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Persisting entropy structure for

nonlocal cross-diffusion systems

Helge Dietert∗ Ayman Moussa†

January 7, 2021

For cross-diffusion systems possessing an entropy (i.e. a Lyapunov func-
tional) we study nonlocal versions and exhibit sufficient conditions to en-
sure that the nonlocal version inherits the entropy structure. These nonlo-
cal systems can be understood as population models per se or as approxi-
mation of the classical ones. With the preserved entropy, we can rigorously
link the approximating nonlocal version to the classical local system. From
a modelling perspective this gives a way to prove a derivation of the model
and from a PDE perspective this provides a regularisation scheme to prove
the existence of solutions. A guiding example is the SKT model [18] and
in this context we answer positively to a question raised by Fontbona and
Méléard in [9] and thus provide a full derivation.

1. Introduction

1.1. Cross-diffusion systems with entropy structure

Our starting points are cross-diffusion systems of n species with densities u = (ui)1≤i≤n

solving a system

∂tui − div




n∑

j=1

aij(u)∇uj



 = 0, for i = 1, . . . , n, (1)
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on a domain Ω supplemented with boundary conditions and initial data uinit. Here
aij are given scalar functions (Rn

≥0 → R≥0) and the unknowns are the model densities
ui’s, which are therefore expected to be non-negative. The matrix A(u) := (aij(u))
is called the diffusion matrix and is always assumed to be positive definite. As this
work focuses on the entropy structure for the diffusion, we do not consider here any
reaction terms.

Without any assumptions on the aij ’s, the only estimate that we have on system
(1) is the conservation of the overall mass, i.e.

d

dt

∫

Ω

ui = 0,

for i = 1, . . . , n. Due to the severe non-linearity of the system, this sole control is
not sufficient to obtain the existence of global solutions. Searching for a Lyapunov
functional of the form

H(u) :=

∫

Ω

n∑

i=1

hi(ui), (2)

where hi ∈ C 0(R≥0) ∩ C 2(R>0), we find formally without boundary terms that

d

dt
H(u) = −

∫

Ω



∇u1
...

∇un


 ·M(u)



∇u1
...

∇un


 ,

with M : Rn
>0 → R

n×n defined by

M(y) =




h′′1 (y1) 0 . . . 0
0 h′′2 (y2) . . . 0
...

...
. . .

...
0 0 . . . h′′n(yn)







a11(y) a12(y) . . . a1n(y)
a21(y) a22(y) . . . a2n(y)

...
...

. . .
...

an1(y) an2(y) . . . ann(y)


 . (3)

Hence we have a positive dissipation I = −dH/dt if (the symmetric part of) M is
positive semi-definite. This motivates the following definition, where the second part
quantifies the dissipation.

Definition 1 (Entropy structure). We say that the system (1) has an entropy structure

if there exist n functions h1, . . . , hn ∈ C 0(R≥0)∩C 2(R>0) such that the corresponding
matrix map M : Rn

>0 → R
n×n defined by (3) takes its values in the cone of positive

definite matrices. We say that this entropy structure is uniform when there exist fur-
thermore n functions α1, . . . , αn : R≥0 → R≥0 such that for all (z, v) ∈ R

n × R
n
>0 it

holds

zT ·M(v)z ≥
n∑

i=1

αi(vi)
2z2i . (4)

For a given entropy structure the functions hi’s are called the entropy densities, αi’s
are the dissipations and the functional H defined in (2) is called the entropy.
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Remark 2. From the assumed positive definiteness of the diffusion matrix A, it di-
rectly follows that for every entropy structure all the functions hi, i = 1, . . . , n, are
convex.

Remark 3. For typical examples, as the SKT system (5) below, the entropy densities
hi have diverging derivative towards the origin so that we define the matrix map M
only for positive arguments. In this work we also take R≥0 for the range of the densities
which is the most common case. In general the entropy structure can also be defined
for bounded subsets of R, cf. [11].

Smooth solutions for the system (1) are known to exist, at least locally in time,
thanks to the work of Amann [1] which gives also a criteria of explosion for such
solutions. A part from the very specific case of triangular system [10], for global
solutions the current literature allows only weak solutions and relies crucially on the
entropy structure.
For an overview of such cross-diffusion systems we refer to Jüngel [11], which gives

a list of examples in the introduction and also uses the quantified condition (4). Note
that [11] allows in principle more general entropies but, apart from the volume-filling
models, all examples have the additive form (2) required in this work.

A guiding example is the SKT system with densities u1 and u2
{
∂tu1 = ∆

(
(d1 + d12u2)u1

)

∂tu2 = ∆
(
(d2 + d21u1)u2

) (5)

with parameters d1, d2, d12, d21 ≥ 0. This system has been introduced by Shigesada,
Kawasaki and Teramoto [18]. Writing the system in divergence form (1), the matrix
(aij(u))ij reads

(
d1 + d12u2 d12u1
d21u2 d2 + d21u1

)
.

For non-negative solutions this matrix has non-negative trace and determinant. As
remarked by Chen and Jüngel [3] the following entropy allows to symmetrize the system

H(u1, u2) :=

∫

Td

(
h1(u1) + h2(u2)

)
, (6)

with

h1(z) = d21ψ(z), h2(z) := d12ψ(z), ψ(z) = z log(z)− z + 1. (7)

Indeed, one checks that

M(u1, u2) =

(
h′′1(u1) 0

0 h′′2 (u2)

)(
d1 + d12u2 d12u1
d21u2 d2 + d21u1

)
= d12d21

(
⋆ 1
1 ⋆

)
,

so that M is symmetric and still has non-negative determinant and trace. Thus M is
positive semi-definite and forms with H an entropy structure again under the necessary
condition that the solution is non-negative.
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It is also known (see [11, 7, 12] for instance) that the previous entropy structure of
the additive form (2) can be found for substantial generalization of (5) in the following
general class of cross-diffusion systems

{
∂tu1 = ∆

(
µ1(u1, u2)u1

)
,

∂tu2 = ∆
(
µ2(u1, u2)u2

)
,

(8)

where the non-linear functions µ1 and µ2 are assumed C 0(R2
≥0) ∩ C 1(R2

>0) so that
(8) can be written in divergence form (1) in order for the entropy structure to makes
sense. We will propose in Section 2 a proof of existence for this type of generalisations
of the SKT system, which does not follow the usual approximation procedure, whether
it is by an entropic change of variable [11] or with a semi-discrete scheme [7]. For the
existence of solutions the difficulty comes from the cross-diffusion effect so that we will
focus on the case without self-diffusion (imposing that µi does not depend on ui)

{
∂tu1 = ∆

(
µ1(u2)u1

)
,

∂tu2 = ∆
(
µ2(u1)u2

)
.

(9)

In all these studies, one important difficulty in the use of the entropy structure to build
global weak solution is the elaboration of an adequate approximation scheme which
has to verify two mandatory conditions:

• compatibility with the entropy structure;

• non-negativeness of the solutions (which is needed for the entropy structure to
make sense).

A natural temptation to approximate the system (8) is to smooth out the non-linearity
by a mollifier. This has been first proposed by Lepoutre, Pierre, and Rolland [13] in
which a regularised model was studied, but no rigorous link was established with
the usual model. A few years later Fontbona and Méléard managed to produce by
a stochastic derivation a convoluted regularisation of the system in Fontbona and
Méléard [9]. It is important to note that their purpose was not as much to produce an
adequate approximation scheme but to derive the SKT system from a particle model.
However they did not manage to handle the last step of the derivation and they explic-
itly raised the question, whether it is possible to find in the limit of small regularisation
the classical local cross-diffusion system. A partial answer in this direction is given in
[16], where only the special case of triangular diffusion coefficients is handled. A recent
contribution to the derivation of the system from a particle model has been made by
Chen et al. [4], who perform the limit under the assumption of small cross-diffusion
effects. The approach of this paper is therefore perturbative and does not allow for a
treatment of the derivation in full generality as suggested by the method proposed in
Fontbona and Méléard [9].
The systems obtained after the use of such mollification or convolution operator

are called nonlocal because the diffusion rate of one species at a given point x does
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not depend anymore solely on the population’s density at this place, but on a space
average around it.
To the best of our knowledge, the current literature does not offer any example of

persisting entropy structure for a nonlocal cross-diffusion systems. In this work we
aim at giving sufficient conditions on the mollifying process for the entropy structure
to persist on the nonlocal system. Our intuition takes its origin from the article [6] in
which the first author of the current article exhibited an entropy structure for the SKT
systems under a spatial discretization. It is a striking fact that this very discretization
is everything but a nonlocal version of the SKT system. However we will see that
the mechanism which allows the entropy to persist on this discretized system can be
translated for nonlocal versions of it.
In the following Subsections 1.2 and 1.3, we introduce the nonlocal versions of the

system to which our method applies. We then state the existence and convergence
results in the following Subsection 1.4. In the remainder of the paper these results are
then proved.

