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Abstract

In this paper, our goal is to compare different recent time-frequency (TF) ap-
proaches to retrieve the modes of multicomponent signals (MCSs). While it is
acknowledged that the synchrosqueezing transform (SST) improves the read-
ability of the time-frequency representation (TFR) of the modes of MCSs, and
that SST-based demodulation (DSST) is more efficient than SST itself for mode
retrieval (MR), it is unclear whether DSST outperforms downsampled short-
time Fourier transform (STFT) in that matter. The goal of the present pa-
per is to answer this question and to propose a variant of DSST that reduces
mode-mixing. The focus is put on the sensitivity of the different techniques to
frequency modulation for the modes and frequency resolution.
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1. Introduction

The last few years have witnessed an upsurge of interest from the signal
processing community over MCSs, defined as the superimposition of amplitude
and frequency modes. Indeed, these possess the ability to accurately represent
non-stationary signals commonly encountered in practical non-linear systems
as, for instance in pathology diagnosis [1, 2], structural stability [3, 4] or physi-
ology [5]. To analyze such signals, linear TFRs such as the continuous wavelet
transform or STFT have attracted overwhelming attention. The effectiveness
of these transforms is however constrained by the choice of an analysis window
which can never be ideal due to Heisenberg uncertainty principle. To circumvent
this issue, reassignment methods were introduced in [6] and further developed in
[7], undeniably improving the readability of the TFRs they are based on. But
since MR is no longer possible from the reassigned transforms, to cope with this
issue a variant called synchrosqueezing transform (SST) was introduced. Ini-
tially developed in the wavelet context [8] and then extended to STFT [9], SST
allows for accurate reconstruction of slightly modulated modes. To deal with
MCSs containing modes with non-negligible frequency modulation, an extension
of SST based on a linear chirp approximation was proposed in [10, 11] and then
a generalization to modes with fast oscillating phase was introduced in [12].
Besides, SST can be used to build a demodulation algorithm, called DSST, that
outperforms SST for MR. It was first introduced in [13] and further improved
in [14, 15]. Alternative approaches were also developed formulating MR either
as a convex optimization problem [16], or by performing it the empirical mode
decomposition [17], the empirical wavelet transform [18], or variational mode
decompositions [19]. These techniques share the property that they extract
band-limited modes, and are in that matter different from the above mentioned
TF techniques.

While SSTs are very efficient to localize the information in the TF plane, the
benefit of using DSST rather than STFT for MR is still unclear. Indeed, as ex-
plained in [20], the same quality of MR can be attained with time-downsampled
STFT as with DSST using much less TF coefficients. Nevertheless, the conclu-
sions in [20] do not reflect the recent advances in the designing of DSST [14, 15].
Our goal in this paper is therefore to clearly state in which circumstances DSST
offers better MR performance than downsampled STFT, of which we propose
a variant limiting mode mixing. In particular, we will focus on the behavior of
the above mentioned techniques when the frequency modulation of the modes
and the frequency resolution vary.

The layout of the paper is as follows: in Section 2, we recall basic definitions
and notations that we use throughout the paper. Then we briefly recall, in
Section 3, how to perform MR using DSST and downsampled STFT. Finally, we
conclude the paper by comparing the different approaches in Section 4, clearly
stating whether reassigning STFT is interesting for MR.
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2. Definitions and Notations

2.1. Short-Time Fourier Transform

The STFT of f ∈ L1(R) is defined by (g being a real window in L∞(R)):

V gf (t, ξ) =
∫
R
f(τ)g(τ − t)e−2iπξ(τ−t)dτ =

∫
R
f(t+ τ)g(τ)e−2iπξτdτ. (1)

When f is with finite length L corresponding to samples f(nTL )n=0,··· ,L−1, and
g supported on [−MT

L , MT
L ] with M < L/2, one has:

V gf (mT
L
,
kL

N0T
) ≈ Vg

f [m, k] := T

L

M∑
n=−M

f

(
(m+ n)T

L

)
g

(
nT

L

)
e−i2π

nk
N0 , (2)

for some N0 ≥ 2M+1. Denoting f [n] = f
(
nT
L

)
and g[n] = g

(
nT
L

)
, one obtains:

Vg
f [m, k] = T

L

2M∑
n=0

f [m+ n−M ]g[n−M ]e−i2π
k(n−M)
N0 , (3)

the downsampled STFT by a factor of R corresponding to Vg
f [mR, k].

