ occurrence of action a is, for example, called
ak). This class of Petri Nets is called state graph. When there is only one initial token, it leads
to a Petri Net that contains only one token at any time.

24 Jean-Luc Béchennec1 et al.

To define the parallel composition of game structures, we use the classical composition
notion based on a synchronization function à la Arnold-Nivat.

Definition 17 (synchronized composition of game structures) Let G1, . . . , Gn be n game
structure with Gi =

(

Qi, qi0, AC , AU , A
⊙
U , A

▴
U ,→i

)

. A synchronization function f is a partial
function from (AC ∪ AU ∪ {∙})n → AC ∪ AU where ∙ is a special symbol used when an
automaton is not involved in a step of the global system. Note that f is a synchronization
function with renaming. We denote by (G1|… |Gn)f the parallel composition of the Gi’s
w.r.t. f .

(Gi, ai) is said to be not involved in the partial synchronization function f if f (a1,… , ai,… , an) =
a⇒ ∀x ≠ i, ax = ∙ and a = ai.

Definition 18 (Semantics of the synchronized composition of game structures) The se-
mantics of the composition (G1|… |Gn)f is defined by its translation into a Game Petri Net1
as follows:

– each state q ∈ Q1 ∪ Q2… ∪ Gn is translated into a place with the same name q ∈ P .
Hence a state of the composition is a marking of its corresponding GPN that we denote
either by a vector or by the set of places with one token.

– If (Gi, ai) is not involved in f , then for all occurence ok = (q, ai, q′) ∈ �i in Gi, we add
a transition aki such that Pre(qi, aki) = Post(q′i , a

k
i) = 1. Moreover, if ai ∈ A� , with

� ∈ {C,U} then aki ∈ T� and if ai ∈ A
� ′
U with � ′ ∈ {⊙,▴} then aki ∈ T

� ′
U .

– If f (a1,… , an) = a, then for all ok = (q1, a1, q′1)(q2, a2, q
′
2)… (qn, an, q′n) ∈ �1×�2⋯×�n

with ai = ∙ ⇒ qi = q′i , we add a transition ak in T such that ∀i ∈ [1, n], ai ≠ ∙ ⇔
Pre(qi, ak) = Post(q′i , a

k) = 1. Moreover, if a ∈ A� , with � ∈ {C,U} then ak ∈ T�
and if a ∈ A�

′

U with � ′ ∈ {⊙,▴} then ak ∈ T �
′

U

We illustrate this translation with the example of Figure 21 showing the composition
of two game structures G1 and G2 synchronized by the function f . The synchronization
f (u1, u2) = u1 means that actions u1 and u2 are synchronized and the result is action u1 that
is avoidable but non-ineluctable. We could have chosen that the result of the synchronization
is the ineluctable action u2 or another action u3 that would be both avoidable and ineluctable
or another action u4 that would be neither avoidable nor ineluctable. The other actions are
(implicitly and by default) not synchronized that can be explicitly specified for example for
the action c1 by f (c1, ∙) = f (∙, c1) = c1.

This kind of synchronization function is very powerful and allows us to model broadcast
or point-to-point synchronization between any number of game structures. Figure 22 shows
the synchronization of 3 game structures where actions with the same name are synchronized
and keep their nature.

Because of non-determinism (in a single automaton or because of synchronizations),
there can be several occurrences of an action in the result of a composition. Since we are
considering unlabelled Petri nets, we have to explicitly distinguish each of the k occurrences
of an action a. Hence k copies of each action a are created. For example, in Figure 21, action
c1 has two copies c11 and c

2
1 and, in Figure 22, action u2 has two copies u

1
2 and u

2
2.

