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We report phase and amplitude measurements of large
coherent structures originating from the noise-induced
modulation instability in optical fibers. By using
a specifically-designed time-lens system (SEAHORSE)
in which aberrations are compensated, the complex
field is recorded in single-shot over long durations
of 200 ps with sub-picosecond resolution. Signatures
of Akhmediev breather-like patterns are identified in
the ultrafast temporal dynamics in very good agree-
ment with numerical predictions based on the nonlin-
ear Schrödinger equation.

Modulation instability (MI) is unarguably one of the most
ubiquitous nonlinear phenomenon since it appears in fields
as different as hydrodynamics [1], plasma physics [2], Bose-
Einstein condensates [3] or optics [4], to name a few. MI is a
long-wave instability at the origin of the amplification of arbi-
trary small perturbations of a homogeneous field either in space
or time [5]. In the context of fiber optic experiments, a very
common scenario is the so-called noise induced MI in which the
instability of a continuous wave (cw) field (referred to as the
pump) is triggered by the random spectral components that
fall within the MI gain bandwidth [6]. Following its first ob-
servation more than 3 decades ago [4], noise induced MI in
optical fibers has been the subject of numerous experimental
studies and has often played a key role in the implementation
of single-shot detection methods due to its intrinsic stochastic
nature and fast time scale. For instance techniques like the time
stretch-dispersive Fourier transformation method (TS-DFT) have
revealed shot-to-shot fluctuations of the Fourier power spectrum
of MI [7–10] while the so-called time lens systems have enabled
the first single-shot intensity recordings of the breakup of optical
fields with a picosecond timescale [11, 12]. Single-shot spatio-
temporal diagrams of MI dynamics have been recently captured
using a recirculating fiber loop operating at low cw pumping
power [13, 14]. Also, the time measurement of the amplitude
and phase fluctuations of random optical wavefields has been
reported in Refs. [15–17]. In particular, an heterodyne time-lens,
has been used to observe the dynamics of partially coherent
waves in optical fiber [17]. In this work, we use the heterodyne
time-lens technique in its digital time-holography or SEAHORSE
(spatial encoding arrangement with hologram observation for
recording in single shot the electric field) configuration [17] to

study the local emergence of breathers structures in the dynam-
ics of the MI process in optical fiber experiments. The simultane-
ous measurement of the intensity and the phase of the field in
single-shot over a temporal window of 200 ps allows us to iden-
tify local emergence of quasi-periodic pulse trains accompanied
with a characteristic structuration of the phase reminiscent of
the Akhmediev breather.

The experimental setup exploites the SEAHORSE technique
described for the first time in Ref. [17] and is schematically de-
scribed in Fig. 1(a). The cw emission from single-mode fiber laser
at 1550 nm (signal beam) is chopped down by an acousto-optic
modulator (AOM) into 50 ns-long pulses to mitigate Brillouin
scattering, and amplified by an Erbium-doped fiber amplifier
(EDFA). It is then launched in a 500 m-long single-mode fiber
(SMF-28) where it experiences MI before entering the detection
stage described hereafter. For the ultra-fast analysis of the sig-
nal beam, we used the SEAHORSE technique introduced in
Ref. [17] which consists in a spectral encoding system coupled
to a heterodyne measurement that allows simultaneous mea-
surement of the intensity and phase of the field. To perform
the time-lens effect, the signal beam is nonlinearly mixed with
∼ 200 ps-long chirped pulse (800 nm, pump beam derived from
a Coherent Astrella Ti:Sa amplifier) in a BBO crystal. From this
interaction, a beam at 528 nm is generated via sum-frequency
generation (SFG). Through this process, the ultra-fast fluctua-
tions of the signal are encoded on the spectrum of the 528 nm
beam. A diffraction grating (1600 lines/mm) is then used to map
the frequency domain onto the pixels of a high-speed camera
along the horizontal axis (over a 512 pixels window). Overall,
this setup performs a time-to-frequency-to-space mapping that
allows acquisitions over a large temporal window of ∼ 200 ps
with a resolution shorter than 1 ps. For comparison, in Ref. [17],
this setup was used in a different configuration yielding a more
restricted field of view of ∼ 40 ps and a resolution of ∼ 80 fs.

