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Abstract In this work, an elastic-damage evolution analysis is carried out for a cylinder
under torsion made of a material obeying a gradient damage model with softening. Both
semi-analytical and asymptotic approaches are developed to analyze the elastic, axisym-
metric and bifurcation stages. We show the existence of a fundamental branch where the
damage field is asymmetric and localized within a finite thickness from the boundary. By
minimizing a generalized Rayleigh quotient, the bifurcation time and modes are obtained as
a function of the length scale ε = �/R involving a material internal length and the cylinder
radius. We will then focus on these size effects by assuming that ε is a small parameter in
an asymptotic setting. After justification, specific spatial and temporal rescaled variables are
introduced for the boundary layer problem. It is shown that the axisymmetric damage evo-
lution and the bifurcation are governed by two universal functions independent of the length
scale. The simulation results obtained by the semi-analytical approach are formally justified
by the asymptotic methods.
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1 Introduction

Since the advent of gradient damage models [26], these phase-field methods are gaining
popularity among the computational mechanics community to simulate fracture phenom-
ena of various physical natures, see [22] for a quick overview. Considerable efforts have
been made to better understand the behaviors of these models governed by variational prin-
ciples. Initially, the energy functional being minimized is conceived as a regularized ap-
proximation to the variational approach to fracture [5, 8], where the vanishing parameter
� is purely numerical in nature [4]. Recently, it has been recognized that this parameter �

can also be interpreted as an internal length scale characteristic of the material, see [6, 9,
25, 32]. In [16, 35], a fundamental link has been established between the gradient dam-
age models and Griffith’s fracture model. When � is small compared to the characteristic
size of the body, the temporal propagation of an existing phase-field crack is asymptoti-
cally governed by a Griffith-type law involving a generalized energy release rate G� and a
corresponding fracture toughness G�

c. In [38], crack nucleation induced by stress concentra-
tions is investigated numerically. The internal length � introduces a size-effect in structural
failure governed by a competition between the material strength and a Griffith toughness
criterion.

In this paper, we will focus on more fundamental properties of gradient damage models
and particularly on the possibility of bifurcation and the associated size-effects. In a unidi-
mensional setting, a large body of literature has been devoted to the bifurcation and stability
issues of the gradient damage models, see [3, 27–29] but also a quick summary in [22].
The uniqueness and stability properties of the initial elastic solution depend strongly on the
damage constitutive functions in the energy functional. In general, the homogeneous damage
field is more likely to become unstable and bifurcate to a localized solution for sufficiently
long bars compared to the internal length. In [36], initiation of periodic crack array in a
semi-infinite domain is studied following analytical and numerical approaches. The spatial
distribution of cracks can be explained by bifurcation of a fundamental branch. Since the
internal length is the only length scale in the problem, it is shown that the bifurcation time
is proportional to �2, while the wavelength scales with �. The objective of this paper is to
further explore bifurcation properties of the gradient damage models and the corresponding
the size-effects.

In [11, 13], a multiscale echelon structure of semi penny-shaped cracks is observed under
mixed mode I and III loading. In [37], the development of lance-like fracture facets is in-
vestigated for a cylinder under combined tensile and antiplane shear stresses. A mechanism
of the combined growth of the parent and daughter cracks under mixed loading is suggested
in [18, 30] to capture the formation of the echelon crack patterns. The most intriguing phe-
nomena observed in these experiments are the presence of repetitive fracture patterns, which
we believe can be explained by the bifurcation mechanism in gradient damage models. In
[31], such phase-field models are used in the numerical simulation for mixed mode I and III
problems. It is found that the echelon cracks can be captured only if the material internal
length parameter is small compared to the structure dimension. In this paper, we propose
a theoretical analysis of such formation of repetitive damage patterns by performing a bi-
furcation analysis of the gradient damage models. Instead of considering the full complex
three-dimensional mixed-mode problem, which is beyond the scope of this study, we pro-
pose to analyze a simplified pure antiplane shear problem with a cylindrical bar subject to
torsional loading. It will be shown that a periodic damage pattern can be formed according
to the variational principles of gradient damage models.
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The loading prescribed on the cylindrical bar is controlled by an increasing angle t of
torsion on the upper section of cylinder. Three elastic-damage evolution stages will be ana-
lyzed: elastic, axisymmetric and bifurcation, as indicated by the following diagram

t : 0
Elastic−−−−→
(uF,0)

tc
Axisymmetric−−−−−−→

(uF,αF)
t∗

Bifurcation−−−−−−−−−→
(uF,αF)+(uB,αB)

tr.

The elastic stage is characterized by an identically zero damage while the displacement so-
lution uF satisfies static equilibrium. The existence of this stage is conditioned by the choice
of damage constitutive functions, see [22]. The variational damage criterion will be reached
at a finite critical time t = tc. In the asymmetric stage, damage doesn’t depend on the an-
gular variation and can be expressed by α = α(r). This is the fundamental branch from
which bifurcation possibilities will be explored. Similarly to the thermal shock problem, the
damage solution in the fundamental branch is not spatially homogeneous, since the damage
criterion is not satisfied everywhere in the domain. For the bifurcated solution, we are look-
ing for an out-of-plane displacement field uz(r, θ) e3 independent of axial variable z. These
approximations can be justified in the following settings

• We assume in this work that the length of cylinder L is relatively small such that a two-
dimensional analysis can be carried out. More precisely, as can be seen from the pre-
scribed boundary conditions (1), the displacement is left free in the axial direction such
that we only seek the displacement solutions of type u+we3 for arbitrary w ∈R. In such
setting, it is known that for a circular section there is no out-of-plane warping displace-
ment of the section [21]. We will show further that the axisymmetric damage solution also
does not induce warping: at first approximation, damage remains translationally invariant
along the axial direction.

• The boundary conditions for the damage variable are of Neumann type so that the damage
does not explicitly depend on the axial variable.

In this paper, both the semi-analytical and asymptotic approaches are developed. In
Sect. 2, we recall the main ingredients of gradient damage models and define the problem
settings for the torsion problem. Section 3 is devoted to the semi-analytical approach, where
the elastic-damage evolution problem is solved analytically without further physical ap-
proximations. Numerical methods are used when closed-form solutions cannot be obtained,
hence the solutions are both analytical and numerical in nature. Using the variational princi-
ples of the gradient damage models, we show the existence of a fundamental branch where
the damage field is asymmetric, localized in a finite crown and decreases monotonically
from a maximum value at the boundary to zero with a finite thickness. The axisymmetric
damage is solved and is expressed using the Bessel and Struve functions. Numerical results
are presented to illustrate the influence of the length scale �/R. Torque evolution is also
computed to characterize structural softening behavior of the cylinder.

The analysis of bifurcation from this fundamental branch is then performed. Similar to
[36], bifurcated solutions follow a periodic localized damage pattern and are sought using
a partial Fourier series in the circumferential direction characterized by a wave number. We
then arrive at two energy minimization problems involving a generalized Rayleigh quotient:
one at a fixed wave number that governs the bifurcated displacement and damage solutions,
the other with respect to the wave number. The first problem is equivalent to a generalized
eigenvalue problem where the smallest eigenvalue is to be determined. Using the finite el-
ement method for spatial discretization and numerical algorithms, the Rayleigh quotient is
obtained as a function of time, wave number and the length scale �/R. On the one hand, nu-
merical simulations suggest that the axisymmetric solution will always lose uniqueness at a
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time approaching tc as �/R becomes smaller. The wave number, on the other hand, appears
to be inversely proportional to �/R. These two numerical observations are the main results
of this paper, and call for a more formal derivation using the asymptotic approach.

