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In this paper, our goal is to compare different recent time-frequency (TF) approaches to retrieve the modes of multicomponent signals (MCSs). While it is acknowledged that the synchrosqueezing transform (SST) improves the readability of the time-frequency representation (TFR) of the modes of MCSs, and that SST-based demodulation (DSST) is more efficient than SST itself for mode retrieval (MR), it is unclear whether DSST outperforms downsampled shorttime Fourier transform (STFT) in that matter. The goal of the present paper is to answer this question and to propose a variant of DSST that reduces mode-mixing. The focus is put on the sensitivity of the different techniques to frequency modulation for the modes and frequency resolution.

Introduction

The last few years have witnessed an upsurge of interest from the signal processing community over MCSs, defined as the superimposition of amplitude and frequency modes. Indeed, these possess the ability to accurately represent non-stationary signals commonly encountered in practical non-linear systems as, for instance in pathology diagnosis [START_REF] Acharya | Heart rate variability[END_REF][START_REF] Malik | Dynamic electrocardiography[END_REF], structural stability [START_REF] Costa | Noise and poise: Enhancement of postural complexity in the elderly with a stochastic-resonance-based therapy[END_REF][START_REF] Cummings | Travelling waves in the occurrence of dengue haemorrhagic fever in Thailand[END_REF] or physiology [START_REF] Herry | Heart beat classification from single-lead ecg using the synchrosqueezing transform[END_REF]. To analyze such signals, linear TFRs such as the continuous wavelet transform or STFT have attracted overwhelming attention. The effectiveness of these transforms is however constrained by the choice of an analysis window which can never be ideal due to Heisenberg uncertainty principle. To circumvent this issue, reassignment methods were introduced in [START_REF] Kodera | A new method for the numerical analysis of non-stationary signals[END_REF] and further developed in [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF], undeniably improving the readability of the TFRs they are based on. But since MR is no longer possible from the reassigned transforms, to cope with this issue a variant called synchrosqueezing transform (SST) was introduced. Initially developed in the wavelet context [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[END_REF] and then extended to STFT [START_REF] Oberlin | The Fourier-based synchrosqueezing transform[END_REF], SST allows for accurate reconstruction of slightly modulated modes. To deal with MCSs containing modes with non-negligible frequency modulation, an extension of SST based on a linear chirp approximation was proposed in [START_REF]Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF][START_REF] Behera | Theoretical analysis of the secondorder synchrosqueezing transform[END_REF] and then a generalization to modes with fast oscillating phase was introduced in [START_REF] Pham | High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal[END_REF]. Besides, SST can be used to build a demodulation algorithm, called DSST, that outperforms SST for MR. It was first introduced in [START_REF] Meignen | On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[END_REF] and further improved in [START_REF] Meignen | Synchrosqueezing transforms: From low-to high-frequency modulations and perspectives[END_REF][START_REF] Pham | Demodulation algorithm based on higher order synchrosqueezing[END_REF]. Alternative approaches were also developed formulating MR either as a convex optimization problem [START_REF] Kowalski | Convex optimization approach to signals with fast varying instantaneous frequency[END_REF], or by performing it the empirical mode decomposition [START_REF] Huang | The empirical mode decomposition and the hilbert spectrum for nonlinear and non-stationary time series analysis[END_REF], the empirical wavelet transform [START_REF] Gilles | Empirical wavelet transform[END_REF], or variational mode decompositions [START_REF] Dragomiretskiy | Variational mode decomposition[END_REF]. These techniques share the property that they extract band-limited modes, and are in that matter different from the above mentioned TF techniques.