In addition to the spectral encoding system, a reference beam
provided by a cw laser at 1550 nm is used to perform a hetero-
dyne measurement of the phase of the signal. To do so, the
beams are elliptically shaped before they overlap in the BBO
crystal (see Fig. 1(b) for an example of camera recording). The
reference beam makes a small angle relative to the signal and
pump beams resulting in horizontal fringes of interference that
are recorded along the vertical axis of the camera. The rela-
tive phase between the signal beam and the reference beam
is then easily retrieved by tracking the vertical position of the
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Fig. 1. (a) Schematic description of the experimental setup. (b)
Example of a single-shot recording in false colors. (c) Mapping
of the time on the horizontal axis of the camera taking account
(solid blue line) or not (dashed blue line) of the cubic contribu-
tion to the phase of the pump pulses (red line is the derivative
of the solide blue line). cw: continuous wave, AOM: acousto-
optic modulator, EDFA: Erbium-doped fiber amplifier, CPL:
chirped pulse laser

fringes along the horizontal axis. The angle between the beams
is ajusted so that around 5 horizontal fringes are observed (Fig.
1(b)). Note that the coherence timescale of the reference laser
(∼ 3 µs) is much longer than the temporal acquisition window
such that the phase of the reference beam is effectively constant
over each acquisition window. Frames are recorded at a 1 kHz
repetition rate which is fixed by the pump laser. Numerical
processing of the data is performed afterwards to retrieve both
the intensity and the phase of the field of each frame.

As a consequence of the large temporal field of view in the
present configuration (5 times longer than in precedently re-
ported experiments [11, 12]), significant aberrations on the bor-
ders of the window are observed. Indeed, in analogy with the
regular thin lens that affects a field by imposing a transverse
quadratic phase at leading order, the time-lens effect is obtained
by imposing a longitudinal quadratic phase to the signal. This
is done experimentally at the stage of SFG where the chirp of
the pump pulse is transfered to the 528 nm beam. However, it is
well known that the chirp applied to pulses by the stretcher in a
regenerative amplifier is not perfectly linear because of higher
order dispersion effects [18, 19]. As a consequence of this imper-
fect linear chirp, there is a significant cubic contribution to the
phase resulting in the temporal aberrations.

In this work, we compensate the aberrations during the nu-
merical processing of our experimental recordings for the first
time to our knowledge. The principle is summarized in Fig. 1(c).
In the aberration-free case, there is a linear mapping between
time and camera pixel coordinate (dashed blue line). However,
the cubic contribution to the phase of the pump leads to a non-
linear (quadratic) relation between those two quantities (solid
blue curve). In practice, aberrations of the time-lens system are
evaluated experimentally with a double-pulse experiment: the
spacing in pixels between two pulses separated by a known

delay is measured over the full acquisition window. This allows
the determination of the time interval between adjacent pixels
along the window (red line) and consequently, to retrieve the
nonlinear mapping between temporal coordinate and horizontal
axis of the camera (See Supplement for details on the calibration
procedure and signal retrieval algorithm).

Before entering the description of the experiments and to
facilitate the comprehension of our results, we describe in Fig. 2
a typical numerical simulation of the nonlinear Schrödinger
equation (NLSE):

i
∂Ψ

∂z
=

β2

2

∂2
Ψ

∂t2
− γ|Ψ|2Ψ, (1)