In Sect. 4, the elastic-damage evolution problem is solved under the assumption that the
length scale ε = �/R is small following an asymptotic approach. Using the perturbation
technique and the boundary layer method, we construct an asymptotic approximation of
the semi-analytical solution by using two rescaled spatial and temporal coordinates and by
performing an asymptotic expansion with respect to ε. It is shown that the axisymmetric
damage solution can be expressed with the help of a universal function that does not ex-
plicitly depend on ε. The influence of the length scale �/R can be successfully explained
by the introduced rescaled spatial and temporal variables. Comparison with the previous
semi-analytical results shows satisfying agreements.

We then continue the asymptotic analysis for the bifurcation from the fundamental
branch. By using the definition of the Rayleigh quotient and thanks to the variational na-
ture of the formulation, the orders of magnitude of the bifurcated solutions can be obtained
with respect to the small parameter ε. We obtain again a universal expression for Rayleigh
quotient that does not explicitly depend on ε. Its temporal evolution is governed by that
of the previous universal function. The asymptotic Rayleigh quotient varies monotonically
from ∞ at the onset of damage initiation to 0, which shows the existence of a universal bi-
furcation time independent of ε. The size-effects previously obtained by the semi-analytical
approach are formally justified by the asymptotic method.

2 Gradient Damage Modeling

2.1 Variational Formulation

We consider a three-dimensional homogeneous and isotropic body whose natural reference
configuration � is a straight cylinder of length L with a cross circular section S of radius R,
see Fig. 1. Formally, we thus have

� = S × [0,L] , S = {
(x, y) ∈ R

2|x2 + y2 ≤ R2
}
.

A frame of cylindrical coordinate system (r, θ, z) along with its unit vectors (er , eθ , e3) is
attached to the body �. The lateral surface of the cylinder is stress-free

σn = 0 on ∂S × (0,L) ,

and the body is subject to the following displacements and stress conditions on the lower
and upper cross sections

{
ur = uθ = 0 and σ33 = 0 on S × {0} ,

ur = 0 , uθ = tr and σ33 = 0 on S × {L} , for t ≥ 0 ,
(1)

where t denotes the increasing angle of torsion applied to the upper section and is regarded
as a loading parameter. The geometric and boundary conditions of the cylinder under torsion
is summarized in Fig. 1.

The quasi-static structural evolution of the cylinder is described by the equilibrium state
(u, α) of the displacement and damage fields at time t . We assume that at t = 0 the body
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Fig. 1 Geometric and boundary
conditions of the cylinder
� = S × [0,L] under torsion

Fig. 2 The discrete crack 	 ⊂ � is regularized by a continuous damage field 0 ≤ α ≤ 1 in (a). The cross–
section of the damage perpendicular to the phase-field crack is characterized by an optimal damage profile
α∗ indicated in (b) obtained with the damage constitutive model (14)

is at rest u0 = 0 and the cylinder is undamaged α0 = 0. The evolution problem consists in
finding t 	→ (u, α) for all 0 < t < tr where tr corresponds to the onset of fracture, i.e., when
maxα(x) = 1.

The cylinder is composed of a gradient-damage material. Its general formulation under
a quasi-static setting is now recalled as follows. For a more complete physical and numer-
ical overview, the interested readers are referred to [22, 26]. Contrary to a sharp interface
description of cracks, the gradient damage approach introduces a continuous phase field
replacing strong displacement discontinuities by strain localizations within a finite band.
The damage parameter α is a scalar which can only grow from 0 to 1. It ensures a smooth
transition between the undamaged state α = 0 and the crack α = 1, see Fig. 2(a).

The evolution of such gradient-damage bodies is completely governed by variational
arguments based on the definition of a total potential energy. Given the displacement and
damage fields (u, α) belonging to appropriate functional spaces, the total potential energy
is defined by

P(u, α) =
∫

�

W
(
ε(u)(x), α(x),∇α(x)

)
dx , (2)

where W is the bulk energy density depending on the linearized strain tensor ε = 1
2 (∇u +

∇Tu), damage α and its gradient. This bulk energy density is the sum of two components: the
stored elastic energy density and the dissipated energy density which quantifies the amount
of energy consumed up to a damage state

W(ε, α,∇α) = 1

2
A(α)ε · ε + w(α) + w1�

2∇α · ∇α. (3)

1. The first term in (3) is the elastic energy density characterized by a damage-dependent
elasticity tensor A(α) which represents local stiffness degradation due to damage. The
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corresponding damage-dependent stress tensor reads σ = A(α)ε. As in previous work,
we assume that the Poisson’s ratio is unaffected by the damage variable, which leads to

A(α) = a(α)A0 ,

where α 	→ a(α) denotes the non-dimensional stiffness degradation function with a(1) =
0, a(0) = 1.

2. The last two terms in (3) are the dissipated energy density, which introduces a length
parameter � that controls the damage band width from a geometric point of view (see
Fig. 2). In (3), α 	→ w(α) represents another damage constitutive function representing
the local damage dissipation during a homogeneous damage evolution and its maximal
value w(1) = w1 is the energy completely dissipated during such process when damage
attains 1. Contrary to local strain-softening constitutive models, here the damage dissi-
pation mechanism becomes non-local and localization is systematically accompanied by
finite energy consumption, due to the presence of the gradient term, see [2, 3].

To properly define the total potential energy, the admissible functional spaces for u and α

must be specified. Before final failure t < tr, the displacement field belongs to the classical
Sobolev space H 1(�,R3) to ensure that the total potential energy that will be defined below
is finite. The kinematically admissible space Ct takes into account the essential boundary
conditions mentioned in (1). It is an affine space and its associated linear space is denoted
by C0. Formally, they are respectively defined by

Ct = {
v ∈ H 1(�,R3)|vr = vθ = 0 on S × {0} , vr = 0 , vθ = tr on S × {L}} ,

C0 = {
v ∈ H 1(�,R3)|vr = vθ = 0 on S × {0,L}} . (4)

Since damage is modeled as an irreversible defect evolution, its admissible space will be
built from a current damage state 0 ≤ α ≤ 1. Due to the presence of the damage gradient in
the dissipated energy density (3), the above Sobolev space H 1(�,R) is also used. Formally
it is defined by

D(α) = {
β ∈ H 1(�,R)|0 ≤ α ≤ β ≤ 1

}
. (5)

It can be seen that a virtual damage field β is admissible, if and only if it is accessible
from the current damage state α verifying the irreversibility condition, i.e., the damage only
grows. Consequently, the admissible space for the damage rate α̇ ∈ Ḋ is a convex cone and
is given by

Ḋ = {
β̇ ∈ H 1(�,R)|β̇ ≥ 0

}
. (6)

With all variational ingredients set, the temporal evolution of the displacement and dam-
age pair t 	→ (u, α) is governed by the following three physical principles

1. Irreversibility: the damage t 	→ α is a non-decreasing function of time.
2. Meta-stability: the current state (u, α) is always directionally stable in the sense that

for all admissible perturbations v ∈ C0 and β ∈ Ḋ, there exists a h > 0 such that for all
h ∈ [0, h] we have

(u + hv, α + hβ) ∈ Ct ×D(α) , P(u, α) ≤ P(u + hv, α + hβ). (7)



Gradient Damage Analysis of a Cylinder Under Torsion

3. Energy balance: the only energy dissipation is due to damage such that we have the
following energy balance

P(u, α) = P(u0, α0) +
∫ t

0

(∫

�

σ s · ε(U̇ s)dx

)
ds. (8)

In practice, the gradient-damage evolution problem is solved by invoking the first-order
necessary conditions of the these physical principles. Interested readers are referred to [22]
and references therein for detailed derivations based on variational reasoning. If the involved
fields are sufficiently regular in space and in time, it can be shown that u satisfies the fol-
lowing static equilibrium equation

divσ = div
(
A(α)ε(u)

) = 0 in �, (9)

while α evolves according to the following damage criterion and consistency condition

1

2
A′(α)ε(u) · ε(u) + w′(α) − 2w1�

2�α ≥ 0 in �, ∇α · n ≥ 0 on ∂�, (10)