2.2. Definition of MCS

In this paper, we study MCSs defined as a superimposition of modes:

f(t) =
P∑
p=1

fp(t), with fp(t) = Ap(t)ei2πφp(t), (4)

where Ap(t) and φ′p(t) are respectively the instantaneous amplitude (IA) and
frequency (IF) of fp satisfying Ap(t) > 0, φ′p(t) > 0 and φ′p+1(t) > φ′p(t) for all
t.Ap is assumed to be differentiable with |A′p(t)| small compared to φ′p(t), and
the modes are separated with resolution ∆:

∀t, ∀1 ≤ p ≤ P − 1, φ′p+1(t)− φ′p(t) > 2∆. (5)

2.3. Window Determination Based on Rényi Entropy

To compute the STFT of MCSs, a crucial aspect is the determination of
an appropriate window, which is often done by considering the minimal Rényi
entropy [21, 22, 13, 20]. For the sake of simplicity, we stick to this approach
though we are aware of recent developments on the computation of STFT and
wavelet transforms based on adaptive window determination [23][24].
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3. An overview of MR Techniques Based on STFT

3.1. STFT-Based Synchrosqueezing Transforms
The STFT-based synchrosqueezing transform (SST) is based on the definition

of the local instantaneous frequency (IF) ω̂f , wherever V gf (t, ξ) 6= 0 [7]:

ω̂f (t, ξ) =
∂ arg V gf (t, ξ)

∂t
= <

{
1

2iπ
∂tV

g
f (t, ξ)

V gf (t, ξ)

}
, (6)

and consists of moving any coefficient V gf (t, ξ) with magnitude larger than γ to
location (t, ω̂f (t, ξ)):

T γf (t, ω) =
∫
|V g
f

(t,ξ)|>γ
V gf (t, ξ)δ(ω − ω̂f (t, ξ))dξ. (7)

One can define a discrete-time version of ω̂f (t, ξ) and then of T γf (t, ω), that
we denote by Tγ

f . The applicability of SST being restricted to MCSs made of
slightly perturbed purely harmonic modes, an extension based on linear chirp
approximation and called second-order STFT-based synchrosqueezing transform
(SST2) [10, 11] was introduced. It uses a more accurate IF estimate than ω̂f

denoted by ω̂[2]
f (t, ξ), the construction of which is detailed in [11], and SST2 is

defined replacing ω̂f (t, ξ) by ω̂[2]
f (t, ξ) in (7), to obtain T γ2,f and its discrete-time

counterpart Tγ
2,f . To handle signals containing more general types of modes

with non-negligible φ(k)(t) for k ≥ 3, new modulation operators based on higher
approximations of both amplitude and phase were defined [12], resulting in new
IF estimates ω̂[N ]

f (t, ξ) and the N th-order SST (SSTN) is defined by replacing
ω̂f (t, ξ) by ω̂[N ]

f (t, ξ) in (7) to obtain T γN,f (t, ω) and its discrete-time counterpart
Tγ
N,f .

3.2. Ridge Detection
A pivotal step in MR techniques based on TFR is ridge detection (RD), for

which, in this paper, we adopt the same approach as in [8, 7], and originally
proposed in [25]. The goal is to compute an estimate ϕp(t) of φ′p(t) by extracting
on the TFR a ridge associated with mode p. This is carried out using a peeling
algorithm at the end of which a set of ridges (ϕp)p=1,··· ,P is extracted (for details
see for instance [26]).

3.3. Demodulation Algorithm Based on SSTN for Mode Reconstruction
We here recall the concept of demodulation based on SSTN, denoted by

DSSTN, first introduced in the SST2 context [13], further improved in [14] and
extended to SSTN in [15]. The basic idea is to replace the IF estimate ϕp

given by RD (recalled in Section 3.2) by either ω̂f (t, ϕp(t)), ω̂[2]
f (t, ϕp(t)), or

ω̂
[N ]
f (t, ϕp(t)), when either SST, SST2, or SSTN are used. One then considers

Algorithm 1, proposed in [13] to recover the modes.
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Algorithm 1 Demodulation based on SSTN (DSSTN)

Input: Constant frequency ψ0, (ϕ̃p(t) = ω̂
[N ]
f (t, ϕp(t)))p=1,··· ,P .

for p = 1 to P do
1. Compute fD,p(t) = f(t)e−i2π(

∫ t
0
ϕ̃p(x)dx−ψ0t).