where Ψ is the envelope of the optical wavefield, z is the
longitudinal variable describing propagation distance, t the time
defined in the frame traveling at group velocity of the carrier
wave, β2 the group velocity dispersion coefficient at the carrier
frequency, and γ is the Kerr coefficient. Figure 2(a) shows as
a 2D color plot the longitudinal evolution of a cw field initialy
perturbed by realistic noise over 1 km on a temporal window
of 150 ps featuring MI. Parameters are chosen according to our
experiments and are given in the caption of Fig. 2. Figure 2(a)
illustrates how the initial noisy condensate evolves towards a
quasi-regular pattern (between 400 m and 600 m) before exhibit-
ing a more complex spatio-temporal dynamics. The right pan-
els highlight the temporal dynamics at two particular stages by
showing both the intensity and the phase of the field at the initial
state (Fig. 2(c)) and close to the so-called maximum compression
point (MCP) of (Fig. 2(b)). The MCP can be defined in a statistical
manner as the point where the Fourier spectrum is the broadest
and appears as a saturation of the initial linear stage of MI (expo-
nential growth of the spectral components) [6]. The initial state
features small random fluctuations of intensity (blue curve) and
uncorrelated fluctuations of the phase with very small excursion
(red curve). On the other side, at the MCP, the field exhibits
the formation of high intensity peaks separated by a duration

close to the MI period (TMI = 2π
√

|β2|/(2γP0) ∼ 7.1 ps). Re-
markably, the phase profile is now also highly structured and
clear phase jumps of ∼ π are observed surrounding each of the
high intensity peaks like, for instance, between −50 ps and 0 ps).
This is reminiscent of the local appearance of structures that are
close to solitons on finite background (SFB) also called breathers
[20, 21]. In the present case, the field observed in this window
resembles the so-called Akhmediev breather (AB) solution close
to its MCP. The AB, whose intensity spatio-temporal dynamics
is illustrated in Fig. 2(d), is a particular solution of Eq. (1) that
is localised in z but periodic in t [22]. At its MCP (see Fig. 2(e)),
it takes the form of regularly spaced peaks. In particular, con-
secutive zero intensity points are associated to a succession of
±π phase jumps giving rise to a periodic (square) phase profile
(solid red curve) [23]. Recent experiments realised using fiber
optics and photorefractive crystals have revealed traces of such
ABs dynamics in the context of the seeded MI process [24–27].
We identify local reminiscent traces of this in our numerical sim-
ulation. Lastly, a common feature of the fundamental SFBs is
that the sign of the phase flips when crossing the MCP (dashed
red line is the phase just after the MCP). The stochastic nature of
the noise-induced MI hinders the observation of the exact AB
solution.

We have specifically designed an experiment to confirm the
noteworthy features described in Fig. 2. Using the setup de-
scribed in Fig. 1(a) the ultra-fast temporal dynamics of the field
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Fig. 2. Typical numerical simulation of the NLSE exhibit-
ing noise-driven MI. (a) Spatio-temporal diagram of the in-
tensity for the first 1000 m of propagation. Complex field
at (c) the initial state and (b) after 420 m of propagation.
P0 =

〈

|Ψ(z = 0)|2
〉

= 6 W, β2 = −20 ps2/km, γ = 1.3 /W/km.
(d, e) Same layout as previously but for an exact AB solution.
The dashed red line in (e) is the phase of the AB just after the
maximum compression. Parameter for the AB is a = 0.25
according to notation in Ref. [20].

can be accessed in single-shot at different stages of the MI pro-
cess by varying the length of the fiber on the signal path (dashed
box in Fig. 1(a)). In this letter we focus on the dynamics in the
vicinity of the MCP which, for an input power of 6 W, occurs
after ∼ 500 m of propagation. This distance depends on the
initial noise level within the MI gain bandwidth [28]. A con-
venient indicator to assess the randomness of the initial field
is the normalized variance of the power P = |Ψ|2 which is de-
fined as σ2 = (〈P2〉 − 〈P〉2)/〈P〉2 where 〈·〉 denotes average
over time. We have evaluated a posteriori that in our experi-
ments σ0 = σ(z = 0) ∼ 0.07. Note that we did not control the
amount of noise in our system which mostly originates from the
amplified spontaneous emission of the EDFA. The initial stage is
conveniently accessed by removing the fiber spool and connect-
ing the output of the EDFA directly to the detection apparatus.
In each case, we have acquired 25 000 frames which corresponds
to a total of 5 µs effective recording duration.