(
1

2
A′(α)ε(u) · ε(u) + w′(α) − 2w1�

2�α

)
α̇ = 0 in �, (∇α · n)α̇ = 0 on ∂�. (11)

These first order conditions are not sufficient for bifurcation and stability analysis for
a given state (u, α), which requires the second-order directional derivatives of P , see for
instance [3, 29]. In the most general case, it is given by

P ′′(u, α)(v, β) =
∫

�

A(α)ε(v) · ε(v)dx +
∫

�

(
1

2
A′′(α)ε(u) · ε(u) + w′′(α)

)
β2 dx

+
∫

�

2A′(α)ε(u) · ε(v)β dx +
∫

�

2w1�
2∇β · ∇β dx. (12)

2.2 Basic Properties of Gradient Damage Materials

We assume that the stiffness degradation function α 	→ a(α) and the local damage dissipa-
tion function α 	→ w(α) verify certain physical properties which characterize the behavior of
a strongly brittle material, see [27, Hypothesis 1]. During a homogeneous uniaxial traction
experiment, it leads to the definition of the critical stress σc beyond which damage grows
and the maximal stress that the material can sustain:

σc =
√

2Ew′(0)

s′(0)
, σm = max

β∈[0,1)

√
2Ew′(β)

s′(β)
. (13)

In (13), E denotes the Young’s modulus of the undamaged stiffness tensor A0.
The physical properties of the gradient damage model, in particular its softening or hard-

ening character, directly depend on these two damage constitutive functions. An abundant
literature is devoted to a theoretic or numerical analysis of these damage constitutive laws.
The interested readers are referred to [17, 20, 22, 38] and references therein for a discus-
sion on this point. In this contribution, the following damage constitutive model initially
proposed in [26] is used

a(α) = (1 − α)2 , w(α) = w1α. (14)
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If can be shown that damage does not evolve as long as a non-zero critical stress is
not reached, a rather appreciated property when modeling brittle fracture. Then a strain-
softening behavior is observed as damage grows for α ∈ (0,1), which implies that the criti-
cal stress coincides with the maximal stress. According to (13), during a unidimensional bar
traction test we have

σc = σm = √
w1E. (15)

The damage dissipation energy density (last two terms) in (3) can be regarded as an
equivalent Griffith crack surface functional density in phase-field models, see for example
[23]. An effective fracture toughness Gc, i.e., the energy required to create a unit Griffith-like
crack surface, can be identified as the energy dissipated during the optimal damage profile
creation in a uniaxial traction experiment, see [26] for a detailed discussion on this point. The
optimal damage profile α∗ can be considered as the theoretic cross-section perpendicular to
a gradient-damage crack, see Fig. 2. If x refers to the transverse coordinate axis centered at
the crack where α∗(x) = 1, the optimal damage profile for the (14) model is given by

α∗(x) =
{(

1 − |x|
2�

)2
if |x| < 2� ,

0 else.
(16)

It is also indicated in Fig. 2(b). With such optimal damage profile, the corresponding dis-
sipated energy can be consequently computed by injecting α∗ into (3) and then integrated
along the cross-section, which leads to

Gc = 4�

∫ 1

0

√
w1w(β)dβ = 8

3
w1�. (17)

This equation prescribes a relation between the fracture toughness Gc, the maximal damage
dissipation w1 and the internal length �.

3 Semi-Analytical Solutions

3.1 Purely Elastic Solution

By adopting the damage constitutive laws (14), the cylinder will first behave elastically with
an identically zero damage field α = 0 when t increases from 0. Due to static equilibrium (9)
and the prescribed boundary conditions (1), the corresponding displacement field is unique
up to an arbitrary constant axial translation in the e3 direction and its only nonzero compo-
nent is the tangential displacement in the polar coordinate system

uF = trz

L
eθ . (18)

In the sequel, uF denotes the fundamental displacement field from which perturbations in
the sense of the meta-stability condition (7) will be then considered in Sect. 3.3. Its corre-
sponding strain and stress fields in the cylinder are given by

εF = tr

2L
(eθ ⊗ ez + ez ⊗ eθ ) , σ F = μ0tr

L
(eθ ⊗ ez + ez ⊗ eθ ) , (19)

where μ0 denotes the shear modulus of the sound material.
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Due to the consistency condition (11), the elastic solutions (18)–(19) remain valid if the
damage criterion (10) is satisfied with a strict inequality almost everywhere in the cylinder.
Using the fundamental displacement field (18), with an identically zero damage field, (10)
now reads

μ′(0)t2r2

2L2
+ w′(0) ≥ 0 , (20)

where μ(α) = a(α)μ0 denotes the shear modulus of a damaged material point. As a′(0) ≤
0 and w′(0) ≥ 0 (stiffness degradation and dissipation hypotheses, see [27]), the damage
criterion (20) will be first attained (becomes an equality) on the lateral surface at r = R, i.e.,
on a subset of measure zero in R

3. The corresponding time will be denoted by tc (critical
time) and is given by

tc =
√

−2w′(0)L2

μ′(0)R2
.

For the damage constitutive law (14) used in this paper, with (17), the critical time thus reads

tc =
√

w1L2

μ0R2
=

√
3GcL2

8μ0�R2
> 0. (21)

It can be verified that a non-zero elastic phase indeed exists in this case. The elastic phase
is summarized in (22) for 0 ≤ t ≤ tc, with the fundamental displacement field given by (18)
and a zero damage field. The subsequent gradient-damage evolution will be considered in
Sect. 3.2.

t : 0
Elastic−−−−→
(uF,0)

tc −−−−→ · · · (22)

3.2 Axisymmetric Damage Solution

From t > tc, the damage criterion (10)–(11) is gradually uniformly (in the e3 direction) and
axisymmetrically (with respect to the θ coordinate) attained from the outer lateral surface
∂S × (0,L) into the cylinder. The main objective of this section is thus to analytically inves-
tigate the induced axisymmetric damage field αF with the property

α(r, θ, z) = αF(r). (23)

It can be shown that the associated displacement field is necessarily the fundamental dis-
placement uF given by (18) and the associated stress and strain fields read as

εF = tr

2L
(eθ ⊗ ez + ez ⊗ eθ ), σ F = μ(α)tr

L
(eθ ⊗ ez + ez ⊗ eθ ).

Due to the fact that α only depends on r , the stress continues to verify the static equilibrium
equation (9) and the prescribed boundary conditions (1). The axisymmetric damage phase
is summarized in (24) for tc < t ≤ t∗, with the fundamental displacement field given by (18)
and the fundamental damage field.

t : 0
Elastic−−−−→
(uF,0)

tc
Axisymmetric−−−−−−−→

(uF,αF)
t∗ −−−−→ · · · (24)
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Fig. 3 Axisymmetric damage solution: (a) an illustration of the damage contour in an arbitrary section of
the cylinder; (b) temporal evolution of the axisymmetric damage

In the sequel, we will make use of the derived damage evolution law (10)–(11) to solve
the axisymmetric damage field for t > tc. Inserting the fundamental displacement field (18)
into (10), we obtain the following damage criterion

μ′(α)
t2r2

2L2
+ w′(α) − 2w1�

2�α ≥ 0 for all r ∈ [0,R). (25)

We suppose that the criterion (25) is reached with an equality within a radial thickness of
e at time t , see Fig. 3(a). Formally, the following subset of the cross-section Sd ⊂ S can be
defined

Sd = [R − e,R) × [0,2π) =
{
(r, θ) ∈ S|μ′(α)

t2r2

2L2
+ w′(α) − 2w1�

2�α = 0 with z = z

}
,

(26)
where without loss of generality z ∈ (0,L) designates an arbitrary cross-section.

