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ABSTRACT

Transit timing variations (TTVs) can be a very efficient way of constraining masses and eccentricities of multi-planet systems. Recent
measurements of the TTVs of TRAPPIST-1 have led to an estimate of the masses of the planets, enabling an estimate of their densities
and their water content. A recent TTV analysis using data obtained in the past two years yields a 34 and 13% increase in mass
for TRAPPIST-1b and c, respectively. In most studies to date, a Newtonian N-body model is used to fit the masses of the planets,
while sometimes general relativity is accounted for. Using the Posidonius N-body code, in this paper we show that in the case of the
TRAPPIST-1 system, non-Newtonian effects might also be relevant to correctly model the dynamics of the system and the resulting
TTVs. In particular, using standard values of the tidal Love number k2 (accounting for the tidal deformation) and the fluid Love number
k2 f (accounting for the rotational flattening) leads to differences in the TTVs of TRAPPIST-1b and c that are similar to the differences
caused by general relativity. We also show that relaxing the values of tidal Love number k2 and the fluid Love number k2 f can lead
to TTVs which differ by as much as a few 10 s on a 3−4-yr timescale, which is a potentially observable level. The high values of the
Love numbers needed to reach observable levels for the TTVs could be achieved for planets with a liquid ocean, which if detected
might then be interpreted as a sign that TRAPPIST-1b and TRAPPIST-1c could have a liquid magma ocean. For TRAPPIST-1 and
similar systems the models to fit the TTVs should potentially account for general relativity, for the tidal deformation of the planets,
for the rotational deformation of the planets, and to a lesser extent for the rotational deformation of the star, which would add up to
7× 2 + 1 = 15 additional free parameters in the case of TRAPPIST-1.

Key words. planets and satellites: dynamical evolution and stability – planets and satellites: individual: TRAPPIST-1 –
planet-star interactions

1. Introduction

The measurement of transit timing variations (TTVs) in the con-
text of multi-transiting planet systems can be a very efficient
method for deriving the dynamical parameters of a planetary sys-
tem, such as mass and eccentricity (see Agol & Fabrycky 2018,
for a review). The TRAPPIST-1 system has been intensely mon-
itored by TRAPPIST, K2, and Spitzer, which led to estimates of
the masses of the planets by Grimm et al. (2018). Recently addi-
tional Spitzer observations were obtained thanks to the Spitzer
proposal no. 14223 (Agol et al. 2019).

In most studies on TTVs the model used is an N-body model
assuming point-mass and Newtonian dynamics, sometimes with
a prescription for general relativity (as in Grimm et al. 2018;
Jordán & Bakos 2008; Pál & Kocsis 2008). Theoretical studies
have considered the possible impact of tides and quadrupole dis-
tortion on transit times (Miralda-Escudé 2002; Heyl & Gladman
2007). However, the influence of tides has never been consis-
tently taken into account in a multi-planet context.

Some studies do take into account tidal decay (e.g.,
Maciejewski et al. 2018), but decay typically occurs on time-
scales that are much longer than the typical duration of the
observations available for TRAPPIST-1. However, tidal forces

are not only a dissipative effect (which drives migration and spin
evolution), there is also a non-dissipative effect which depends
on the real part of the complex Love number of degree-2, k2,
which quantifies the shape of the tidal deformation. This defor-
mation can lead to a precession of the orbit, which can lead
to TTVs. In addition, for fast rotating planets, rotational flat-
tening can also drive a precession of the orbit, which in turn
can lead to TTVs. These effects have been considered in sys-
tems with a single hot-Jupiter planet (see Ragozzine & Wolf
2009, for a comparative study of each effect). The precession of
the orbit leads to observable TTVs, which then can inform the
internal structure of the planet through the determination of the
Love number.

