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Abstract 
Pervasive computing promotes the integration of 
connected electronic devices in our living 
environments in order to deliver advanced services. 
Interest in machine learning approaches for 
engineering pervasive applications has increased 
rapidly. Recently federated learning (FL) has been 
proposed. It has immediately attracted attention as a 
new machine learning paradigm promoting the use 
of edge servers. This new paradigm seems to fit the 
pervasive environment well. However, federated 
learning has been applied so far to very specific 
applications. It still remains largely conceptual and 
needs to be clarified and tested. Here, we present 
experiments performed in the domain of Human 
Activity Recognition (HAR) on smartphones which 
exhibit challenges related to model convergence. 

1 Introduction 
Pervasive computing promotes the integration of smart 
devices in our living spaces in order to provide advanced 
services. These services use information collected by the 
devices, perform some computation and, in some cases, act 
on the environment. Today, computation is essentially done 
in the cloud where powerful, flexible and pay-per-use 
infrastructures are made available to service providers. 
However, cloud-based architectures have important 
limitations mainly related to security issues and lack of 
reactivity. In practice, such architectures limit the number of 
services that can be implemented because of unpredictable 
communication delays, privacy concerns regarding data 
transferred over the Internet and, in some cases, insufficient 
bandwidth or excessive costs. A better use of edge resources 
would allow the implementation of new, high quality services 
[Becker et al., 2019]. The notion of edge was mentioned in 
2009 [Satyanarayanan et al., 2009] and generalized by Cisco 
Systems in 2014 as a new operational model. The main idea 
is to place computing and storage functions as close as 
possible to data sources, that is in resources located in direct 
physical environments.  

Using edge resources to run services is however challenging. 
Most current services based on such approaches heavily rely 
on cloud infrastructures and cannot be easily implemented in 
edge devices for lack of resources. Google recently proposed 
Federated Learning (FL) [McMahan et al., 2017] [Bonawitz 
et al., 2019] [Konecny et al., 2016] for distributed model 
training in the edge with an application of personalized type-
writing assistance. Rather than gathering data from remote 
devices on a centralized server, Federated Learning fuses 
several models that have been learned locally in one, more 
generic, model to be redistributed to the local devices as a 
bootstrap model for the next local learning iteration. In 
theory, the new model provides more genericity while the 
local learning provides more adaptation. Moreover, FL is 
supposed to save communication costs and protect security 
and privacy by preventing data collected at the terminal level 
from being sent through the network. It has immediately 
attracted attention as a new machine learning paradigm 
promoting the use of edge resources. This new paradigm 
seems to fit the pervasive environment well. Nevertheless, 
federated learning is still largely conceptual and needs to be 
clarified and tested extensively. 
In this paper, we present several experiments aiming at 
assessing the interest and the limits of FL with respect to the 
centralized deep learning approach. The experiments were 
conducted in the field of Human Activity Recognition (HAR) 
on smartphones. HAR is a pervasive application that is well 
suited to FL since activities tend to have generic patterns 
(e.g., walking involves the same sequence of movements for 
anybody) while being highly idiosyncratic (i.e., data depends 
on the person, the device and the environment). Furthermore, 
the collected data is private and should not be sent over the 
network.  
This paper is organized as it follows. First, some background 
about machine learning and federated learning is provided. 
Section 3 gives information about HAR and presents our 
experimental settings. Then, in section 4, experimental 
results are presented. They are discussed in detail in section 
5. Finally, this paper is ended by a conclusion presenting 
some future work. 
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2 Federated learning 
The goal of a machine learning system is to induce a decision 
model (prediction, classification) from data which will be 
able to make automatic decisions on new unseen data.       
Machine learning algorithms identify patterns that may be 
hidden within massive data sets whose exact nature is 
unknown and therefore cannot be programmed explicitly. 
The growing attention towards machine learning stems from 
different sources: the emergence of deep learning [Lecun et 
al., 2015], the availability of massive amounts of data, 
advances in high-performance computing, broad accessibility 
of these technologies, and impressive successes reported by 
industry, academia, and research communities, in fields such 
as in vision, natural language processing or decision making. 
In pervasive, many AI-based applications have been designed 
and have demonstrated to be effective in proof-of-concept 
trials. Nevertheless, the deployment of large-scale machine 
learning applications on devices in practice is still limited due 
to multiple reasons. 
First, most current learning systems are based on offline 
training and online predictions. The learning process is 
implemented on powerful servers and is run periodically, out 
of sync with data generation. Typically, models are updated 
every day or every week (depending on the servers’ cost and 
availability) while predictions (model execution) are needed 
at a much higher pace.  This is not appropriate for most 
pervasive environments where important changes can occur 
anytime, generally in unexpected ways. Here, applications 
must adapt immediately to those asynchronous changes to 
remain relevant. Also, AI-based applications used in 
pervasive computing make the implicit assumptions that 1) 
all data is stored in a cloud and 2) data ownership belongs to 
the company providing the services. These assumptions are 
no longer true in some pervasive environments, including 
smartphones for instance. Huge amount of data is generated 
in the edge devices, and sending all of it to cloud servers is 
not practical. Data can have additional security and privacy 
requirements that must be taken into consideration (to follow 
regulations like GDPR in Europe or Cyber Security Law in 
China for instance). Pervasive environments may change, 
sometimes rapidly and unexpectedly, and often in non-
reproducible ways. Handling such environments will require 
AI systems that can react quickly and safely even in scenarios 
that have not been encountered before. Finally, is to be noted 
that a high level of resilience is expected in pervasive 
environments. Wrong predictions in the physical world may 
end up in tragic issues.  
As introduced before, federated learning has been recently 
introduced by the Google company. This new approach 
proposes a distributed machine learning strategy that enables 
training on decentralized data residing on devices like mobile 
smartphones. Federated learning is in line with the objectives 
of fog computing in the sense that data and computing are 
distributed on smart devices. This clearly can address 
problems of performance, privacy and data ownership. 