1 For this construction, ∀p ∈ P and ∀t ∈ T , Pre(p, t) = Post(p, t) = 0 except if it is explicitly set to 1.

Logical Time Control of concurrent DES 25

G1 G2 

f (u1, u2) = u1

q0

q1

q2

c1

u1c1

q3

q4

q5

c2

u2

q0

q1

q2

c11

u11

c21

q3

q4

q5

c12

Fig. 21 Game structures G1 and G2 and the Game PN  of the composition (G1|G2)f

G1

G2 G3 

f (u1, u1, u1) = u1
f (u2, u2, ∙) = u2
f (∙, c2, c2) = c2

q0

q1

q2

u1

c1

u2

q3

q4

q5

q6

u1

u2

u2

c2

q7

q8

q9

q10

u1

c2 c3

u3

q0

q1

q2

q3

q4

q5

q6

q7

q8

q9

q10

u11

u12

u22

c11 c12 c13

u13

Fig. 22 Game structures G1, G2 and G3 and the Game PN  of the composition (G1|G2|G3)f

9.2 Computation of the strategy

The concurrent and synchronized composition of Game Structures is a Game PN whose
semantics is given in section 8 as a monolithic game structure. Hence, the concurrent and
synchronized composition of Game Structures is a game structure as illustrated in Figure 23
for the composition (G1|G2|G3)f given in Figure 22. Since, by construction, the Game Petri
Net of Figure 22 is safe, in order to avoid overloading Figure 23, we represent the marking
by a column of marked places.

At this step we can equivalently remove the exponents of the action names. If we consider
that the safety objective of the game consists in avoiding the state q10, the most permissive
memoryless strategy is:

s(
(

q1
q4
q8

)

) = {⟨c1, 0 + 0⟩}, s(
(

q2
q6
q8

)

) = {⟨c2, 0 + 0⟩}, s(
(

q2
q4
q9

)

) = {⟨c3, 0⟩},

s(
(

q2
q5
q9

)

) = s(
(

q2
q6
q9

)

) = {⟨c3, 0 + 0⟩} and is empty for other states.

26 Jean-Luc Béchennec1 et al.

q′0

(
⎛

⎜

⎜

⎝

q0
q3
q7

⎞

⎟

⎟

⎠

, ∅)

q′1

(
⎛

⎜

⎜

⎝

q1
q4
q8

⎞

⎟

⎟

⎠

, ∅)

q′2

(
⎛

⎜

⎜

⎝

q2
q4
q8

⎞

⎟

⎟

⎠

, ∅)

q′3

(
⎛

⎜

⎜

⎝

q2
q5
q8

⎞

⎟

⎟

⎠

, ∅)

q′4

(
⎛

⎜

⎜

⎝

q2
q6
q8

⎞

⎟

⎟

⎠

, ∅)

q′5(
⎛

⎜

⎜

⎝

q2
q4
q9

⎞

⎟

⎟

⎠

, {u13}) q′6

(
⎛

⎜

⎜

⎝

q2
q5
q9

⎞

⎟

⎟

⎠

, ∅)

q′7 (
⎛

⎜

⎜

⎝

q2
q6
q9

⎞

⎟

⎟

⎠

, ∅)

q′8(
⎛

⎜

⎜

⎝

q2
q4
q10

⎞

⎟

⎟

⎠

, ∅) q′9

(
⎛

⎜

⎜

⎝

q2
q5
q10

⎞

⎟

⎟

⎠

, ∅)

q′10 (
⎛

⎜

⎜

⎝

q2
q6
q10

⎞

⎟

⎟

⎠

, ∅)

u11 c11 u12 u22

c12c13 c13 c13

u12

u22

u13 u13 u13

u12 u22

AC = {c11 , c
1
2 , c

1
3}

A⊙U = {u
1
3}

AU⊙ = {u
1
3}

A▴
U⊙

= ∅

A▴U = {u
1
1}

AU = {u11, u
1
2, u

2
2, u

1
3, u

1
3}

Fig. 23 Monolithic Game structure associated with the composition (G1|G2|G3)f of Figure 22
.

10 Complexity and Implementation

While the algorithms we give are well-suited for pedagogical exposition and proofs, and
possibly for an implementation using symbolic decision diagrams-based representations of
sets of states, they are not optimal for an explicit enumeration of states. Nonetheless, plugging
our definition of the controllable predecessors operator � into the untimed algorithm of [12],
we can compute the winning states for reachability, or their complement for safety, in time
linear with respect to the number of edges in the automaton.

Based on this latter algorithm, we have implemented the computation of the winning
states and the synthesis of the strategy in our tool ROMÉO [20]. With its textual input lan-
guage, ROMÉO handles a model called Clock Transition Systems (CTS) [19] which encom-
passes both finite automata and Petri Nets. We have extended CTS with controllable, uncon-
trollable, avoidable, and ineluctable actions in order to model logical time games. The CTS
can be generated from the ROMÉO GUI.