1.2. Regularisation on the torus

The idea comes from the work by Daus, Desvillettes, and Dietert [6], where the entropy
structure was understood for the linear rates SKT model in a spatial discretisation. In
this paper the intuition is to relate the entropy structure to the reversibility of a Markov
chain modelling an N -particle system whose mean-field limit converges (formally) to
the spatially discrete system.
Briefly, the idea in [6] is that, on a particle model with discrete space variable, the

entropy structure is obtained by imposing that a pair of particles is jumping together
with a suitable rate. Trying to use this idea for a nonlocal approximation, we intuitively
want to make pairs of particle with a given distance jump together. In order to identify
the pairs, we therefore take the convolution reflected between the two species.
For Ω = T

d and a convolution kernel ρ : Td → R≥0 this motivates the following
regularisation of (5) {

∂tu1 = ∆
(
(d1 + d12 u2 ⋆ ρ)u1

)

∂tu2 = ∆
(
(d2 + d21 u1 ⋆ ρ̌)u2)

) (10)

where ρ̌ is the reflected convolution kernel, i.e.

ρ̌(y) = ρ(−y).

The key-observation is that, due to this reflected choice, for any function ϕ one has
formally (with the translation operator τyu2 = u2(· − y))

∫

Td

ϕ(u2)∆
(
(u1 ⋆ ρ̌)u2)

)
=

∫

Td

ρ(y)

{∫

Td

ϕ(τyu2)∆
(
u1τyu2)

)}
dy.

In particular, for H of the form (2) we have

− d

dt
H(u1, u2) =

∫

Td

ρ(y)

{∫

Td

(
∇u1
∇τyu2

)
·M

(
u1, τyu2

)( ∇u1
∇τyu2

)}
dy,
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where M is the same matrix associated to H , as in the local case. In particular,
since the kernel is non-negative, the entropy structure of the local case persists in the
nonlocal system in the sense that H still defines a Lyapunov functional. The previous
computation can be adapted to the generalizations of the SKT system (8) with the
following caution: the spatial regularisation has to be applied after the nonlinearity,
without affecting the self-diffusion. We have more precisely the following proposition.

Proposition 4. Consider µ1, µ2 ∈ C 0(R2
≥0)∩C 1(R2

>0) and the corresponding system
(8). If this system has an entropy H, then for any non-negative kernel ρ of integral 1,
any solution of the following non-local system (τy is the translation operator)





∂tu1 −∆

[∫

Td

ρ(y)µ1

(
u1, τyu2)

)
dy u1

]
= 0,

∂tu2 −∆

[∫

Td

ρ̌(y)µ2

(
τyu1, u2)

)
dy u2

]
= 0

(11)

satisfies formally

d

dt
H(u1(t), u2(t)) ≤ 0.

If the entropy structure of the system (8) is furthermore assumed uniform with dissi-
pation α1 and α2, then we have formally

d

dt
H(u1(t), u2(t)) +D(t) ≤ 0,

where

D(t) :=

∫

Td

α1(u1(t))
2|∇u1(t)|2 +

∫

Td

α2(u2(t))
2|∇u2(t)|2.

Proof. Denoting by h1 and h2 the entropy densities, we find by multiplying the first
equation of (11) by h′1(u1) and integrating over Td that

d

dt

∫

Td

h1(u1) dx = −
∫

Td

h′′1(u1)∇u1 ·
{∫

Td

ρ(y)∇(µ1(u1, τyu2)u1) dy

}
dx

= −
∫

Td

ρ(y)

{∫

Td

h′′1(u1)∇u1 · ∇(µ1(u1, τyu2)u1) dx

}
dy,

where τy is the translation operator and ∇ acts on the x (not noted) variable only.
We have a similar formula for the second equation, that is

d

dt

∫

Td

h2(u2) dx = −
∫

Td

ρ̌(y)

{∫

Td

h′′1(u2)∇u2 · ∇(µ2(τyu1, u2)u2) dx

}
dy.

Intuitively speaking, we want to collect the pairs u1(x) and u2(x− y) in both expres-
sions. This motivates in the double integral in the variables x, y of the last r.h.s. the
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change of variable (x, y) 7→ (z − w,−w). Using that the translation commutes with
differential operators, we find

d

dt

∫

Td

h2(u2) = −
∫

Td

ρ̌(−w)
{∫

Td

h′′2(τwu2)∇τwu2 · ∇(µ1(u1, τwu2)τwu2)dz

}
dw.

Since ρ̌(−w) = ρ(w), renaming the variables as before, we can collect both contribu-
tions as

d

dt
H(u1(t), u2(t)) = −

∫

Td

ρ(y)

{∫

Td

(
∇u1
∇τyu2

)
·M
(
u1, τyu2

)( ∇u1
∇τyu2

)}
dy,

where M is given by (3), the coefficients of the matrix A being the one used to write
(8) in divergence form (1). The fact that H is a Lyapunov functional and the precised
dissipation in case of uniform entropy follow (for the latter, we use the normalization
of ρ).

If there is no self diffusion in the generalized system (8) like in (9), the nonlocal
system (11) becomes simply

{
∂tu1 = ∆

(
(µ1(u2) ⋆ ρ)u1

)
,

∂tu2 = ∆
(
(µ2(u1) ⋆ ρ̌)u2

)
.

(12)

Thus, compared to Fontbona and Méléard [9], the spatial regularisation is applied
after the nonlinearity, while they do it the opposite way in their stochastic derivation.
However, we note that in the fundamental case of the (linear) SKT system (5), we get
the same system.

For these systems with the Laplace structure an other important role is played by
the duality estimates, see [7, 12, 16]. An advantage of the previous scheme is that
these duality estimates naturally continue to work in the nonlocal versions.

Remark 5. In the regularisation (11) the rate (µi)i=1,2 is averaged with respect to
the cross-diffusion influence but a possible nonlinear self-diffusion is not regularised.
However, a nonlinear self-diffusion tends to improve the entropy-dissipation estimates
and we thus focus on cases without self-diffusion.
In particular for stochastic derivations it is still interesting to also regularise the

self-diffusion. However, in a general setting this destroys the entropy structure and we
need a compatibility with the entropy structure. For this consider a symmetric kernel
σ, i.e. σ̌ = σ, and assume that (8) can be written as

{
∂tu1 = ∆

(
(µ1(u2) + κ1(u1))u1

)
,

∂tu2 = ∆
(
(µ2(u1) + κ2(u2))u2

)
,

where the system without the κ has an entropy structure with an entropy H consisting
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of h1 and h2 and matrix map M . We then propose the regularisation






∂tu1(x) = ∆x

[(∫

y∈Td

ρ(x−y)µ1

(
u2(y)

)
dy +

∫

y∈Td

σ(x−y)κ1
(
u1(y)

)
dy

)
u1(x)

]

∂tu2(y) = ∆y

[(∫

x∈Td

ρ(x−y)µ2

(
u1(x)

)
dx+

∫

x∈Td

σ(x−y)κ2
(
u2(x)

)
dx

)
u2(y)

]

For the dissipation we then find

− d

dt
H(u1, u2) = Iµ + I1 + I2

where Iµ is the dissipation with κ1 = κ2 = 0 and thus has a good sign. The new terms
are after using symmetrisation σ̌ = σ

Ii =
1

2

∫

x∈Ω

∫

y∈Rd

σ(y)

(
∇ui(x)

∇ui(x − y)

)
·Ni

(
∇ui(x)

∇ui(x− y)

)
dy dx

with

Ni =

(
h′′i (ui(x)) 0

0 h′′i (ui(x− y))

)(
κ1(ui(x − y)) ui(x)κ

′
1(ui(x− y))

ui(x − y)κ′1(ui(x)) κ1(ui(x))

)

for i = 1, 2.
Hence H is still an entropy if (Ni)i=1,2 are always positive semi-definite which gives

an extra condition on the system. We note, however, that for the studied SKT sys-
tem (5) this condition is always satisfied under the natural assumption that effect on
the other species is of the same form as the self-diffusion effect, i.e. that it takes the
form {

∂tu1 = ∆
(
(d1 + d12u

α
2 + d11u

β
1 )u1

)
,

∂tu2 = ∆
(
(d2 + d21u

β
1 + d22u

α
2 )u2

)
,

for constants d1, d2, d11, d12, d21, d22, α, β ∈ R>0 with αβ ≤ 1 (see, e.g., [7] for the
discussion of the local case).

Remark 6. Consider the SKT system on a regular bounded set Ω ∈ R
d with constant

Dirichlet boundary conditions1; that is, for x ∈ ∂Ω we impose for all times t ∈ R+

(u1, u2)(t, x) = (b1, b2) ∈ R
2
>0 and we will now explain how the previous regularisation

scheme on the torus can be used to design an approximation procedure for this type of
boundary conditions by a penalisation method.
The first remark is that, whenever the system has an entropy structure, each ele-

mentary functions hi : R≥0 → R can be exchanged with z 7→ hi(z) + ℓi(z) for any
affine functions ℓi, without changing the entropy estimate (which solely relies on sec-
ond derivatives). W.l.o.g. we can therefore assume hi(bi) = h′i(bi) = 0. By convexity
hi reaches therefore its minimum at bi.