However, these effects are usually never taken into account
when investigating the TTVs of multi-planetary systems. We
show that in the context of TRAPPIST-1 (Gillon et al. 2017,
2016), the inclusion of tidal forces may lead to an observable
TTV signal. In contrast with TRAPPIST-1 d–h, planets b and c
are in proximity to a higher-order resonance (increasing the fre-
quency of the TTV pattern modulation; see Agol et al. 2005)
and exhibit small TTV amplitudes (2–5 min); both effects inflate
the uncertainties on the masses and eccentricities, as shown in
Grimm et al. (2018). Interestingly, a recent TTV analysis using
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data obtained in the past two years yields a 34% increase in mass
for TRAPPIST-1b and a 13% increase in mass for TRAPPIST-1c
(in prep.) compared to Grimm et al. (2018). These mass increases
of the two inner planets drew our attention to physical processes
that could impact the planet physical and orbital parameters on
secular timescales. As the parameters for the other planets have
remained relatively insensitive to the addition of new data, two
hypotheses remain. A first possibility is that the changing masses
are due to an incomplete sampling of the TTV pattern that should
resolve as new data are included. A second possibility is that
dynamical models are missing physical processes that impact
the close-in planets more strongly, such as tides and rotational
flattening.

We show in this paper that the precession caused by general
relativity, by tidal deformation, and by rotational flattening could
lead to significantly different TTVs for the two inner planets of
TRAPPIST-1.

2. Simulation setup

We use POSIDONIUS1 v2019.07.30 (Blanco-Cuaresma &
Bolmont 2017; Blanco-Cuaresma & Bolmont, in prep.), an
N-body code which allows users to take into account additional
forces and torques: tidal forces and torques, rotational flattening
forces and torques, and general relativity (Bolmont et al. 2015).
As in Bolmont et al. (2015), tides are computed between a
planet and the star independently of the other planets, and the
planet–planet tides are not taken into account (which is jus-
tified, see Hay & Matsuyama 2019). In Posidonius, we use
the integrator IAS15 (Rein & Spiegel 2015) to compute the
evolution of the system for 1500 days, which is approximately
the time range available from all the observations collected
from the system, and we fix the maximum time step allowed at
0.01 day = 14 min. We tested the convergence of our code with
time steps of 0.005 day and 0.001 day, and find that the transit
timings are stable to a precision of better than 10−6 s.

2.1. Tidal model

Posidonius accounts for equilibrium tides following the prescrip-
tion of Bolmont et al. (2015), which is an implementation of
the constant time-lag model (Mignard 1979; Hut 1981; Eggleton
et al. 1998). The equilibrium tide is the result of the hydrostatic
adjustment of a body; instead, the dynamical tide is the tidal
response corresponding to the propagation of waves, for exam-
ple inertial waves in the convective region of stars (see Zahn
1975) or gravito-inertial waves in a planetary liquid layer (see
Auclair-Desrotour et al. 2019).

We review here the expressions for the tidal force and
torques. Let us consider a star, defined by its mass M?, its radius
R?, its degree-2 potential Love number k2,?, its (constant) time
lag ∆τ?, and its spin vector Ω?. Let us consider one planet, j,
orbiting the star at a distance rj. The planet is defined by its mass
Mpj , its radius Rpj , its degree-2 potential Love number k2,pj , its
(constant) time lag ∆τpj , and its spin vector Ωpj .

Let us define Fdiss,pj and Fnodiss,pj as the dissipative part and
the non-dissipative part, respectively, of the force exerted on
planet j due to the planetary tide as (Bolmont et al. 2015)

Fnodiss,pj =
−3G
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j
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?k2,pj R
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pj

erj , (1)
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where erj is the unit vector rj/rj and θ̇j is a vector collinear with
the orbital angular momentum of planet j, the norm of which is
equal to the time derivative of the true anomaly. Let us define
Fdiss,? and Fnodiss,? as the dissipative part and the non-dissipative
part, respectively, of the force exerted on planet j due to the
stellar tide as
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The total force as a result of the tides acting on a planet j is
therefore given by the sum of these contributions (Bolmont et al.
2015)

FT
pj

= Fdiss,pj + Fnodiss,pj + Fdiss,? + Fnodiss,?. (5)

2.2. Rotational flattening model

To account for rotational flattening, we also follow here the
prescription of Bolmont et al. (2015), which assumes that the
deformation due to the rotational flattening results in a triaxial
ellipsoid symmetric with respect to the rotation axis (Murray &
Dermott 1999). This deformation is quantified by a parameter,
J2, which depends on the radius, mass, and spin of the body
and on the potential Love number of degree-2 for a perfectly
fluid body (which we call here the fluid Love number; Correia &
Rodríguez 2013). We define this parameter for planet j and the
star as

J2,pj = k2 f ,pj

Ω2
pj

R3
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, (6)
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. (7)