2. From T γfD,p , extract ϕD,p ∈ [ψ0−∆, ψ0 +∆] (ridge of pth mode of fD,p).
3. Retrieve pth mode of fD,p and inverse demodulation to retrieve fp:

fp(t) ≈
(∫
|ω−ϕD,p(t)|<dIF T

γ
fD,p

(t, ω)dω
)
e
i2π(
∫ t

0
ϕ̃p(x)dx−ψ0t),

where dIF is a parameter compensating for errors due to IF estimation.

3.4. Mode Reconstruction From Downsampled STFT

Mode fp in [20] is retrieved using two functions η−p and η+
p such that the

information relative to fp at time indexed by mR is mostly contained in interval
Jp[mR] = [η−p [mR], η+

p [mR]]. The reconstruction formula then follows:

fp[n] ≈ L

T

∑
m∈Z

∑
k∈Jp[mR]

Vg
f [mR mod L, k]g[n−mR] e

i2π k(n−mR)
N0

N0∑
m∈Z

g[n−mR]2 , (8)

where mod stands for modulo, provided
∑
m∈Z g[n − mR]2 6= 0 for all n.

To define η−p and η+
p , a first strategy [20] is to consider a noisy version of f ,

f̃ [n] = f [n] + σΦ[n], with Φ[n] a unit variance, zero mean, Gaussian noise and
then put:

η−p [mR] := argmax
k

{
k < ϕp[mR], |Vg

f̃
[mR, k]| < 3σ‖g‖2

}
η+
p [mR] := argmin

k

{
k > ϕp[mR], |Vg

f̃
[mR, k]| < 3σ‖g‖2

}
,

(9)

the threshold 3σ‖g‖2 being set remarking that |V
g
σΦ[mR,k]|2

σ2‖g‖22
is χ2 distributed

with 2 degrees of freedom [20] (probability of false alarm lesser than 1%). As
this approach results in a too large interval Jp[mR] when the noise level is
low and when fp and fp+1 slightly interfere in the TF plane at some time index
mR (meaning the separation condition (5) is not exactly satisfied), mode-mixing
occurs in such situations (|Vg

f̃
[mR, k]| remains larger than 3σ‖g‖2 when k varies

in [ϕp[mR], ϕp+1[mR]]). To overcome this limitation, we slightly modify (9),
replacing Jp[mR] by J1,p[mR] := [η−1,p[mR], η+

1,p[mR]] with:

η−1,p[mR] := max
{
η−p [mR], ϕp[mR]− b∆N0T

L
e
}

η+
1,p[mR] := min

{
η+
p [mR], ϕp[mR] + b∆N0T

L
e
}
,

(10)
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where bXe denotes the nearest integer to real X. By modifying definition (9)
into (10), one imposes that [η−1,p[mR], η+

1,p[mR]] ⊂ [ϕp[mR]−b∆N0T
L e, ϕp[mR]+

b∆N0T
L e], so that mode-mixing due to errors in the computation of Jp should be

overcome. In what follows, when performing MR comparisons in Section 4, the
method based on (9) (resp. (10)) is denoted by STFT -M1 (resp. STFT -M2).

4. Comparison of MR Techniques

In this section, our goal is to compare the quality of MR obtained by us-
ing either DSSTN or downsampled STFT. We first investigate the influence of
frequency modulation of the modes on MR, in Section 4.1, and then of the fre-
quency resolution as well as the number of TF coefficients used for MR in each
case, in Section 4.2 . To study all these aspects, we consider three different types
of signals whose STFT moduli are displayed in Fig. 1. The first one is a signal
made of a linear and a quadratic chirp (Fig. 1 (a)), the second is composed of
two modes with cosine phase (Fig. 1 (b)), while the third one is a mode with
a highly oscillatory cosine phase. The MR performance are evaluated through
SNRoutput = 20 log10

(
‖fp‖2 / ‖fp,r − fp‖2

)
, where fp,r is the reconstructed pth

mode and ‖.‖2 is the l2 norm. Though somehow arbitrary, the choice for test
signals we make is related to the different aspects we would like to put forward,
in particular how the studied methods cope with close modes, when the fre-
quency modulation is low, typically as in the signal of Fig. 1 (a), or higher as
in Fig. 1 (b). The example of Fig. 1 (c) finally enables to test how the methods
deal with frequency modulation only, mode separation being not an issue in
that case.
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Figure 1: STFT modulus of (a): a linear and a quadratic chirp; (b): two modes with cosine
phase; (c): a signal with a highly oscillating cosine phase.