1We need to assume constant boundary data in order to avoid boundary terms in the entropy
estimate.
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Now for an approximating system take N large enough such that Ω ⊂⊂ (−N,N)d

and identify the hypercube [−N,N ]d with the flat torus Td
N := (R/2NZ)d and consider

for ε > 0 the approximating system

∂tu1,ε −∆((d1 + d12u2,ε ⋆ ρε)u1,ε) = −1

ε
(u1,ε − b1)1Td

N
\Ω,

∂tu2,ε −∆((d2 + d21u1,ε ⋆ ρ̌ε)u2,ε) = −1

ε
(u2,ε − b2)1T

d
N
\Ω.

The key idea is that h′i(z)(z − bi) is a non-negative function vanishing at only one
point: multiplying respectively the equations by h′i(ui,ε), we recover an entropy estimate
with an extra penalisation term (which has the good sign). At the limit ε → 0 the
penalisation forces therefore ui = bi outside Ω and thus on ∂Ω.

1.3. General regularisation scheme

In the previous subsection we considered the special case of two species on the torus
and in this subsection we will discuss the case of several species on general domains
Ω. In this we will see that the specific Laplace structure as in (8) is not preserved and
we have the general divergence structure as in (1), see Remark 8.
For the two densities case on the torus, we used the convolution in order to define how

a pair is interacting in the cross-diffusion. In the general case of n densities on a domain
Ω with a possible boundary, the suitable generalisation is a kernel K : Ωn → R≥0

between all densities and the intuitive idea is that the cross-diffusion between the
densities u1(x1), u2(x2), . . . , un(xn) at positions x1, x2, . . . , xn ∈ Ω happens with the
intensity K(x1, x2, . . . , xn). The idea of using a kernel on a bounded domain has
been proposed in [13], where K is the fundamental solution the (Neumann) operator
Id− δ∆ with 0 < δ ≪ 1. However, the authors kept the Laplace structure and applied
the regularisation before the nonlinearity so that the entropy structure was lost, see
Remark 8 below.
At the boundary such a general tuple cannot diffuse freely if we impose no-flux

boundary conditions. Hence in order to rule out boundary terms we further assume
that

K(x1, . . . , xn) = 0 if xi ∈ ∂Ω for i = 1, . . . , n. (13)

A family of kernel Kǫ for ǫ > 0 then yields an approximation of the local system if
the kernel is concentrating on the diagonal as ǫ → 0, i.e. for a species i = 1, . . . , n, a
point xi ∈ Ω and a sufficiently nice test function φ : Ωn → R it holds that

∏

j 6=i

∫

xj∈Ω

dxjK
ǫ(x1, . . . , xn)φ(x1, . . . , xn) → φ(xi, . . . , xi) as ǫ→ 0,

where we introduced the notation
∏

j 6=i

∫
xj∈Ω dxj to denote the repeated integral over

all coordinates xj with j 6= i, i.e.

∏

j 6=i

∫

xj∈Ω

dxj :=

∫

x1∈Ω

dx1· · ·
∫

xi−1∈Ω

dxi−1

∫

xi+1∈Ω

dxi+1· · ·
∫

xn∈Ω

dxn.
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A natural candidate of such kernels Kǫ is a smoothing of

Kǫ(x1, . . . , xn) = Cǫ1|xi−xj |≤ǫ,i,j=1,...,n

with a cutoff towards the boundary and a suitable constant Cǫ.
With this we can state our proposed general regularisation.

Proposition 7. Let n ∈ N be the number of densities and assume rates (aij)i,j=1,...,n

such that the local system (1) has an entropy H.
For a constant ǫ > 0, a domain Ω ∈ R

d and a kernel K : Ωn → R≥0 satisfying
(13), the evolution of densities u1, . . . , un : Ω → R≥0 in time t by the nonlocal system
(i = 1, . . . , n)

∂tui(xi)− ǫ∆ui(xi)

− divxi



∏

k 6=i

∫

xk∈Ω

dxkK(x1, . . . , xn)

n∑

j=1

aij
(
u1(x1), . . . , un(xn)

)
∇uj(xj)




= 0

(14)

supplemented in the case of boundaries with von Neumann boundary conditions

n · ∇ui(x) = 0 for x ∈ ∂Ω (15)

satisfies formally
d

dt
H(u1(t), . . . , un(t)) ≤ 0.

In the case of uniform dissipations (αi)i it holds that

d

dt
H(u1(t), . . . , un(t)) +D(t) ≤ 0.

where

D(t) =

n∑

i=1

∫

Ω

[
ǫ h′′i (ui(x)) + αi(ui(x))

2wi(x)
]
|∇ui(x)|2 dx

with the weights (wi)i=1,...,n defined as

∏

j 6=i

∫

xj∈Ω

dxjK(x1, . . . , xn) = wi(xi) ≥ 0, ∀xi ∈ Ω. (16)

Here we added a small global self-diffusion with ǫ in order to compensate that the
kernelK vanishes at the boundary so that we can obtain global regularity estimates for
the regularised system. By the assumption (13) the imposed von Neumann boundary
conditions imply zero-flux boundary conditions.

10



Proof. In order to obtain the estimate, the idea is to collect the interaction in a tuple
u1(x1), . . . , un(xn). We then find for the dissipation

− d

dt
H(u(t))

= −
n∑

i=1

d

dt

∫

xi∈Ω

hi(xi) dxi

=
n∑

i=1

∫

xi

∇ui(xi)h′′i (ui(xi))

·



ǫ +
∏

k 6=i

∫

xk∈Ω

dxkK(x1, . . . , xn)

n∑

j=1

aij
(
u1(x1), . . . , un(xn)

)
∇uj(xj)



 dxi

=

∫

x1

dx1· · ·
∫

xn

dxnK(x1, . . . , xn)



∇u1(x1)

...
∇un(xn)


 ·M

(
u1(x1), . . . , un(xn)

)


∇u1(x1)

...
∇un(xn)




+ ǫ

∫

x∈Ω

n∑

i=1

h′′i (ui(x)) |∇ui(x)|2 dx,

where M is the matrix from the entropy structure, Definition 1, and the boundary
terms vanish due to the von Neumann boundary condition and (13).
By the assumed sign of the matrix M and the lower bound by αi, respectively, the

result follows.

Remark 8. The previous regularisation (10) for two species in the simple setting
Ω = R

d or Ω = T
d is exactly recovered by setting K(x1, x2) = ρ(x1 −x2) and dropping

the normal diffusion with ǫ.
This leaves the question whether the Laplace structure of a system of a the form (8)

can be preserved in the nonlocal version. Applying the regularisation procedure for a
general kernel K, we can rewrite the regularised evolution in the Laplace structure if

∇xK(x, y) = −∇yK(x, y).

This, however, is only true if K has a convolution structure and thus does not work
for domains with boundaries. Indeed we find for the two species system (8) the regu-
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larisation





∂tu1(x)− ǫ∆u1 −∆x

[∫

y∈Ω

K(x, y)µ1

(
u1(x), u2(y)

)
dy u1(x)

]

= −∇x

[∫

y∈Ω

[
(∂xK)(x, y) + (∂yK)(x, y)

]
µ1

(
u1(x), u2(y)

)
dy u1(x)

]
,

∂tu2(y)− ǫ∆u2 −∆y

[∫

x∈Ω

K(x, y)µ2

(
u1(x), u2(y)

)
dxu2(y)

]

= −∇y

[∫

x∈Ω

[
(∂xK)(x, y) + (∂yK)(x, y)

]
µ2

(
u1(x), u2(y)

)
dxu2(y)

]
,

(17)
which contains corrector terms for the defect of the convolution structure on the RHS.
For the linear rate SKT system, this matches the regularisation following the discrete

structure in [6], where we identified the entropy with the reversibility of a corresponding
Markov chain, see Appendix A.

1.4. Results

A strong motivation of this regularisation is the derivation of cross-diffusion models
from a particle model and indeed we find for the linear rate SKT model that Fontbona
and Méléard [9] derived our approximate system. We leave a general derivation from
particle models for future work.
Another future direction is the study of the gradient flow structure. Formally, the

original local system often has a gradient flow structure which in most studies is only
used in the form of the dissipation inequality inequality (an exception is Zinsl and
Matthes [20]). Having found a regularisation, we plan for future work to investigate
the gradient flow formulation of the nonlocal system and the limit towards the local
system. Such limits of gradient flows are an active field and we only mention [17, 2,
14] as starting points.
In this work we show by PDE methods the existence of solutions for the approxi-

mation system, where we see the effectiveness of the regularisation. Subsequently, we
prove the limit of the approximating system and thus provide an alternative to other
existence results based on the boundedness-by-entropy method [11, 5].
Our first result shows that the regularisation (12) for (9) is sufficient to find so-

lutions satisfying the entropy-dissipation inequality. It will be clear from the proof
below that the diffusivity µi’s could be assumed sublinear, instead of being controlled
by the entropy densities. The self-diffusion could be included via the more general
approximation (11) (for which there is a similar existence result) but we have chosen
to avoid it to simplify the presentation.