To solve this second-order elliptic differential equation in Sd, several additional condi-
tions must be specified. On the one hand, according to (11), on the lateral surface r = R

where damage evolves the normal damage gradient must be zero. On the other hand, due to
continuity of the damage field (implicitly contained in the variational formulation due to the
presence of the damage gradient in the energy functional), it is equal to zero at the interface
between the undamaged part and Sd, see Fig. 3(b). Hence, we have

∂αF

∂r
(R) = 0 , αF(R − e) = 0. (27)

Contrary to classical boundary value problems, here the boundary itself Sd is yet to be
specified due to the unknown thickness parameter e. Moreover, in this case the boundary Sd

(and thus the thickness) evolves with time as can be seen in Fig. 3(b). The determination of
the thickness parameter e requires hence another condition. It can be shown (see [15, 36]
that the damage gradient is also continuous at the interface

∂αF

∂r
(R − e) = 0. (28)

This equation completes the previous boundary conditions (27) in order to solve the differ-
ential equation (26). In summary, with the chosen damage constitutive law (14), we arrive
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at the following system
⎧
⎪⎨

⎪⎩

−μ0(1 − α)t2r2

L2
+ w1 − 2w1�

2�α = 0 in [R − e,R),

∂αF

∂r
(R) = 0 , αF(R − e) = 0 ,

∂αF

∂r
(R − e) = 0.

(29)

We now propose a semi-analytical method to solve the unique axisymmetric damage
field governed by the system (29) for t ≥ tc. The Laplacian operator is now expressed in
the cylindrical coordinate system, taking into account the axisymmetry of the damage field
which is also constant in the z direction. Written with the non-dimensional radial coordinate
αF(r) = d(r) = d(r/R), the differential equation (29) becomes

rd ′′(r) + d ′(r) − 1

2

(
tR

tc�

)2

r3d(r) = 1

2

(
tR

tc�

)2 (
t2
c r/t2 − r3

)
for  = R − e

R
≤ r < 1 , (30)

where the non-dimensional variable  denotes the interface between the purely elastic re-
gion r <  and the region where the damage criterion (25) is attained with an equality. The
general solution to (30) reads

d(y) = 1 + C1I0(y) + C2K0(y) + πtcR

4
√

2t�
L0(y) , y = tR

2
√

2tc�
r2 , (31)

where Iv and Kv are respectively the modified v-order Bessel function of the first kind
and the second kind and Lv is the modified v-order Struve function. Using the following
identifies concerning the derivative of these special functions

I ′
0 = I1 , K ′

0 = −K1 , L′
0 = 1

2

(
2

π
+ L−1 + L1

)

and the boundary conditions (27), the two constants C1 and C2 can be readily expressed as
an explicit function of the thickness parameter e. Hence, the last boundary condition of (29)
provides a nonlinear equation on e. The standard Newton-Raphson algorithm is applied
to solve numerically this equation. The obtained damage solution is thus exact and semi-
analytical in nature.

In Fig. 4(a), the damage thickness evolution is presented for three values of � with respect
to the normalized time scale t/tc. Due to irreversibility and in the absence of unloading, the
thickness is strictly increasing. For smaller �, the damaged zone is also decreased at a fixed
t/tc. The evolution is non-linear in general, however its initial slope near t = tc seems to be
independent of �. This property will be established in Sect. 4.

At a fixed t/tc = 1.1, the damage field along the radial direction 0 ≤ r ≤ R for three
internal lengths � is shown in Fig. 4(b). The maximal damage on the lateral surface r = R

increases as the internal length � decreases. It should be reminded that the critical time tc at
which damage begins depends itself on the internal length �, see (21).

The torque M generated on the surface z = L characterizes the global structural response
of the cylinder under torsion. Using the stress vector F = σ Fe3 on the section S during the
axisymmetric stage, the torque M can be calculated by

M = e3 ·
∫

S

rer × F ds =
∫

S

μ(αF)tr2

L
ds

= 2πμ0t

L

∫ R

0
a(αF)r3 dr = 2πμ0t

L

(
(R − e)4

4
+

∫ R

R−e

a(αF)r3 dr

)
. (32)



T. Li, R. Abdelmoula

Fig. 4 Axisymmetric solutions: (a) damage thickness evolution; (b) damage solutions at t/tc = 1.1;
(c) torque evolution

Its evolution is illustrated in Fig. 4(c). For each �, it is normalized by its value Mc at
t = tc. Similarly to damage thickness, its initial temporal rate of change appears to be a
constant independently of �. During the axisymmetric stage, the moment first increases and
reaches a maximal value. Afterwards the cylinder displays a structural softening behavior,
where the moment decreases with t .

3.3 Bifurcation Analysis of the Fundamental Branch

The axisymmetric state (uF, αF) given respectively in (18) and (29) is obtained by consid-
ering only the first-order stability conditions (9), (10) and (11). This state is not guaranteed
to remain always meta-stable and hence bifurcation may produce as the torsion angle t in-
creases. This section is thus mainly devoted to a bifurcation analysis of the axisymmetric
state (uF, αF). Several stages of the complete evolution considered in this paper are recalled
in (33) for t∗ < t < tr, with tr indicating the instant of fracture.

t : 0
Elastic−−−−→
(uF,0)

tc
Axisymmetric−−−−−−→

(uF,αF)
t∗

Bifurcation−−−−−−−−−→
(uF,αF)+(uB,αB)

tr. (33)

Although the axisymmetric solution in question is independent of the z variable, the
bifurcated state (v, β) may be not. However, such full three dimensional analyses appear
mathematically less tractable. Hence, in the sequel we will only seek the displacement field
u in the following form

u = uF(r, z) + uB(r, θ)

= uF(r, z) + uB(r, θ) e3 , (34)
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where uF ∈ Ct is the fundamental displacement given by (18) and uB = uB(r, θ) e3 ∈ C0

denotes the axial component regarded as the new unknown kinematic field. Due to static
equilibrium (9), it can be shown that the damage field α is also independent of z

α = αF(r) + αB(r, θ). (35)

By substituting (34) and (35) in the expression of the total potential energy (2), we obtain
the new expression for our two-dimensional analysis

P(u, α) = LP̂(uB, α)

= L

∫

S

(
1

2
μ(α)

(
∇uB · ∇uB +

( tr

L

)2

+ 2t

L

∂uB

∂θ

)
+ w(α) + w1�

2∇α · ∇α

)
ds,

(36)

where we recall that in a Cartesian coordinate system the derivative with respect to the
tangential direction can be evaluated by

∂uB

∂θ
(x, y) = −y · ∂uB

∂x
(x, y) + x · ∂uB

∂y
(x, y).

The stability and bifurcation properties of the gradient damage model require the sec-
ond derivative (12) of the potential energy. Within the two-dimensional setting (34)–(35),
the second derivative of the total potential energy (12) evaluated at the axisymmetric state
(uF, αF) is a quadratic form in (v, β) given by

P ′′(uF, αF)(v, β) = LP̂ ′′(0, αF)(v,β) = L
(
A(v, β) − B(β)

)
, (37)

with A and B two quadratic forms defined respectively by

A(v,β) =
∫

S

(

μ0(1 − αF)2

(
∂v

∂r

)2

+ μ0

(
1 − αF

r

∂v

∂θ
− 2tr

L
β

)2

+ 2w1�
2∇β · ∇β

)

ds ,

B(β) =
∫

S

3μ0
t2r2

L2
β2 ds, (38)

where the chosen damage constitutive law (14) is used. Note that v = v e3 and β represent a
perturbation to the axisymmetric state (uF, αF).