Figure 3 shows selected, fully processed, experimental ac-
quisitions at the initial stage (c) and after propagation in the
500 m-long fiber (b). The temporal traces are interpolated in the
spectral domain via the zero-padding technique to increase the
sampling frequency by a factor 20. Intensity is normalised such
that the average over all 25 000 frames is 1. Overall, traces in Fig.
3 share strikingly resembling features with Figs. 2(b) and (c).

After propagation, we observed strongly modulated fields
due to MI. The intensity profile exhibits, as expected, an over-
all irregular pattern where quasi-periodic structures can still
be identified. This is in particular the case between 0 ps and
50 ps where an almost regular train of pulses is observed. The
period of this train is ∼ 7.4 ps which in good agreement with
the period associated to the frequency of maximum MI gain
estimated from our experimental parameters (∼ 7.1 ps). Quite
noteworthy are also the small “bumps” between each pulses
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Fig. 3. Experimental complex fields recorded and recon-
structed (c) before and (b) after propagation in 500 m of single-
mode fiber. (a) shows the reconstructed intensity of the same
field with (solid blue line) and without (dashed green line)
compensation of the aberrations. (d) (left panel) Focus on the
quasi-periodic pattern of (b) and (right panels) periodic IST
profiles of isolated structures. Parameters are the same as in
the caption of Fig. 2.

that are well captured by our recording system and which are
also reminiscent of the AB solution (see Fig. 2(e)). Regarding
the phase of the field, its structure is now strongly correlated to
the intensity with large oscillations associated to high intensity
peaks and rather flat profiles in regions where MI is not fully
developed yet. In the region where the field is almost periodic,
phase jumps close to π are observed which is indicative of local
proximity to the MCP. Sign flipping of the phase jumps between
peaks are also observed in a similar fashion as the one observed
in the numerical simulation. It is important to mention that,
contrary to Fig. 2(b, c), the field in Fig. 3(c) is not related to the
one in Fig. 3(b) as they come from different input pulses. Also,
while the field presented in Fig. 3(b) has been selected among
25 000 frames, the features that it exhibits are found on most of
the frames, though the size of regular patterns typically vary
between 2 and 10 structures.

Taking advantage of the simultaneous measurement of the
phase and the amplitude reported in Fig. 3(b) we have per-
formed the local nonlinear spectral analysis of some of the non-
linear structures observed in our experiment (see Fig. 3(d)).
Following the methodology described in Ref. [29], we have iso-
lated and analyzed the structures observed between 0 ps and
50 ps and we show the result for 3 of them highlighted in the
left panel. Remarkably each individual structure has a nonlin-
ear spectrum (in the sense of the periodic inverse scattering
transform (IST) method) composed of three bands (right panels),
which means that it can be locally identified as representing a
breather solution of the NLSE, see e.g. [27, 29].

Finally, Fig. 3(a) illustrates qualitatively the impact of the
aberrations of the pump chirp on the reconstruction of the field.
The superposition of the intensity of the field with and without
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(solid blue and dashed green lines resp.) correction of the aberra-
tions shows that the cubic contribution to the phase of the pump
is responsible for a stretching (squeezing resp.) of the time on
the left (right resp.) side of the frame in accordance with the
results shown in Fig. 1(c).

The direct measurement of the full complex field in the tem-
poral domain over a 200 ps-long window allows for the compu-
tation of the corresponding single-shot spectrum in the Fourier
space with a comfortable 5 GHz resolution. The span of the cal-
culated spectrum is limited to 1 THz by the 1 ps resolution of
the SEAHORSE setup. Figure 4 shows the single-shot spectrum
associated to the field of Fig. 3(b) (grey line) along with the
average spectrum computed from the 25 000 frames (blue line).