Theorem 9. Consider the generalised SKT system (9) with µ1, µ2 ∈ C 0(R≥0) ∩
C 1(R>0). Assume that it admits a uniform entropy structure with entropy H, entropy
densities h1, h2 ∈ C 0(R≥0) ∩ C 2(R>0) and dissipations α1, α2 : R≥0 → R≥0. Assume

12



furthermore that for two positive constants δ,A such that for all z ∈ R≥0

δ ≤ µ1(z) ≤ A(1 + h2(z)) and δ ≤ µ2(z) ≤ A(1 + h1(z)). (18)

Fix ρ ∈ C 2(Td) non-negative having integral 1 over T
d, and a bounded initial data

uinit1 , uinit2 satisfying for some positive constant γ

γ ≤ uiniti ≤ γ−1,

so that H init := H(uinit1 , uinit2 ) < +∞. Then, there exists positive functions

u1, u2 ∈ C
0([0, T ]; L2(Td)) ∩ L2(0, T ; H1(Td)) ∩ L∞(0, T ; L∞(Td)), (19)

such that (u1, u2) is a distributional solution to the system (12) initiated by (uinit1 , uinit2 ).
This solution (u1, u2) satisfies furthermore the following estimates for i = 1, 2:

• conservation of the mass: ui ∈ C 0([0, T ]; L1(Td)) and for t ∈ [0, T ]

∫

Td

ui(t) =

∫

Td

uiniti . (20)

• entropy estimate: hi(ui) ∈ C 0([0, T ]; L1(Td)) and for t ∈ [0, T ]

H(u1(t), u2(t)) +

∫ t

0

D(s) ds ≤ H init, (21)

where

D(t) :=

∫

Td

α1(u1(t))
2|∇u1(t)|2 + α2(u2(t))

2|∇u2(t)|2.

• maximum principle:

γ exp
(
−ABT,init‖∆ρ‖L∞(Td)

)
≤ ui ≤ γ−1 exp

(
ABT,init‖∆ρ‖L∞(Td)

)
, (22)

where
BT,init := T (1 +H init).

• duality estimate:

∫

QT

([
µ1(u2) ⋆ ρ

]
u1 +

[
µ2(u1) ⋆ ρ̌

]
u2
)
(u1 + u2)

.d (1 + 2ABT,init)

(∫

Td

(uinit1 )2 +

∫

Td

(uinit2 )2
)
, (23)

where the constant behind .d depends only on the dimension d.
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Remark 10. The upper-bound in assumption (18) is natural for many cross-diffusion
systems. For instance if µ1 and µ2 are given by power-laws (as in [7]), the entropy
densities are precisely given by the same exponents (with an exception for the linear
case). See also Remark 12.

As a by-product of this existence result, we recover the (known) existence of weak
solutions to the generalized SKT system (9).

Theorem 11. Consider the assumptions of Theorem 9, for a sequence of non-negative
functions (ρn)n ∈ C 2(Td)N which converges weakly towards the Dirac mass, with dis-
sipation rates α1 and α2 vanishing on a set of measure 0. Assume furthermore that
the diffusivities are strictly subquadratic or controlled by the entropy densities, that is

lim
z→+∞

µ1(z)

h2(z) ∨ z2
+

µ2(z)

h1(z) ∨ z2
= 0. (24)

Then, the corresponding sequence of solutions (u1,n, u2,n)n given by Theorem 9 con-
verges (up to a subsequence) in L1(QT ) towards a weak global solution (u1, u2) of the
SKT system which satisfies for a.e. t ∈ [0, T ] the conservation of the mass (20), the
entropy estimate (21) and the following duality estimate

∫

QT

(
µ1(u2)u1 + µ2(u1)u2

)
(u1 + u2)

.d (1 + 2ABT,init)

∫

Td

(uinit1 )2 +

∫

Td

(uinit2 )2. (25)

Remark 12. The assumption (24) is crucial to avoid any concentration in the non-
linearities of the system. However, in practice (see for instance the power-law case in
[7]) the control of gradients of the entropy estimate gives raise (by Sobolev embedding)
to another estimate on µ1(u2) and µ2(u1).

In a general setting we described the regularisation scheme (14), for which we can
state the following existence result.

Theorem 13. Consider a cross-diffusion system (1) for n species and rates aij ∈
C

0(Rn
≥0), i, j = 1, . . . , n. Assume that it admits a uniform entropy structure with en-

tropy H, entropy densities h1, . . . , hn ∈ C 0(R≥0)∩C 2(R>0) and dissipations α1, . . . , αn :
R≥0 → R≥0.
For i 6= j define ãij : R

n
≥0 → R by

∂j ãij(v) = aij(v), v ∈ R
n
≥0, and ãij(v) = 0, if vj = 0.

Suppose that v 7→ ãij(v) is continuously differentiable with respect to vi and that there
exists a constant A such that for all v ∈ R

n
≥0 and i = 1, . . . , n

aii(v) ≤ A (1 + h1(v1) + · · ·+ hn(vn)),

ãij(v)

vi
≤ A (1 + h1(v1) + · · ·+ hn(vn)),
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and
∂iãij(v) ≤ A (1 + h1(v1) + · · ·+ hn(vn)).

Let Ω ∈ R
d be a domain with piecewise C 1 boundary and K ∈ C 2

c (Ω
n) be a nonneg-

ative kernel satisfying (13). Further fix bounded initial data uinit = (uinit1 , . . . , uinitn )
satisfying for some positive constant γ

γ ≤ uiniti ≤ γ−1,

so that H init := H(uinit) < +∞. Then, there exists positive functions

u1, . . . , un ∈ C
0([0, T ]; L2(Td)) ∩ L2(0, T ; H1(Td)) ∩ L∞(0, T ; L∞(Td)), (26)

such that (u1, . . . , un) is a distributional solution to the system (17) with initial data
uinit and von Neumann boundary data (15). Furthermore, the solution u = (u1, . . . , un)
satisfies furthermore the following estimates for i = 1, . . . , n:

• conservation of the mass: ui ∈ C 0([0, T ]; L1(Ω)) and for t ∈ [0, T ]

∫

Td

ui(t) =

∫

Td

uiniti . (27)

• entropy estimate: hi(ui) ∈ C 0([0, T ]; L1(Ω)) and for t ∈ [0, T ]

H(u(t))) +

∫ t

0

D(s) ds ≤ H init, (28)

D(t) =

n∑

i=1

∫

Ω

[
ǫ h′′i (ui(x)) + αi(ui(x))

2wi(x)
]
|∇ui(x)|2 dx

with the weights (wi)i=1,...,n defined in (16).

• maximum principle:

γ exp (−MT ) ≤ ui ≤ γ−1 exp (MT ) , (29)

where
M = 2A max(‖K‖∞, ‖∇K‖∞, ‖∇2K‖∞) (|Ω|+H init). (30)

• ǫ regularity:

sup
t∈[0,T ]

‖ui(t, ·)‖2L2(Ω) + ǫ

∫ T

0

‖∇ui(t, ·)‖2L2(Ω) ≤ exp

[
TM

(
2 +

1

ǫ

)]
‖uiniti ‖2L2(Ω).

Under the assumption that the dissipation is big enough, one can conclude that the
approximations converge to the local version. In the setting of their time-discretisation
approximation scheme, [5] discusses possible conditions for such a convergence. Never-
theless, they need to treat the SKT case separately. As the SKT case is the motivating

15



example, we therefore focus on the SKT case, where we replace the duality estimate
with a positive self-diffusion. For n species with densities u = (u1, . . . , un) the SKT
system corresponds to the evolution

∂tui = ∆


diui +

n∑

j=1

dijujui


 (31)

with constants d1, . . . , dn ≥ 0 and (dij)ij ≥ 0. Further suppose that there exist weights
π1, . . . , πn ≥ 0 such that the diffusion coefficients satisfy the detailed balance condition

πidij = πjdji, for i, j = 1, . . . , n, (32)

see [6] for a discussion on the condition. Then the evolution (31) has an entropy
structure with

hi(z) = πi
(
z log z − z + 1

)

and dissipation
αi(z) = πidii.

Theorem 14. Given a bounded domain Ω ⊂ R
d with C

1 boundary and an increasing
sequence of sets (Am)m∈N with Am ⊂⊂ Ω and Am ↑ Ω as m→ ∞. Suppose that there
exists a constant c and extension operators Em : W 1,p(Am) →W 1,p(Rd) for p = 2+2/d
such that ‖Em(f)‖W 1,p(Rd) ≤ c‖f‖W 1,p(Am).
Assume a corresponding sequence of non-negative regularisation kernels (Km)m∈N

in C 2
c (Ω

n) for n densities satisfying (13) with weights wm
i , i = 1, . . . , n, as in (16).

Suppose that the weights always map to [0, 1] and

wm
i (x) = 1, for x ∈ Am and i = 1, . . . , n.

Moreover, suppose that Km concentrates along the diagonal, i.e.

Km(x1, . . . , xn) = 0, if |xi − xj | ≥
1

m
for some i, j = 1, . . . , n.