In order to compare the two approaches on a concrete case, a model using Time Petri
Nets, more precisely a Time Petri Net control model, and a model using Game Petri Nets
have been implemented and compared with respect to memory consumption and execution
time. We use a classical case-study presented in [9]. It is a level crossing model with 2 to
4 tracks of independent trains in order to obtain problems of increasing complexity. We use
the Time Petri Net models of the trains and the gate given in [9]. The only two controllable
actions are down and up corresponding to the order from the controller to respectively lower
and raise the gate. For the non-quantitative model (Game Petri Net), we consider that the
lowering of the gate is instantaneous (i.e. merged with down) and the raising is ineluctable
after the action up. Moreover, it is ineluctable that the train will be far after being on the
crossing. Our goal is to synthesize the gate controller that ensures that there are no trains on
the crossing without the barriers being closed.

Controller synthesis on Time Petri Net is computed by using the method proposed in [17]
that extends to Time Petri Nets the timed game algorithm of [12]. It is implemented also in
the tool ROMÉO. The results are presented in Table 1.

Logical Time Control of concurrent DES 27

Table 1 Comparison of computation times and memory consumption between the controller synthesis on
Time Petri Nets and Game Petri Nets for the example of a level crossing with 2 to 4 tracks of independent
trains. The computer used for these measurements is a MacBook Pro with a 2.6 GHz Intel Core i7 processor
and 16 GB of memory.

Number of trains Time Petri Net Game Petri Net
Execution time (s) Memory (Mb) Execution time (s) Memory (Mb)

2 0.2 5.3 < 0.1 0.3
3 109.4 735.4 < 0.1 0.9
4 > 2h (killed) > 4Gb 0.1 4.2

The strategy obtained with Game Petri Nets consists in lowering the gate as soon as a
train approaches whereas the strategy for the quantitative Time model allows to wait a little
before lowering the gate. In this sense this strategy is more precise. However, we can see in
Table 1 that the computation times and memory consumption are much more important.

Finally, quantitative time data are often not available as for the following case study.

11 Case study

Device drivers synthesis is a good example of logical time game controllers synthesis. Here
the environment is i) the hardware device along with its connections to external systems:
communication networks, analog signals, etc and ii) the application using the driver. In the
former case, uncontrollable actions are interrupts that are triggered to signal, for instance,
the availability of data in a hardware buffer. In the latter case, they are requests made by
the application. In both cases, exact timings are unknown since they depend on the actual
hardware and on the execution time of the actual binary program, which is not available
yet. However, some time-related rules are known, like the inter-arrival time of messages
on a communication network or the time between two interrupts of a timer, for instance.
So, when reacting to an uncontrollable action, the controller has time to perform its task
before the arrival of the next same uncontrollable action. In such a case, the second action is
avoidable.

11.1 CAN controller driver modeling

The device chosen for the case study is theMicrochip CANcontroller available in PIC18Cxx8
microcontroller family [22]. This CAN controller features two receive buffers, RXB0 and
RXB1 and three transmit buffers, TXB0, TXB1, and TXB2. Each of these buffers can hold
a complete CAN message. For the sake of simplicity, we consider only two transmit buffers,
which are called TXB0 and TXB1, in this case study. The device is configured so that i) when
a message is received from the bus it is put in one of the receive buffers and an interrupt is
asserted. ii) when a message is written to a transmit buffer the device sends it as soon as
possible and asserts an interrupts to notify the corresponding TXB has just been emptied.