Let us define Frot,pj the force exerted on planet j due to the rota-
tional flattening of planet j and Frot,? the force exerted on planet j
due to the rotational flattening of the star as (Murray & Dermott
1999; Correia et al. 2011)
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where C? and Cpj are defined as follows:
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1
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The resulting force on planet j due to the rotational defor-
mation of both the star and planet j is the sum of the two
contributions:

FR
pj

= Frot,pj + Frot,?. (12)

2.3. General relativity

We use three different prescriptions for general relativity: Kidder
(1995), which is the one used in Mercury-T (Bolmont et al. 2015;
Anderson et al. 1975; and Newhall et al. 1983).

The prescription of Kidder (1995) was designed for two
bodies, and Posidonius takes into account the post-Newtonian,
the spin-orbit, and the post2-Newtonian contributions to the
total acceleration (Eqs. (2.2b)–(2.2d), respectively), as well as
the spin precession equations for both bodies (Eqs. (2.4a) and
(2.4b)).

The prescription of Anderson et al. (1975) accounts for the
post-Newtonian acceleration of two bodies. We refer the reader
to Eq. (12) in Anderson et al. (1975) where the expression of this
acceleration is given.

The prescription of Newhall et al. (1983) is more complete
insofar as it accounts for the post-Newtonian effect between all
bodies. We refer to Eq. (1) in Newhall et al. (1983), which gives
the point-mass acceleration. Posidonius accounts for this acceler-
ation, except for the last term which accounts for the perturbation
of five solar system asteroids.

3. Transit timing variations

We performed simulations of the TRAPPIST-1 system switching
on and off these various effects: the effect of the planetary tide
(by varying the Love number k2,p and the time lag τp), the effect
of the stellar tide (by varying the Love number k2,?), the effect of
the rotational flattening of the planets (by varying the fluid Love
number k2 f ,p), the effect of the rotational flattening of the star (by
varying the fluid Love number k2 f ,?), and the effect of general
relativity. We list in Table 1 the reference values of the parame-
ters varied here, and we refer the reader to Appendix A for the
parameters that remain constant in our simulations, including the
initial orbital elements for the planets. We tested the three differ-
ent prescriptions of the general relativity introduced in Sect. 2.3.
They gave very similar results so that in the following we com-
pare the other effects with respect to the simulations performed
using the prescription of Kidder (1995).

The planetary reference values were taken to be represen-
tative of the Earth; in particular, the quantity k2,p∆τp is equal
to 213 s (Neron de Surgy & Laskar 1997). The stellar refer-
ence values were chosen to be representative of fully convective
M dwarfs (Bolmont et al. 2015).

For all the simulations we performed, we calculated the tran-
sit timing variations (Agol & Fabrycky 2018) as follows: (i) for
each transit we find the time of the transit mid-time by perform-
ing an interpolation to find the precise time a given planet crosses
a reference direction. This corresponds to the “Observed transit
time” O; (ii) we evaluate the “Calculated transit times” C by per-
forming a linear fit2 of the transit times calculated in step i) over
the total number of transits; (iii) we calculate the difference O–C
to obtain the TTVs as a function of the epoch (or transit number).

To quantify the impact of each additional effect on the sim-
ulated TTVs, we compute the difference between the TTVs

2 We use the function LinearRegression from the linear_model
package of scikit-learn.

Table 1. Reference values for the parameters we vary in this study.

Parameter Value

kref
2 f ,p 0.9532

kref
2,p 0.299

∆τref
p (s) 712.37

kref
2 f ,? 0.307

kref
2,? 0.307

Notes. We assume that all planets in the system have the same potential
Love number of degree-2 k2 f ,p, fluid Love number k2,p, and time lag ∆τp.

calculated taking into account an additional effect and the TTVs
obtained for a Newtonian N-body integration.

4. Influence of each effect on the TTVs

We performed a set of six simulations of the TRAPPIST-1 sys-
tem to test the impact of the additional effects listed in Sect. 2,
and we compare each with a Newtonian N-body simulation. One
after another, we explored the effect of each parameter using the
reference values in Table 1 and general relativity. We tested the
influence of the dissipative part of the planetary tide by assum-
ing ∆τp = 1 × ∆τref

p for all planets, with all the other parameters
set to zero. We repeated the operation for the non-dissipative
part of the planetary tide (through k2,p, equal for all planets),
the rotational flattening of the planets (through k2 f ,p, equal for
all planets), the non-dissipative part of the stellar tide (through
k2,?), the rotational flattening of the star (through k2 f ,?), and for
general relativity.