Consider the SKT system (31) for n densities with constants d1, . . . , dn ≥ 0 and
(dij)ij ≥ 0 and weights π1, . . . , πn ≥ 0 satisfying (32) and dii > 0 for i = 1, . . . , n with
initial data uinit = (uinit1 , . . . , uinitn ) with

γ ≤ ui ≤ γ−1

for i = 1, . . . , n and a constant γ ∈ R>0.
Then there exists a sequence of (ǫm)m∈N with ǫm ↓ 0 as m→ ∞ such that the approx-

imating solutions (um)m as constructed in Theorem 13 converge along a subsequence
to u in Lq([0, T ) × Ω;Rn

≥0) with q = 2 + (1/2d). The limit u is a non-negative weak
solution to (31) with the no-flux boundary conditions satisfying the entropy-dissipation
inequality, i.e. for φ ∈ C

∞([0, T ]× Ω) with φ(T, ·) ≡ 0 and i = 1, . . . , n it holds

−
∫ T

0

∫

Ω

ui ∂tφ+

∫ T

0

∫

Ω




n∑

j=1

aij(u)∇uj


 · ∇φ =

∫

Ω

uiniti φ(0, ·),
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where

aij(u) =

{
di + 2diiui +

∑
j 6=i dijuj if i = j,

dijui otherwise.

Remark 15. A sequence of such sets Am can be constructed for locally Lipschitz
domains. For this locally write the boundary as a graph of d− 1 variables and locally
then such a sequence can be constructed. For the construction of extensions we refer
to the treatment of [8, Section 5.4] and [19, Section VI].

2. The convolution scheme on the flat torus

This section is dedicated to the proofs of Theorem 9, Theorem 11 on the torus. For
the domain, we introduce the notation

QT := [0, T )× T
d,

and start by recalling some useful results about the Kolmogorov equation, that is

∂tz −∆(µz) = G, (33)

z(0, ·) = zinit, (34)

where G, µ and zinit are given and z is the unknown. Solutions will be understood in
the following sense:

Definition 16. Given a measurable function µ : QT → R, and two square-integrable
functions G, zinit : QT → R we say that z ∈ L1(QT ) is a distributional solution of (33)
– (34) if zµ is integrable on QT and for all test function ϕ ∈ D(QT ) there holds

−
∫

QT

z(∂tϕ+ µ∆ϕ) =

∫

Td

zinitϕ(0, ·) +
∫

QT

Gϕ.

In the second paragraph we proceed to the proof of Theorem 9. The last paragraph
deals with the asymptotic limit stated in Theorem 11.

2.1. Reminder on the Kolmogorov equation

The following result is directly extracted from [16], more precisely merging results
obtained in Theorem 3, Proposition 2 and Proposition 3 therein.

Theorem 17. Fix µ ∈ L∞(QT ) such that infQT
µ > 0. For any zinit ∈ L2(Td) there

exists a unique solution z to (33) – (34) in the sense of Definition 16. This solution
belongs to L2(QT ) and satisfies

• maximum principle: if G and zinit are non-negative, then so is z;
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• duality estimate: µ1/2z ∈ L2(QT ) and

∫

QT

µz2 .d

(
1 +

∫

QT

µ

)(∫

Td

(zinit)2 + T

∫

QT

G2

)
,

where the constant behind .d depends only on the dimension;

• sequential stability: for fixed G and zinit as above, the map µ 7→ z, restricted
to those µ who are bounded and positively lower-bounded, is continuous in the
L1(QT ) topology for the argument µ and the L2(QT ) topology for the image z.

We will use two corollaries of the previous theorem.

Corollary 18. Consider the assumptions of Theorem 17, with G = 0. If furthermore
zinit is bounded with γ ≤ zinit ≤ γ−1 for some positive constant γ and if ∆µ ∈
L1(0, T ; L∞(Td)), then z ∈ L∞(QT ) with the estimate

γ exp

(
−
∫ T

0

‖(∆µ)−(s)‖L∞(Td)ds

)
≤ z ≤ γ−1 exp

(∫ T

0

‖(∆µ)+(s)‖L∞(Td) ds

)
,

where the exponents + and − refer to (respectively) the positive and negative parts.

Proof. Define

Φ(t) := γ−1 exp

(∫ t

0

‖(∆µ)+(s)‖L∞(Td) ds

)
− z,

Ψ(t) := z − γ exp

(
−
∫ t

0

‖(∆µ)−(s)‖L∞(Td) ds

)
,

which satisfy

(∂tΦ−∆(µΦ))(t, x) = (Φ + z)(t, x)(‖(∆µ)+(t)‖L∞(Td) −∆µ(t, x)) ≥ 0,

(∂tΨ−∆(µΨ))(t, x) = (z −Ψ)(t, x)(∆µ(t, x) + ‖(∆µ)−(t)‖L∞(Td)) ≥ 0.

The conclusion follows using the maximum principle of Theorem 17, since Φ and Ψ
are initially non-negative.

Corollary 19. Consider the assumptions of Theorem 17, with G = 0. If further-
more ∆µ ∈ L1(0, T ; L∞(QT )), then z ∈ L∞(0, T ; L2(Td)) ∩ L2(0, T ; H1(Td)) with the
following estimate for a.e. t ∈ [0, T ]

∫

Td

z(t)2 +

∫ t

0

∫

Td

µ|∇z|2 ≤ exp

(∫ t

0

‖(∆µ)+(s)‖L∞(Td) ds

)∫

Td

(zinit)2. (35)

Proof. Let’s first assume that µ and the initial data are smooth. In that case, we can
rewrite the Kolmogorov equation (33) as standard parabolic equation, and we get the
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smoothness of the solution z. In this situation, we can rigorously multiply the equation
by z and integrating by parts, to get

1

2

d

dt

∫

Td

z(t)2 +

∫

Td

µ(t)|∇z(t)|2 = −
∫

Td

z(t)∇z(t) · ∇µ(t)

=
1

2

∫

Td

z(t)2∆µ(t) ≤ 1

2
‖(∆µ)+(t)‖L∞(Td)

∫

Td

z(t)2.

We have thus

1

2

d

dt

{
exp

(
−
∫ t

0

‖(∆µ)+(s)‖L∞(Td) ds

)∫

Td

z(t)2
}

+ exp

(
−
∫ t

0

‖(∆µ)+(s)‖L∞(Td) ds

)∫

Td

µ(t)|∇z(t)|2 ≤ 0,

and we infer after time integration the stated estimate. For the moment, we only es-
tablished the estimate in the case of smooth data. Replacing µ and zinit by smooth ap-
proximations (µn)n and (zinitn )n, approaching them in L1(QT ) and L2(Td) respectively,
with furthermore ‖(∆µn)

+‖L∞(QT ) ≤ ‖(∆µ)+‖L∞(QT ), we get a sequence (zn)n which,

by the sequential stability of Theorem 17, approaches z in L2(QT ). The usual semi-
continuity argument for weak convergence allows to obtain that z ∈ L∞(0, T ; L2(Td))∩
L2(0, T ; H1(Td)), with the estimate (35) being satisfied for a.e. t.

2.2. Proof of Theorem 9

Proof. We start by proving the four a priori estimates, under the assumption of pos-
itivity and regularity (19).

• conservation of the mass: since ui ∈ C 0([0, T ]; L2(Td)), it also belongs to C 0([0, T ]; L1(Td))
and this is sufficient (via a density argument) to use 1Td as test function which
allows to recover (20).

• entropy estimate: the hi’s and µi’s are locally Lipschitz, so boundedness of the ui’s
and their belonging to C 0([0, T ]; L2(Td)) imply hi(ui), µi(ui) ∈ C 0([0, T ]; L1(Td)),
for i = 1, 2. With the same type of arguments we recover h′i(ui) ∈ L2(0, T ; H1(Td)).
This is sufficient to justify the following formula for all t ∈ [0, T ], by density of
smooth functions,

∫ t

0

∫

Td

h′i(ui)∂tui =

∫

Td

hi(ui(t))−
∫

Td

hi(u
init
i ).

Similarly, we have that (with the analogous formula for the other species)

−
∫ t

0

∫

Td

h′1(u1)∆
([
µ1(u2) ⋆ ρ

]
u1
)
=

∫ t

0

∫

Td

h′′1 (u1)∇u1 · ∇
([
µ1(u2) ⋆ ρ

]
u1
)
,

which is sufficient to reproduce rigorously the computation done in the proof
Proposition 4 and integrate it time to get (21).
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• maximum principle: we have (using assumption (18) and the entropy estimate)

∫ T

0

‖∆(µ1(u2) ⋆ ρ) (s)‖L∞(Td) ds ≤ ‖µ1(u2)‖L1(QT )‖∆ρ‖L∞(Td)

≤ AT (1 +H init)‖∆ρ‖L∞(Td)

and likewise for ∆(µ2(u1) ⋆ ρ̌) so that (22) follows directly from Corollary 18.

