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Geomagnetic core field models and secular 
variation forecasts for the 13th International 
Geomagnetic Reference Field (IGRF‑13)
I. Wardinski1*  , D. Saturnino2, H. Amit2, A. Chambodut1, B. Langlais2, M. Mandea3 and E. Thébault4

Abstract 

Observations of the geomagnetic field taken at Earth’s surface and at satellite altitude are combined to construct 
continuous models of the geomagnetic field and its secular variation from 1957 to 2020. From these parent models, 
we derive candidate main field models for the epochs 2015 and 2020 to the 13th generation of the International 
Geomagnetic Reference Field (IGRF). The secular variation candidate model for the period 2020–2025 is derived from 
a forecast of the secular variation in 2022.5, which results from a multi-variate singular spectrum analysis of the secular 
variation from 1957 to 2020.

Keywords:  The geomagnetic field, Geomagnetic secular variation, Geomagnetic field models, Forecasts of the 
geomagnetic field
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Introduction
The International Association of Geomagnetism and 
Aeronomy (IAGA) regularly releases the International 
Geomagnetic Reference Field (IGRF), which is a math-
ematical description of Earth’s main magnetic field and 
its secular variation. Previous versions (e.g., Finlay et al. 
2010; Thébault et al. 2015) are widely used in many dis-
ciplines of Earth sciences and applied for navigational 
purposes (Jiménez et al. 2012; Canciani and Raquet 2016) 
and in satellite orientation (Slavinskis et al. 2014).

In this study, we combine geomagnetic field observa-
tions taken at Earth’s surface and at satellite altitude to 
construct continuous models of the geomagnetic core 
field and its secular variation between 1957 and 2020. 
From these models, candidate models for the IGRF 
(Alken et al. 2020), i.e., main field models for the epochs 
2015 and 2020 and a secular variation model for the 
period 2020 to 2025 centered at 2022.5 are derived. We 
apply two modeling techniques to derive these models. 

First, a method that descends from the time-dependent 
modeling technique developed by Bloxham and Jackson 
(1992); we refer to this as the classical model. The second 
technique is based on a method for constructing core 
field models that satisfy the frozen-flux radial magnetic 
induction equation on the core-mantle boundary (CMB) 
by imposing the field evolution to be entirely due to 
advection of the magnetic field at the core surface (Lesur 
et al. 2010; Wardinski and Lesur 2012), which we refer to 
as the kinematic field model. The latter method could be 
understood as a simple data assimilation approach, where 
the diffusion-less induction equation and assumptions 
about the dynamical regime of the core flow form the pri-
ors, and observations define their likelihood.

Methods of forecasting the future geomagnetic field 
evolution range from simple linear extrapolation to data 
assimilation into numerical dynamo simulations (Kuang 
et al. 2010; Aubert 2015; Fournier et al. 2015). Here, we 
devise two strategies to forecast the geomagnetic secular 
variation. First, a direct forecast based on a multi-variate 
singular spectrum analysis (MSSA) (Broomhead and 
King 1986; Plaut and Vautard 1994) of the magnetic field 
variability of past decades. Second, a kinematic forecast 
scheme is applied that is also based on the MSSA, but 
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of the core flow variability of past decades. The recon-
struction of the past flow variability and its forecast are 
used to predict the future geomagnetic field by forward-
modeling the diffusion-less radial induction equation 
on the CMB. This approach is somewhat similar to geo-
magnetic field forecasts using steady and time invariant 
flows (Beggan and Whaler 2010; Hamilton et  al. 2015; 
Whaler and Beggan 2015). However, such forecasts are 
expected to fail at the occurrence of geomagnetic jerks 
that are sudden changes in the secular variation. Such 
events occurred in the past decades (Mandea et al. 2010; 
Brown et  al. 2013), most recently in 2014 (Torta et  al. 
2015). The cause of these events is not fully understood. 
Their occurrences have been related to different types of 
rapid wave motion within Earth’s liquid core (Bloxham 
et al. 2002; Aubert and Finlay 2019), temporal changes of 
the core flow (Wardinski et al. 2008) and Earth’s rotation 
variation (Holme and de Viron 2005, 2013).

This paper is organized as follows. “Geomagnetic field 
modeling” section outlines the two techniques to derive 
the parent geomagnetic field model for the IGRF candi-
dates. In the third section, we develop the methodology 
to predict future geomagnetic secular variation. “Results 
and discussion” section  provides results of the geomag-
netic field modeling, secular variation forecasts and the 
derivation of the candidate models. The last section dis-
cusses the results and concludes the study.

Geomagnetic field modeling
In this section, we summarize the derivation of a parent 
geomagnetic main field model from which we deduce an 
IGRF candidate model. The parent model, hereafter C3FM3, 
covers the period from 1957 to 2020. The model derivation 
follows that of Wardinski and Lesur (2012) and consists of 
two branches, a classical model without the kinematic con-
straint applied (see “Classical modeling” section), and a kin-
ematic field model based on the tangential geostrophic flow 
assumption (see “Kinematic field modeling” section). Like 
in the previous model, C3FM2, we use order 6 B-splines to 
parameterize field and flow coefficients in time. The spline 
knot spacing is set to be roughly 1.5 years. Both model 
branches are constrained to fit a main field model for the 
epoch 2015. This main field model is based on magnetic 
measurements taken by the Swarm satellite mission (Lesur, 
priv. comm.). We choose 2015, as it is the epoch of the last 
IGRF, with a good data coverage provided by geomagnetic 
observatories and the Swarm satellite mission. This data 
coverage decreases towards the model endpoint.

Data
In this work, we use two types of data, measurements 
taken at a network of ground-based geomagnetic obser-
vatories and satellite data taken at satellite virtual 

geomagnetic observatories (Mandea and Olsen 2006). 
The idea of combining ground-based and virtual observa-
tory data to perform a geomagnetic field modeling was 
already carried out by Barrois et al. (2018). However, here 
we derive secular variation estimates to avoid leakage of 
sub-annual external field variations into the description 
of the core field and to obtain a sufficient representation 
of the short-term secular variation, that may be used to 
forecast geomagnetic field changes.

Ground‑based geomagnetic observatories
A large portion of the data used in this study comes from 
ground-based observatories. Like in previous studies (War-
dinski and Holme 2006; Wardinski and Lesur 2012; Lesur 
et  al. 2018), we derive estimates of secular variation by 
annual differences from observatory monthly means, where 
these monthly means are averages of observatory hourly 
means. Also, annual means are used for observatories for 
which hourly mean values are not available from the World 
Data Centre for Geomagnetism - Edinburgh (2019). These 
observatory annual means are part of a compilation that 
is provided by the British Geological Survey - Edinburgh 
(2020). Over the period 1957–2018 the number of geomag-
netic observatories simultaneously in operation that have 
been providing vectorial hourly means of North, East and 
downward components ranges between 72 and 155. Data 
errors were removed when encountered and data gaps were 
not filled by interpolations. Figure 1 maps locations of the 
ground-based geomagnetic observatories used in this study.

Satellite virtual geomagnetic observatories
We use vector magnetic field measurements from Swarm 
Level-1b data product, version 0505 (0506 for some 
data files). All three Swarm satellites are considered for 
the period between January 2014 to June 2019. Data is 
screened for quality flags defined in the Level-1b Prod-
uct Definition Document  (Tøffner-Clausen and Nielsen 
2018). We keep only measurements identified as nomi-
nal, and also Swarm C vector measurements after 4th 
November 2014.

We select only data where the Sun is below the hori-
zon (Chambodut et al. 2002). Additionally, we retain only 
data showing moderate magnetic activity. Sectorial mag-
netic activity index a σ (Chambodut et al. 2013), provided 
by the International Service of Geomagnetic indices 
(2020), were used and we only select data corresponding 
to a σ < 25 nT.

With the selected data we then construct a global 
mesh of virtual geomagnetic observatories (VO) fol-
lowing Saturnino et  al. (2018), with some small 
changes. An approximately equal area mesh is 
obtained with the VO centers separated in lati-
tude by 12.8◦ and defining 14 latitudinal bands, with 
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θvo = ±6.40◦,±19.20◦,±32.0◦, . . . ,±83.20◦ . In each 
band, the longitude φvo of each VO and the number of 
longitudinal divisions, NφVO (rounded up to the nearest 
integer), are chosen so that:

The resulting mesh contains 258 VOs. Figure 1 displays 
the locations of all VOs in the mesh. The data set of each 
VO consists of selected data acquired inside a cylinder 
of 3.0◦ radius centered around each VO and during a 
30-day period, i.e., leading to nearly monthly values. The 
Equivalent Source Dipole (ESD) technique is then used, 
following closely Saturnino et al. (2018). For each month 
(30-day period) the ESD inversion is applied to each VO 
vector data for the equivalent magnetization of dipoles 
placed at 2900 km depth inside Earth’s interior, by a least 
squares fit in an iterative, conjugate gradient, inversion 
scheme (Purucker et al. 1996). Then, the forward calcula-
tion is used to estimate a magnetic field value at the VO 
center location and for a given time period. In this way, 
time series of magnetic field values at the center of each 
VO and at a constant altitude of 500 km, are obtained.

The distributions of ground-based and virtual obser-
vatories differ as can be seen in Fig. 1. Overall, geomag-
netic observatory locations cluster, which may lead to a 
higher spatial resolution of the model in some parts of 
the world, whereas in other parts the resolution may be 
lower than that of the virtual observatories.

(1)Nϑvo =
360

12.8
cos θvo.