Figure 1 shows the results for planets b to d. The top panels
of Fig. 1 show the transit timing variations for the three planets
for the seven simulations, and the bottom panels show the differ-
ence between the TTVs and the TTVs corresponding to the pure
N-body simulation. The different additional effects have a very
limited impact on the shape of the TTVs, but computing the dif-
ference with the pure N-body case reveals the amplitude of each
effect.

For TRAPPIST-1b (T-1b), the dominant effects are the non-
dissipative part of the planetary tide (green in Fig. 1a) and
general relativity (pink), respectively accounting for a difference
in TTVs of about −0.63 s and 0.56 s after 1500 days. The effect
of the rotational flattening of the planets (red) plays a smaller
role, but still accounts for more than half the amplitude due to
the non-dissipative part of the planetary tide with a difference
of −0.33 s. The effect of the dissipative part of the planetary
tide (orange) and the non-dissipative part of the stellar tide
(purple) are completely negligible (accounting for a difference
∼1 × 10−3 and ∼1 × 10−4 s, respectively), which is in agree-
ment with Ragozzine & Wolf (2009). The effect of the rotational
flattening of the star (brown) is much smaller (accounting for a
difference of −0.057 s), but might contribute to a lesser extent.
Accounting for all effects (gray) leads to an absolute difference
of −0.45 s at the end of the 1500-day simulation. The effects of
general relativity and the non-dissipative part of the planetary
tide almost cancel each other out, while the amplitude is deter-
mined by the effect of the rotational flattening of the planet (red
curve) and of the star (brown curve).

For TRAPPIST-1c (T-1c), the dominant effects are the non-
dissipative part of the planetary tide (accounting for a difference
of 1 s, in green in Fig.1b), followed by the effect of the
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(a) TRAPPIST-1b (b) TRAPPIST-1c (c) TRAPPIST-1d

Fig. 1. Impact of various additional effects on the TTVs of (a) planet b, (b) planet c, and (c) planet d. Top panel: transit timing variations for a pure
N-body simulation (blue); for a simulation using ∆τp = 1 × ∆τref

p for all planets (orange), using k2,p = 1 × kref
2,p for all planets (green), using k2 f ,p =

1× kref
2 f ,p for all planets (red), using k2,? = 1× kref

2,? (purple), using k2 f ,? = 1× kref
2 f ,? (brown), and where we only consider the general relativity (pink);

and for a simulation where all effects are taken into account. Bottom panel: corresponding TTVs differences with the Newtonian N-body case.

rotational flattening of the planet (0.53 s, in red), followed by
the effect of general relativity (−0.44 s, pink). The effect of the
rotational flattening of the star accounts for 0.067 s (purple) and
the effect of the dissipative part of the planetary tide remains
negligible (0.013 s, orange). As with T-1b, to reproduce the dif-
ference observed when all effects are taken into account (in gray
in Fig.1b), we need to account for the non-dissipative part of the
planetary tide, the rotational flattening of the planet, general rel-
ativity, and the rotational flattening of the star to a lesser extent.
We note that the precession of the orbits due to the rotational
flattening depends on the square of the spin frequency of the
considered body (Ragozzine & Wolf 2009). Here we use a rota-
tion period of 3.3 days for TRAPPIST-1 (Luger et al. 2017). It is
possible that the rotation is slower (as the period distribution of
nearby late M dwarfs shows, Newton et al. 2016), in which case
the contribution of the rotational flattening of the star would be
even less important.

For TRAPPIST-1d (T-1d), Fig. 1c shows that the dominant
effect is general relativity (−2.03 s, in pink). The effect of the
non-dissipative part of the planetary tide (accounting for −0.81 s,
green) and the effect of the rotational flattening of the planet
(accounting for −0.43 s, red) should probably also be taken into
account. This is also true for all the external planets: the ampli-
tude due to general relativity is much higher, but at the same time
not accounting for at least the non-dissipative part of the plane-
tary tide and the rotational flattening of the planet leads to small
offsets (see Appendix B, Fig B.1).