The model of the driver is presented in Figure 24. We have added two boolean variables:
PW0 (Pending Write in TXB0) and PW1 (Pending Write in TXB1) to simplify the drawing of
the model. The driver is cut into two parts: the part that is executed in user mode, repre-
sented by white places, and the part that is executed in the interrupt handler represented by

28 Jean-Luc Béchennec1 et al.

Application

InMessages

OutMessagesRdy

no_init
wait

sℎutd

write

event_txb0

event_txb1

event_rxb0_w

event_rxb1_w

BAD

event_rxb0

event_rxb1

wake

init

sleep

write_TXB1
(PW 1← 1)

write_TXB0
(PW 0← 1)

write_TXB1_w
PW 1 == 0?
(PW 1← 1)

write_TXB0_w
PW 0 == 0?
(PW 0← 1) can_it_TXB0

PW 0 == 1?
(PW 0← 0, emptying_buffer← 1)

ack_it_TXB0_pw
PW 1 == 1?

ack_it_TXB0
PW 1 == 0?

can_it_TXB1
PW 1 == 1?
(PW 1← 0

emptying_buffer← 1)

ack_it_TXB1_pw
PW 0 == 1?

ack_it_TXB1
PW 0 == 0?

read_RXB0_pw

read_RXB1_pw

can_IT_RXB0_pw
(played← 1)

can_IT_RXB1_pw
(played← 1)

ovf_RXB0_pw

ovf_RXB1_pw

can_IT_RXB0
(played← 1)

can_IT_RXB1
(played← 1)

read_RXB1

read_RXB0

ovf_RXB0

ovf_RXB1

Fig. 24 PIC18Cxx8 CAN controller driver model. Guards are noted with a ‘?’ and updates are noted within
parenthesis with a←.

light gray places. A black bad place that has to be avoided by the controller is added. In ad-
dition, the place corresponding to the application environment is hatched in grey and those
corresponding to the hardware environment are filled with dark grey.

Logical Time Control of concurrent DES 29

Starting from the no_init place the device can be configured as described above and
the driver waits requests in the wait place. From there two uncontrollable transitions, corre-
sponding to one of the write requests from the application (write_TXB0 or write_TXB1) may
occur and the corresponding boolean variable is set accordingly. Two other uncontrollable
transitions correspond to the arrival of a message in one of the receive buffer (can_IT_RXB0
or can_IT_RXB1). From the write place we find again the two uncontrollable transitions cor-
responding to the arrival of a message and also two ineluctable uncontrollable transitions
which are fired by the device when TXB0 or TXB1 is emptied. Places whose name begins
with event represent the entry point(s) of the device interrupt handler(s). From there the con-
troller can fire the transitions corresponding to the processing of the event: read the receive
buffer which has been filled (read_RBX0, read_RBX1, read_RBX0_pw and read_RBX1_pw)
or acknowledge the emptying of one of the transmit buffers (ack_IT_RBX0, ack_IT_RBX1,
ack_IT_RBX0_pw and ack_IT_RBX1_pw).

During the execution of the interrupt handler (light gray places) uncontrollable actions
are avoidable because i) device interrupts are masked ii) the controller has enough time to
play its actions before the occurence of a new interrupt.

The receiving part of this system, whose name starts with event_rxb and which requires
avoidable transitions, could be modeled with Time Petri Nets. It would indeed be enough
to place on the transitions going to the write and wait places the time guards [0, 0] and on
those leading to the BAD state, the time guards]0,∞[. But transitions from write to places
whose name starts with event_txb require the notion of ineluctability. Indeed, the date on
which these transitions are fired is not known because it depends on the messages sent by
the other nodes which transit on the CAN network. Here the use of a Time Petri Net would
force to invent an arbitrary date in order to allow modeling.

11.2 Winning strategy

We used our tool ROMÉO [20] for the modeling of this case study and to compute the winning
states and the synthesis of the strategy2. We first verify that the safety property, where BAD is
never reached, holds. But for safety ROMÉO actually computes the complement of the fixed-
point given in section 6 and therefore computes a strategy for the environment to falsify the
property. Of course, it does not find any. So in order to get the strategy for the controller, we
also verify a reachability objective.

To express this objective, we need to add two boolean variables called played, which is
set when the environment fires a transition corresponding to a message received in RXB0 or
RXB1, and emptying_buffer which is set when the environment fires a transition correspond-
ing to the emptying of TXB0 or TXB1. That way staying in place wait or write and returning to
one of these states after the environment has played can be distinguished. An additional place
is also added, shutd. The shutd place models the fact that the system may be switched off.
The wake transition is the switching on of the system and the sleep transition is the switching
off of the system. If the environment decides not to fire any transition, shutd will be reachable
eventually. The goal of the controller is to reach one of the following states:

– shutd;
– wait with played= true;
– (write or wait) with emptying_buffer= true.