Secular variation estimates
We derive secular variation estimates as input for the 
geomagnetic field modeling. The technique is applied 
to monthly means of VOs and to ground-based geo-
magnetic monthly means. The secular variation of the 
X-component at a given observatory is estimated as

where τ denotes a particular month. These are annual dif-
ferences of observatory monthly means. Likewise, obser-
vatory annual means are treated using

where t is in calendar years and dt is 1 year. Then, secu-
lar variation estimates derived by (2) and (3) are given in 
nT/year.

Classical modeling
Conventional geomagnetic field modeling approaches 
rely on the assumption that Earth’s magnetic field 
B(r, θ ,φ, t) is a potential field without magnetic sources 
in the mantle and in the vicinity of satellite virtual obser-
vatories. Because of this, the geomagnetic field is deter-
mined as a gradient of a scalar potential, i.e.,

(2)dX/dt|τ =
(

X(τ + 6)− X(τ − 6)
)

/dt,

(3)dX/dt|t+1/2 =
(

X(t + 1)− X(t)
)

/dt,

(4)B(r, θ ,φ, t) = −∇V (r, θ ,φ, t) .

−60˚ −60˚

−30˚ −30˚

0˚ 0˚

30˚ 30˚

60˚ 60˚

Fig. 1  The distribution of ground-based and satellite virtual geomagnetic observatories. The ground-based observatory data (blue circles) cover 
the period 1957 to 2018, whereas the VO data (red stars) are derived from Swarm and cover the period 2015 to 2019.5
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Then in a spherical geometry, the scalar potential of the 
geomagnetic field can be represented as

where a is Earth’s radius (6371.2 km), (r, θ ,φ) the geo-
centric spherical radial, co-latitude and longitude coor-
dinates and Pm

l (cos θ) are the Schmidt quasi–normalized 
associated Legendre functions, with their normalization 
defined by

with degree l and order m. The maximum spherical har-
monic degree in (5) is chosen to be lmax = 14 , to mini-
mize the contamination by the crustal field. The Gauss 
coefficients {gml , hml } are expanded in time using order six 
B-splines Mn(t):

The objective function �(m) to be minimized in the 
inversion is:

where A is an operator which relates the model vector m 
containing the Gauss coefficients to the data y . y − Am is 
the misfit between data and model, subject to the regu-
larization. Ce and Cm are the error and the prior model 
covariance matrix, respectively. Cm is an expression of 
the model priors.

Here, we report solutions that are adjusted to minimize 
the integral of B2

r  over the core surface to obtain a spatial 
smooth model:

The matrix S has the diagonal elements

Like in some previous studies (Lesur et  al. 2010; War-
dinski and Lesur 2012), we seek a reliable estimate of 
the secular acceleration. Therefore, the temporal model 

(5)

V (r, θ ,φ, t) = a

lmax
∑

l=1

l
∑

m=0

(gml (t) cos(mφ)

+ hml (t) sin(mφ))

(

a

r

)l+1

Pm
l (cos θ) ,

(6)

∫ 2π

φ=0

∫ π

θ=0
(Pm

l (cos θ) cos(mφ))2 sin θ dθ dφ = 4π

2l + 1
,

(7)

gml (t) =
N
∑

n=1

gmn
l Mn(t) , hml (t) =

N
∑

n=1

hmn
l Mn(t).

(8)
�(m) = (y − Am)TC−1

e (y − Am)+ C−1
m + C−1

F ,

(9)
∫

S(c)
B2
r d� = mTS−1m .

(10)

sll , tll =
(l + 1)2

2l + 1

(a

c

)(2l+4)
for l = 1 . . . , lmax .

constraint is to minimize the integral of the third time 
derivative of the radial field component over the core sur-
face and in the model period between tS and tE

where S(c) is the spherical surface of the core at radius 
c = 3485 km . The diagonal elements of the matrix T are 
the same as for S , and the time integral is computed using 
a Newton–Cotes formula of a closed type, e.g., Bode’s 
rule (Abramowitz and Stegun 1973). Minimization of the 
third time derivative requires placing further conditions 
on the second time derivatives of the radial field at the 
model end-points; best results are obtained when these 
are set to zero.

The model prior covariance matrix Cm is then given by:

The last term of (8) is the constraint to fit a given satellite 
field in 2015, which is

where 0gml  and 0hml  are the Gauss coefficients of the sat-
ellite geomagnetic main field model. This constraint is 
necessary, as our model is based on secular variation data 
and it needs a main field model at a given epoch in order 
to provide also description of the main field at all times. 
Traditionally, we use a main field model that is derived in 
an independent study from satellite data. The constraint 
is then written

with the damping parameter �f .
Solutions are sought iteratively in a very similar man-

ner as for the previous model, C3FM2, by deriving an 
initial model to re-weight the observatory data by their 
residuals to this initial model. Then, the strength of exter-
nal field variation is reduced by a noise-removal scheme 
(Wardinski and Holme 2011). From this data set the final 
model is derived.

Kinematic field modeling
In this section, we describe our method to invert geo-
magnetic observations for field and flow at the core sur-
face, which extends our previous study (Wardinski and 

(11)

4π

(tE − tS)

∫ tE

tS

∫

S(c)

(

∂3Br

∂t3

)2

d� dt = mTT−1m ,

(12)C−1
m = �Sm

TS−1m + �Tm
TT−1m .

(13)

F :=
∫

r=a
(B− 0B)2dS|t=2015

=
lmax
∑

l=1

l
∑

m=0

(l + 1)[(gml − 0gml )2 + (hml − 0hml )
2]t=2015,

(14)C−1
F = �fm

TF−1m ,
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Lesur 2012), where we imposed the core flow to be purely 
toroidal. The inversion of secular variation data for field 
and flow at the core surface formulates to a Bayesian 
inference. Assuming a Gaussian distribution, then this 
leads to an objective function similar to (8) that is mini-
mal for the preferred solution m.

In the following, we provide details of the prior infor-
mation (constraints) used to derive a preferred solution 
of the non-unique and non-linear inverse problem. The 
constraints are applied on the portion of the model vec-
tor that represents the core surface flow.

Here, we use the data set with the reduced external field 
noise obtained in “Classical modeling” section to jointly 
invert for the field and flow at the core surface. This eases 
the joint-inversion process, as it avoids the iterative solv-
ing scheme to re-weight the data for the non-linear prob-
lem. Different assumptions of the flow dynamic could 
be applied (Holme 2007). Among them: purely toroidal 
(Whaler 1980), tangential geostrophic (LeMouël 1984) 
and quasi-geostrophic flow (Pais and Jault 2008). How-
ever, we focus on the tangential geostrophic flow assump-
tion, as it is more comprehensive than a purely toroidal 
flow, but less restrictive than a quasi-geostrophic flow. 
(Note that the term flow refers to its horizontal part only, 
as the radial part vanishes at the core surface).

The flow is decomposed into toroidal and poloidal 
components:

T  and P are scalars which are expanded in Schmidt-nor-
malized real spherical harmonics in space and B-splines 
of order 6 in time, represented by tml (n), sml (n).

Following Lesur et al. (2010), the objective function of 
the joint inversion for the field and the flow at the core 
surface reads

where the model vector m now contains the sets of Gauss 
and flow coefficients. The functional �1 is related to the 
kinematic constraint and defined by

�̇(t) is a design matrix based on the radial induction 
equation in the kinematic assumption, i.e.,

According to (18), the secular variation of the radial field 
component at the core surface, ∂tBr , can be expressed in 
terms of a core field, Br , advected by the core fluid flow, 
u , where ∇h is the horizontal divergence. Then

(15)u = utor + upol = ∇h × (r̂T )+∇h P .

(16)�(m) = (y − Am)TC−1
e (y − Am)+ �1�1(m) ,

(17)

�1(m) =
∑

t

(Ag (t) · u − �̇(t) · g)TCg(Ag · u − �̇(t) · g) .

(18)∂tBr = −∇h · (uBr) .

where g is a vector that contains the Gauss coefficients 
and u contains the flow coefficients. The elements of the 
diagonal weight matrix Cg are defined as wg

l =
4π(l+1)2

(2l+1)  . 
Minimizing the mean square difference, integrated over 
the core surface S(c) and time, between the observed sec-
ular variation and the secular variation generated by the 
flow, then the functional �1 is equivalent to the integral 
and we can write this (similarly to (9) and (11)) as

where m is now the model vector that holds the flow and 
Gauss coefficients. The diagonal elements of the field part 
of K are given by Cg . The parameter �1 controls the con-
formity of the model to the kinematic constraint.

Because Ag (t) in the functional �1 depends on the 
Gauss coefficients gml (t), hml (t) and is multiplied by u , 
this optimization problem (inversion) is clearly non-
linear and has to be solved iteratively. However, the 
iterative process is unlikely to converge unless some 
constraints are applied on the flow model, as finding 
a flow model is an ill-posed inverse problem (Holme 
2007). In order to obtain the optimal field model and 
simultaneously reduce the null space for the flow, two 
types of constraints are considered. The flow model is 
forced to have a convergent spectrum, i.e., to be large 
scale, and to minimize Bloxham’s “strong norm” (Blox-
ham 1988; Jackson 1997),

N  has the diagonal elements (l3(l + 1)3)/(2l + 1) . The 
damping parameter �S controls to what extent the flow 
follows this constraint. Minimizing (21) constrains effi-
ciently the secular variation. Secondly the flow model is 
chosen such that it varies smoothly in time,

with �T as the associated control parameter of the flow 
temporal evolution that efficiently regularizes the inverse 
problem. The constraints (21) and (22) are similar to 
the temporal constraint of the classical model, i.e., (11), 
as they involve a temporal integration to be minimized. 
Finally, it is required that the flow acceleration at starting 
and ending epochs is minimized by

(19)�̇(t) · g = Ag · u ,

(20)

∫

T

∫

S(c)

(

∂tBr(t)+ ∇h · (uBr)
)2

d� dt = gTK−1g ,

(21)

∫

T

∫

S(c)

(

∇h(∇h · u)
)2 +

(

∇h(r̂ ×∇h · u)
)2

d� dt = uTNu .