• duality estimate: the function z := u1 + u2 solves the following Kolmogorov
equation

∂tz −∆(µz) = 0,

z(0, ·) = uinit1 + uinit2 ,

with

µ :=
(µ1(u2) ⋆ ρ)u1 + (µ2(u1) ⋆ ρ̌)u2

u1 + u2
,

where µ is well-defined thanks to the positivity of the ui’s and furthermore
bounded. The duality estimate of Theorem 17 applies to get

∫

QT

([
µ1(u2) ⋆ ρ

]
u1 +

[
µ2(u1) ⋆ ρ̌

]
u2
)
(u1 + u2)

.d

(
1 +

∫

QT

µ

)(∫

Td

(uinit1 )2 +

∫

Td

(uinit2 )2
)
. (36)

To recover (23), simply notice that µ ≤ µ1(u2) ⋆ ρ+ µ2(u1) ⋆ ρ̌ so that using the
normalization of ρ and assumption (18),

∫

QT

µ ≤
∫

QT

µ1(u2) +

∫

QT

µ2(u1) ≤ A

(∫

QT

(2 + h1(u1) + h2(u2))

)
≤ 2ABT,init,

where we used the entropy estimate and the constant BT,init := T (1 +H init).

These estimates have been proven for a positive solution with regularity (19) whose
existence has been assumed. We now construct a solution by a fixed-point argument.
On the set E := L1(QT ) × L1(QT ) we define the map Θ : E → E which sends

(u1, u2) to the solutions (u•1, u
•
2) (in the sense of Definition 16) of

{
∂tu

•
1 = ∆

([
µ1(u

+
2 ∧M) ⋆ ρ

]
u•1
)
,

∂tu
•
2 = ∆

([
µ2(u

+
1 ∧M) ⋆ ρ̌

]
u•2
)
,

where the cutoff constant M > 0 will be fixed later on. By continuity of µ1 and µ2 we
have

max(µ1(x), µ2(x)) ≤ C, ∀x ∈ [0,M ]. (37)
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In particular, Theorem 17 applies and ensures that the previous map is well-defined.
Moreover, (37) implies for (u1, u2) ∈ E that

|∆
(
µ1(u

+
2 ∧M) ⋆ ρ

)
| = |µ1(u

+
2 ∧M) ⋆∆ρ| ≤ C‖∆ρ‖L1(Td),

and likewise for ∆
(
µ2(u

+
1 ∧ M) ⋆ ρ

)
. Hence we infer from Corollaries 18 and 19

that the images u•1 and u•2 are non-negative and uniformly bounded in L∞(QT ) and
L2(0, T ; H1(Td)). Moreover by the equations, the time derivatives are also uniformly
bounded in L2(0, T ; H−1(Td)). That means that there exists a constant c such that

Θ(E) ⊂ K :=
{
(v1, v2) ∈ E :

max(‖vi‖L∞(QT ), ‖vi‖L2(0,T ;H1(Td)), ‖∂tvi‖L2(0,T ;H−1(Td))) ≤ c for i = 1, 2
}
.

Then by the Aubin-Lions lemma the convex set K is also compact in E. Hence
Schauder’s fixed-point theorem applies and ensures that there exists a fixed point
(u1, u2) ∈ K, solving therefore (the ui’s are non-negative)

{
∂tu1 = ∆

([
µ1(u2 ∧M) ⋆ ρ

]
u1
)
,

∂tu2 = ∆
([
µ2(u1 ∧M) ⋆ ρ̌

]
u2
)
.

(38)

The bounds obtained for elements in K also ensure that u1 and u2 both belong to
C

0([0, T ]; L2(Td)) so that we have the required regularity (19). In order to conclude
we just need to fix a constantM such that the corresponding saturation vanishes. For
this purpose, we consider

M = 2γ−1 exp(ABT,init‖∆ρ‖∞),

where the constants A and BT,init are defined in the statement of Theorem 9 and we
recall that γ > 0 is such that

γ ≤ uiniti ≤ γ−1.

We now define

t⋆ := sup
{
t ∈ [0, T ] : max

i=1,2
‖ui‖L∞([0,t]×Td) ≤

3M

4

}
.

By Corollary 18, we have t⋆ > 0 and up to any t ∈ (0, t⋆) the cutoff M has been
irrelevant. Thus, for t ∈ (0, t⋆) all the a priori estimates apply and in particular the
entropy estimate which implies

‖µ1(u2)‖L1([0,t]×Td) ≤ A

∫ t

0

(
1 +

∫

Td

h2(u2)
)
≤ At(1 +H init) ≤ ABT,init,

with a similar estimate for the other species. This in turn implies by Corollary 18 that
for t < t⋆

max
i=1,2

‖ui‖L∞([0,t]×Td) ≤
M

2
,

which proves that t⋆ = T by the usual continuity argument and our fixed-point (u1, u2)
is the required solution.
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2.3. From non-local to local SKT

We start with a compactness tool already used in [12] that we adapt slightly to our
setting. The proofs are only included for the reader’s convenience.

Lemma 20. Fix α : R>0 → R≥0 having a negligible set of zeros. Consider a sequence
of positive functions (wn)n ∈ W1,1(QT ) such that

(i) (wn)n bounded in L2(QT );

(ii) (∂twn)n bounded in L1(0, T ; H−m(Td)) for some integer m;

(iii) (α(wn)∇wn)n bounded in L2(QT ).

Then (wn)n admits an a.e. converging subsequence.

Proof. By assumption (iii) the sequence (∇F (wn))n is bounded in L2(QT ), where
F : R≥0 → R≥0 is defined by

F (z) :=

∫ z

0

1 ∧ α.

F is an increasing (because α > 0 a.e.) 1-Lipschitz function vanishing at 0. In
particular, we infer from (i) the same bound for (F (wn))n. Up to a subsequence we
can thus assume that (wn)n and (F (wn))n respectively converge weakly to w and w̃ in
L2(QT ). Using (ii) we thus infer from [15, Proposition 3] that (up to a subsequence),

∫

QT

wnF (wn) −→
N+∞

∫

QT

ww̃. (39)

At this stage we use the Minty-Browder or Leray-Lions trick: one first establishes that

∫

QT

:=hn︷ ︸︸ ︷
(F (wn)− F (w))(wn − w)

=

∫

QT

F (wn)wn +

∫

QT

F (w)w −
∫

QT

F (wn)w −
∫

QT

F (w)wn −→
N+∞

0

by exploiting the L2(QT ) weak convergences (wn)n ⇀n w, (F (wn))n ⇀n w̃, together
with (39). Then, since F is increasing, we have hn ≥ 0 so that the previous convergence
may be seen as the convergence of (hn)n to 0 in L1(QT ). In particular, up to some
subsequence, we get that (hn)n converges a.e. to 0 which in turn implies (increasingness
of F ) that (wn)n → w.

Proof of Theorem 11. Using the duality estimate of Theorem 9 we first have

∫

QT

([
µ1(u2,n) ⋆ ρn

]
u1,n +

[
µ2(u1,n) ⋆ ρ̌n

]
u2,n

)
(u1,n + u2,n) .d,init 1, (40)
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where the constant depends on the dimension and initial data but is uniform in n.
In particular, both species satisfy (since µ1 and µ2 are positively lower-bounded) as-
sumptions (i) and (ii) of Lemma 20. Using the entropy estimate of Theorem 9, we
have also for both species that (αi(ui,n)∇un)n bounded in L2(QT ), which validates
assumption (iii) of the lemma since the dissipation rates αi are assumed a.e. positive
on R>0. We infer therefore from the previous lemma that, up to a subsequence (that
we do not label), both (u1,n)n and (u2,n)n both converge a.e. respectively to some u1
and u2. We need now to pass to the limit (in D ′(QT )) in the products

[
µ1(u2,n) ⋆ ρn

]
u1,n and

[
µ2(u1,n) ⋆ ρ̌n

]
u2,n.

W.l.o.g. we can focus on the first one. Since (u2,n)n converges (to u2) a.e., so does
(µ1(u2,n)n (to µ1(u2)), by continuity of µ1. Using assumption (18) and the entropy
estimate of Theorem 9, we have of (µ1(u2,n))n bounded in L∞(0, T ; L1(Td)). This
is not sufficient to prevent possible concentration in the space variable: we use the
growth assumption (24), to establish the uniform integrability of (µ1(u2,n))n. Indeed,
since µ1 is continuous, the sequence ck := inf{z ≥ 0 : µ1(z) ≥ R} diverges to +∞
and we have
∫

QT

µ1(u2,n)1µ1(u2,n)≥R ≤
∫

QT

µ1(u2,n)1u2,n≥cR ≤ sup
z≥cR

Φ(z)

∫

QT

h2(u2,n) ∨ u22,n,

where Φ(z) := µ1(z)
h2(z)∨z2 goes to 0 as z → +∞, by assumption (24). Since µ2 is

positively lower-bounded (thanks to assumption (18)), we infer from (40) a bound for
(u2,n)n in L2(QT ) (we use here the non-negativity of all the involved functions). Using
the entropy estimate and the previous inequalities we therefore infer

lim
R→+∞

sup
n

∫

QT

µ1(u2,n)1µ1(u2,n)≥R = 0,

which the stated uniform integrability. We thus infer from Vitali’s convergence theorem
that (µ1(u2,n))n converges to µ1(u2) in L1(QT ). The sequence (µ1(u2,n) ⋆ ρn)n shares
the same behaviour. In particular, (µ1(u2,n) ⋆ ρn)n is also uniformly integrable and
adding a subsequence if necessary, we can assume that it converges a.e. towards µ1(u2).
Now, to conclude we write

wn :=
[
µ1(u2,n) ⋆ ρn

]
u1,n =

[
µ1(u2,n) ⋆ ρn

]1/2 [
µ1(u2,n) ⋆ ρn

]1/2
u1,n.