���� ���� � ��� ���
����	�
�������

�
�
�
�
�
��
�
�
��
��
�

��
����� �!

"��#������$%��#

&�"

Fig. 4. Single-shot Fourier spectrum computed from the com-
plex field of Fig. 3(b) along with the average spectrum com-
puted over 25 000 single-shot acquisitions and a trace from an
optical spectrum analyzer (OSA) recorded simultaneously.

While the single-shot spectrum is inherently very noisy,
the smoothing brought by the averaging allows clear observa-
tion of the standard MI sidebands at frequency detunings of
∼ ±125 GHz (i.e. ∼ 8 ps timescale). For comparison, the spec-
trum acquired using a standard optical spectrum analyzer (OSA)
with 2 GHz resolution directly at the output of the fiber is super-
imposed as a dashed red line and shows a very good agreement.
The most noticeable discrepancy is found in the wings of the
spectrum where the OSA trace presents higher power density
than the spectrum computed from the SEAHORSE acquisitions.
This can be ascribed to the fact that an optical signal is mea-
sured unnecessarily by the OSA during a large dead time lying
between consecutive pulses. On the other hand, the time lens
acquisitions are intrinsically performed over a temporal window
fully comprised in the signal pulses, which results in a more
accurate representation of the MI spectrum.

In summary, we report the single-shot observation of
extended coherent structures, which are locally reminiscent of
Akhmediev breathers, emerging in the nonlinear development
of MI in fiber optics experiments. While intensity measurements
covering 40 ps have been reported in the pioneering work of
Ref. [11], the use of a heterodyne time-lens system enables here
the simultaneous recording of both intensity and phase of the
field over a very large temporal window of 200 ps allowing for
observations with unprecedentedly great completeness. This
enables reconstruction of the associated single-shot Fourier
spectrum while also providing the opportunity to perform
nonlinear spectral analysis of the observed structures.

Funding. European Regional Development Fund ( CPER
Photonics for Society P4S); Ministry of Higher Education and
Research, Hauts de France council; Agence Nationale de la
Recherche (CEMPI ANR-11-LABX-0007, DYDICO ANR-16-
IDEX-0004).
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Single-shot observation of breathers
from noise-induced modulation
instability using heterodyne temporal
imaging: supplemental document

The purpose of this Supplemental Material is to provide some details about the methods used
to extract the amplitude and the phase of the optical signal from the raw data recorded in the
experiments. In the first demonstration of the SEAHORSE (spatial encoding arrangement with
hologram observation for recording in single shot the electric field), the field of view was a few
tens of picoseconds and aberrations were neglected [1].
In this Letter, we extend the field of view up to 200 ps and we demonstrate that aberrations
induced by the third order dispersion can be significantly compensated in the data analysis.
The theoretical background needed to describe the operation of the SEAHORSE is briefly given
in Sec. I. Details about numerical data processing and aberration compensation are provided in
Sec. II.

1. SIGNAL RETRIEVAL IN THE SEAHORSE (THEORY)

The notations used throughout this Supplementary document for the field and the Fourier
transform are listed below.

Direct Fourier Transform FT
(

A(t)
)
= Ã(ω) =

∫ +∞

−∞

A(t) e−iωt dt (S1)

Inverse Fourier Transform FT−1
(

Ã(ω)
)
= A(t) =

1

2π

∫ +∞

−∞

Ã(ω) eiωt dω (S2)

Convolution : A ⊗ B(ω) =
∫ +∞

−∞

A(ω′) B(ω − ω′)dω′ (S3)

S(t) is the slowly-varying amplitude of the electric field e(t) = S(t) ei(ω0t) + c.c. under study:

s(t) = |S(t)|

S(t) = s(t) eiφ(t)

The slowly-varying amplitude of the pump pulse is P(t). The Fourier components of the chirped
pump pulse read :

p(ω) = |P̃(ω)|

P̃(ω) = p(ω) e−i φ̃P(ω)

φ̃P(ω) =
B2

2!
ω2 +

B3

3!
ω3

B2 is the group velocity dispersion (GVD) experienced by the pump pulse in the regenerative
amplifier (Astrella, Coherent)
B3 is the third order dispersion (TOD) experienced by the pump pulse.