As illustrated hereafter by Figure 1, federated learning 
[McMahan et al., 2017] relies on a distributed architecture 
made of a server located in a cloud-like facility and a number 
of devices, called clients. Number of clients is variable and 
dynamic; clients can appear and disappear without notice.  

 
Figure 1. Federated learning architecture. 

 
The theoretical architectural behavior is the following. First, 
a randomized global model, a convolutional neural network 
for instance, is generated at the server site and sent to the 
clients. Then, selected clients collect data and on-device 
training is performed. After some pre-defined time, local 
models built by the clients are sent back to the server. The 
server aggregates these models into a new global model 
which is, again, sent to the clients and the cycle is repeated. 
It can be also noted that in theory new clients are allowed to 
join at any time which may prolong training indefinitely. 
A key point in this new paradigm model is the model’s 
aggregation. In the first publications related to federated 
learning, aggregation was implemented as an average 
function [McMahan et al., 2017]. This means that the weights 
of the different local models are averaged to provide new 
weights and, thus, a new model. New aggregation functions 
have been very recently proposed including FedPer 
[Arivazhagan et al., 2019], a federated learning algorithm 
incorporating a base and personalized layer with transfer 
learning methodologies, and FedMA [Wang et al., 2020], a 
federated layer-wise learning scheme which incorporates the 
match and merging of nodes with similar weights. 
In theory, FL has thus the features to fit pervasive constraints. 
It can adapt to change since each client is supposed to 
constantly learn from its own experience and from the others. 
It should preserve privacy and efficiency since large data is 
not transferred through the network but are kept on the client. 
It should be adapted to edge computing since the merging part 
has not necessarily to be performed on the cloud.  
However, Federated learning has been tested and validated 
on simulated data and on a few domains only, which leaves a 
number of open questions. In fact, it is unclear whether a 
federated approach will always lead to superior performances 
and robustness than a purely centralized or decentralized one. 
Specifically, we believe that data distribution and 
heterogeneity is a major aspect that needs more investigation 
and testing. In the pervasive domain, data can be very 
different depending on subjects, environments and 
conditions. Shedding light on that question is our goal here.  