5. Potential observable effects

We performed simulations for which we varied the potential
Love number k2,p and the fluid Love number k2 f ,p over a wide
range. We first treat these parameters as free parameters with no
limitations on their value and then we discuss the validity of this
approach in Sect. 6.

As in Sect. 4, we always assume the same value of the
Love numbers for all planets. We vary the parameter k2,p from
1× kref

2,p = 0.299 to 50× kref
2,p = 14.95; the impact on the TTV dif-

ferences with the pure N-body case can be seen in the top panel
of Fig. 2a for T-1b and in the top panel of Fig. 2b for T-1c.

Considering the highest value of the tidal Love number leads
to a difference in TTVs after 1500 days of −31.7 s for T-1b
and 50.7 s for T-1c. The amplitude of these effects are then

comparable to the precision achievable today on the observed
TTVs of the two inner planets. If the tidal Love number could
reach such high values, the effect of the non-dissipative part of
the planetary tide (the tidal deformation of T-1b and T-1c) would
therefore be detectable.

Similarly, we vary the parameter k2 f ,p from 1×kref
2 f ,p = 0.9532

to 50×kref
2 f ,p = 47.66, and the impact on the TTV differences with

the pure N-body case can be seen in the bottom panel of Fig. 2a
for T-1b and in the bottom panel of Fig. 2b for T-1c. Assuming
the highest value of the fluid Love number leads to a difference
in TTVs after 1500 days of -17.3 s for T-1b and 27.7 s for T-1c.

Considering all the important effects given in Sect. 4 and
relaxing the range of possible Love numbers might therefore be
a way to settle the question of the increasing masses of T-1b and
T-1c and to settle the two hypotheses given in the introduction:
is it a sampling problem or are we missing dynamical processes?
The answer to this question depends upon the potential degener-
acy of these effects with varying the N-body parameters, and on
the duration and precision of the transit timing measurements.
We do not explore these effects here.

6. Discussion

We showed that for systems like TRAPPIST-1 the effect of the
tidal deformation of the planets (through the planetary tidal Love
number k2,p), the effect of the rotational deformation of the plan-
ets (through the planetary fluid Love number k2 f ,p), and the effect
of the rotational flattening of the star (through the stellar fluid
Love number k2 f ,?) can impact the TTVs of the two inner plan-
ets at the same order of magnitude as the general relativity, if we
assume “standard” values for these parameters. We also showed
that the tidal dissipation (responsible for the misalignment which
drives long term tidal evolution) does not significantly impact the
TTVs of the system over the short observation time that we sim-
ulated. By relaxing the assumptions on the planetary tidal and
fluid Love numbers, we also showed that a high Love number
can lead to differences in TTV on the order of ∼10 s. This differ-
ence is potentially observable with the current precision we have
on the transit timings, unless there is significant degeneracy with
other N-body parameters.

However, it is commonly accepted that a tidal Love num-
ber cannot exceed 1.5, which corresponds to a homogeneous
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(a) TRAPPIST-1b (b) TRAPPIST-1c

Fig. 2. Differences in TTVs with the pure N-body case for (a) planet b and (b) planet c. Top panel: fixing the planetary fluid Love number and the
dissipation to their reference values (see Table 1), the potential Love number k2,p is varied between 1 and 50× kref

2,p ∼ 15. Bottom panel: fixing the
planetary Love number and the dissipation to their reference values, the potential Love number k2 f ,p is varied between 1 and 50×kref

2 f ,p ∼ 48.

body. This means that the physical range of our study should
encompass maximum values, which are 5 × kref

2,p = 5 × 0.299.
Limiting ourselves to this value would entail a difference in
TTVs for T-1b of less than 2.5 s, which is below the precision
we can achieve today. On the other hand, it is known that if a
planet has a liquid layer (liquid water ocean, or liquid magma
ocean), the response of the body becomes more complex; in par-
ticular, it becomes highly dependent on the excitation frequency.
Specifically, if a frequency excites a resonant mode of the ocean,
the tidal response can be much higher than a homogeneous
rocky-planet model would predict (see, e.g., Auclair-Desrotour
et al. 2019). Investigating this aspect consistently will require
us to generalize the tidal formalism used here to account for
the frequency dependence of the dynamical tide (e.g., using the
formalism of Kaula 1961).