(22)
∫

T

∫

S(c)
(u)2d� dt = uTVu ,
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t1 and t2 are the epochs 1957 and 2020.0, respectively. 
This becomes necessary, as, if the flow acceleration is un-
constrained at the endpoint, it may exceed realistic val-
ues. The factor �E controls this constraint.

These are the basic settings for the joint inversion for 
the magnetic core field and the core flow. We impose a 
further constraint, in order to derive models that are 
based on different dynamical assumptions of the flow. 
One possible assumption commonly used is a tangential 
geostrophic flow (Hills 1979; LeMouël 1984) which is 
established by minimizing

where θ is the co-latitude. Elements of G are given by Pais 
et al. (2004). The constraint is controlled by setting �TG.

We apply two measures to discriminate models: the 
rms secular variation misfit is measured by differences 
between model and the observed secular variation, i.e.,

where Nobs is the number of observations. In addition, 
for the kinematic field models we derive the ratio

that specifies to what extent the frozen-flux radial induc-
tion equation is satisfied. Values similar to 1 and larger 
mean that this constraint is not fulfilled by the model, 
and conversely values significantly smaller than 1 indicate 
that the frozen-flux radial induction equation is approxi-
mately satisfied.

Forecasting schemes
In this study, we aim to obtain a description of (a) the 
temporal dynamics of the secular variation and (b) the 
temporal variability of the advective motion within the 
liquid outer core. These should not differ largely, but 
remaining external signals in the secular variation esti-
mates may pose problems to identify clearly signals from 
the core. To forecast states of the physical system that 
lead to the secular variation it is necessary to analyze the 
observed time series. Our strategy relies on the deriva-
tion of multi-variate time-series models, where individual 
secular variation and flow coefficients are treated as time 
series.

(23)
∫

S(c)

(

∂u

∂t

)2

d�

∣

∣

∣

∣

t1,t2

= uTEu .

(24)
∫

S(c)

(

∇h · (u cos θ))2d� = uTGu ,

(25)M =

√

√

√

√

1

(Nobs − 1)

Nobs
∑

i=1

(Obs−Mod)2

(26)R(t) =
∫

S(c)

{

∂tBr(t)+ ∇h · (uBr)
}2

d�
∫

S(c)

{

∂tBr(t)
}2

d�

Our development of time-series models and forecasts 
is based on the multi-variate singular spectrum analysis 
(MSSA) (Broomhead and King 1986; Plaut and Vautard 
1994, and see “Appendix A” section) of field and core flow 
variability. Other methods could be chosen to find a suf-
ficient description of the field and flow variability, such 
as ARIMA-models, or vector auto-regressions models; 
however, these model types are based on assumptions 
like stationarity of the time series and normality of the 
residuals (Box and Jenkins 1976; Brockwell and Davis 
2002, and references therein), which are unlikely for 
the temporal variability of the geomagnetic field (Hulot 
et al. 2010). Furthermore, the singular spectrum analysis 
does not rely on assumptions about the linearity or non-
linearity of the process that is generating the time series, 
whereas auto-regression models implicitly assume a lin-
ear behavior of the observed data. If 1, . . . ,T  serves as 
the time range for a training set, then the model param-
eters are estimated from these observations. The (out-
of-sample) prediction is generated over the time range 
T + 1, . . . ,T + h according to the generation mechanism 
of the model. In this study we consider 10 years as the 
time range of the prediction. This sets h = 120 months. 
Prediction models are derived using the first 22 eigen-
modes obtained by the MSSA of the temporal flow vari-
ability (see “Appendix A” section).

Direct secular variation forecast
The time series of the Gauss coefficients are taken from 
the classical model branch of C3FM3. The analysis con-
siders discrete series of secular variation coefficients

consisting in N observations regularly sampled in time. 
The sampling time τs is chosen to be one month.

Time-series models are derived using a multi-variate 
singular spectrum analysis, where the temporal variabil-
ity of the series is decomposed in eigenmodes (Vautard 
et al. 1992; Golyandina et al. 2001; Ghil et al. 2002). The 
time-series models are then reconstructions based on 
superposition of these eigenmodes, and similarly fore-
casts. For the technical details of the model selection, we 
refer the reader to “Appendix A” section.

Kinematic secular variation forecast
The kinematic forecasting scheme to predict future secular 
variation is motivated by results that the observed secular 
variation can be mostly explained by the advection of mag-
netic field (Roberts and Scott 1965; Wardinski and Lesur 
2012). Additionally, results of a previous kinematic field 
model show that the spatial complexity imposed by a satel-
lite magnetic field model of 2004 is maintained backward 
in time over decades (Wardinski and Lesur 2012). Here, we 

(27)yt := ġml (n), n = 1, . . . ,N



Page 7 of 22Wardinski et al. Earth, Planets and Space          (2020) 72:155 	

want to explore to what extent the approach can be used to 
forecast geomagnetic field changes.

The scheme consists of two steps. First, we derive time-
series models that give a sufficient accurate description of 
the temporal variability of the fluid motion in the liquid 
outer core. Therefore, we consider toroidal and poloi-
dal flow terms, which are treated as discrete multi-variate 
time series from which we derive time-series models for a 
given ’learning’ phase. The learning phase is set to cover the 
interval 1957 to 2020.

The second step, the kinematic forecasting step, employs 
forward computation of the secular variation by using the 
diffusion-less induction equation and is initialized by

where ũ(t0) represents the flow ( tml (n), pml (n) ), and Br(t0) 
the radial magnetic field at an initial epoch t0 . Here, we 
use the flow coefficients of the kinematic branch of C3

FM3. The forecasts of ũ(ti) for i  = 0 are obtained by 
deriving forecasts of the flow coefficients from their time-
series models, similar to the operation in “Direct secular 
variation forecastDirect secular variation forecast” sec-
tion. Generally, the forecasts of the secular variation are 
computed by

where δt represents the sampling interval of 1 month, and 
ũ(tn) is the flow forecast vector that contains forecasts of 
the individual flow coefficients for the first month after 
2020.0. Equation (28) is computed on a spherical grid, 
and then transformed to spherical harmonic secular vari-
ation coefficients ( ̇gml , ḣml  ) similar to the scheme of Lloyd 
and Gubbins (1990). The forecast period is 120 months, 
and ends in 2030.0.

Assessing the accuracy of forecasts
Choosing an appropriate error measure in forecasting is 
problematic, because no single measure gives an unam-
biguous indication of forecasting performance, while the 
use of multiple measures makes comparisons between 
forecasting methods difficult and unwieldy (Mathews and 
Diamantopoulos 1994). We apply a derivative of the widely 
used mean absolute percentage error, i.e., the symmetric 
absolute percentage error (sAPE) to assess the difference 
between the observation, i.e., the actual field and flow coef-
ficient y(t) and its forecast ŷ(t) as:

This follows the definition by Chen and Yang (2004), 
which differs from those of Armstrong (1985), Flores 

(28)∂tBr(t1) = −∇h · (ũ(t0)Br(t0)),

(29)
∂tBr(tn) = −∇h · (ũ(tn)Br(tn)) ,

Br(tn+1) = Br(tn)+ ∂tBr(tn) δt ,

(30)sAPE(t) = 2 |y(t)− ŷ(t)|
|y(t)| + |ŷ(t)| .

(1986), as it does not become singular and has a maxi-
mum value of two when either y(t) or ŷ(t) is zero, but is 
undefined when both are zero. The range of (30) is (0, 2), 
i.e., the maximum value corresponds to 200% percent-
age error. We define a prediction length, for which the 
sAPE(t) becomes larger than 10%. This is a rather cau-
tious definition and other limits could also be considered.

Another measure that is widely used (e.g., Aubert 2015; 
Whaler and Beggan 2015) is the rms-difference between 
models

where Agml , Ahml  and Bgml , Bhml  are Gauss coefficients of 
the compared field models A and B. 

√
dP represents

the total (difference) field integrated over the surface of 
the Earth, and similarly is the secular variation. We com-
pute it in order to allow comparisons to other studies 
which use this measures as primary diagnostic. However, 
we must note, that 

√
dP is biased towards large-scale 

contributions, when computed at Earth’s surface where 
the spatial energy spectrum of the field is decreasing, and 
is biased towards small scales at the core surface, where 
the spectrum is increasing. This is not the case for the 
sAPE(t) , as it is relative to the amplitude of the actual 
coefficient.

Results and discussion
In this section, we present results of the core field mode-
ling and the secular variation forecasts. At the end of this 
section, we also present and discuss our candidates for 
the definitive geomagnetic reference field model (DGRF) 
in 2015, and IGRF candidate model for 2020.

We focus on two models: Model 1 was derived with 
the classical modeling approach and Model 2 is a kin-
ematic field model based on the tangential geostrophic 
flow assumption. Table  1 compiles the set of model 
parameters and related model characteristics. Both mod-
els provide almost equal fits to the data in terms of their 
residual standard deviation.

We note that, by strongly imposing the tangential geos-
trophic constraint, the fit to the radial induction equation 
deteriorates, when compared to solutions with a weaker 
tangential geostrophic constraint, see Appendix Table 3. 
The reason for this is not clear, but, perhaps, could be 
explained by the penalization of the poloidal p0n terms 
when the tangential geostrophic constraint is imposed.