2 The model and the property to generate the strategy can be downloaded from https://github.com/
jlbirccyn/JDEDS-Model

https://github.com/jlbirccyn/JDEDS-Model
https://github.com/jlbirccyn/JDEDS-Model

30 Jean-Luc Béchennec1 et al.

Table 2 Memoryless strategy

state variables play next
shutd – – shutd
wait ⌝played & ⌝emptying_buffer ⟨sleep, 0 + 0⟩ shutd
no_init – ⟨init, 0 + 0⟩ wait
wait played | emptying_buffer – wait
write – – write
event_txb0 emptying_buffer & PW1 ⟨ack_it_TXB0_pw, 0⟩ write
event_txb0 emptying_buffer & ⌝PW1 ⟨ack_it_TXB0, 0⟩ wait
event_txb1 emptying_buffer & PW0 ⟨ack_it_TXB1_pw, 0⟩ write
event_txb1 emptying_buffer & ⌝PW0 ⟨ack_it_TXB1, 0⟩ wait
event_rxb0_w – ⟨read_RXB0_pw, 0⟩ write
event_rxb1_w – ⟨read_RXB1_pw, 0⟩ write
event_rxb0 – ⟨read_RXB0, 0⟩ wait
event_rxb1 – ⟨read_RXB1, 0⟩ wait

ROMÉO finds and computes the winning strategy. Table 2 summarises this strategy.
Starting from no_init the controller must play init to reach a winning state. In wait, if

the environment plays can_IT_RXB0 or can_IT_RXB1, played is set and the controller has to
play immediately read_RXB0 or read_RXB1, respectively, to go back to wait. The environ-
ment may play write_TXB0or write_TXB1to go into write. From writethe environment may
choose to play write_TXB0_w or write_TXB1_w to fill the second transmit buffer. Or it can
play can_IT_RXB0_pw or can_IT_RXB1_pw. As a result played is set. In this case the con-
troller has to play immediately read_RXB0_pw or read_RXB1_pw, respectively, to go back
to write. If the environment decides not to play uncontrollable actions, inevitably, accord-
ing to which transmit buffer is full, can_it_TXB0 or can_it_TXB1 happens, emptying_buffer
is set, and the controller returns immediately to state wait or write by playing ack_it_TXB0
or ack_it_TXB0_pw or ack_it_TXB1 or ack_it_TXB1_pw according to the state of the transmit
buffers.

12 Conclusion

We first have presented an extension of finite automata with logical time. This extension
introduces two new properties of uncontrollable actions that extend the model of the envi-
ronment:

– the delayed action cannot happen instantaneously so that the controller may preemptively
perform another action if needed.

– the ineluctable action is guaranteed to happen eventually, and the controller can hence
rely on it.

This model combines some of the expressiveness of timed games, with the simplicity
of finite automata. It allows an easier implementation of these models, more suitable to em-
bedded real-time systems. We have adapted the notion of control, reachability, and safety
games for this extension and defined and proved algorithms to solve these problems in the
general case. We have extended these results to Game Petri Nets which can express concur-
rent behaviors and where an avoidable transition can lose its avoidability by the elapsing of
time.

Logical Time Control of concurrent DES 31

Finally, we have implemented the computation of the winning states and the synthesis
of the strategy in our tool ROMÉO.

Further work includes extending the approach to more complex control objectives, such
as Büchi conditions.

References

1. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games. Theoretical Computer
Science 386(3), 188 – 217 (2007)

2. Altisen, K., Tripakis, S.: Tools for controller synthesis of timed systems. In: 2ndWorkshop on Real-Time
Tools (RT-TOOLS’2002) (2002)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Science 126(2), 183–235 (1994)
4. Bechennec, J.L., Lime, D., Roux, O.H.: Control of DES with urgency, avoidability and ineluctability. In:

19th International Conference on Application of Concurrency to System Design (ACSD’19) (2019)
5. Béchennec, J.L., Roux, O.H., Lime, D.: Contrôle des SED avec urgence, évitabilité et inéluctabilité. In:

Modélisation des Systèmes Réactifs (MSR’19), Modélisation des Systèmes Réactifs (MSR’19). Angers,
France (2019). URL https://hal.archives-ouvertes.fr/hal-02415319

6. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.: Uppaal-tiga: Time for playing
games! In: Computer Aided Verification, pp. 121–125. Springer (2007)

7. Bernet, J., Janin, D., Walukiewicz, I.: Permissive strategies: from parity games to safety games. RAIRO
- Theoretical Informatics and Applications (RAIRO: ITA) 36, 261–275 (2002)

8. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems using time Petri nets.
IEEE Trans. Software Eng. 17(3), 259–273 (1991)

9. Berthomieu, B., Vernadat, F.: State class constructions for branching analysis of time petri nets. In:
9th International Conference on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS 2003), Lecture Notes in Computer Science, vol. 2619, pp. 442–457. Springer Verlag, Warsaw,
Poland (2003)

10. Bornot, S., Sifakis, J.: An algebraic framework for urgency. Inf. Comput. 163(1), 172–202 (2000)
11. Brandin, B.A., Wonham, W.M.: Supervisory control of timed discrete-event systems. IEEE Transactions

on Automatic Control 39(2), 329–342 (1994)
12. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly algorithms for the analysis

of timed games. In: CONCUR 2005–Concurrency Theory, pp. 66–80. Springer (2005)
13. Chatain, Th., David, A., Larsen, K.G.: Playing games with timed games. In: A. Giua, M. Silva, J. Zaytoon

(eds.) Proceedings of the 3rd IFAC Conference on Analysis and Design of Hybrid Systems (ADHS’09).
Zaragoza, Spain (2009)

14. Chatterjee, K., de Alfaro, L., Henzinger, T.A.: Strategy improvement for concurrent reachability and
safety games. CoRR (2012)

15. De Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The element of surprise in timed
games. In: CONCUR 2003-Concurrency Theory, pp. 144–158. Springer (2003)

16. De Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinite-state games. In: CON-
CUR 2001—Concurrency Theory, pp. 536–550. Springer (2001)

17. Gardey, G., Roux, O.F., Roux, O.H.: Safety control synthesis for time Petri nets. In: 8th International
Workshop on Discrete Event Systems (WODES’06), pp. 222–228. IEEE Computer Society Press, Ann
Arbor, USA (2006)

18. Golaszewski, C., Ramadge, P.: Control of discrete event processes with forced events. In: Proceedings of
the 26th Conference on Decision and Control (1987)

19. Jard, C., Lime, D., Roux, O.H.: Clock Transition Systems. In: 21th international Workshop on Concur-
rency, Specification and Programming (CS&P 2012). Berlin, Germany (2012)

20. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.M.: Romeo: A parametric model-checker for Petri nets
with stopwatches. In: TACAS 2009, Lecture Notes in Computer Science, vol. 5505, pp. 54–57. Springer,
York, UK (2009)

21. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed systems. In: STACS
95, pp. 229–242. Springer (1995)

22. Microchip: PIC18CXX8 Data Sheet (DS30475A). High-Performance Microcontrollers with CAN Mod-
ule. http://ww1.microchip.com/downloads/en/DeviceDoc/30475a.pdf (2000)

23. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event processes. SIAM J.
Control Optim. 25(1), 206–230 (1987)

24. Thomas, W.: On the synthesis of strategies in infinite games. In: STACS 95, pp. 1–13. Springer (1995)

https://hal.archives-ouvertes.fr/hal-02415319

32 Jean-Luc Béchennec1 et al.

25. Tripakis, S., Altisen, K.: On-the-fly controller synthesis for discrete and dense-time systems. In: In
FM’99, volume 1708 of LNCS, pp. 233–252. Springer Verlag (1999)

26. Wonham, W.M., Ramadge, P.J.: On the supremal controllable sublanguage of a given language. In:
Decision and Control, 1984. The 23rd IEEE Conference on, vol. 23, pp. 1073–1080 (1984)

	Introduction
	Logical time games
	Justification for this new model
	Controller synthesis
	Reachability games
	Safety game
	Safe reachability
	Game Petri Nets
	Concurrent composition of game structures
	Complexity and Implementation
	Case study
	Conclusion