The uniqueness of the axisymmetric solution can be analyzed by formulating the associ-
ated rate problem (see [3, 36]) which involves the following Rayleigh quotient

λ = R(v,β) =
{

A(v,β)

B(β)
if β �= 0 ,

+∞ otherwise.
(39)

The current evolution t 	→ (u, α) is unique, if the second derivative remains positive-definite

infλ > 1 for all (v,β) ∈ H 1(S) ×Dd(S) , Dd(S) = {
β ∈ H 1(S)|β = 0 in S \ Sd

}
, (40)

where the set Dd denotes the set of damage rates that remain zero in the undamaged part.
The objective of the bifurcation analysis is to determine t such that λ = 1, i.e., when the
current axisymmetric solution is no longer unique.
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In this work, we will assume the following particular (v,β) perturbations with 3 param-
eters (k,Ak,Ck)

v(r, θ) =
∑

k

A(r) sinkθ , A ∈ H 1(0,1) ≡ H 1,

β(r, θ) =
∑

k

C(r) cos kθ , C ∈ Dd(0,1) ≡ Dd, (41)

where k ∈N
∗. In (41), the functions A(r) and C(r) represent the radial variation of v and β ,

while the wave number k characterizes the frequency of their angular variation. Note that at
fixed r , the functions v(r, ·) and β(r, ·) are square-integrable continuous periodic functions,
and can be well represented by the Fourier basis. The phase π/2 between v and β results in
a natural coupling between them in the Rayleigh quotient.

Substituting (41) in (38) and using some basic integration properties of the trigonometric
functions, the Rayleigh quotient now reads

λ = R(k,A,C) = A(A,C)

B(C)
, (42)

where at a fixed wave number k the two quadratic forms A and B read

A(A,C) =
∫ R

0

(

2w1�
2

(
C ′2 + C2k2

r2

)
+ μ0(1 − αF)2A′2

+ μ0

(
1 − αF

r
kA − 2trC

L

)2
)

r dr,

B(C) = 3μ0
t2

L2

∫ R

0
r3C2 dr. (43)

To minimize (42), we will perform first the minimization with respect to (A,C), and then
to the wave number k

1. Minimization respect to (A,C). Suppose that (Ak,Ck) minimizes the Rayleigh ratio (42)
at fixed k ∈ N

∗ with a minimum value λk = R(k,Ak,Ck). The corresponding necessary
condition reads thus

A′(Ak,Ck)(Â, Ĉ) = λkB′(Ck)Ĉ for all (Â, Ĉ) ∈ H 1 ×Dd, (44)

where A′ and B′ denotes the first directional derivative of A and B respectively. This
equation corresponds to a generalized symmetric eigenvalue problem, where λk is the
smallest eigenvalue minimizing the Rayleigh quotient (42) and (Ak,Ck) denotes the as-
sociated eigenvector.

2. Minimization with respect to k ∈ N
∗. Given (Ak,Ck) the resulting minimizing eigen-

vector of the previous problem (44), the next step is to minimize the reduced Rayleigh
quotient k 	→ R(k,Ak,Ck), or equivalently the eigenvalue λk , for k ∈ N

∗. It consists of
an integer optimization problem. The minimizing wave number is then referred to as the
optimal wave number k∗. The minimum Rayleigh quotient evaluated at the optimal wave
number k∗ will be denoted by

λ∗ = λk∗ = R(k∗,Ak∗ ,Ck∗) , k∗ = argmin
k

R(k,Ak,Ck). (45)
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Fig. 5 Rayleigh quotient λk as a function of the wave number k for �/R = 0.1: (a) at t/tc = 1.06; (b) at
t/tc ≈ 1.149

Fig. 6 The optimal eigenfunctions with k∗ = 6 for �/R = 0.1 at t/tc ≈ 1.149: (a) normalized A; (b) nor-
malized C

The eigenvalue problem and the minimization are solved numerically in Appendix.
For a specific internal length �/R = 0.1, the k-dependence of the Rayleigh quotient λk is

illustrated in Fig. 5 for two values of torsion angles t . It can be seen that first at t/tc = 1.06
the optimal wave number k∗ = 5 achieves the minimum of the Rayleigh quotient and then
it shifts to k∗ = 6 when the minimum Rayleigh quotient λ∗ = 1, i.e., the instant when the
axisymmetric solution is no longer unique.

First let us take a look at the optimal (v∗, β∗) perturbations for �/R = 0.1 at t/tc ≈ 1.149.
They are optimal in the sense that they are evaluated with the optimal wave number k∗. The
corresponding eigenfunctions (A∗,C∗) are illustrated in Fig. 6.

The eigenfunctions (A∗,C∗) can not be normalized separately, we have thus normalized
(A∗,C∗) such that the rescaled Ã(R) = 1. We observe that using the same normalization
coefficient, the rescaled C̃(R) is strictly larger than Ã(R). This property will be established
in Sect. 4. The function A is non-zero almost everywhere in the whole radial direction
0 < r ≤ R while the function C is non-zero only in the damaged part for r > R − e. This
originates from the space definitions (41).

For a smaller internal length �/R = 0.05, the k-dependence of the Rayleigh quotient
as well as the optimal perturbation function ṽ at the instant of bifurcation λ∗ = 1 for t/tc ≈
1.073 are presented in Fig. 7. Compared to �/R = 0.1, a larger optimal wave number k∗ = 11
is found for �/R = 0.05. Also, the instant of bifurcation t∗/tc is also decreasing.

For �/R = 0.05 and �/R = 0.1, the time dependence of the optimal wave number k∗ and
that of the minimum Rayleigh quotient λ∗ are presented in Fig. 8, where the observations
above are clearly illustrated. In Fig. 8(a), while the optimal wave number t 	→ k∗ is not
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Fig. 7 Bifurcation analysis for �/R = 0.05 at t/tc ≈ 1.073: (a) Rayleigh quotient λk as a function of the
wave number k; (b) the optimal normalized perturbation function ṽ with k∗ = 11

Fig. 8 Time dependence of the Rayleigh minimization problem for �/R = 0.05 and �/R = 0.1: (a) optimal
wave number k∗; (b) minimum Rayleigh quotient λ∗

constant after damage initiation, its variation is minimal (±1 in the current time interval)
and in any case we are only interested in its value at the instant of bifurcation when λ∗ = 1.
In Fig. 8(b), we can see the optimal Rayleigh quotient gradually decreases with time. The
bifurcation time can be identified when λ∗ = 1.

The instant of bifurcation tb/tc and the optimal wave number k∗ are presented with re-
spect to �/R in Fig. 9. It illustrates size-dependance of bifurcation and will be analytically
studied in Sect. 4. On the one hand, t∗/tc scales linearly with the length scale �/R. In par-
ticular, for vanishing non-zero internal length � → 0+ the bifurcation takes place just after
damage initiation t∗ → tc. On the other hand, k∗ scales inversely proportional with the length
scale �/R in particular for small �/R. These two properties illustrate the size-dependance
of bifurcation and will be theoretically studied in Sect. 4.

4 Asymptotic Behaviors for Small Internal Lengths

In the asymptotic approach, the internal length � is assumed to be a small parameter com-
pared to the cylinder radius R in an asymptotic setting. The perturbation analysis is justified
for the two following reasons:

1. The differential equation of asymmetric damage (30) involves a small coefficient � in
front of the highest order derivative, which suggests a boundary layer analysis similar to
[1, 34].
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Fig. 9 Size effect of bifurcation: (a) bifurcation time t∗/tc; (b) optimal wave number k∗

2. In the bifurcation problem (or more precisely the eigenvalue problem) (44), the linear op-
erators contain this small parameter �, which also calls for eigenvalue expansion analysis
like [10, 12].

Therefore we investigate the elastic-damage problem in the neighborhood of the boundary
r = R by applying a zoom in space. A corresponding time rescaling is then carried out.
The asymptotic analysis of the bifurcated solution from the fundamental solution is then
performed for the boundary layer problem with respect to the small parameter. Finally, the
bifurcation time and the wave number is then deducted from this analysis. For more refer-
ences and applications of asymptotic method, we refer the reader to [39] for applications of
this technique in fluid mechanics, [7, 24] for general boundary value problems and [1, 34]
for solid mechanics applications.

Following the work of [35], we consider in this work that the radial thickness e of the
damaged region is of order �. With this hypothesis, the following non-dimensional variables
are introduced

ε = √
2

�

R
� 1, ζ = 1 − r

ε
= O(1) ≥ 0, (46)

where ε is the small parameter in our asymptotic analysis and ζ can be regarded as the new
(stretched) spatial coordinate for the damage zone. Note that O(εn) denotes a term of the
order εn. Using this change of variable (46), we propose to analyze the asymptotic properties
of damage evolution for small values of ε.