In the BBO crystal, the pump intensity is much higher than the signal intensity. In the approxi-
mation of weak conversion, the field generated by sum frequency generation (SFG) is proportional
to P(t) and S(t) [2]

SFG(t) ∝ S(t) P(t) (S4)

In the SEAHORSE, a monochromatic reference beam is also launched into the BBO crystal and
the SFG between the pump and the reference provides a field that is simply proportional to P(t):



SFGR(t) ∝ P(t).

The second part of the SEAHORSE is made of a single-shot spectrum analyser. We thus measure

the modulus of S̃FG(ω) and the relative phase between S̃FG(ω) and S̃FGR(ω).

Finally, the recorded data X̃(ω) thus reads :

X̃(ω) =
[
S̃(ω)⊗ P̃(ω)

]
eiφ̃P(ω) (S5)

X̃(ω) =
∫ +∞

−∞

S̃(ω′) p(ω − ω′) exp

[
− i

B2

2
(ω − ω′)2 − i

B3

6
(ω − ω′)3

]
exp

[
+ i

B2

2
ω2 + i

B3

6
ω3

]
dω′

X̃(ω) =
∫ +∞

−∞

S̃(ω′) p(ω − ω′) exp

[
+ iB2ωω′ − i

B2

2
ω′2 + i

B3

2
ω2ω′ − i

B3

2
ωω′2 + i

B3

6
ω′3

]
dω′

Parameters of the experiments

B2 = 1.437 ps2

B3 = −2.688 10−3 ps3

ωmax of the pump ≈ 2π × 7 THz

ω′
max of the signal ≈ 2π × 0.2 THz

B3(ω
′
max)

3/6 ≈ 9.10−4

B3(ω
′
max)

2ωmax/2 ≈ 0.09

We neglect the last two terms in the integral. Moreover, as ωmax ≫ ω′
max one can approximate

p̃(ω − ω′) ≈ p̃(ω). Finally, one gets :

X̃(ω) = p(ω)
∫ +∞

−∞

S̃(ω′) exp

[
− i

B2

2
ω′2

]
exp

[
+ i

(
B2ω +

B3

2
ω2

)
ω′

]
dω′ (S6)

Assuming stationarity of the statistics of the random signal S(t), the Fourier components are
δ−correlated : 〈S̃(ω′)S̃∗(ω′′)〉 = N(ω′)δ(ω′−ω′′). By averaging the data over many realizations,
we measure p̃(ω):

p(ω) =

√
〈|X̃(ω)|2〉

P0
where P0 =

∫
N(ω) dω (S7)

We define

X̃′(ω) = X̃(ω)/ p̃(ω) (S8)

t = B2ω +
B3

2
ω2 (S9)

Y(t) = X̃
[
ω(t)] (S10)

Eq. (S6) finally reads:

Y(t) =
∫ +∞

−∞

S̃(ω′) exp

[
− i

B2

2
ω′2

]
exp

[
+ iω′t

]
dω′) (S11)

Final data analysis

Starting from Eq.(S11), the signal S(t) is retrieved by using the simple algorithm:

1/ Compute Ỹ(ω), the Fourier transform of Y(t)

2/ Apply the operator of propagation e+iB2ω2/2

3/ Perform the inverse Fourier transform

2



It is important to emphasize that in this algorithm, the influence of B3 on the spectral encoding

of time t(ω) = B2ω + B3
2 ω2 is compensated. On the contrary, we neglect here the influence of B3

on the phases in the integral. The study of these aberrations in the case of signal with broader
spectrum is beyond the scope of this Letter and this point deserves further investigations.