As already noticed, (wn)n converges a.e. to the expected limit µ1(u2)u1. The previous
writing together with the duality estimate (40) and the Cauchy-Schwarz inequality
shows that (wn)n is bounded in L1(QT ). Even better, (wn)n is the product of of one
L2-uniformly integrable sequence with an L2-bounded one, therefore (wn)n is uniformly
integrable and the Vitali convergence theorem applies once more to get the convergence
of (wn)n towards µ1(u2)u1.

The previous reasoning (which applies to both species) allows to pass to the limit
the equations. As for the estimates, they are all obtained using Fatou’s lemma.
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3. General regularised scheme on a domain

In this section, we study the general regularisation scheme introduced in Proposition 7
and prove the corresponding results Theorem 13 and Theorem 14.

3.1. Existence of regularised solutions

We start with proving the existence of solutions for the regularised scheme, i.e. Theo-
rem 13.
The advantage of the regularisation is that the cross-diffusion terms are controllable

and we thus rewrite the evolution as

∂tui(xi)− divxi




ǫ+

∏

k 6=i

∫

xk∈Ω

dxkK(x1, . . . , xn) aii(u1(x1), . . . , un(xn))


∇ui(xi)




= divxi



∏

k 6=i

∫

xk∈Ω

dxkK(x1, . . . , xn)
∑

j 6=i

aij(u1(x1), . . . , un(xn))∇uj(xj)


 .

For the cross-diffusion terms, the ãij in Theorem 13 are defined such that

aij(u1(x1), . . . , un(xn))∇uj(xj) = ∇xj
ãij(u1(x1), . . . , un(xn))

so that the partial derivative can formally be integrated by parts onto the kernel K,
where no boundary terms appear due to (15). Hence the evolution can be rewritten
as

∂tui −∇
(
(ǫ + āi[u])∇ui

)
+ b̄i[u]∇ui + c̄i[u]ui = 0, (41)

with von Neumann boundary conditions and

āi[u](xi) =
∏

k 6=i

∫

xk∈Ω

dxkK(x1, . . . , xn) aii(u1(x1), . . . , un(xn)), (42)

b̄i[u](xi) =
∑

j 6=i

∏

k 6=i

∫

xk∈Ω

dxk ∂jK(x1, . . . , xn) ∂iãij(u1(x1), . . . , un(xn)), (43)

c̄i[u](xi) =
∑

j 6=i

∏

k 6=i

∫

xk∈Ω

dxk ∂ijK(x1, . . . , xn)
ãij(u1(x1), . . . , un(xn))

ui(xi)
. (44)

The assumptions of Theorem 13 then imply for xi ∈ Ω that

|āi[u](xi)| ≤ A ‖K‖∞(|Ω|+H(u)),

|b̄i[u](xi)| ≤ A ‖∇K‖∞(|Ω|+H(u)),

|c̄i[u](xi)| ≤ A ‖∇2K‖∞(|Ω|+H(u)).

(45)

This is enough to prove the existence of solutions by a Galerkin scheme.
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Proof of Theorem 13. Let σ ∈ C∞
c (Rn) a non-negative mollification kernel with suppσ ⊂

B1 and
∫
σdx = 1 and define

σm(x) = md σ(mx).

Extending āi, b̄i, c̄i with zero outside Ω, we consider for m ∈ N the following system

∂tu
m
i −∇

(
(ǫ+ ((āi[u

m] ∧M) ⋆ σm)∇umi
)

+ ((b̄i[u
m] ∧M) ⋆ σm)∇umi + ((c̄i[u

m] ∧M) ⋆ σm)umi = 0,
(46)

with von Neumann boundary conditions, i = 1, . . . , n and the constant M as in (30).
By a standard Galerkin scheme (e.g. taking the von Neumann eigenvectors of the

Laplacian on Ω), the system (46) has a solution umi with initial data uiniti and has any
Hk, k ∈ N, regularity after an arbitrary short time. Hence we can apply the maximum
principle for parabolic equations and find as in Corollary 18 that

γ exp (−TM) ≤ umi ≤ γ−1 exp (TM) .

Furthermore, each umi is preserving the mass. Finally, we can test (46) against umi to
find the followig estimate independent of m:

sup
t∈[0,T ]

‖umi (t, ·)‖2L2(Ω) + ǫ

∫ T

0

‖∇umi (t, ·)‖2L2(Ω) ≤ exp

[
TM

(
2 +

1

ǫ

)]
‖uiniti ‖2L2(Ω),

where i = 1, . . . , n and we used the cutoff withM . Note that here the RHS is bounded
by assumption. Hence we find for a constant C(T ) independent of m that

‖∂tumi ‖L2(0,T,H−1(Ω)) ≤ C(T )

for i = 1, . . . , n.
By Aubin-Lions lemma we can therefore find a subsequence (relabelling with m)

and
ui ∈ C

0([0, T ]; L2(Ω)) ∩ L2(0, T ; H1(Ω)) ∩ L∞(0, T ; L∞(Ω)),

for i = 1, . . . , n such that umi converges almost everywhere to ui and ∇umi converges
L2 weakly to ∇ui. Moreover, it holds that

γ exp (−TM) ≤ ui ≤ γ−1 exp (TM) .

The convergence implies that for φ ∈ C∞(ΩT ) with φ(T, ·) ≡ 0 it holds that

−
∫ T

0

∫

Ω

ui∂tφ+

∫ T

0

∫

Ω

(ǫ+ āi[u] ∧M)∇ui · ∇φ+

∫ T

0

∫

Ω

(b̄i[u] ∧M) · ∇ui φ

+

∫ T

0

∫

Ω

(c̄i[u] ∧M)ui φ =

∫

Ω

uiniti φinit,

i.e. u = (u1, . . . , un) is a weak solution with von Neumann boundary data. Moreover,
by the continuity this implies directly the conservation of mass.
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Until a time T ∗ ≤ T for which

sup
t∈[0,T∗]

sup
x∈Ω

max(āi[u], |b̄i[u]|, c̄i[u]) ≤M,

the cutoff M is not applied and we have a weak solution of (41). As in the Laplace
case on the torus in Section 2, the proven regularity is sufficient to justify rigorously
the formal entropy estimate as in Proposition 7.
The assumptions (45) then imply that at time T ∗ it holds that

sup
x∈Ω

max(āi[u], |b̄i[u]|, c̄i[u]) ≤
M

2

and thus by continuity T ∗ = T and we have constructed the claimed solution.

3.2. Limit for the SKT system

Having constructed the nonlocal approximation, we now prove Theorem 14.
The assumption of the extension operator allows to find a uniform Gagliardo-

Nirenberg inequality.

Lemma 21. Assume the setup of Theorem 14. Then there exists a uniform c for the
Gagliardo-Nirenberg inequality

‖f‖pLp(Am) ≤ c
(
‖f‖(1−θ)p

L1(Am)
‖∇f‖θp

L2(Am)
+ ‖f‖p

L1(Am)

)
∀f : Am → R,

holds on all Am, where m ∈ N, θ = 2d(p− 1)/(p(d+ 2)) and p = 2 + 2/d.

Proof. By the extension operator Em and the Gagliardo-Nirenberg inequality on R
d

we find (note that θp = 2)

‖f‖pLp(Am) ≤ ‖Em(f)‖p
Lp(Rd)

. ‖Em(f)‖(1−θ)p

L1(Rd)
‖∇Em(f)‖2L2(Rd)

. ‖f‖(1−θ)p

L1(Rd)

(
‖f‖2L2(Am) + ‖∇f‖2L2(Am)

)
.

As p > 2, we can interpolate ‖f‖L2(Am) between ‖f‖L1(Am) and ‖f‖Lp(Am) and absorb
the contribution of ‖f‖Lp(Am) so that the claimed inequality follows.

The first lemma ensures the integrability and determines the sequence ǫ.

Lemma 22. Assume the setup of Theorem 14. Then there exists a constant CT and
a decreasing sequence (ǫm)m with ǫm ↓ 0 such that

‖umi ‖Lp̃([0,T )×Ω) ≤ CT

for i = 1, . . . , n and p̃ = 2 + 1/d.
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Proof. For the regularisation kernel Km and ǫm > 0 we find by Theorem 13 a solution
um which satisfies

(i) ‖umi ‖L∞(0,T ;L1(Ω)) ≤ c for i = 1, . . . , n (conservation of mass),

(ii) ‖∇umi ‖2L2(0,T ;L2(Ω)) ≤ ǫ−1
m exp(ǫ−1

m )c (ǫ-dependent estimate),

(iii) ‖∇umi ‖2L2(0,T ;L2(Am)) ≤ c (dissipation estimate in the set Am where the weights

wm
i ≡ 1)

for a constant c independent of m.
The parameters θ and p of the Gagliardo-Nirenberg in Lemma 21 are chosen such

that θp = 2. Hence we find on Am that for i = 1, . . . , n

∫ T

0

‖umi ‖pLp(Am)dt .