4.1 Axisymmetric Damage Solution

We will first introduce a new loading parameter t = O(1) compatible with the spatial coor-
dinate ζ introduced in (46) by the following

Proposition 1 The new loading parameter t that governs damage evolution is defined by

t = 1 − tc/t

ε
= O(1) ≥ 0. (47)

Proof To prove the above relation, we perform asymptotic expansion in the damage region
near the boundary r = R. Rewriting the axisymmetric equation (30) using (46), we obtain

− t2

t2
c

ε2
(
1 − d(ζ )

)
(1 − 3εζ + · · · ) + 1 − εζ − (

(1 − εζ )d ′′(ζ ) − εd ′(ζ )
) +O(ε2) = 0 ,
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∀ζ ∈ (0,ζ ), (48)

where ζ is the interface  in (30) expressed in the stretched variable ζ

ζ = 1 − 

ε
. (49)

The boundary conditions in (29) are also rewritten using the new spatial variable ζ , leading
to

d ′(0) = 0 , d ′(ζ ) = d(ζ ) = 0. (50)

We assume an asymptotic expansion of damage field d(r) in the form

d(r) = d0(ζ ) + ε · d1(ζ ) + · · · (51)

Inserting (51) into (48), we obtain at order O(1)

d ′′
0 (ζ ) − t2

t2
c

d0(ζ ) = 1 − t2

t2
c

=⇒ d0(ζ ) = A cosh ζ + B sinh ζ + 1 − t2
c

t2
,

where A and B are two constants. Using the boundary conditions d ′
0(0) = d ′

0(ζ ) = 0 de-
rived from (50), we obtain A = B = 0, which implies

d0(ζ ) = 1 − t2
c

t2
.

But the above expression do not verify the another boundary condition d0(ζ ) = 0. We
conclude hence that d0 = O(ε) and we deduce that

1 − tc

t
= O(ε).

The proposed loading parameter (47) is thus justified. �

Using the new loading parameter (47) in (48), we obtain thus

(
1 − d(ζ )

)(−1 + ε(−2t + 3ζ + · · · )) + 1 − d ′′(ζ ) + ε
(−ζ + d ′′(ζ ) + d ′(ζ )

) +O(ε2) = 0

, ∀ζ ∈ (0,ζ ). (52)

With the asymptotic expansion (51)), the differential equations at order ε0 and ε are given
by

At order ε0: d ′′
0 (ζ ) − d0(ζ ) = 0 , (53)

At order ε1: d ′′
1 (ζ ) − d1(ζ ) + (2t − 3ζ )

(
1 − d0(ζ )

) + ζ − d ′′
0 − d ′

0 = 0, (54)

with d0(ζ ) and d1(ζ ) satisfying the boundary conditions (50)). This leads to

d0(ζ ) = 0 ,

d ′′
1 (ζ ) − d1(ζ ) − 2ζ + 2t = 0. (55)
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The interface  can be written with the new loading parameter t as

 = 1 − ε · f(t) +O(ε2) , ζ = f(t) = O(1) , (56)

where f(t) is positive by construction and is a universal function in the sense that it does not
depend on the internal length �. The normalized thickness is hence given by

e = e

R
= 1 −  = ε · f(t) +O(ε2). (57)

After calculation, we obtain the following expressions for damage

d(ζ ) = 2ε
((

f(t) − t
)

cosh
(
f(t) − ζ

) − sinh
(
f(t) − ζ

) − ζ + t
) + · · · , (58)

d ′(ζ ) = 2
((

f(t) − t
)

sinh
(
f(t) − ζ

) − cosh
(
f(t) − ζ

) + 1
) + · · · , (59)

where the universal function f(t) defined by (56) is governed by
(
t − f(t)

)
sinh f(t) + cosh f(t) = 1. (60)

Remark 1 Using the rescaled spatial (46) and temporal (47) variables, the asymptotic ax-
isymmetric damage solution (58) does not explicitly depend on the small parameter ε aside
from the multiplication factor. The temporal evolution of the axisymmetric damage can be
directly explained by t and the universal function f(t).

Since no-closed form solution f(t) can be obtained from the nonlinear equation (60), it is
solved numerically as a function of t in Fig. 10. On the one hand, it can be easily shown that

f(t) ≈ 2t for t ≈ 0. (61)

On the other hand, using the asymptotic behaviors cosh(f) ∼ exp(f)/2 and sinh(f) ∼ exp(f)/2
valid for larger t � 1, we have

f(t) ≈ 1 + t − 2 exp
(−f(t)

) ≈ 1 + t for t � 1. (62)

Using (57) and (61), it can then be easily deduced that

ė(t) ≡ de

dt
(t) = df

dt
(t) · tc

t2
=⇒ ė(tc) = 2 , (63)

which formally proves that the normalized thickness evolves independently of the internal
length at the onset of damage initiation. This result agrees well with our previous semi-
analytical result in Fig. 4. The comparison with the asymptotic thickness (57) is presented
in Fig. 11(a). The approximation is excellent even for moderate values of ε especially for
t/tc → 1.

At fixed t/tc, the asymptotic behavior of the damage thickness can be analyzed as fol-
lows. For small values of �, we have t � 1, hence the approximation (62) applies, which
gives

e = e

R
≈ ε · f(t) ≈ ε

(
1 + 1 − tc/t

ε

)
= 1 − tc

t
+ ε. (64)

This equation shows that at fixed t/tc � 1, the thickness value decreases as � becomes
smaller, in agreement with the semi-analytical result in Fig. 4(a).
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Fig. 10 Universal function f(t)

Fig. 11 Comparison between the semi-analytical (exact) axisymmetric solutions and the asymptotic ap-
proach: (a) damage thickness evolution; (b) damage solutions at t/tc = 1.1; (c) torque evolution; (d) maxi-
mum values of the torque

In Fig. 11(b), the asymptotic damage solution (58) is compared to the previous semi-
analytical solution (31). The approximation is also remarkable especially for smaller values
of �.

At fixed t/tc, the damage value on the boundary α(R) is now analyzed with respect to �.
Using (58) and the approximation (62) valid for small �, we have

α(R) ≈ 2ε
((

f(t) − t
)

cosh
(
f(t)

) − sinh
(
f(t)

) + t
) ≈ 2ε(t − 1) = 2

(
1 − tc

t
− ε

)
, (65)

which shows that α(R) increases for smaller values of �, at fixed t/tc. This result is in
agreement with the semi-analytical results in Fig. 4(b).

Using the asymptotic approximation (58), the torque initially defined by (32) becomes

M = πμ0tR4

2L

(
1 + 8ε2

(
f(t)2 − 2f(t) · t

) +O(ε3)
)
, (66)
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where we recall that t is related to t by (46). It can be deduced in particular that for t ≈ tc
(t ≈ 0), M evolves linearly with t and is independent of �. This result confirms our previous
result presented in Fig. 4(c). The comparison between the semi-analytical and the asymptotic
solutions is given in Fig. 11(c). Similar to previous comparisons, the approximation by the
asymptotic solution is outstanding for smaller �.

In Fig. 11(d), the maximum values of the torque achieved during the axisymmetric stage
are presented for the semi-analytical and the asymptotic solutions. As expected, the differ-
ence becomes smaller as � is decreased. It is also confirmed that the maximum torque is
decreasing for smaller values of �.

4.2 Bifurcation Analysis of the Fundamental Branch

In this subsection, we perform an asymptotic analysis of the bifurcation of the axisymmetric
solution for small values of �. Our analysis will be based on the minimization of the Rayleigh
quotient (40) with the particular perturbations assumed in (41).