That is why we think that we might need to perform a TTV
analysis of the TRAPPIST-1 system accounting for the various
physical processes described here with no particular preconcep-
tion about the values of the parameters for the planetary Love
numbers. If the TTVs are reproduced by having a T-1b planet
with a high Love number, this could be a sign for a liquid layer
on the planet, possibly a magma ocean given the flux it receives
and the tidal heat flux it might generate (e.g., Turbet et al. 2018;
Makarov et al. 2018).

While a difference of a few ∼10 s is potentially observable, it
could be interpreted as a system with slightly different planetary
masses and periods by a classical TTV retrieval code. Our group
is thus currently investigating if these effects could be picked up
with such a retrieval code and, if so, under what conditions (e.g.,
duration of the observations, precision of the timings). We are
also working on implementing these effects in the TTV analy-
sis pipeline and plan to revisit the analysis with the additional
parameters mentioned earlier (Grimm et al., in prep.).
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Appendix A: Initial conditions for the TRAPPIST-1
simulations

Table A.1. Stellar parameters.

Parameter Value Unit

M? 0.08 M�
R? 0.117 R�
rg2

? 0.2
Rotation period 3.3 day

To ensure the reproducibility of our simulations, we give here the
exact initial conditions we took for the system. Table A.1 gives
the stellar parameters used for the integration of the system. The

Table A.2. Masses, radii, and initial orbital elements used for the dynamical simulations of the TRAPPIST-1 system.

Planet Mass Radius Semimajor Eccentricity Inclination Mean Argument of Longitude of
axis anomaly pericenter ascending node

(M�) (R�) (au) (degree) (degree) (degree) (degree)

b 2.97733e-06 1.127 0.01110318 0 0.59 90.0000000 0 0
c 3.34950e-06 1.100 0.01520668 0 0.50 51.5815880 0 0
d 9.16102e-07 0.788 0.02142513 0 0.30 84.5759410 0 0
e 2.34751e-06 0.915 0.02815839 0 0.40 305.455247 0 0
f 2.69105e-06 1.052 0.03705241 0 0.08 283.559942 0 0
g 3.29224e-06 1.154 0.04508048 0 0.37 233.773520 0 0
h 9.73359e-07 0.777 0.05955922 0 0.20 1.31390800 0 0

Notes. The inclination is given here with respect to the equatorial plane of the star.

stellar mass and radius come from Gillon et al. (2017) and the
rotation comes from Luger et al. (2017). The value of the radius
of gyration squared rg2

? (Hut 1981) comes from Bolmont et al.
(2015) and should be typical of a fully convective dwarf.

Table A.2 gives the masses and radii of the planets as well
as the initial orbital elements. We consider that all planets have
the same radius of gyration squared rg2

p = 0.3308 (where this
quantity is related to the moment of inertia Ip = Mp(Rprgp)2).
We consider that all planets have a zero obliquity (angle between
the direction perpendicular to the orbital plane and the rotation
axis of the planet) and that they are tidally locked (see discussion
in Luger et al. 2017).

To perform the integration of the system, we used POSIDO-
NIUS v2019.07.303. This version was slightly altered to be able
to fix a maximum time step size (0.01 day). The initial conditions
can be found in Bolmont et al. (2020)4.

3 https://www.blancocuaresma.com/s/posidonius
4 https://zenodo.org/record/3634640
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Appendix B: Transit timing variations for the four
outer planets of TRAPPIST-1

As in Figs. 1 and B.1 shows the difference in TTVs with
the N-body case for seven different simulations (N-body
and simulations with additional effects) for TRAPPIST-1e to
TRAPPIST-1h. General relativity is the dominant effect, but the
non-dissipative part of the planetary tidal force (via k2,p) and the
rotational flattening of the planets (via k2 f ,p) are still contributing
marginally. Only for TRAPPIST-1h is general relativity the only
relevant process to account for.

TRAPPIST-1e

TRAPPIST-1f

TRAPPIST-1g

TRAPPIST-1h

Fig. B.1. As the bottom panels of Fig. 1, but for (a) TRAPPIST-1e,
(b) TRAPPIST-1f, (c) TRAPPIST-1g, and (d) TRAPPIST-1h. The gen-
eral relativity is the dominant effect, but the planetary deformation
(due to tides or rotation) is not quite completely negligible, except for
TRAPPIST-1h.
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