Kostia Chardonnet

Alexis Saurin

Benoît Valiron

Toward a Curry-Howard Equivalence for Linear, Reversible Computation Work-in-progress

Keywords: Reversible computation, Linear logic, Curry-Howard

In this paper, we present a linear and reversible language with inductive and coinductive types, together with a Curry-Howard correspondence with the logic µMALL: linear logic extended with least and greatest xed points allowing inductive and coinductive statements. Linear, reversible computation makes an important sub-class of quantum computation without measurement. In the latter, the notion of purely quantum recursive type is not yet well understood. Moreover, models for reasoning about quantum algorithms only provide complex types for classical datatypes: there are usually no types for purely quantum objects beside tensors of quantum bits. This work is a rst step towards understanding purely quantum recursive types.

Introduction

Computation and logic are two faces of the same coin. For instance, consider a proof s s A → B t

A B

Fig. 1. Modus-Ponens of A → B and a proof t of A. With the logical rule Modus-Ponens one can construct a proof of B: Figure 1 features a graphical presentation of the corresponding proof. Horizontal lines stand for deduction steps -they separate conclusions (below) and hypotheses (above). These deduction steps can be stacked vertically up to axioms in order to describe complete proofs. In Figure 1 the proofs of A and A → B are symbolized with vertical ellipses. The ellipsis annotated with s indicates that s is a complete proof of A → B while t stands for a complete proof of A.

This connection is known as the Curry-Howard correspondence [START_REF] Curry | Functionality in combinatory logic[END_REF][START_REF] Howard | The formulae-as-types notion of construction. To HB Curry: essays on combinatory logic[END_REF]. In this general framework, types correspond to formulas and programs to proofs, while program evaluation is mirrored with proof simpli cation (the so-called cut-elimination). The Curry-Howard correspondence formalizes the fact that the proof s of A → B can be regarded as a function -parametrized by an argument of type A-that produces a proof of B whenever it is fed with a proof of A. Therefore, the computational interpretation of Modus-Ponens corresponds to the application of an argument (i.e. t) of type A to a function (i.e. s) of type A → B. When computing the corresponding program, one substitutes the parameter of the function with t and get a result of type B. On the logical side, this corresponds to substituting every axiom introducing A in the proof s with the full proof t of A. This yields a direct proof of B without any invocation of the "lemma" A → B.

Paving the way toward the veri cation of critical softwares, the Curry-Howard correspondence provides a versatile framework. It has been used to mirror rst and second-order logics with dependent-type systems [START_REF] Bertot | Interactive Theorem Proving and Program Development -Coq'Art[END_REF][START_REF] Leroy | Formal veri cation of a realistic compiler[END_REF], separation logics with memory-aware type systems [START_REF] Reynolds | Separation logic: A logic for shared mutable data structures[END_REF][START_REF] Jung | RustBelt: securing the foundations of the Rust programming language[END_REF], resource-sensitive logics with di erential privacy [START_REF] Gaboardi | Linear dependent types for di erential privacy[END_REF], logics with monads with reasoning on side-e ects [START_REF] Swamy | Dependent types and multi-monadic e ects in F[END_REF][START_REF] Maillard | The next 700 relational program logics[END_REF], etc. This paper is concerned with the case of reversible computation, a sub-class of pure quantum computation. In general quantum computation, one has access to a coprocessor holding a "quantum" memory. This memory consists of "quantum" bits having a peculiar property: their state cannot be duplicated, and the operations one can perform on them are unitary, reversible operations. The co-processor comes with an interface to which one can send instructions to allocate, update or read quantum registers. Quantum memories can be used to solve classical problems faster than with purely conventional means. Quantum programming languages are nowadays pervasive [START_REF] Fingerhuth | Open source software in quantum computing[END_REF] and several formal approaches based on logical systems have been proposed to relate to this model of computation [START_REF] Selinger | A lambda calculus for quantum computation with classical control[END_REF][START_REF] Paykin | QWIRE: a core language for quantum circuits[END_REF][START_REF] Rios | A categorical model for a quantum circuit description language[END_REF]. However, all of these languages rely on a purely classical control-ow: quantum computation is reduced to describing a list of instructions -a quantum circuit-to be sent to the co-processor. In particular, in this model operations performed on the quantum memory only act on quantum bits and tensors thereof, while the classical computer enjoys the manipulation of any kind of data with the help of rich type systems. This extended abstract aims at proposing a type system featuring inductive and coinductive types for a purely reversible language, rst step towards a rich quantum type system. We base our study on the approach presented in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF]. In this model, reversible computation is restricted to two main types: the tensor, written a ⊗ b and the co-product, written a ⊕ b. The former corresponds to the type of all pairs of elements of type a and elements of type b, while the latter represents the disjoint union of all elements of type a and elements of type b. For instance, a bit can be typed with 1 ⊕ 1, where 1 is a type with only one element. The language in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF] o ers the possibility to code isos -reversible maps-with pattern matching. An iso is for instance the swap operation, typed with a ⊗ b ↔ b ⊗ a. The language also permits higher-order operations on isos, so that an iso can be parametrized by another iso, and is extended with lists (denoted with [a]). For instance, one can type a map operation acting on all the elements of a list with

(a ↔ b) → ([a] ↔ [b]
). However, if [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF] hints at an extension toward pure quantum computation, the type system is not formally connected to any logical system.