While SSTs are very efficient to localize the information in the TF plane, the benefit of using DSST rather than STFT for MR is still unclear. Indeed, as explained in [START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time Fourier transform[END_REF], the same quality of MR can be attained with time-downsampled STFT as with DSST using much less TF coefficients. Nevertheless, the conclusions in [START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time Fourier transform[END_REF] do not reflect the recent advances in the designing of DSST [START_REF] Meignen | Synchrosqueezing transforms: From low-to high-frequency modulations and perspectives[END_REF][START_REF] Pham | Demodulation algorithm based on higher order synchrosqueezing[END_REF]. Our goal in this paper is therefore to clearly state in which circumstances DSST offers better MR performance than downsampled STFT, of which we propose a variant limiting mode mixing. In particular, we will focus on the behavior of the above mentioned techniques when the frequency modulation of the modes and the frequency resolution vary.

The layout of the paper is as follows: in Section 2, we recall basic definitions and notations that we use throughout the paper. Then we briefly recall, in Section 3, how to perform MR using DSST and downsampled STFT. Finally, we conclude the paper by comparing the different approaches in Section 4, clearly stating whether reassigning STFT is interesting for MR.

Definitions and Notations

Short-Time Fourier Transform

The STFT of f ∈ L 1 (R) is defined by (g being a real window in L ∞ (R)):

V g f (t, ξ) = R f (τ )g(τ -t)e -2iπξ(τ -t) dτ = R f (t + τ )g(τ )e -2iπξτ dτ. ( 1 
)
When f is with finite length L corresponding to samples f

( nT L ) n=0,••• ,L-1 , and g supported on [-M T L , M T L ] with M < L/2
, one has:

V g f ( mT L , kL N 0 T ) ≈ V g f [m, k] := T L M n=-M f (m + n)T L g nT L e -i2π nk N 0 , ( 2 
)
for some

N 0 ≥ 2M + 1. Denoting f [n] = f nT L and g[n] = g nT L , one obtains: V g f [m, k] = T L 2M n=0 f [m + n -M ]g[n -M ]e -i2π k(n-M ) N 0 , (3) 
the downsampled STFT by a factor of R corresponding to

V g f [mR, k].

Definition of MCS

In this paper, we study MCSs defined as a superimposition of modes:

f (t) = P p=1 f p (t), with f p (t) = A p (t)e i2πφp(t) , ( 4 
)
where A p (t) and φ p (t) are respectively the instantaneous amplitude (IA) and frequency (IF) of f p satisfying A p (t) > 0, φ p (t) > 0 and φ p+1 (t) > φ p (t) for all t.A p is assumed to be differentiable with |A p (t)| small compared to φ p (t), and the modes are separated with resolution ∆:

∀t, ∀1 ≤ p ≤ P -1, φ p+1 (t) -φ p (t) > 2∆.
(5)

Window Determination Based on Rényi Entropy

To compute the STFT of MCSs, a crucial aspect is the determination of an appropriate window, which is often done by considering the minimal Rényi entropy [START_REF] Stanković | A measure of some time-frequency distributions concentration[END_REF][START_REF] Baraniuk | Measuring time-frequency information content using the Rényi entropies[END_REF][START_REF] Meignen | On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[END_REF][START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time Fourier transform[END_REF]. For the sake of simplicity, we stick to this approach though we are aware of recent developments on the computation of STFT and wavelet transforms based on adaptive window determination [START_REF] Li | Adaptive short-time Fourier transform and synchrosqueezing transform for non-stationary signal separation[END_REF] [START_REF] Li | Adaptive synchrosqueezing transform with a time-varying parameter for non-stationary signal separation[END_REF].

An overview of MR Techniques Based on STFT

STFT-Based Synchrosqueezing Transforms

The STFT-based synchrosqueezing transform (SST) is based on the definition of the local instantaneous frequency (IF) ω f , wherever V g f (t, ξ) = 0 [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF]:

ω f (t, ξ) = ∂ arg V g f (t, ξ) ∂t = 1 2iπ ∂ t V g f (t, ξ) V g f (t, ξ) , ( 6 
)
and consists of moving any coefficient V g f (t, ξ) with magnitude larger than γ to location (t, ω f (t, ξ)):