2. NUMERICAL PROCESSING AND ABERRATIONS COMPENSATION :

A. Calibration of time

The SEAHORSE technique is based on the spectral encoding of the signal. The spectral profile
of the SFG signal is observed on a sCMOS camera where the frequency components are equally
spaced on the x axis by means of a simple grating. A given pixel px of the horizontal axis corre-
sponds to a given frequency ω and thus to a given time through Eq. (S9).

The first step of the analysis is to find the quantitative relationship between time and the index
px of the pixel:

t = a(px − px0) +
b

2
(px − px0)

2 (S12)

where a ∝ B2 and b ∝ B3.

a and b are measured by using a double pulse experiment. Two pulses separated by 81.6 ps
are generated by launching a picosecond mode-locked laser (Pritel) beam into a Michelson
interferometer. The two pulses are recorded by using the SEAHORSE device. Even though the
time interval between the two pulses is fixed at the output of the Michelson interferometer, the
pixel interval between the two recorded pulses depends on their positions in the window of
measurement because b 6= 0.

Fig. S1. Double pulse recorded by using the SEAHORSE. The separation ∆px between the two
pulses recorded on the camera depends on their mean position 〈px〉 within the measurement
window. Blue and green curve are two different snapshots.

As an example, two different snapshots of the double pulses recorded by using the SEAHORSE
are plotted in Fig. S1. By using numerous recorded frames, we measure the distance in pixel
between the two pulses as a function of their mean position 〈px〉 on the camera (see the blue
curve in Fig. S2).

By using an optimization procedure, we evaluate px0, a and b of Eq. (S12) for which the
measured interval ∆t remains constant over the whole window of observation (see the red curve
in Fig. S2):

3



Fig. S2. Blue dot : number of pixels ∆px between the centroids of the two pulses as a function
of their mean position < px > in the window. Red dot : time interval between the two pulses
∆t computed from the nonlinear pixel to time conversion Eq. (S12). Blue and red solid lines are
linear fits related to the same color.

a = 5.27 ∗ 10−1 ps / pixel (S13)

b = −1.19 ∗ 10−4 ps / pixel2 (S14)

px0 = 232 (S15)

Note that, as expected, the evaluated value of px0 is close to the centroid of the signal. Note
finally that the optimization procedure is an iterative process taking into account the digital focus
(see below).

B. Signal retrieval

Above, the correspondence between the time t and the index px of the horizontal pixel of the
camera has been established.

In a second step, the intensity and phase of Y(t) [see Eq. (S11)] are retrieved from the raw data
recorded onto the camera. A typical single-shot pattern recorded by the camera is plotted in Fig.
S3.a). Roughly speaking, for a given time, the intensity |Y(t)|2 corresponds to the sum of the
pattern over a vertical line divided by p(ω) [see Fig. S3.b)]. The phase is encoded in the fringes
positions and is retrieved by means of Fourier transform [see Fig. S3.d)]. See [1] for a detailed
description of the full procedure.

In a last step, we perform the Final data analysis described in Sec. 1. Conceptually, this step
corresponds to a digital focus analogous in the time domain to the spatial digital holography. The
intensity and phase of the retrieved signal is plotted in Fig.S3.(e,f).

It is important to note that the influence of the third order dispersion in the spectral encoding
of time is rigorously compensated in the data analysis. On the contrary, for the signals under
investigation in this Letter, the influence of the third order dispersion in the digital focus is
neglected. The compensation of aberrations for signals with broader spectrum deserves further
investigations.
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Fig. S3. a) Typical single-shot pattern recorded by the camera. b) Green line : intensity profile
extracted from a). Orange : intensity profile divided by the averaged envelop p(ω). c) Intensity
|Y(t)|2 d) Phase of Y(t). In c) and d) the nonlinear pixel to time conversion of Eq. (S12) has
been used. e) Intensity of the studied signal |S(t)|2 f) Phase of S(t) g) Principle of the digital
focus enabling to retrieve (e,f) from (c,d).
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