4.1. Robustess to Frequency Modulation of MR Techniques

First of all, we explore the robustness to frequency modulation of MR either
based on DSSTN (for N = 2, 3 or 4), STFT -M1 or STFT -M2 (for these last
two techniques the downsampling parameter R is specified in each simulation).
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Figure 2: (a): MR results for the signal displayed in Fig. 1 (a) when N0 = L, using either
DSST2, STFT -M1 when the input SNR is 0 dB; (b): Same as (a) except the input SNR is 10
dB; (c): Same as (a) except the input SNR is 30 dB and the results obtained with STFT -M2
are also displayed (and only mode f1 is considered); (d): Same as (a) but for the signal of
Fig. 1 (b); (e): Same as (d) except the input SNR is 10 dB; (f): Same as (d) except the input
SNR is 30 dB and the results obtained with STFT -M2 are also displayed; (g): Same as (a)
but for the signal of Fig. 1 (c) (DSST3 and DSST4 are also tested); (h): Same as (g) except
the input SNR is 10 dB; (e): Same as (g) except the input SNR is 30 dB.

In Fig. 2, we depict MR results, when the noise level varies and when N0 = L
in STFT computations, corresponding to the output SNR with respect to the
parameter dIF mentioned in Algorithm 1. As neither STFT -M1 nor STFT -M2
depend on dIF , with such methods the output SNR is constant. The first row
of Fig. 2 corresponds to MR results for the signal of Fig. 1 (a). For that
signal, since DSST3 and DSST4 behave similarly to DSST2, only the results
related to the latter are reported. We first remark that STFT -M1 is only
slightly sensitive to the downsampling factor R, when the input SNR equals
0 or 10 dB (similar results are obtained with STFT -M2). Very close results
are obtained with DSST2 by choosing a large enough dIF . At low noise level
(30 dB, see Fig. 2 (c)), the interval Jp[mR] used in STFT -M1 is too large for
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some time instants, causing mode-mixing and resulting in inaccurate MR. On
the contrary, the variant we propose, STFT -M2, behaves nicely, is insensitive
to R and also leads to better results than DSST2. For STFT -M1 and STFT -
M2, since the MR results for the two modes are similar, we only report those
related to f1. When stronger frequency modulations are considered as in the
signal of in Fig. 1 (b), the corresponding MR results on the second row of Fig.
2 are also very instructive. At 0 and 10 dB, MR performance using STFT -
M1 or STFT -M2 are still very similar, so we only display the results with the
former technique. This time, STFT -M1 is very sensitive to the choice of R for
mode f2, containing the strongest frequency modulation, and, in such a case,
R should be chosen relatively small to preserve the quality of MR. As for the
first signal, one remarks that DSST2 leads to similar results as those obtained
with STFT -M1 computed with an appropriate R. When the input SNR equals
30 dB, comparing the results corresponding to STFT -M1 and STFT -M2, the
latter appears to deal much better with mode-mixing, provided R is still chosen
sufficiently small. But even in that case, MR results for f1 are better than those
for f2 when using STFT -M2 while the quality of reconstruction with DSST2
is the same for the two modes, meaning the latter technique is less sensitive to
frequency modulation. Let us finally take a look at MR results for the mode
displayed in Fig. 1 (c). Since there is only one mode to consider STFT -M2 is
useless here. We notice that STFT -M1 leads to satisfactory results whatever
the noise level when R is small enough, the sensitivity to R diminishing with
the noise level. When using DSST3 or DSST4 instead of DSST2, MR results
are improved but only at low noise level suggesting a sensitivity of higher order
reassignment operators to noise level.