T γ f (t, ω) = |V g f (t,ξ)|>γ V g f (t, ξ)δ(ω -ω f (t, ξ))dξ. ( 7 
)
One can define a discrete-time version of ω f (t, ξ) and then of T γ f (t, ω), that we denote by T γ f . The applicability of SST being restricted to MCSs made of slightly perturbed purely harmonic modes, an extension based on linear chirp approximation and called second-order STFT-based synchrosqueezing transform (SST2) [START_REF]Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF][START_REF] Behera | Theoretical analysis of the secondorder synchrosqueezing transform[END_REF] was introduced. It uses a more accurate IF estimate than ω f denoted by ω [START_REF] Malik | Dynamic electrocardiography[END_REF] f (t, ξ), the construction of which is detailed in [START_REF] Behera | Theoretical analysis of the secondorder synchrosqueezing transform[END_REF], and SST2 is defined replacing ω f (t, ξ) by ω [START_REF] Malik | Dynamic electrocardiography[END_REF] f (t, ξ) in [START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF], to obtain T γ 2,f and its discrete-time counterpart T γ 2,f . To handle signals containing more general types of modes with non-negligible φ (k) (t) for k ≥ 3, new modulation operators based on higher approximations of both amplitude and phase were defined [START_REF] Pham | High-order synchrosqueezing transform for multicomponent signals analysis-with an application to gravitational-wave signal[END_REF], resulting in new IF estimates ω f (t, ξ) in ( 7) to obtain T γ N,f (t, ω) and its discrete-time counterpart T γ N,f .

Ridge Detection

A pivotal step in MR techniques based on TFR is ridge detection (RD), for which, in this paper, we adopt the same approach as in [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[END_REF][START_REF] Auger | Improving the readability of time-frequency and time-scale representations by the reassignment method[END_REF], and originally proposed in [START_REF] Carmona | Characterization of signals by the ridges of their wavelet transforms[END_REF]. The goal is to compute an estimate ϕ p (t) of φ p (t) by extracting on the TFR a ridge associated with mode p. This is carried out using a peeling algorithm at the end of which a set of ridges (ϕ p ) p=1,••• ,P is extracted (for details see for instance [START_REF] Colominas | Fully adaptive ridge detection based on stft phase information[END_REF]).

Demodulation Algorithm Based on SSTN for Mode Reconstruction

We here recall the concept of demodulation based on SSTN, denoted by DSSTN, first introduced in the SST2 context [START_REF] Meignen | On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[END_REF], further improved in [START_REF] Meignen | Synchrosqueezing transforms: From low-to high-frequency modulations and perspectives[END_REF] and extended to SSTN in [START_REF] Pham | Demodulation algorithm based on higher order synchrosqueezing[END_REF]. The basic idea is to replace the IF estimate ϕ p given by RD (recalled in Section 3.2) by either

ω f (t, ϕ p (t)), ω [2] f (t, ϕ p (t)), or ω [N ]
f (t, ϕ p (t)), when either SST, SST2, or SSTN are used. One then considers Algorithm 1, proposed in [START_REF] Meignen | On demodulation, ridge detection, and synchrosqueezing for multicomponent signals[END_REF] to recover the modes.

Algorithm 1 Demodulation based on SSTN (DSSTN)

Input: Constant frequency ψ 0 , ( φp (t) = ω [N ] f (t, ϕ p (t))) p=1,••• ,P . for p = 1 to P do 1. Compute f D,p (t) = f (t)e -i2π( t 0 φp(x)dx-ψ0t) . 2. From T γ f D,p , extract ϕ D,p ∈ [ψ 0 -∆, ψ 0 +∆] (ridge of p th mode of f D,p ). 3.
Retrieve p th mode of f D,p and inverse demodulation to retrieve f p :

f p (t) ≈ |ω-ϕ D,p (t)|<d IF T γ f D,p (t, ω)dω e i2π( t 0 φp(x)dx-ψ0t) ,
where d IF is a parameter compensating for errors due to IF estimation.