The main contribution of this work is a Curry-Howard correspondence for a purely reversible typed language in the style of [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF]. We capitalize on the logic µMALL [2,1]: an extension of the additive and multiplicative fragment of linear logic with least and greatest xed points allowing inductive and coinductive statements. This logic con- tains both a tensor and a co-product, and its strict linearity makes it a good t for a reversible type system.

A A id Γ1, A ∆1 Γ2 ∆2, A Γ1, Γ2 ∆1, ∆2 cut ∆ A ∆, 1 A 1L 1 1R ∆, A, B C ∆, A ⊗ B C ⊗L ∆ A Γ B ∆, Γ A ⊗ B ⊗R ∆, A C ∆, B C ∆, A ⊕ B C ⊕L ∆ Ai ∆ A1 ⊕ A2 ⊕ i R i ∈ {1, 2} A[X ← µX.A] B µX.A B µL A B[X ← µX.B] A µX.B µR A[X ← νX.A] B νX.A B νL A B[X ← νX.B] A νX.B νR

Background on µMALL

The logic µMALL [2,1] is an extension of the additive and multiplicative fragment of linear logic [START_REF] Girard | Linear logic[END_REF]. The syntax of linear logic is extended with the formulas µX.A and its dual νX.A (where X is a type variable occuring in A), which can be understood at the least and greatest xed points of the operator X → A. These permit inductive and coinductive statements. We are only interested in a fragment of µMALL which contains the tensor, the plus, the unit and the µ and ν connectives. Note that our system only deals with closed formulas. Our syntax of formulas is A, B ::

= 1 | X | A ⊗ B | A ⊕ B | µX.A | νX.A.
The derivation rules are shown in Figure 2. They de ned a binary relation ∆ Γ on set of formulas de ned inductively. For each rule the assumptions are above the line while the conclusion is under. In the rules, the comma stands for the disjoint union: observe that each formula has to be used exactly once and cannot be duplicated or erased. In µMALL one can for instance de ne the type of natural numbers as µX.1 ⊕ X, of lists of type A as µX.1 ⊕ (A ⊗ X) and of streams of type A as νX.A ⊗ X.

We consider proofs to be potentially non-well-founded derivation trees: they are not necessarily nite as we can for instance consider the formula µX.X and apply the rule µ R an in nite number of times. Among non well-founded proof-objects we distinguish the regular derivation trees that we call circular pre-proofs. These trees can then be represented in a compact manner, see Figure 3. One problem with such a proof-system is to determine whether or not in nite derivations are indeed proofs. Indeed, if every in nite derivation is accepted as a proof, it would be possible to prove any formula F, as shown in Figure 4.

To answer this problem, µMALL comes with a validity criterion for derivations. It roughly says that a derivation is valid if, in every in nite branch of the derivation, there exists an in nite number of rules µ L or an in nite number of rules ν R . The intuition . . . is that since µX.A formulas represent least xed points, their objects are nite. An in nite number of rule µ R would mean producing an in nite object, which is not possible. On the other hand, we can explore an arbitrarily large object as input with the rule µ L . For the other case, since νX.A formulas represent greatest xed points, their object are in nite. We therefore want to ensure that we can produce in nite objects: hence the in nite number of rules ν R . This criterion can be understood in a more operational way as a requirement for productivity.

Our language

Our language is based on the one presented in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF]. We build on the reversible part of the paper by extending the language to support both a more general rewriting system and inductive and coinductive types. The language is de ned by layers. Terms and types are presented in Table 2, while typing derivations, based on µMALL, can be found in Tables 3 and4. The language consists of the following pieces.

Basic type. They are rst-order and typed with base types. The constructors inj l and inj r represent the choice between either the left or right-hand side of a type of the form A ⊕ B; the constructor , builds pairs of elements (with the corresponding type constructor ⊗); fold and pack respectively represent inductive and coinductive structure of for the types µX.A and νX.A. A value can serve both as a result and as a pattern in the clause of an iso. Generalized patterns are used as special patterns: v g : A can match any value of type A. Terms are expressions at "surface-level": applying an iso always gives a term, whereas it is an expression only when the argument is a generalized pattern.