∫ T

0

(
‖∇umi ‖2L2(Am) ‖umi ‖(1−θ)p

L1(Am)
+ ‖umi ‖p

L1(Am)

)
dt.

With the gradient control from the dissipation and the conservation of mass this shows
∫

[0,T )×Am

|umi |p dxdt ≤ cd

for a constant cd independent of m.
As the domain Ω is assumed to have C 1 boundary, we can also apply the argument

of Lemma 21 to find over Ω that for i = 1, . . . , n

∫ T

0

‖umi ‖pLp(Ω)dt .

∫ T

0

(
‖∇umi ‖2L2(Ω) ‖umi ‖(1−θ)p

L1(Ω)
+ ‖umi ‖p

L1(Ω)

)
dt.

Hence we find for a constant ce independent of m that

∫

[0,T )×Ω

|umi |p dxdt ≤ ce
(
1 +

ce
ǫm

exp(ǫ−1
m )
)
.

As p̃ < p we can find q ∈ (0, 1) so that the Hölder inequality implies

‖f‖Lp̃([0,T )×B) ≤ (T |B|)q ‖f‖Lp([0,T )×B)

for B ⊂ Ω and f ∈ Lp([0, T )×B).
By splitting Ω into Am and Ω \Am we therefore find (as |Am| ≤ |Ω|)

‖umi ‖Lp̃([0,T )×Ω) ≤ ‖umi ‖Lp̃([0,T )×Am) + ‖umi ‖Lp̃([0,T )×(Ω\Am))

≤ T q |Ω|qc1/pd + T q |Ω \Am|qc1/pe

(
1 +

exp(ǫ−1
m )

ǫm

)1/p

.

As |Ω \ Am| → 0 and q ∈ (0, 1), we can therefore find a sequence ǫm ↓ 0 such that
|Ω \Am|q(1+ ǫ−1

m exp(ǫ−1
m ))1/p is bounded by a constant independent of m. The claim

then follows directly from the given estimate.
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We can now proceed with the convergence result.

Proof of Theorem 14. Inside each good set Am̄, the dissipation and mass conservation
give a uniform estimate for umi in L∞(0, T ; L1(Am)) and L2(0, T ; H1(Am)) for i =
1, . . . , n and m ≥ m̄. By the equation this also gives a uniform estimate of the
time-derivative in L1(0, T ;H−k(Am)) for a large enough k ∈ N (depending only on
dimension d). Hence on Am̄ we have compactness for umi . As Am ↑ Ω, a diagonal
argument shows that along a subsequence (which we relabel with m) that for i =
1, . . . , n there exist ui : [0, T )×Ω such that umi → ui a.e. Moreover, choosing ǫm as in
Lemma 22 we find ui ∈ Lp̃([0, T )× Ω).
By the dissipation inequality we find that

‖√wi∇umi ‖L2([0,T )×Ω)

is uniformly bounded. Hence along a subsequence
√
wm

i ∇umi converges weakly in L2

to a limit ψi. As wi is the constant 1 inside the set Am and Am ↑ Ω, it follows that√
wm

i ∇umi ⇀ ∇u and ∇u ∈ L2.
As um preserves the mass, is non-negative and satisfies the entropy-dissipation in-

equality, the same is true for the limit u by using the stated regularity. Moreover, the
stated regularity gives the claimed convergence.
It thus remains to check that u is a weak solution. As um satisfies von Neumann

boundary data and Km vanishes at the boundary, the constructed solutions satisfy for
all φ ∈ C ∞([0, T ]× Ω with φ(T, ·) ≡ 0 and i = 1, . . . , n that

−
∫ T

0

∫

Ω

umi ∂tφ+ ǫm

∫ T

0

∫

Ω

∇umi · φ

+

∫ T

0

∫

Ω




∏

k 6=i

∫

xk∈Ω

dxkK
m(x1, . . . , xn)

n∑

j=1

aij(u
m
1 (x1), . . . , u

m
n (xn))∇umj (xj)



 · ∇φ

=

∫

Ω

uiniti φ(0, ·).

For the diffusion from dij with i 6= j and i, j = 1, . . . , n we must therefore show that
for all test function φ

∫ T

0

∫

Ωn

Km(x1, . . . , xn)u
m
i (t, xi)∇umj (t, xj)∇φ(t, xi) dx1 . . . dxndt

→
∫ T

0

∫

Ω

ui(t, x)∇uj(t, x)∇φ(t, x) dxdt.

We rewrite the nonlinear diffusion term as
∫ T

0

∫

Ωn

Km(x1, . . . , xn)u
m
i (t, xi)∇umj (t, xj)∇φ(t, xi) dx1 . . . dxndt

=

∫ T

0

∫

Ω

√
wm

j (xj)∇umj (t, xj)ψ
m(t, xj) dxi dt,
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where

ψm(t, xj) =
1√

wm
j (xj)

∏

k 6=j

∫

Ω

dxkK
m(x1, . . . , xn)u

m
i (t, xi)∇φ(t, xi).

By the definition of the weight wm
j , we can apply Jensen’s inequality for p̃ ≥ 2 to find

that
‖ψm‖Lp̃([0,T )×Ω) ≤ ‖umi ∇φ‖Lp̃([0,T )×Ω).

By the proven convergence and regularity of umi we find that ψm → ui∇φ a.e. in
[0, T )× Ω. The previous inequality gives a uniform bound of ψm in Lp̃ with p̃ > 2 so
that ψm converges strongly in L2 to ui∇φ. As

√
wm

j ∇umj converges weakly in L2 to
∇uj , this proves the claimed convergence.
The other terms in the weak formulation converge more directly in the limit and we

thus have found a weak solution.

A. Microscopic reversibility

In the linear SKT model (5), the entropy was understood as reversiblity in a micro-
scopic model in [6] and this gave us the intuition about the nonlocal entropy structure.
In this appendix we discuss in the case of two species how the form in Remark 8 in
the general regularisation on bounded domains by a kernel K : Ω2 → R≥0 appears
formally from the microscopic entropy structure.
In the microscopic picture of [6] we considered a spatial discretisation in the one-

dimensional setting so that we have discrete positions {1, . . . , N}. On this discrete
setting we consider many particles of the two species 1 and 2 and we then obtain a
reversible cross-diffusion behaviour if a pair consisting of a particle of species 1 at
position i and a particle of species 2 at position j jumps together with rate Rr(i, j)
to the positions i + 1 and j + 1, respectively. Likewise the pair can jump with a rate
Rl(i, j) to i − 1 and j − 1, respectively. We then have the reversibility (and thus the
entropy structure) if

Rr(i, j) = Rl(i + 1, j + 1). (47)

In the formal mean-field limit we then find the evolution for the densities u1 and u2
the following nonlinear system





∂tu1(i) =

M∑

j=1

{
Rr(i− 1, j)u1(i − 1)u2(j) +Rl(i+ 1, j)u1(i+ 1)u2(j)

− (Rl(i, j) +Rr(i, j))u1(i)u2(j)
}

∂tu2(j) =

M∑

i=1

{
Rr(i, j − 1)u1(i)u2(j − 1) +Rl(i, j + 1)u1(i)u2(j + 1)

− (Rl(i, j) +Rr(i, j))u1(i)u2(j)
}
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for which we can indeed verify the entropy

H =

M∑

i=1

[
h(u1(i)) + h(u2(i))

]

where h′(x) = log x as

d

dt
H = −

∑

i,j

Rr(i, j)
[(
u1(i+1)u2(j+1)−u1(i)u2(j)

)(
log(u1(i+1)u2(j+1))−log(u1(i)u2(j))

)]
.

For the formal limit of the discrete system to a PDE, we denote the centred discrete
Laplacian

(∆df)(i) = f(i+ 1) + f(i− 1)− 2f(i).

We can then rewrite the evolution as

∂tu1(i) = ∆d



∑

j

Rl(i, j) +Rr(i, j)

2
u1(i)u2(j)




+
1

2

∑

j

{
u1(i+1)u2(j)

[
Rl(i+1, j)−Rr(i+1, j)

]
+ u1(i−1)u2(j)

[
Rr(i−1, j)−Rr(i+1, j)

]}

and likewise for u2. By the microscopic reversibility (47) we note that this is exactly
the discrete form of the regularisation found in (17).

References

[1] Herbert Amann. “Erratum: “Dynamic theory of quasilinear parabolic systems.
III. Global existence” [Math. Z. 202 (1989), no. 2, 219–250;MR1013086 (90i:35125)]”.
In: Math. Z. 205.2 (1990), p. 331. issn: 0025-5874. doi: 10.1007/BF02571246.
url: https://doi.org/10.1007/BF02571246.

[2] Andrea Braides. “Local Minimization, Variational Evolution and Γ-Convergence”.
In: Lecture Notes in Mathematics (2014). issn: 1617-9692.doi: 10.1007/978-3-319-01982-6.
url: http://dx.doi.org/10.1007/978-3-319-01982-6.
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