Mode Reconstruction From Downsampled STFT

Mode f p in [START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time Fourier transform[END_REF] is retrieved using two functions η - p and η + p such that the information relative to f p at time indexed by mR is mostly contained in interval

J p [mR] = [η - p [mR], η + p [mR]
]. The reconstruction formula then follows:

f p [n] ≈ L T m∈Z k∈Jp[mR] V g f [mR mod L, k]g[n -mR] e i2π k(n-mR) N 0 N0 m∈Z g[n -mR] 2 , ( 8 
)
where mod stands for modulo, provided m∈Z g[n -mR] 2 = 0 for all n. To define η - p and η + p , a first strategy [START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time Fourier transform[END_REF] is to consider a noisy version of f , f

[n] = f [n] + σΦ[n],
with Φ[n] a unit variance, zero mean, Gaussian noise and then put:

η - p [mR] := argmax k k < ϕ p [mR], |V g f [mR, k]| < 3σ g 2 η + p [mR] := argmin k k > ϕ p [mR], |V g f [mR, k]| < 3σ g 2 , (9) 
the threshold 3σ g 2 being set remarking that

|V g σΦ [mR,k]| 2 σ 2 g 2 2
is χ 2 distributed with 2 degrees of freedom [START_REF] Meignen | Retrieval of the modes of multicomponent signals from downsampled short-time Fourier transform[END_REF] (probability of false alarm lesser than 1%). As this approach results in a too large interval J p [mR] when the noise level is low and when f p and f p+1 slightly interfere in the TF plane at some time index mR (meaning the separation condition ( 5) is not exactly satisfied), mode-mixing occurs in such situations (|V g f [mR, k]| remains larger than 3σ g 2 when k varies in [ϕ p [mR], ϕ p+1 [mR]]). To overcome this limitation, we slightly modify (9), replacing

J p [mR] by J 1,p [mR] := [η - 1,p [mR], η + 1,p [mR]] with: η - 1,p [mR] := max η - p [mR], ϕ p [mR] - ∆N 0 T L η + 1,p [mR] := min η + p [mR], ϕ p [mR] + ∆N 0 T L , ( 10 
)
where X denotes the nearest integer to real X. By modifying definition ( 9) into [START_REF]Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF], one imposes that [η -

1,p [mR], η + 1,p [mR]] ⊂ [ϕ p [mR] -∆N0T L , ϕ p [mR] + ∆N0T L
], so that mode-mixing due to errors in the computation of J p should be overcome. In what follows, when performing MR comparisons in Section 4, the method based on (9) (resp. [START_REF]Second-order synchrosqueezing transform or invertible reassignment? Towards ideal time-frequency representations[END_REF]) is denoted by STFT -M 1 (resp. STFT -M 2 ).

Comparison of MR Techniques

In this section, our goal is to compare the quality of MR obtained by using either DSSTN or downsampled STFT. We first investigate the influence of frequency modulation of the modes on MR, in Section 4.1, and then of the frequency resolution as well as the number of TF coefficients used for MR in each case, in Section 4.2 . To study all these aspects, we consider three different types of signals whose STFT moduli are displayed in Fig. 1. The first one is a signal made of a linear and a quadratic chirp (Fig. 1 (a)), the second is composed of two modes with cosine phase (Fig. 1 (b)), while the third one is a mode with a highly oscillatory cosine phase. The MR performance are evaluated through SNR output = 20 log 10 f p 2 / f p,r -f p 2 , where f p,r is the reconstructed p th mode and . 2 is the l 2 norm. Though somehow arbitrary, the choice for test signals we make is related to the different aspects we would like to put forward, in particular how the studied methods cope with close modes, when the frequency modulation is low, typically as in the signal of Fig. 1 (a), or higher as in Fig. 1 (b). The example of Fig. 1 (c) finally enables to test how the methods deal with frequency modulation only, mode separation being not an issue in that case. 