4.2. Sensitivity to Frequency Resolution of MR Techniques

To study the sensitivity of MR techniques to frequency resolution, we set N0
to L/4 and redo the above computations to generate Fig. 3. By using a coarser
frequency resolution, a sparser TFR of signals can be achieved, and MR can be
performed with fewer TF coefficients for all the tested methods. When using
DSSTN, it means that better MR results are achieved for a given dIF . More
precisely, since we have divided the frequency resolution by a factor of 4, to get
results similar to those of Fig. 2, dIF should be four times smaller than in that
case (this can be actually checked by comparing the results related to DSST2
for dIF = 4 or dIF = 1 for Fig. 2 and 3 respectively). It is also worth noting
that DSST2 is sensitive to dIF when the noise level varies: this could have been
checked at larger frequency resolution considering larger values for dIF . Now
regarding STFT -M1 and STFT -M2, comparing the results on the first rows of
Fig. 2 and Fig. 3, we notice that their behaviors are very similar when the
frequency resolution varies, but MR is carried out with fewer coefficients when
the frequency resolution decreases. In all the three test cases, as the decrease
in frequency resolution leads to a sparser TFR, fewer coefficients are needed
for MR, inducing better performance of DSST2 with respect to parameter dIF
(and also of DSSTN for highly frequency modulated modes). On the contrary,
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Figure 3: (a): MR results for the signal of Fig. 1 (a) when N0 = L/4, using either DSST2 or
STFT -M1 when the input SNR is 0 dB; (b): Same as (a) except the input SNR is 10 dB; (c):
Same as (a) except the input SNR is 30 dB and we consider only mode f1 (we also display
the results for STFT -M2); (d): Same as (a) but for the signal of Fig. 1 (b) when the input
SNR is 0 dB; (e): Same as (d) except the input SNR is 10 dB; (f): Same as (d) except the
input SNR is 30 dB (we also display the results for STFT -M2);; (g): Same as (a) but for the
signal of Fig. 1 (c) using either DSST2, DSST3, DSST4, or STFT -M1, when the input SNR
is 0 dB; (h): Same as (g) except the input SNR is 10 dB; (e): Same as (g) except the input
SNR is 30 dB.

the quality of MR associated with STFT -M1 or STFT -M2 is very similar to the
case N0 = L, but fewer coefficients are involved in the reconstruction process.
To quantify this, we compute the number of coefficients used in MR in the cases
leading to the best results in the previous simulations. We remark that the
number of coefficients used by DSST2 at each time instant is Ndemod(dIF ) =
P (2dIF+1), while those used at time indexed bymR is

∑P
p=1 #Jp[mR] (in which

#X is the cardinal of X) for STFT -M1 or STFT -M2. So the total number of
coefficients used divided by L reads: NSTFT (R) =

∑
m

∑P
p=1 #Jp[mR]/L. We

thus compare Ndemod and NSTFT , when N0 = L/4 , R and dIF being set to
obtain similar MR quality with DSST2 and STFT -M2. The results depicted
in Table 1 tell us that in any case, to obtain MR results of similar quality with
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Fig. 1 (a)
SNR = 0 dB
SNR = 10 dB
SNR = 30 dB

(NSTFT (16), Ndemod(3)) = (0.91, 14)
(NSTFT (16), Ndemod(4)) = (1.3, 18)
(NSTFT (16), Ndemod(5)) = (1.8, 22)

Fig. 1 (b)
SNR = 0 dB
SNR = 10 dB
SNR = 30 dB

(NSTFT (16), Ndemod(3)) = (1.19, 14)
(NSTFT (16), Ndemod(5)) = (1.8, 22)
(NSTFT (16), Ndemod(5)) = (2.10, 22)

Fig. 1 (c)
SNR = 0 dB
SNR = 10 dB
SNR = 30 dB

(NSTFT (8), Ndemod(5)) = (1, 11)
(NSTFT (8), Ndemod(5)) = (1.93, 11)
(NSTFT (8), Ndemod(5)) = (2.12, 11)

Table 1: First row: proportion of coefficients used in STFT -M2 for MR given by NST F T (R)
and those involved in DSST 2, given by Ndemod(d), for the signal of Fig. 1 (a); second row:
same as in the first row except the studied signal is the one given in Fig. 1 (b); third row:
same as in the first row except the studied signal is the one given in Fig. 1 (c) and STFT -M1
is used instead of STFT -M2. N0 = L/4 in all cases.

DSST2 and with STFT -M2, the former involves much more TF coefficients
than the latter.

5. Conclusion

In this paper, our goal was to compare the reconstruction of the modes of
multicomponent signals using techniques based either on downsampled STFT or
on synchrosqueezing-based demodulation, of which we have introduced a variant
avoiding mode-mixing. We have showed that with the former type of technique
good reconstruction results imply a relatively small downsampling factor when
dealing with frequency modulated signals and that a low frequency resolution
improved the quality of reconstruction for the latter type of technique. We have
finally reached the conclusion that, in most cases, downsampled STFT behaves
similarly to synchrosqueezing-based demodulation for mode reconstruction, pro-
vided the parameters of the two techniques are correctly tuned, but the former
type of techniques uses much fewer TF coefficients for mode reconstruction,
therefore reassigning the STFT does not seem beneficial for that purpose.
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