(31)

√
dP =

√

√

√

√

lmax
∑

l=1

l
∑

m=0

(l + 1)[Agml − Bgml ]2 + [Ahml − Bhml ]2 ,

(32)
√
dP =

∫

Bd�,
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Comparison of modeled and observed secular variation
In Fig. 2, we show the rms differences (31) between the 
two models during the model period. The rms differences 
of the main field (Fig. 2, left) and secular variation coef-
ficients (Fig. 2, right) are continuously decreasing during 
the period, except close to the model endpoint in 2020, 
where they increase. These increases can be explained by 
the constraint on the flow acceleration in Model 2. We 
argue that the decrease in differences during the model 
period is not directly related to the growth of the availa-
ble ground-based geomagnetic observatory data, because 
this affects both models. Rather, the decrease in differ-
ences could be explained by the different modeling tech-
niques. As it was found in a previous study (Wardinski 
and Lesur 2012), the kinematic field modeling seems to 
project the field morphology of a spatially high-resolved 
satellite field model imposed in 2010 backward in time. 
Therefore, the kinematic model is less subject to a vary-
ing data distribution, whereas the classical field model is.

Figure  3 compares the observed and modeled secular 
variation at different observatory sites. The model curves 
are derived from our preferred classical and kinematic 
field models. The observed secular variation series from 
ground-based geomagnetic observatories stop in 2017.5, 
as more recent data were not available at the time of this 
study.

The overall impression is that the classical and kin-
ematic field models fit the observed secular variation 

equally well. An exception is, at the model endpoints 
where the two curves deviate. Most likely, this is due to 
the endpoint constraint of the kinematic field models. 
The known jerk occurrences (A–J) are all clearly visible in 
the Y-component of Chambon-la-Forêt, whereas in other 
observatory data only some jerks are detectable, e.g., the 
series of Sitka shows only events in 1969 and 2011. Data 
of the Sitka observatory show large changes of the secular 
variation of Y and Z components in the past decade, that 
may be related to the rapid movement of the magnetic 
North Pole.

The same large similarity between the models can be 
observed in Fig.  4, which shows six secular variation 
coefficients with the largest amplitude of the two dif-
ferent models. These coefficients largely determine the 
morphology of the secular variation at Earth’s surface. 
Particularly, the coefficient h12 is closely related to the 
prominent patch of reverse magnetic flux in the southern 
hemisphere (Terra-Nova et al. 2017). Overall, differences 
between the model coefficients rarely exceed 2 nT/year, 
except close to model endpoints, where models disperse 
largely.

Figure  4 also shows markers of known geomagnetic 
jerks, to allow their identification in the evolution of the 
secular variation coefficients. The coefficients ġ01 and ḣ12 
represent equatorial anti-symmetric contributions of the 
secular variation. These coefficients carry most of the 
known geomagnetic jerks, apart from the event in 1969 
which is either not clearly visible in ġ01 , or appears later in 
1970. The identification of geomagnetic jerks in the equa-
torial symmetric parts of the secular variation described 
by ġ11 , ḣ

1
1, ġ

0
2 is less clear.

The temporally averaged secular variation spectra of 
the two models are shown in Fig. 5. On large and small 
scales, differences between spectra remain small at 
Earth’s surface. The spectra also indicate a very high tem-
poral variability of the kinematic field secular variation 
at degrees 9 and 10, suggesting that at some epochs the 

Table 1  Model diagnostics: residuals standard deviation 
in [nT/year] and damping parameters

Standard deviation [nT/year] Damping

X Y Z �S �T

Model 1 13.69 11.07 14.47 3.0d-10 3.0d-2

Model 2 12.42 10.89 13.89 see Model x3d 
Table 3
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power of the secular variation of these models is weaker 
by a few orders of magnitude than the secular variation of 
the classical field model.

At the core surface (Fig. 5, right) the spectral power 
of the secular variation grows with spherical harmonic 
degree. The spectra of the two models start to deviate 

from degree 11, where the spectrum of Model 2 flat-
tens, whereas the spectrum of Model 1 continues to 
increase. We note the same high temporal variability at 
spherical harmonic degree 9 of the kinematic secular 
variation model.
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Fig. 3  Observed and modeled secular variation at some observatory sites. From top to bottom: Sitka (Alaska), Chambon-la-Forêt (France), Kakioka 
(Japan), Hermanus (South Africa), Gnangara (Australia). The gray dots represent the observed monthly secular variation in X, Y and Z (from left to 
right). Solid curves display the modeled secular variation of Model 1 (black) and Model 2 (red). Vertical lines mark occurrences of geomagnetic 
jerks
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Fig. 4  Comparison of six modeled secular variation coefficients with the largest amplitude. Same colors are applied as in Fig. 3
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Maps of the radial component of the magnetic field and 
its secular variation derived from Model 1 at the top 
of the core are shown in Fig. 6. The radial magnetic field 
component shows a dipole-dominated morphology, but 
with considerably small-scale features, such as reversed 
flux patches in both hemispheres. The secular varia-
tion at the core surface tends to be dominated by small 
scales. Particularly notable features are low latitude pairs 
of opposite polarity secular variation which are typical 
to advection (Amit 2014). Also note larger patches of the 
radial secular variation in the vicinity of the magnetic 
North Pole, e.g., under Eastern Siberia.

Figure 7 shows maps based on Model 2. Maps of the 
radial component of the magnetic field at the core sur-
face are widely in agreement with the respective maps 
of Fig.  6. Perhaps most apparent, is the presence of the 
reversed flux patch underneath the East Pacific, in both 
models except at 1969 in Fig. 6. Maps of the secular vari-
ation in 2020 differ substantially, which may be due to 
the endpoint constraint of Model 2. The secular varia-
tion map of Model 2 in 2020 contains some large-scale 
anomalously intense structures below the geographic 
South Pole, indicating an intensification of the flux in 
this region. Based on the strong secular variation at high 
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Fig. 6  Radial component of the magnetic field at the core surface (left) and its secular variation (right) derived from Model 1 for epochs 1969, 
2010 and 2020
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latitudes of the northern hemisphere, Livermore et  al. 
(2017) inferred a zonal jet there. In the context of equato-
rial symmetry, they argued that such a zonal jet at high 
latitudes of the southern hemisphere would not produce 
detectable secular variation, because the field is oriented 
in the east–west direction there. Indeed in Fig. 6 in 2020 
the secular variation is very weak around the South Pole 
(and quite strong under the North Pole). All this makes 
the anomalously strong secular variation around the 
South Pole in 2020 as seen in Fig.  7 quite suspicious. 
However, secular variation maps of other epochs (1969 
and 2010) are very similar to maps of Fig. 6, with domi-
nant small-scale features at mid- and low latitudes.

We conclude that classical and kinematic field models 
largely agree, both in spatial morphology as well as in the 
temporal evolution, but significantly deviate in their sec-
ular variation towards the endpoints. The cause for this 
deviation is the constraint of the kinematic field model 
onto the flow acceleration, while the classical model gets 
along without such constraint.

Direct secular variation forecast
Figure 8 displays observations and predictions of secular 
variation coefficients with the largest amplitude at the 
Earth surface, i.e., ġ01 , ġ

1
1 , ḣ

1
1, ġ

0
2 , ḣ

2
1, ḣ

2
2 , from 2000 to 2030. 

The most prominent feature of the forecast of Model 1 
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Fig. 7  As in Fig. 6 for Model 2 
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is the steep decrease of ġ01 by almost 15nT/year during a 
very short interval of about 3 years. While this decrease 
is determined by the statistical properties of the time-
series model, it may be difficult to accept this when con-
sidering the past secular variation. In fact, this decrease 
would be caused by a large secular acceleration. Advec-
tive sources and sinks of ġ01 exhibit a lot of cancellations 
and it is the rather small residual that gives the historical 
dipole decay (Olson and Amit 2006; Finlay et  al. 2016), 
i.e., subtle change in the core flow pattern and its interac-
tion with the field may yield considerable changes in g01 . 
However, apparently such a change did not happen since 
1840. The other terms vary within ranges of previous 
oscillations (see Fig. 4).

Most of the secular variation terms of Model 1 indi-
cate possible occurrences of two future geomagnetic 
jerks in late 2020–early 2021, and in early 2024. In Fig. 8, 
at these dates the predicted secular variation shows nota-
ble changes in slope.

Kinematic secular variation forecast
The kinematic secular variation forecast is based on fore-
casts of individual flow coefficients derived from a multi-
variate singular spectrum analysis (MSSA). Figure  9 
shows the past and future temporal evolution of two 
toroidal flow coefficients, t01 , t

0
3 . These coefficients are of 

a particular interest, as they relate to changes in Earth’s 
rotation (Jault et  al. 1988; Jackson et  al. 1993), which 
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Fig. 8  Comparison of six observed and predicted secular variation coefficients with the largest amplitude at Earth’s surface. Model 1 (dashed 
black line), Model 2 (dashed red line) and their forecasts (solid lines). Vertical lines labeled with a and b mark two possible geomagnetic jerks. The 
other labels mark occurrences of known jerks
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coincide with geomagnetic jerks (Holme and de Viron 
2005; Wardinski et al. 2008).

The MSSA of the temporal flow variability is trun-
cated at the degree where past model and forecast of 
the flow coefficients becomes almost continuous, which 
is achieved for a truncation level k = 22 , i.e., the first 22 
eigenmodes. Both flow coefficients show spurious accel-
erations from 2017 on, which is caused the endpoint 
constraint of the flow acceleration, cf. (23). Therefore, we 
consider the kinematic field and flow coefficients to be 
flawed and start the kinematic forecast from 2017.