Robustess to Frequency Modulation of MR Techniques

First of all, we explore the robustness to frequency modulation of MR either based on DSSTN (for N = 2, 3 or 4), STFT -M 1 or STFT -M 2 (for these last two techniques the downsampling parameter R is specified in each simulation). In Fig. 2, we depict MR results, when the noise level varies and when N 0 = L in STFT computations, corresponding to the output SNR with respect to the parameter d IF mentioned in Algorithm 1. As neither STFT -M 1 nor STFT -M 2 depend on d IF , with such methods the output SNR is constant. The first row of Fig. 2 corresponds to MR results for the signal of Fig. 1 (a). For that signal, since DSST3 and DSST4 behave similarly to DSST2, only the results related to the latter are reported. We first remark that STFT -M 1 is only slightly sensitive to the downsampling factor R, when the input SNR equals 0 or 10 dB (similar results are obtained with STFT -M 2 ). Very close results are obtained with DSST2 by choosing a large enough d IF . At low noise level (30 dB, see Fig. 2 (c)), the interval J p [mR] used in STFT -M 1 is too large for some time instants, causing mode-mixing and resulting in inaccurate MR. On the contrary, the variant we propose, STFT -M 2 , behaves nicely, is insensitive to R and also leads to better results than DSST2. For STFT -M 1 and STFT -M 2 , since the MR results for the two modes are similar, we only report those related to f 1 . When stronger frequency modulations are considered as in the signal of in Fig. 1 (b), the corresponding MR results on the second row of Fig. 2 are also very instructive. At 0 and 10 dB, MR performance using STFT -M 1 or STFT -M 2 are still very similar, so we only display the results with the former technique. This time, STFT -M 1 is very sensitive to the choice of R for mode f 2 , containing the strongest frequency modulation, and, in such a case, R should be chosen relatively small to preserve the quality of MR. As for the first signal, one remarks that DSST2 leads to similar results as those obtained with STFT -M 1 computed with an appropriate R. When the input SNR equals 30 dB, comparing the results corresponding to STFT -M 1 and STFT -M 2 , the latter appears to deal much better with mode-mixing, provided R is still chosen sufficiently small. But even in that case, MR results for f 1 are better than those for f 2 when using STFT -M 2 while the quality of reconstruction with DSST2 is the same for the two modes, meaning the latter technique is less sensitive to frequency modulation. Let us finally take a look at MR results for the mode displayed in Fig. 1 (c). Since there is only one mode to consider STFT -M 2 is useless here. We notice that STFT -M 1 leads to satisfactory results whatever the noise level when R is small enough, the sensitivity to R diminishing with the noise level. When using DSST3 or DSST4 instead of DSST2, MR results are improved but only at low noise level suggesting a sensitivity of higher order reassignment operators to noise level.

Sensitivity to Frequency Resolution of MR Techniques

To study the sensitivity of MR techniques to frequency resolution, we set N 0 to L/4 and redo the above computations to generate Fig. 3. By using a coarser frequency resolution, a sparser TFR of signals can be achieved, and MR can be performed with fewer TF coefficients for all the tested methods. When using DSSTN, it means that better MR results are achieved for a given d IF . More precisely, since we have divided the frequency resolution by a factor of 4, to get results similar to those of Fig. 2, d IF should be four times smaller than in that case (this can be actually checked by comparing the results related to DSST2 for d IF = 4 or d IF = 1 for Fig. 2 and3 respectively). It is also worth noting that DSST2 is sensitive to d IF when the noise level varies: this could have been checked at larger frequency resolution considering larger values for d IF . Now regarding STFT -M 1 and STFT -M 2 , comparing the results on the first rows of Fig. 2 and Fig. 3, we notice that their behaviors are very similar when the frequency resolution varies, but MR is carried out with fewer coefficients when the frequency resolution decreases. In all the three test cases, as the decrease in frequency resolution leads to a sparser TFR, fewer coefficients are needed for MR, inducing better performance of DSST2 with respect to parameter d IF (and also of DSSTN for highly frequency modulated modes). On the contrary, the quality of MR associated with STFT -M 1 or STFT -M 2 is very similar to the case N 0 = L, but fewer coefficients are involved in the reconstruction process.