To begin with, we will assume that the bifurcation time is compatible with the new
rescaled time parameter defined in (47). This implies in particular that the Rayleigh quo-
tient remains of order O(1) for smaller values of ε since at bifurcation we have necessarily
λ∗ = 1.

1 − tc/tb

ε
= O(1) , λk = O(1). (67)

This assumption will be proven a posteriori.
The first step is to evaluate the relative orders of magnitude of k, Ak and Ck with respect

to the small parameter ε. Recall that they minimize the Rayleigh quotient, see (44) and (45).
Since Ak and Ck are the solution to the eigenvalue problem (44), we can assume without the
loss of generality

Ak = O(ε). (68)

The orders of magnitude of k and Ck will be determined from this choice.

Proposition 2 Assuming (68), we have the following estimates

k = O(1/ε) , Ck = O(1).

Proof Let us rewrite A and B in (43) of the Rayleigh quotient (42) using the normalized
radial coordinate r = r/R

A(Ak,Ck) =R2
∫ 1

0

(

w1ε
2

(
C ′2

k + C2
k k

2

r2

)
+ μ0

R2
(1 − d(r))2A′2

k

+ μ0

R2

(
1 − d(r)

r
kAk − 2tR2

L
rCk

)2
)

r dr ,

B(Ck) = 3μ0
t2R4

L2

∫ 1

0
r3C2

k dr. (69)

Focus on the gradient damage term in A involving explicitly the small parameter ε. For this
term to be of the same order as Ck due to (67), we deduce immediately

k = O(1/ε) , (·)′ = O(1/ε) , (70)
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where (·)′ denotes the derivation operator with respect to r. This second relation justifies the
use of a stretched variable ζ introduced previously in (46).

We recall that d(r) = O(ε) according to (58), hence it can be neglected with respect
to 1. Due to the definition (68) and with (70), the terms in A(Ak,Ck) involving Ak are thus
of order O(1). By comparison with B(Ck), this means also Ck = O(1). The proof is thus
complete. �

Differential Equation for Ak at Fixed k ∈ N
∗ Integrating by parts (44) with Ĉ = 0

rewritten in the normalized radial coordinate r = r/R, we obtain the following differential
equation governing Ak

r
(
rA′

k(r)
)′ − 2d ′(r)

1 − d(r)
r2A′

k(r) − k2Ak + 2tR2k

L
r2 Ck

1 − d(r)
= 0 for 0 < r < 1, (71)

A′
k(0) = A′

k(1) = 0 , �Ak �() = 0 , �A′
k �() = 0 , (72)

where �·� denotes the usual jump operator. Note that in the undamaged region for r < 1 −
e ≡ , we have d = βk = 0 which implies also Ck = 0. We have hence

r2A′′
k(r) + rA′

k(r) − k2Ak(r) = 0 for 0 < r < . (73)

Since Ak is bounded, the solution to (73) is given by

Ak(r) = Crk for 0 < r < , (74)

where C is an arbitrary constant depending on k.

Differential Equation for Ck at Fixed k ∈N
∗ After integrating by parts (44) with Â = 0

rewritten in the normalized radial coordinate r = r/R, we obtain the weak equation for Ck ,
we obtain the differential equation governing Ck

− ε2r
(
rC ′

k(r)
)′ +

(
ε2k2 + (4 − 3λk)

t2

t2
c

r4

)
Ck(r) − 2

t

t2
c

L

R2
kr2 (1 − d(r))Ak(r) = 0

for  ≤ r ≤ 1, (75)

Ck() = 0 , C ′
k(1) = 0. (76)

We recall that the equation is reduced to the damaged interval (,1) due to the definition
of Dd in (40). We can see that the small parameter ε appears in the highest derivative. This
singular perturbation problem requires a zoom at r = 1.

Asymptotic Analysis of Displacement and Damage Fields for Small Internal Lengths
Using (67) and Proposition 2, we seek the leading-order solutions to (71) and (75) for  ≤
r ≤ 1 [10, 12]

λk = � + · · · ,
tc

tb
= 1 − ε · t∗ , k = k

ε
+ · · · , Ak = ε · a + · · · , Ck = c + · · · (77)

Using the stretched variables ζ and ζ defined respectively in (46) and (56) and the fact
that d(r) = O(ε) and d ′(r) = O(1) according to (58) and (59), we obtain at leading order for



Gradient Damage Analysis of a Cylinder Under Torsion

0 ≤ ζ ≤ ζ

a′′(ζ ) − k2a(ζ ) + 2tcR
2k

L
c(ζ ) = 0,

− c′′(ζ ) + (
k2 + (4 − 3�)

)
c(ζ ) − 2k

tc

L

R2
a(ζ ) = 0. (78)

We seek approximate solutions for a(ζ ) and c(ζ ) as a power series of ζ

a(ζ ) = a0 +a1ζ + a2ζ
2 +a3ζ

3 +a4ζ
4 +· · · , c(ζ ) = b0 +b1ζ +b2ζ

2 +b3ζ
3 +b4ζ

4 +· · ·
(79)

The boundary conditions (72) and (76) are now expressed using the stretched variables

a′(0) = 0 , c′(0) = 0 , �a�(ζ ) = 0 , �a�′(ζ ) = 0 , c(ζ ) = 0 where (·)′ = d

dζ
.

(80)
Using the first two conditions of (80), we find immediately a1 = b1 = 0. Substituting (79)
into (78), we obtain a3 = b3 = 0 and

2a2 − k2a0 = −2tckR2

L
b0, −2b2 + (

k2 + (4 − 3�)
)
b0 = 2k

tc

L

R2
a0,

12a4 − k2a2 = −2tckR2

L
b2, −12b4 + (

k2 + (4 − 3�)
)
b2 = 2k

tc

L

R2
a2. (81)

Using the remaining boundary conditions in (80) and the solution (74) in r ∈ (0,	), we
obtain

a0 + a2
2
ζ + a4

4
ζ = Ck/ε, 2a2ζ + 4a4

3
ζ = −kCk/ε−1 , b0 + b2

2
ζ + b4

4
ζ = 0 ,

(82)
where C is the integration constant in (74) and ζ and  are related by (49). Since ε is a
small parameter, we have k/ε − 1 ≈ k/ε and (82) can be reduced to the following homoge-
neous system

k(a0 + a2f(t)2 + a4f(t)4) + 2a2f(t) + 4a4f(t)3 = 0,

b0 + b2f(t)2 + b4f(t)4 = 0, (83)

where ζ is replaced by f(t) due to (56).
Using (81), the variables (a2, b2, a4, b4) can be expressed using a linear combination of

(a0, b0). Hence, the only unknowns in the homogeneous system (83) are (a0, b0). It admits a
non-trivial solution if and only if the determinant J is zero, which is given by the following
quadratic equation in �

J = J
(
f(t), k,�

) = P (f(t), k)�2 + Q(f(t), k)� + R(f(t), k) = 0 =⇒ � = �
(
f(t), k

)
, (84)

with (P,Q,R) three polynomials involving different powers of f and k up to f(t)8k8. The
Rayleigh quotient � = �

(
f(t), k

)
is thus the smaller positive solution to (84). Observe that

the asymptotic Rayleigh quotient � is not an explicit function of the time variable t or t.
Its time-dependence is through the value of the universal function f(t). It is also a universal
function in the sense that it also does not depend on the small parameter ε. Its effective
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Fig. 12 Universal asymptotic
optimal Rayleigh quotient �∗ as
well as the optimal asymptotic
wave number k∗

ε-dependence is explained by the rescaled time variable t. The optimal asymptotic wave
number k∗ can be obtained by minimizing � at fixed f(t).

∂�

∂k

(
f(t), k∗

) = 0. (85)

Using k∗, we obtain thus the optimal Rayleigh quotient �∗(t) = �
(
f(t), k∗

)
.