First-order isos. An iso of type α acts on terms of base types. An iso is a function of type A ↔ B, de ned as a set of clauses of the form {e 1 ↔ e 1 | . . . | e n ↔ e n }.

The tokens e i and e i in the clauses are expressions. Compared to the original language in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF], we allow general expressions both on the left and on the right of a clause. In order to apply an iso to a term, the iso must be of type A ↔ B and the term of type A. In the typing rules of isos, the OD predicate (taken from [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF] and not described in this paper) syntactically enforces the exhaustivity and non-overlapping conditions that the left-hand-side and right-hand-side of clauses should satisfy. Exhaustivity for an iso {e 1 ↔ e 1 | . . . | e n ↔ e n } of type A ↔ B means that the expressions on the left (resp. on the right) of the clauses describe all possible values for the type A (resp. the type B). Non-overlapping means that two expressions cannot match the same value. For instance, the left and right injections inj l e and inj r e are nonoverlapping while a pattern v g is always exhaustive.

(Base types)

A, B :: ω

= 1 | A ⊕ B | A ⊗ B | µX.A | νX.A (Isos, rst-order) α ::= A ↔ B (Isos, higher-order) T ::= α1 → • • • → αn → α (Values) v ::= () | x | inj l v | inj r v | v1, v2 | fold v | pack v (Generalized
::= {e1 ↔ e 1 | . . . | en ↔ e n } | λf.ω | µf.ω | f | ω1 ω2 | inv ω (Terms) t ::= () | x | inj l t | inj r t | t1, t2 | fold t | pack t | ω t | let vg = vg in t Table 2

. Terms and types

Higher-order isos. An iso of type T manipulate other isos as basic blocks. Since isos represent closed computations, iso-variable are non-linear and can be duplicated at will while term-variable are linear. The constructions λf.ω and ω 1 ω 2 represent respectively the abstraction of a function and the application of an iso to another. The construction µg.ω represents the creation of a recursive function, rewritten as ω[g := µg.ω] by the operational semantics. The typing rule for µg.ω has a productivity criterion. Indeed, since isos can be non-terminating (because of coinduction), productivity is important to ensure that we work with total functions. These checks are crucial to make sure that our isos are indeed bijections in the mathematical sense. The construction inv ω corresponds to the inversion of the iso ω.

If ω is of type A ↔ B then inv ω is of type B ↔ A.
Finally, our language is equipped with a rewrite system (→) on terms. The evaluation of an iso applied to an argument works with pattern-matching. The non-overlapping and exhaustivity conditions guarantee subject-reduction (see Prop. 3.1).

Example 3.1. Encoding of the isomorphism map in our language, where [] is the empty list and :: is the list construction. The iso map is of type

(A ↔ B) → ([A] ↔ [B]) where [A]
is the type of lists of type A. This iso takes an iso of type A ↔ B as argument and apply it to each element of the list given as argument:

λf.µg. [] ↔ [] h :: t ↔ (f h) :: (g t) : (A ↔ B) → [A] ↔ [B]).
Example 3.2. We can de ne the iso of type :

A ⊕ (B ⊕ C) ↔ C ⊕ (A ⊕ B) as    inj l a ↔ inj r inj l a inj r inj l b ↔ inj r inj r b inj r inj r c ↔ inj l c    . ∅; Ψ e () :
ω : T Ψ ω λf.ω : α → T Ψ, f : α ω f : α Ψ ω ω1 : α → T Ψ ω ω2 : α Ψ ω ω1ω2 : T Ψ ω ω : T ⊥ Ψ ω inv ω : T Ψ, f : α ω ω : α1 → • • • → αn → α µf.ω is productive Ψ ω µf.ω : α1 → • • • → αn → α
Table 4. Typing of isos Remark 3.1. In our two examples, the left and right-hand side of the ↔ on each function respect both the criteria of exhaustivity -every-value of each type is being covered by at least one expression-and non-overlapping -no two expressions cover the same value. Both isos are therefore bijections.

Property 3.1. The language features subject reduction: If t : A and t → t then we have t : A. Moreover, it enjoys con uence: Let → * be the re exive, transitive closure of →. If t → * t 1 and t → * t 2 then there exists t 3 such that t 1 → * t 3 and t 2 → * t 3 .

We conjecture that well-typed isos are indeed isomorphisms:

Conjecture 3.1. For all ω : A ↔ B, v : A and u : B then ((inv ω) • ω) v → * v and (ω • inv ω) u → * u.