Figure 8 also provides a comparison between the direct 
and kinematic forecasts of secular variation coefficients. 
The kinematic forecast starts in 2017 to reduce the influ-
ence of the model’s faulty temporal behavior close to its 
endpoint. These forecasts differ by their temporal evolu-
tion to those of the direct secular variation forecast. Most 
apparent are these differences in the forecast of ġ01 , where 
both forecasts have opposite signs and differ by about 20 
nT/year. The kinematic forecast predicts a gently varying 
ġ01 . This forecast discrepancy is also clearly seen for ġ01 , ġ

1
1 

and ḣ12 . However, these forecasts show also common fea-
tures related to future geomagnetic jerks. The cause for 
the forecast discrepancy is not understood, and it is not 
in relation to the anomalous flow acceleration at the kin-
ematic model endpoint, as the kinematic forecast starts a 
few years prior to the model’s endpoint.

Predictability
Previous studies (Aubert 2015; Whaler and Beggan 2015) 
used rms-based measures (31) to quantify differences 
between a reference model and forecasts. The reference 
model is a model for the epoch 2017 of the classical and 
kinematic model branches and labeled as M1 2017 and 
M2 2017, respectively.

Table  2 lists the rms-differences between different 
epoch models of Model 1 and Model 2. Generally, 

the rms-differences of the direct secular variation fore-
casts (Model 1) is smaller than those of the kinematic 
forecasts. However, it is not clear whether it allows to 
conclude upon the performance of the forecasts. Glob-
ally, it suggests that the main field and secular variation 
of Model 1 tend to be more similar over longer time 
intervals than for Model 2. This may agree with results 
based on numerical dynamos (Hulot et al. 2010) and data 
assimilation using numerical dynamos (Aubert 2015). 
Their studies used rms-based error estimates, and their 
results suggested a possible predictability of several dec-
ades to a century.

We perform several prediction experiments to meas-
ure the prediction length of the first 26 secular variation 
coefficients for different prediction setups. In these set-
ups, the starting of the forecast is set to 1995, 2005 and 
2015, respectively. The forecast period is in all cases 10 
years, for which we compute the sAPE(t) , cf. (30).

First, it is found for the direct secular variation forecasts 
of the classical field model that the prediction length is 
largely independent of the number of eigenvalues consid-
ered in the MSSA forecast. Merely, this number has to be 
larger than the number of significant eigenvalues.

Results of the forecast experiments are shown 
in Figs.  10 and  11. Generally, the prediction error 
(sAPE(t)) of the zonal secular variation coefficients 
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Fig. 9  Evolution of the toroidal flow coefficients t0
1
 (left) and t0

3
 (right); their past variations (black) and their forecasts (red) based on the MSSA. The 

vertical line labeled with FC marks the start of the forecast

Table 2  The rms differences between  models of  different 
epochs and Model 1 and Model 2 

Differences of main field models are given in [nT] and differences of secular 
variation models are in [nT/year]

Main field Secular variation

M1 2017 M2 2017 M1 2017 M2 2017

2020 271.41 863.49 21.00 22.11

2025 306.11 1511.43 34.70 40.79

2030 306.54 359.97 35.13 90.02
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increases with time, except for the prediction of ġ04  of 
the 1995-experiment which improves with time. It is 
also noted that prediction error of the 2015-experi-
ment is mostly smaller than for the other experiments 
(Fig. 10). We focus on the prediction of the large-scale 
secular variation represented by the first coefficients. 
For practical purposes, we arbitrarily examine the first 
26 coefficients. The mean prediction length for which 
the prediction error sAPE(t) < 10% of the first 26 secu-
lar variation coefficients is around 3 years (Fig. 11). This 
is substantially shorter than results by Aubert (2015), 
who found a possible predictability of a century.

Similar experiments are performed for the flow fore-
casts of the kinematic field model (Model 2), with the 

resulting prediction lengths shown in Fig. 12. The mean 
prediction length for all experiments is always shorter 
than 2.5 years, i.e., shorter than the mean prediction 
length of direct secular variation forecasts (Fig.  11). 
However, we note that the prediction length of t01 for 
experiments started in 1995 and 2005 is longer or equal 
to 5 years, and that only the forecast deteriorates only 
when the experiment is started closer to the model 
endpoint.

We avoided performing such experiments for the kin-
ematic secular variation forecast, because of the faulty 

 0

 10

 20

 30

 40

 50

 1995  1996  1997  1998  1999  2000

sy
m

m
. a

bs
 p

er
c.

 e
rr

or
 [%

]

time [calendar years]

g10
g20
g30
g40
g50

 0

 10

 20

 30

 40

 50

 2005  2006  2007  2008  2009  2010

sy
m

m
. a

bs
 p

er
c.

 e
rr

or
 [%

]

time [calendar years]

g10
g20
g30
g40
g50

 0

 10

 20

 30

 40

 50

 2015  2016  2017  2018  2019  2020

sy
m

m
. a

bs
 p

er
c.

 e
rr

or
 [%

]

time [calendar years]

g10
g20
g30
g40
g50

Fig. 10  Evolution of the sAPE(t) of zonal secular variation coefficients 
based on Model 1 of the three forecasts experiments started in 
1995 (top panel), in 2005 (middle panel) and in 2015 (bottom panel), 
respectively
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temporal behavior of Model 2 close to its endpoints. 
This behavior is caused by the constraint that controls 
the flow acceleration at the model endpoints by �E . 
Constraining the flow acceleration too strongly leads 
to a very small flow acceleration, which is as unrealis-
tic as the counter case with large flow acceleration. To 
this end, conclusions about the flow acceleration at the 
endpoints are loose, and in the future we may constrain 
secular variation of kinematic field models to be similar 
to the secular variation of the classical model.

Derivation of candidate models
Our candidate models for the DGRF 2015, IGRF 2020, 
and the secular variation for the period 2020 to 2025 
are derived from Model 1 and its respective forecast. 
This is justified by the large resemblance of the main field 
description of two models. The candidates for the DGRF 
2015 and IGRF 2020 are given by the main field model 
in 2015.0 and 2020.0, respectively, truncated at spherical 
harmonic degree 13, in nT with two decimal places. The 
candidate of the secular variation model is given by the 
forecast for the epoch 2022.5 truncated to spherical har-
monic degree 8.

Conclusion
We derive field models for the period 1957 to 2020 from 
ground-based geomagnetic observatory data as well as 
satellite-based virtual observatory data. These models 
are constructed using two different techniques, a clas-
sical modeling (Model 1) that provides an optimal fit 
to observations, and a data assimilation to a dynamical 
assumption of Earth’s core flow (Model 2). These strate-
gies provide similar results for the core field and its tem-
poral variations over the past decades.

In this study we set up two forecasting schemes that 
rely on analyses of multi-variate time series of secular 
variation coefficients. We derived time-series models of 
the field variability, from which forecasts of individual 
secular variation coefficients are obtained. These serve 
as direct secular variation predictions. Prediction experi-
ments indicate a robust forecast of the secular variation 
of about three years. This might be a lower boundary and 
is determined by our cautious definition of the prediction 
length; the time interval when sAPE(t) < 10%.

Forecasts of the flow coefficients are derived in the 
same manner and used in forward calculations of the 
secular variation due to advection in the core, where con-
tributions from magnetic diffusion are neglected and a 
tangential geostrophy assumption couples the toroidal 
and poloidal flows (kinematic secular variation forecast). 
This approach extends beyond the approach of Beggan 
and Whaler (2010); Whaler and Beggan (2015) which 
used steady and constantly accelerated flow to predict 
future secular variation. However, our kinematic secu-
lar variation forecast suffers from faulty estimates of the 
core flow at the model endpoints due to a possibly inac-
curate restriction of the flow acceleration. Therefore, the 
latter approach may not provide robust forecasts of the 
secular variation, unless the endpoint constraint can be 
dropped. Interestingly, both strategies consistently indi-
cate the occurrence of future geomagnetic jerks in 2021 
and 2024. The uncertainty in the exact timing of these 
events is related to the original temporal resolution of 
our data, which is optimistically smaller than ±1 year 
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and realistically larger than ±6 months, as well as to the 
strength of the temporal constraint.

Of course, our strategies of forecasting are limited by 
the lack of observations from within the (geodynamo) 
system (which are not available), but not by inferences 
made upon the geodynamo. Similar limitations may 
occur to approaches using a full description of the geo-
dynamo in a data assimilation framework to forecast geo-
magnetic secular variation, like Aubert (2015), Fournier 
et al. (2015). We hypothesize that when longer time series 
are considered, a longer behavior of the field can be mod-
eled; however, this will not improve the predictability of 
the short-term (decadal) field variations, as they may be 
chaotic.

To this end, results of the classical modeling (Model 
1) are used to provide candidates for the definitive geo-
magnetic reference field model (DGRF) in 2015, and 
IGRF candidate model for 2020. The candidate of the sec-
ular variation model is given by the forecast for the epoch 
2022.5.
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Appendix A: Theory of singular spectrum analysis
We briefly recall some aspects of the singular spectrum 
analysis (SSA). The SSA is a non-parametric spectral esti-
mation method that incorporates aspects of classical time-
series analysis, signal processing, multi-variate statistics 
and geometry (Vautard et al. 1992; Golyandina et al. 2001). 
We first formulate the theoretical concepts for uni-variate 
time series, and then extend them to multi-variate time 
series. For a deeper review and also its application to a 
variety of phenomena in meteorology, oceanography and 
climatology we refer to Ghil et  al. (2002) and references 
therein.