We can show that for t ≈ 0, the Rayleigh quotient is given by

� = 2 − 2
√

3/3

f(t)2
+ 4

3
+ k2

3
+O(f(t) · k) , (86)

which shows that for t → 0, we have k∗ → 0 while �∗ → ∞. For t → ∞, we have

� = k2

3
+O

(
1

f(t)2

)
, (87)

which implies k∗ → 0 and �∗ → 0 for t → ∞. The optimal wave number and the Rayleigh
quotient are presented in Fig. 12, which confirms (86) and (87).

Remark 2 The limiting behaviors of the asymptotic Rayleigh quotient (86) and (87) actually
confirms the previous assumption (67): the bifurcation time is actually a constant using the
rescaled loading parameter (47), which implies λk = O(1).

The universal bifurcation time written using the variable t can be obtained by solving
�∗(t∗) = 1, which leads to

f (t∗) ≈ 1.685 =⇒ t∗ ≈ 0.9982 , k∗ ≈ 0.7946 . (88)

Using (77), in our asymptotic analysis the optimal wave number as well as the bifurcation
time are hence given by

tb

tc
= 1

1 − ε · t∗
≈ 1 + ε · t∗ , k∗ = k∗

ε
. (89)

In Fig. 13(a), we compare the k-dependence of the Rayleigh quotient at fixed time, ob-
tained respectively by the semi-analytical approach (see Fig. 7) and the asymptotic solution
(84). Although the approximate Rayleigh quotient is slightly larger than the exact value,
their dependence with respect to k is in perfect agreement. In fact the optimal wave num-
ber in this case is 11 using the exact approach, and approximately 11.3 with the asymptotic
solution.
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Fig. 13 Comparison between the semi-analytical (exact) bifurcation solutions and the asymptotic approach:
(a) Rayleigh quotient λk as a function of the wave number k for �/R = 0.05 at t/tc ≈ 1.073; (b) time-depen-
dence of the optimal Rayleigh quotient λ∗

Fig. 14 Size effect of bifurcation with the semi-analytical approach and the asymptotic solution: (a) bifur-
cation time t∗/tc; (b) optimal wave number k∗

The time-dependence of the optimal Rayleigh quotient λ∗, evaluated with the optimal
wave number k∗, is presented in Fig. 13(b). The previous semi-analytical result in Fig. 8 and
the asymptotic solution are compared. It can be seen that the approximation is better with
smaller values ε. Due to the universal nature, the implicit ε-dependence of λ∗ is introduced
by the rescaled time parameter t given by (47). Using the fact that t 	→ λ∗ is decreasing (see
Fig. 12), we deduce immediately that λ∗ decreases when ε becomes smaller. This result is
confirmed in Fig. 13(b).

Finally, in Fig. 14 we review the size effect computed by the semi-analytical approach
and the asymptotic solution. The asymptotic solution (89) predicts relatively well the ε-
dependence of the bifurcation time and the optimal wave number.

5 Conclusion and Perspectives

In this work the elastic-gradient damage evolution problem of a cylinder under torsion is
successfully analyzed using two approaches. In the first approach, the fundamental branch
and the its subsequent bifurcation are solved using analytical and numerical methods, where
the results obtained are valid for arbitrary values of the internal length. In the second asymp-
totic approach, we assume that the length scale ε = �/R between the material internal length
� and the cylinder radius R is small. It is found that the simulation results obtained by the
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Fig. 15 (a) Bifurcated damage
solution for tb < t < tr; (b) final
fracture pattern at tr for
�/R = 0.05

semi-analytical (or analytical-numerical) approach can be formally justified by the asymp-
totic methods.

One of the main contribution of this work is the application of such boundary layer
method for the study of gradient-damage models. The compatibility between the rescaled
spatial and temporal variables is formally proved in Proposition 1. The orders of magnitude
of the bifurcated solutions with respect to the small parameter ε are also carefully analyzed
in Proposition 2. It is shown that the axisymmetric damage evolution and the bifurcation are
governed by two universal functions independent of the small parameter. The ε-dependence
of the solutions can be explained largely by the introduced spatial and temporal rescaling.

1. The first universal function as illustrated in Fig. 10 governs the axisymmetric damage,
and in particular its thickness evolution.

2. The second as shown in Fig. 12 gives a universal temporal evolution of the optimal
Rayleigh quotient, which governs bifurcation from the fundamental branch.

The size effects of bifurcation formally derived in (89) and illustrated in Fig. 14 constitute
the main results of this paper. Similar to the unidimensional problem as well as the 2d
thermal shock problem, bifurcation is more likely to produce earlier for smaller values of
the internal length.

In this paper, we focused on the loss of uniqueness of the fundamental branch charac-
terized by the asymmetric damage solution. However, a more complete analysis should also
involve a stability study of the bifurcated solutions. Furthermore, subsequent bifurcations
may produce since it is not clear that the bifurcated damage pattern as presented in Fig. 7(b)
may eventually evolve smoothly into fully-established cracks. Our numerical simulations
not reported in this paper actually suggest that the bifurcated solution analyzed in this paper
is stable for a finite time, see Fig. 15(a), during which the damage field is indeed periodic
and agrees well with our semi-analytical and asymptotic analyses. However afterwards a
second bifurcation, more abrupt than the previous one, takes place and leads to the final
fracture of the cylinder, see Fig. 15(b). The numerical results will be reported in another
paper in which this second bifurcation will be analyzed.

The current study is carried out using a particular set of damage constitutive functions
(14). This is in general a preferred choice compared to other constitutive laws in which the
elastic domain is absent. Future work could be devoted to other strongly-brittle gradient-
damage materials since bifurcation behaviors could be different.

The bifurcation analysis and the boundary layer method could also be applied for three-
dimensional gradient-damage problems. The physical role played by the internal length as
well as the size-effects in damage evolution can thus be investigated analytically beyond the
usual uni- or two-dimensional settings. As mentioned in the introduction, mixed mode I and
III loading can also be considered in the future. We may hope that the experimentally ob-
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served echelon cracks may correspond in fact to a bifurcation mode similar to that observed
in Fig. 7(b).
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Appendix. Numerical Minimization of the Rayleigh Quotient

The generalized symmetric eigenvalue problem defined by (44) and the subsequent mini-
mization problem of the Rayleigh quotient (42) are solved numerically. Standard P1 finite
elements are used to discretize the functions (A,C) in the interval [0,R]. After discretiza-
tion the eigenvalue problem (44) becomes

Kkxk = λkMxk , (90)

where

– The matrices Kk and M correspond to the discrete quadratic forms A and B;
– The eigenvector xk �= 0 regroups the nodal values of the functions (Ak,Ck);
– The smallest eigenvalue λk is a finite-element approximation of the continuous one.

In this paper spatial discretization is performed with the FEniCS framework [19]. A specific
conjugate gradient procedure described in [14] implemented in the library SLEPc [33] is
applied to solve the discrete eigenvalue problem (90).

The subsequent minimization problem (45) with respect to the wave number k is per-
formed through direct evaluations of the Rayleigh quotient λk for k ∈K where K is a subset
of N∗ which is supposed to contain the minimum wave number. The minimization procedure
of the Rayleigh quotient is summarized in Algorithm 1.

Algorithm 1 Minimizing the Rayleigh quotient (42) at a given instant t > tc

1: Given a heuristic set K ⊂N
∗ containing the minimizing wave number k∗

2: for the wave number k ∈K do

3: Solve the eigenvalue problem (90) for (Ak,Ck)

4: Evaluate the corresponding Rayleigh quotient λk = R(k,Ak,Ck)

5: end for

6: Find the optimal Rayleigh quotient λ∗ = λk∗ and the minimizing k∗ through λ∗ = min
k∈K

λk
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The next objective would be to find the bifurcation time t∗ at which the optimal Rayleigh
quotient reaches 1. Remark that the above Algorithm 1 materializes a scalar function t 	→ λ∗
defined for t > tc. A classical root-finding method is thus applied to find the corresponding
instant t∗ when λ∗ = 1.
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