Towards Curry-Howard

An iso ω : A ↔ B corresponds to both a computation sending a value of type A to a result of type B and a computation sending a value of type B to a result of type A. We can mechanically translate such an iso to a pair of derivations π, π ⊥ in µMALL, where π is a proof of A B and π ⊥ is a proof of B A. This mechanical translation constructs circular pre-proofs, as discussed in Section 2. We however still need to show that the obtained derivations respect the validity criterion for circular proof. Once proven, we would obtain a static correspondence between programs and proofs. We would however still need to show that this entails a dynamic correspondence between the evaluation procedure of our language and the cut-elimination procedure of µMALL. For that, we would need to make sure that the proofs we obtain are indeed isomorphisms, meaning that if we cut the aforementioned proofs π and π ⊥ , performing the cut-elimination procedure would give either the identity on A or the identity on B. Isomorphism of proofs. Provided that the above holds, we moreover have

1R 1 ⊕ 1 R 1 ⊕ (A ⊗ [A]) µR [A] 1L 1 [A] φ1 A A id A A cut A A φ2 [A] [A] id [A] [A] cut [A] [A] ⊗R A, [A] A ⊗ [A] ⊕ 2 R A, [A] 1 ⊕ (A ⊗ [A]) µR A, [A] [A] ⊗L A ⊗ [A] [A] ⊕L 1 ⊕ (A ⊗ [A]) [A] µL [A] [A]
A A id π ⊥ B A π A B A A cut π A B π ⊥ B A B B cut B B id
Simulation of evaluation. Provided that t is a value and v is a normal form, if ω t → * v, if π is the proof corresponding to ω t, and if π is the proof corresponding to v, then π → * π with the cut-elimination procedure.

We de ne the two mutually recursive proofs π 1 and π 2 by π 1 = Π(ψ f , π 2) and π 2 = Π(ψ f ⊥ , π 1) where ψ f and ψ f ⊥ correspond to the isos f and inv f . The proof associated with the iso in Eq. (1) is π 1 . The proof Π(φ 1 , φ 2) is shown in Figure 5.

Conclusion

We presented a higher-order, linear, reversible language with inductive and coinductive types together with an interpretation of programs into derivations in the logic µMALL. This work is still in progress: A number of proofs still need to be completed.

After completing the proofs of our current conjectures, we want to extend our language to linear combinations of terms in order to study purely quantum recursive types and generalized quantum loops: in [START_REF] Sabry | From symmetric pattern-matching to quantum control[END_REF], lists are the only recursive type which is captured and recursion is terminating. The logic µMALL would help providing a ner understanding of termination and non-termination.

Fig. 2 .

 2 Fig. 2. Rules for µMALL.

Fig. 3 .Fig. 4 .

 34 Fig. 3. Circular representation of proofs.

 pattern) vg ::= () | x | vg, vg | ω vg | let vg = vg in vg | fold vg | pack vg (Expressions) e ::= vg | inj r e | inj l e | e, e | fold e | pack e | let vg = vg in e (Isos)

Fig. 5 .

 5 Fig. 5. Proof corresponding to example 4.1.

Conjecture 4 . 1 .

 41 Validity of proofs. If ω : A ↔ B then the µMALL derivations π : A B and π ⊥ : B A of ω are valid.

Example 4 . 1 .

 41 Consider the iso that, given an iso f and a list [x 1 , x 2 , . . . , x n] returns the list [f x 1 , (inv f) x 2 , f x 3 , (inv f) x 4 , . . .] written as:µg.λf. [] ↔ [] h :: t ↔ (f h) :: ((g (inv f))t) : (A ↔ A) → ([A] ↔ [A])

Table 3 .

 3 1 x : A; Ψ e x : A ∆; Ψ e t : A ∆; Ψ e inj l t : A ⊕ B ∆; Ψ e t : B ∆; Ψ e inj r t : A ⊕ B Ψ e let vg 1 = vg 2 in t : B Typing of terms and expressions ∆1; Ψ e e1 : A . . . ∆n; Ψ e en : A ODA{e1, . . . , en} ∆1; Ψ e e 1 : B . . . ∆n; Ψ e e n : B ODB{e 1 , . . . , e n } Ψ ω {e1 ↔ e 1 | . . . | en ↔ e n } : A ↔ B. Ψ, f : α ω

	∆1; Ψ e t1 : A ∆2; Ψ e t2 : B	∆; Ψ t : A[X ← νX.A]
	∆1, ∆2; Ψ e t1, t2 : A ⊗ B		∆; Ψ pack t : νX.A
	Ψ ω ω : A ↔ B ∆; Ψ e t : A	∆; Ψ e t : A[X ← µX.A]
	∆; Ψ e ω t : B	∆; Ψ e fold t : µX.A
	Γ ; Ψ e vg 1 : A	∆1; Ψ e vg 2 : A	Γ, ∆2; Ψ e t : B
	∆1, ∆2;		

Acknowledgments. This work was supported in part by the French National Research Agency (ANR) under the research project SoftQPRO ANR-17-CE25-0009-02, and by the DGE of the French Ministry of Industry under the research project PIA-GDN/QuantEx P163746-484124.