Uni‑variate analysis
The analysis is based on the embedding of a time series yt 
in a vector space of dimension M that determines the long-
est periodicity captured by the analysis. The spectral infor-
mation on a time series are obtained by diagonalizing the 
M ×M covariance matrix Cy of yt . The covariance matrix 
Cy can be estimated directly from the data, i.e., its entries cij 
depend only on the lag δ = |i − j|:

Usually, the decomposition of the covariance matrix Cy 
in q orthogonal eigenvectors Eq that are called temporal 
empirical orthogonal functions (EOF) is done by singu-
lar value decomposition. The eigenvalues ǫq of Cy account 
for the partial variance in the direction Eq and the sum of 
the eigenvalues, i.e., the trace of Cy , gives the total vari-
ance of the original time series yt . By a projection of the 
time series onto the EOF the temporal principal compo-
nent Ak

t  can be obtained:

In fact, this method decomposes the time series in parts 
that correspond to trends, oscillatory modes or noise. 
Therefore, it allows the time series to be reconstructed 
and to be forecasted by using linear combinations of the 
temporal principal components and EOFs. The recon-
structed components Rk

t  are given by

(A.1)cij =
1

N − δ

N−δ
∑

t=1

yt · yt+δ .

(A.2)Ak
t =

M
∑

j=1

X(t + j − 1)Ek(j).
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where K is the set of k EOFs and temporal principal com-
ponents on which the reconstruction is based. We refer 
to k as the truncation level of the reconstruction and 
forecast. This truncation level is k ≤ q . The values of the 
normalization factor Nt , as well as of the lower and upper 
bound of summation Lt and Ut , differ between the central 
part of the time series and in the vicinity of its endpoints 
(Ghil et al. 2002).

An oscillatory mode is characterized by a pair of nearly 
equal eigenvalues and by associated principal components 
that are in approximate phase quadrature (Ghil et al. 2002). 
Such a pair can represent a non-linear, non-harmonic oscil-
lation, because a single pair of eigenmodes are more sen-
sitive to the basic periodicity of an oscillatory mode than 
methods with fixed basis functions, such as the sines and 
cosines used in the Fourier transform.

Multi‑variate analysis
The multi-variate (or multi-channel) singular spectrum 
analysis (MSSA) is a generalization of the SSA from uni-
variate to multi-variate time series, such as time series of 
individual Gauss coefficients. Its use was proposed theo-
retically in the context of non-linear dynamics (Broom-
head and King 1986) and numerous examples of successful 
application of this methods can be found, e.g., Plaut and 
Vautard 1994.

The MSSA allows the identification of dynamically rele-
vant temporal patterns that are coherent in series that form 
a multi-variate time series. These individual series are often 
called channels. By analogy to the SSA, each of L-channel 
data vectors yl,t : l = 1, . . . , L, t = 1, . . . ,N  is expanded 
to a state vector

for each channel l = 1, . . . , L , and the window length M. 
Following the approach of Broomhead and King (1986); 
Allen and Robertson (1996), then the MSSA relies on the 
construction a grand covariance matrix Cx like

(A.3)Rk
t = 1

Nt

∑

k∈K

Ut
∑

j=Lt

Ak(t − j + 1)Ek(j) ,

(A.4)Yl =













yl,1 yl,2 . . . yl,M
yl,2 yl,3 . . . yl,M+1

. . . . . . . . .
...

yl,N−M . . . . . . yl,N−1

yl,N−M+1 . . . . . . yl,N













(A.5)

Cx =
1

N −M + 1
Y TY =













C11 C12 C13 . . . C1L

C22 C23 . . . C2L

C33 . . . C3L

. . .
...

CLL













,

where each block Cll′ is a covariance matrix between 
channels l and l′ . The blocks Cll′ have the entries

The LM × LM matrix Cx is symmetric and by diagonaliz-
ing, LM eigenvectors Ek : k = 1, . . . , LM can be obtained. 
The eigenvectors are composed of L consecutive seg-
ments with length M. Similarly to (A.2) the associated 
principal components Ak can be computed by project-
ing Y in the directions of the eigenvectors (i.e. onto the 
EOFs):

El,k(j) are the elements of the eigenvectors. The Ak(t) are 
single-channel time series and likewise to (A.3) the kth 
reconstruction of the signal of channel l can be obtained 
by:

where LT and Ut are the lower and upper bound of sum-
mation, respectively.

Figure 13 shows the first 12 eigenvectors of the toroidal 
flow decomposition. Clearly, the first two eigenvectors 
capture the slow variation of flow coefficients, whereas 
other eigenvectors represent the shorter temporal varia-
tions of the flow. The first few eigenvectors explain nearly 
the entire signal variance, which is given on top of each 
single plot. However, higher indexed eigenvectors also 
show non-zero partial variance, suggesting that these 
eigenvectors may carry relevant temporal information.

An important aspect of the analysis is how well com-
ponents of the time series are separated from each other. 
The components generally group in two disjunctive parts, 
one corresponds to the signal, the other to the noise. The 
signal could be composed of slowly varying, periodic 
and/or quasi periodic components. A way to measure 
the separation between components, is to calculate the 
weighted correlation or w-correlations, as given by Goly-
andina et al. (2001).

In Fig. 14, the so-called, w-correlation matrix is dis-
played. It shows the weighted correlations for princi-
pal components, Ak , of the temporal flow variability. 
Accordingly, large values of w-correlation exist for 
diagonal elements of the matrix, where individual 
modes correlate with themselves (dark red color). 
Whereas, small values of the w-correlation (lighter 

(A.6)(Cll′)j,j′ =
1

N −M + 1

N−M+1
∑

t=1

Y l
t+j−1Y

l
t+j′−1 .

(A.7)Ak
t =

M
∑

j=1

L
∑

l=1

Y l
t+j−1E

l,k(j).

(A.8)Rl,k
t = 1

Mt

Ut
∑

j=Lt

Ak(t − j + 1)El,k(j) ,
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colors) indicate orthogonality between components, 
as the scalar product between perpendicular vectors 
vanishes. Therefore, small correlation values indicate 
a good separation of components or noise. In par-
ticular, noise components do not correlate with each 
other and other components, and therefore, show zero 
correlation.

The w-correlation matrix (Fig.  14) is found to be 
diagonal symmetric, and we mainly identify two differ-
ent regions. The first region relates to the first 11 eigen-
values and their modes, where correlations quickly 
diminish away from the central diagonal. In the second 
region, from the 11th eigenvector onward, off-diago-
nal correlations emerge. This suggests that principal 

components do not fully separate. However, these cor-
relations are minor and those principal components 
may still carry important information. This is almost 
identical for toroidal and poloidal flow coefficients.

The forecast of the flow variability requires to identify 
significant and non-noisy components. There are sev-
eral possibilities to quantify the statistical significance of 
the temporal principal components. In the next section 
we develop a rule that provides a criterion for the selec-
tion of a sufficient correct time-series model of the flow 
variability.

Model selection criterion
Generally, to what extend the variability of the time 
series can be explained strongly depends on k, the 

1 (96.39%) 2 (2.84%) 3 (0.64%) 4 (0.13%)

5 (0.01%) 6 (0%) 7 (0%) 8 (0%)

9 (0%) 10 (0%) 11 (0%) 12 (0%)

Fig. 13  The first 12 eigenvectors of the toroidal flow temporal variability. The x-axes of each subplot represent the model interval (1957–2020). The 
percentages of the partial variance of each eigenvector are given in the top bar of the individual plots
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number of model parameter. Therefore, a selection cri-
terion is applied which ascertains the statistical signifi-
cance of the eigenvalues and their related EOF detected 
by the MSSA. The recovery of the temporal variability 
of the time series can be considered to be most com-
plete, when the maximum number k of EOF’s (trunca-
tion level) are used for the reconstruction of the time 
series. However, this is for several reasons not desir-
able, for instance some modes may represent noise that 
is part of the time series (and we want a noise-free rep-
resentation of the flow temporal variability).

Figure  15 shows the eigenvalue spectra of different 
analyses of the secular variation and the toroidal and 
poloidal flow variability. Broadly, the first 7 eigenval-
ues are ≥ 1 . A first break in the spectral slopes occurs 
at k ∼ 10 , which is related to features of the w-correla-
tion matrices shown in Fig. 14. A second break in slope 
occurs at k ∼ 15 . Thereafter, spectra of the kinematic 
secular variation and the flow variability continuously 
decrease. Based on these results a MSSA-model trun-
cated at a level k > 15 should provide a sufficient recon-
struction of the temporal flow variability. However, in 
the kinematic forecast, we use k = 22 , at this value past 
and predicted flow variability become continuous. This 
may indicate significant portion of the signal to be car-
ried by eigenmodes for 15 < k < 23.

The eigenvalue spectrum of the secular variation of 
Model 1 breaks at eigenvalue 11. Thereafter, it is flat, 
but eigenvalues remain an order of magnitude larger, 
than those of the kinematic secular variation and the 
flow coefficients.

Appendix B: Kinematic field models
Characteristics of kinematic field models for a range of 
damping parameters are given in Table 3. We explored 
purely toroidal (x0a) and tangential geostrophic (x3*) 
flow assumptions, respectively. The parameter control-
ling the frozen-flux constraint is set to �1 = 1× 10−9 
and �1 = 1× 10−7 Different setups of the other con-
straints are also tested, as well as different temporal 
derivatives of the temporal norm. We tested

 

(B.1)
T = 0 :

∫

T

∫

S(c)
(u)2d� dt

T = 1 :
∫

T

∫

S(c)
(∂tu)

2d� dt .