To quantify this, we compute the number of coefficients used in MR in the cases leading to the best results in the previous simulations. We remark that the number of coefficients used by DSST2 at each time instant is N demod (d IF ) = P (2d IF +1), while those used at time indexed by mR is [START_REF] Daubechies | Synchrosqueezed wavelet transforms: an empirical mode decomposition-like tool[END_REF], N demod (5)) = (2.12, 11)

P p=1 #J p [mR] (in which #X is the cardinal of X) for STFT -M 1 or STFT -M 2 .
Table 1: First row: proportion of coefficients used in STFT -M 2 for MR given by N ST F T (R) and those involved in DSST 2, given by N demod (d), for the signal of Fig. 1 (a); second row: same as in the first row except the studied signal is the one given in Fig. 1 (b); third row: same as in the first row except the studied signal is the one given in Fig. 1 (c) and STFT -M 1 is used instead of STFT -M 2 . N 0 = L/4 in all cases.

DSST2 and with STFT -M 2 , the former involves much more TF coefficients than the latter.

Conclusion

In this paper, our goal was to compare the reconstruction of the modes of multicomponent signals using techniques based either on downsampled STFT or on synchrosqueezing-based demodulation, of which we have introduced a variant avoiding mode-mixing. We have showed that with the former type of technique good reconstruction results imply a relatively small downsampling factor when dealing with frequency modulated signals and that a low frequency resolution improved the quality of reconstruction for the latter type of technique. We have finally reached the conclusion that, in most cases, downsampled STFT behaves similarly to synchrosqueezing-based demodulation for mode reconstruction, provided the parameters of the two techniques are correctly tuned, but the former type of techniques uses much fewer TF coefficients for mode reconstruction, therefore reassigning the STFT does not seem beneficial for that purpose.
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  (t, ξ) and the N th -order SST (SSTN) is defined by replacing ω f (t, ξ) by ω[N ] 
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 1 Figure 1: STFT modulus of (a): a linear and a quadratic chirp; (b): two modes with cosine phase; (c): a signal with a highly oscillating cosine phase.
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 2 Figure 2: (a): MR results for the signal displayed in Fig. 1 (a) when N 0 = L, using either DSST2, STFT -M 1 when the input SNR is 0 dB; (b): Same as (a) except the input SNR is 10 dB; (c): Same as (a) except the input SNR is 30 dB and the results obtained with STFT -M 2 are also displayed (and only mode f 1 is considered); (d): Same as (a) but for the signal of Fig. 1 (b); (e): Same as (d) except the input SNR is 10 dB; (f): Same as (d) except the input SNR is 30 dB and the results obtained with STFT -M 2 are also displayed; (g): Same as (a) but for the signal of Fig. 1 (c) (DSST3 and DSST4 are also tested); (h): Same as (g) except the input SNR is 10 dB; (e): Same as (g) except the input SNR is 30 dB.
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 3 Figure 3: (a): MR results for the signal of Fig. 1 (a) when N 0 = L/4, using either DSST2 or STFT -M 1 when the input SNR is 0 dB; (b): Same as (a) except the input SNR is 10 dB; (c): Same as (a) except the input SNR is 30 dB and we consider only mode f 1 (we also display the results for STFT -M 2 ); (d): Same as (a) but for the signal of Fig. 1 (b) when the input SNR is 0 dB; (e): Same as (d) except the input SNR is 10 dB; (f): Same as (d) except the input SNR is 30 dB (we also display the results for STFT -M 2 );; (g): Same as (a) but for the signal of Fig. 1 (c) using either DSST2, DSST3, DSST4, or STFT -M 1 , when the input SNR is 0 dB; (h): Same as (g) except the input SNR is 10 dB; (e): Same as (g) except the input SNR is 30 dB.
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  So the total number of coefficients used divided by L reads:N ST F T (R) = m P p=1 #J p [mR]/L. We thus compare N demod and N ST F T , when N 0 = L/4 , Rand d IF being set to obtain similar MR quality with DSST2 and STFT -M 2 . The results depicted in Table 1 tell us that in any case, to obtain MR results of similar quality with
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