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

ra
nk

 q

rank q

 0

 0.2

 0.4

 0.6

 0.8

 1

 0

 10

 20

 30

 40

 50

 0  10  20  30  40  50

ra
nk

 q

rank q

 0

 0.2

 0.4

 0.6

 0.8

 1

Fig. 14  The weighted correlation matrix. Red colors represent stronger correlation between eigenvectors and therefore a weaker separation. The 
color scale corresponds to absolute values of correlations from 0 (white) to 1 (dark red)

10-3

10-2

10-1

100

101

102

103

104

 5  10  15  20  25  30

ei
ge

nv
al

ue
s

rank q

Model1  SV
kinematic SV

toroidal
poloidal

Fig. 15  The eigenvalue spectra of the classical, kinematic secular 
variation, toroidal and poloidal flow variability, respectively. The 
horizontal line marks eigenvalues equal 1



Page 21 of 22Wardinski et al. Earth, Planets and Space          (2020) 72:155 	

Received: 30 April 2020   Accepted: 19 August 2020

References
Abramowitz M, Stegun IA (1973) Handbook of mathematical functions. Dover, 

New York
Alken P, Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, Barrois O, Bertrand 

F, Bondar T, Boness A, Brocco L, Canet E, Chambodut A, Chulliat A, Coïs-
son P, Civet F, Du A, Fournier A, Fratter I, Gillet N, Hamilton B, Hamoudi 
M, Hulot G, Jager T, Korte M, Kuang W, Lalanne X, Langlais B, Léger J-M, 
Lesur V, Lowes FJ, Macmillan S, Mandea M, Manoj C, Maus S, Olsen N, 
Petrov V, Ridley V, Rother M, Sabaka TJ, Saturnino D, Schachtschneider R, 
Sirol O, Tangborn A, Thomson A, Tøffner-Clausen L, Vigneron P, Wardinski 
I, Zvereva T (2020) International geomagnetic reference field: the thir-
teenth generation. Earth Planets Space 67:81. https​://doi.org/10.1186/
s4062​3-020-01288​-x

Allen MR, Robertson AW (1996) Distinguishing modulated oscillations from 
coloured noise in multivariate datasets. Clim Dyn 12:775–784

Amit H (2014) Can downwelling at the top of the Earth’s core be detected in 
the geomagnetic secular variation? Phys Earth Planet Inter 229:110–121

Armstrong JS (1985) From crystal ball to computer, 2nd edn. Wiley, New York
Aubert J (2015) Geomagnetic forecasts driven by thermal wind dynamics in 

the Earth’s core. Geophys J Int 203(3):1738–1751
Aubert J, Finlay CC (2019) Geomagnetic jerks and rapid hydromagnetic waves 

focusing at Earth’s core surface. Nat Geosci 12(5):393–398
Barrois O, Hammer MD, Finlay CC, Martin Y, Gillet N (2018) Assimilation of 

ground and satellite magnetic measurements: inference of core surface 
magnetic and velocity field changes. Geophys J Int 215(1):695–712

Beggan C, Whaler K (2010) Forecasting secular variation using core flows. Earth 
Planets Space 62(10):821–828. https​://doi.org/10.5047/eps.2010.07.004

Bloxham J (1988) The dynamical regime of fluid flow at the core surface. 
Geophys Res Lett 15:585–588

Bloxham J, Jackson A (1992) Time-dependent mapping of the magnetic field 
at the core-mantle boundary. J Geophys Res 97:19537–19563

Bloxham J, Zatman S, Dumberry M (2002) The origin of geomagnetic jerks. 
Nature 420(6911):65–68

Box GEP, Jenkins GM (1976) Time series analysis, forecasting and control. 
Holden Day, San Fransisco

British Geological Survey - Edinburgh (2020) Worldwide observatory annual 
means. http://www.geoma​g.bgs.ac.uk/data_servi​ce/data/annua​
l_means​.shtml​

Brockwell PJ, Davis RA (2002) Introduction to time series and forecasting, 
2nd edn. Springer, Berlin

Broomhead DS, King GP (1986) Extracting qualitative dynamics from experi-
mental data. Phys D Nonlinear Phenomena 20:217–236

Brown WJ, Mound JE, Livermore PW (2013) Jerks abound: an analysis of 
geomagnetic observatory data from 1957 to 2008. Phys Earth Planet 
Inter 223:62–76

Canciani A, Raquet J (2016) Absolute positioning using the earth’s magnetic 
anomaly field. Navigation 63(2):111–126

Chambodut A, Schwarte J, Langlais B, Lühr H, MM (2002) The selection 
of data in field modeling. In: Stauning P, Lühr H, Ultré-Guérard P, 
LaBrecque J, Purucker M, Primdahl F, Jørgensen J, Christensen F, Høeg 
P, Lauritsen K (eds) In: OIST- Proceedings, 4th Oersted international sci-
ence team conference. Danish Meteorological Institute Copenhagen 
Denmark, pp 201–213

Chambodut A, Marchaudon A, Menvielle M, El-Lemdani Mazouz F, Lathu-
illere C (2013) The k-derived MLT sector geomagnetic indices. Geophys 
Res Lett 40(18):4808–4812

Chen Z, Yang Y (2004) Assessing forecast acuracy measures. available on 
Researchgate

Finlay CC, Maus S, Beggan CD, Bondar TN, Chambodut A, Chernova TA, 
Chulliat A, Golovkov VP, Hamilton B, Hamoudi M, Holme R, Hulot G, 
Kuang W, Langlais B, Lesur V, Lowes FJ, Lühr H, MacMillan S, Mandea M, 
McLean S, Manoj C, Menvielle M, Michaelis I, Olsen N, Rauberg J, Rother 
M, Sabaka TJ, Tangborn A, Tøffner-Clausen L, Thébault E, Thomson AWP, 
Wardinski I, Wei Z, Zvereva TI (2010) International geomagnetic refer-
ence field: the eleventh generation. Geophys J Int 183:1216–1230

Finlay CC, Aubert J, Gillet N (2016) Gyre-driven decay of the Earth’s mag-
netic dipole. Nat Commun 7:10422

Table 3  Specification of  damping parameters of  the  frozen-flux field model based on  the  tangential geostrophic flow 
assumption, except model x0a, which is based on a purely toroidal flow assumption

The parameter controlling the frozen-flux constraint is kept fixed, i.e. �1 = 1× 10−9 for most of the inversions, except those marked with†, there we set �1 = 1× 10−7 . 
In all inversions, the parameter controlling the flow acceleration at model end points is set to �4 = 1× 102 . S/T identifies which temporal derivative of the spatial and 
temporal norm is applied, respectively (see text). R and M are defined by (26) and (25), respectively. M is given in nT/year . The model x0a represents a field model with 
purely toroidal flow

�s �T �TG �E S/T R M

x0a 1× 10
−3 1× 10

−4 – 1× 10
2 0/1 0.957×10

−3 2.1184

x3a 1× 10
−3 1× 10

−4
1× 10

3
1× 10

2 0/1 0.791× 10
−3 2.1196

x3b 1× 10
−3 1× 10

−5
1× 10

3
1× 10

2 0/1 0.941× 10
−3 2.1185

x3c 1× 10
−3 1× 10

−4
1× 10

4
1× 10

2 0/1 0.123× 10
−2 2.1233

x3d 1× 10
−3 1× 10

−4
1× 10

5
1× 10

2 0/1 0.102× 10
−2 2.1237

x3e 1× 10
−3 1× 10

−4
1× 10

6
1× 10

2 0/1 0.166× 10
−3 2.1431

x3f 1× 10
−3

1× 10
−3 1× 10

4
1× 10

2 0/1 0.774× 10
−3 2.1322

x3g 1× 10
−3 1× 10

−4
1× 10

10
1× 10

2 0/1 0.136× 10
−2 2.1627

x3g1†
1× 10

−3 1× 10
−4

1× 10
10

1× 10
2 0/1 0.431× 10

−3 2.1856

x3h 1× 10
−3 1× 10

−4
1× 10

12
1× 10

2 0/1 0.106× 10
−2 2.1632

x3j 1× 10
−3 1× 10

−4
1× 10

8
1× 10

2 0/0 0.311× 10
−2 2.1695

x3k 1× 10
−3 1× 10

−4
1× 10

7
1× 10

2 0/0 0.696× 10
−2 2.1634

x3k1†
1× 10

−3 1× 10
−4

1× 10
7

1× 10
2 0/0 0.332× 10

−2 2.2221

x3l 1× 10
−3 1× 10

−4
1× 10

6
1× 10

2 0/0 0.129× 10
−1 2.1525

x3m 1× 10
−3 1× 10

−4
1× 10

4
1× 10

2 0/0 0.524× 10
−3 2.1396

https://doi.org/10.1186/s40623-020-01288-x
https://doi.org/10.1186/s40623-020-01288-x
https://doi.org/10.5047/eps.2010.07.004
http://www.geomag.bgs.ac.uk/data_service/data/annual_means.shtml
http://www.geomag.bgs.ac.uk/data_service/data/annual_means.shtml


Page 22 of 22Wardinski et al. Earth, Planets and Space          (2020) 72:155 

Flores BE (1986) A pragmatic view of accuracy measurement in forecasting. 
Omega 14(2):93–98

Fournier A, Aubert J, Thébault E (2015) A candidate secular variation model for 
IGRF-12 based on Swarm data and inverse geodynamo modelling. Earth 
Planets Space 67:81. https​://doi.org/10.1186/s4062​3-015-0245-8

Ghil M, Allen MR, Dettinger MD, Ide K, Kondrashov D, Mann ME, Robertson AW, 
Saunders A, Tian Y, Varadi F, Yiou P (2002) Advanced spectral methods for 
climatic time series. Rev Geophys 40:1–41

Golyandina N, Nekrutkin V, Zhigljavsky A (2001) Analysis of time series struc-
ture: SSA and related techniques. Chapman & Hall, Routledge

Hamilton B, Ridley VA, Beggan CD, Macmillan S (2015) The BGS magnetic field 
candidate models for the 12th generation IGRF. Earth Planets Space 
67:69. https​://doi.org/10.1186/s4062​3-015-0227-x

Hills RG (1979) Convection in the Earth’s mantle due to viscous shear at the 
core-mantle interface and due to large-scale buoyancy, Ph.D. thesis, New 
Mexico State University, Las Cruces

Holme R (2007) Chap 4 Large-scale flow in the core. In: Olson P (ed) Core 
dynamics. Treatise on Geophysics, vol 8. Elsevier, Amsterdam, pp 107–130

Holme R, de Viron O (2005) Geomagnetic jerks and a high-resolution length-
of-day profile for core studies. Geophys J Int 160:435–440

Holme R, de Viron O (2013) Characterization and implications of intradecadal 
variations in length of day. Nature 499(7457):202–204

Hulot G, Lhuillier F, Aubert J (2010) Earth’s dynamo limit of predictability. 
Geophys Res Lett 37:6305

International Service of Geomagnetic indices (2020) http://isgi.unist​ra.fr
Jackson A (1997) Time-dependency of tangentially geostrophic core surface 

motions. Phys Earth Planet Inter 103:293–311
Jackson A, Bloxham J, Gubbins D (1993) Time-dependent flow at the core 

surface and conservation of angular momentum in the coupled core-
mantle system. In: LeMouël J-L, Smylie DE, Herring T (eds) Dynamics of 
the Earth’s deep interior and Earth rotation. pp 97–107. AGU/IUGG​

Jault D, Gire C, LeMouël JL (1988) Westward drift, core motions and exchanges 
of angular momentum between core and mantle. Nature 333:353–356

Jiménez AR, Seco F, Zampella F, Prieto JC, Guevara J (2012) Improved heuristic 
drift elimination with magnetically-aided dominant directions (MiHDE) 
for pedestrian navigation in complex buildings. J Locat Based Serv 
6(3):186–210

Kuang W, Wei Z, Holme R, Tangborn A (2010) Prediction of geomagnetic 
field with data assimilation: a candidate secular variation model for 
IGRF-11. Earth Planets Space 62(10):775–785. https​://doi.org/10.5047/
eps.2010.07.008

LeMouël J-L (1984) Outer core geostrophic flow and secular variation of Earth’s 
magnetic field. Nature 311:734–735

Lesur V, Wardinski I, Asari S, Minchev B, Mandea M (2010) Modelling the 
Earth’s core magnetic field under flow constraints. Earth Planets Space 
62:503–516. https​://doi.org/10.5047/eps.2010.02.010

Lesur V, Wardinski I, Baerenzung J, Holschneider M (2018) On the frequency 
spectra of the core magnetic field Gauss coefficients. Phys Earth Planet 
Inter 276:145–158

Livermore PW, Hollerbach R, Finlay CC (2017) An accelerating high-latitude jet 
in Earth’s core. Nat Geosci 10(1):62–68

Lloyd D, Gubbins D (1990) Toroidal fluid motion at the top of the Earth’s core. 
Geophys J Int 100:455–467

Mandea M, Olsen N (2006) A new approach to directly determine the secular 
variation from magnetic satellite observations. Geophys Res Lett 
33:15306

Mandea M, Holme R, Pais A, Pinheiro K, Jackson A, Verbanac G (2010) Geomag-
netic jerks: rapid core field variations and core dynamics. Space Sci Rev 
155(1–4):147–175

Mathews BP, Diamantopoulos H (1994) Towards a taxonomy of forecast error 
measures: a factor-comparative investigation of forecast error dimen-
sions. J Forecast 13:409–416

Olson P, Amit H (2006) Changes in earth’s dipole. Naturwissenschaften 
93:519–542

Pais MA, Jault D (2008) Quasi-geostrophic flows responsible for the secular 
variation of the Earth’s magnetic field. Geophys J Int 173:421–443

Pais MA, Oliveira O, Nogueira F (2004) Nonuniqueness of inverted core-mantle 
boundary flows and deviations from tangential geostrophy. J Geophys 
Res 109:8105

Plaut G, Vautard R (1994) Spells of Low-Frequency Oscillations and Weather 
Regimes in the Northern Hemisphere. J Atmos Sci 51:210–236

Purucker ME, Sabaka TJ, Langel RA (1996) Conjugate gradient analysis: a 
new tool for studying satellite magnetic data sets. Geophys Res Lett 
23:507–510

Roberts PH, Scott S (1965) On the analysis of secular variation, 1, A hydromag-
netic constraint: theory. J Geomag Geoelectr 17:137–151

Saturnino D, Langlais B, Amit H, Civet F, Mandea M, Beucler E (2018) Combin-
ing virtual observatory and equivalent source dipole approaches to 
describe the geomagnetic field with swarm measurements. Phys Earth 
Planet Inter 276:118–133

Slavinskis A, Kvell U, Kulu E, Sünter I, Kuuste H, Lätt S, Voormansik K, Noorma M 
(2014) High spin rate magnetic controller for nanosatellites. Acta Astron 
95:218–226

Terra-Nova F, Amit H, Hartmann GA, Trindade RIF, Pinheiro KJ (2017) Relating 
the South Atlantic Anomaly and geomagnetic flux patches. Phys Earth 
Planet Inter 266:39–53

Thébault E, Finlay CC, Beggan CD, Alken P, Aubert J, Barrois O, Bertrand F, 
Bondar T, Boness A, Brocco L, Canet E, Chambodut A, Chulliat A, Coïsson 
P, Civet F, Du A, Fournier A, Fratter I, Gillet N, Hamilton B, Hamoudi M, 
Hulot G, Jager T, Korte M, Kuang W, Lalanne X, Langlais B, Léger J-M, Lesur 
V, Lowes FJ, Macmillan S, Mandea M, Manoj C, Maus S, Olsen N, Petrov 
V, Ridley V, Rother M, Sabaka TJ, Saturnino D, Schachtschneider R, Sirol 
O, Tangborn A, Thomson A, Tøffner-Clausen L, Vigneron P, Wardinski I, 
Zvereva T (2015) International Geomagnetic Reference Field: the 12th 
generation. Earth Planets Space 67:79. https​://doi.org/10.1186/s4062​
3-015-0228-9

Tøffner-Clausen L, Nielsen JB (2018) Swarm Level 1b Product Definition, 
SW-RS-DSC-SY-0007, Issue 5.22. https​://earth​.esa.int/docum​ents/10174​
/15148​62/Swarm​_L1b_Produ​ct_Defin​ition​

Torta JM, Pavón-Carrasco FJ, Marsal S, Finlay CC (2015) Evidence for a new 
geomagnetic jerk in 2014. Geophys Res Lett 42(19):7933–7940

Vautard R, Yiou P, Ghil M (1992) Singular-spectrum analysis: a toolkit for short, 
noisy chaotic signals. Phys D Nonlinear Phenomena 58:95–126

Wardinski I, Holme R (2006) A time-dependent model of the earth’s magnetic 
field and its secular variation for the period 1980 to 2000. J Geophys Res 
111:12101

Wardinski I, Holme R (2011) Signal from noise in geomagnetic field modelling: 
denoising data for secular variation studies. Geophys J Int 185:653–662

Wardinski I, Lesur V (2012) An extended version of the C3 FM geomagnetic field 
model: application of a continuous frozen-flux constraint. Geophys J Int 
189:1409–1429

Wardinski I, Holme R, Asari S, Mandea M (2008) The 2003 geomagnetic jerk and 
its relation to the core surface flows. Earth Planet Sci Lett 267:468–481

Whaler KA (1980) Does the whole of the Earth’s core convect? Nature 
287:528–530

Whaler KA, Beggan CD (2015) Derivation and use of core surface flows for fore-
casting secular variation. J Geophys Res 120(3):1400–1414

World Data Centre for Geomagnetism - Edinburgh (2019) Geomagnetic Data 
Master Catalogue. http://www.wdc.bgs.ac.uk/catal​og/maste​r.html

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1186/s40623-015-0245-8
https://doi.org/10.1186/s40623-015-0227-x
http://isgi.unistra.fr
https://doi.org/10.5047/eps.2010.07.008
https://doi.org/10.5047/eps.2010.07.008
https://doi.org/10.5047/eps.2010.02.010
https://doi.org/10.1186/s40623-015-0228-9
https://doi.org/10.1186/s40623-015-0228-9
https://earth.esa.int/documents/10174/1514862/Swarm_L1b_Product_Definition
https://earth.esa.int/documents/10174/1514862/Swarm_L1b_Product_Definition
http://www.wdc.bgs.ac.uk/catalog/master.html

	Geomagnetic core field models and secular variation forecasts for the 13th International Geomagnetic Reference Field (IGRF-13)
	Abstract 
	Introduction
	Geomagnetic field modeling
	Data
	Ground-based geomagnetic observatories
	Satellite virtual geomagnetic observatories
	Secular variation estimates

	Classical modeling
	Kinematic field modeling

	Forecasting schemes
	Direct secular variation forecast
	Kinematic secular variation forecast
	Assessing the accuracy of forecasts

	Results and discussion
	Comparison of modeled and observed secular variation
	Direct secular variation forecast
	Kinematic secular variation forecast
	Predictability
	Derivation of candidate models

	Conclusion
	Acknowledgements
	References