 

3 Experiments 
3.1 Human activity recognition 
Human Activity Recognition (HAR) based on wearable 
sensors, often provided by smartphones, has prompted 
numerous research works [Lara and Labrador, 2013]. Many 
approaches have been investigated to identify and classify 
physical human activities such as running or walking, and 
also interactive and social activities like chatting, talking, or 
playing. In this section, we focus on research works 
leveraging machine learning techniques. Regarding 
classification models, many techniques have indeed been 
investigated to deal with HAR based on wearable sensors. 
The most common approach is to process windows of data 
streams in order to extract a vector of features which, in turn, 
is used to feed a classifier. Many instance-based classifiers 
have thus been used to so. Let us cite Bayesian Network, 
Decision Trees, Random Forest, Neural Network, and 
Support Vector Machines [Lara and Labrador, 2012]. Since 
human activities can be seen as a sequence of smaller sub-
activities, sequential models such as Conditional Random 
Fields, Hidden Markov Model or Markov Logic Network 
have also been applied. Today, the most popular and effective 
technology is clearly deep neural networks [Ignatov, 2018]. 
Deep learning is however highly dependent on access to large 
amounts of data. This is why FL is also seen as a way to 
leverage the ability of DL to benefit from a growing number 
of data with actually circulating them to the network.  
Another problem is that machine learning algorithms must 
face is the heterogeneity in data. A survey conducted by [Lara 
and Labrador, 2013] presents a large number of datasets 
acquired from smartphones, worn in different ways. It clearly 
highlights the lack of uniformity in tasks, sensors, protocols, 
time windows, etc. It is worth noticing that some datasets are 
very imbalanced because activity distributions among classes 
are very different. For instance, in the REALWORLD dataset 
[Sztyler et al., 2017], the “stairs” activity represents 22% of 
the data while “jumping” is limited to 2%. The learning 
approach should consider the class imbalance problem. In our 
experiment, the loss was weighted by the class weights to 
counter balance the non-uniform distribution of classes. 
3.2 Experiments description 
Our purpose is to evaluate the performance of the FedAvg 
algorithm against a centralized training approach using the 
UCI [Davide et al., 2013] and REALWORLD dataset, which 
contain accelerometer and gyroscope time-series data 
obtained with Android devices. The choice of these datasets 
is to present the performance of FL with homogeneous clients 
(UCI) and with heterogeneous clients (REALWORLD). Data 
was collected from 30 and 15 subjects and consists of 6 and 
8 activities, respectively. We use a window-frame size of 128 
with a 50% overlap of 6 channels. To respect the deep 
learning approach (i.e., features should be learned and not 
hand-crafted), no preprocessing was applied except channel-
wise z-normalization. The final size of the datasets is 202 MB 
and 6.98GB, respectively, in a csv format. 

Our experiments were done using a Dense Neural Network 
(DNN) and a Convolution Neural Network (CNN) to 
compare the federated learning results against traditional 
centralized training in deep learning and as well as to observe 
the effects of the 2 different architectures in federated 
learning. Our DNN model has hidden layers composed of 400 
and 100 neural units. The CNN model has 192 convolutional 
filters of size 1x16 followed by a max-pooling layer of 1x4 
where the outputs are then flattened and fed to a fully-
connected layer of size 1024. We emphasize the use of 
shallow neural network models for the context of usage on 
edge devices with limited processing power and the reduction 
of communication cost in federated learning. The models are 
trained using a mini-batch SGD of size 32 and to counter 
over-fitting, a dropout rate of 0.50 is used. The models were 
developed using TensorFlow for our implementations. 
For the FL test, we split the data of each subject into an 80% 
train-set and 20% test-set based on the classes uniformly and 
then another instance randomly to simulate a balanced and an 
unbalanced dataset test scenario for clients. 
Due to the small size and lack of activity-subject 
correspondence in the UCI dataset, we partitioned the train 
and the test-set into five artificial clients. On the other hand, 
each subject of REALWORLD dataset is treated as a client 
with its own respective data, leading to 15 clients. We used 
50 communication rounds for our test and each client trained 
for a total of 10 local epochs with 0.005 as the learning rate. 

4 Results and discussion 
4.1 Evaluation measures      
In this section, we present the results of the comparison 
between the classical centralized approach against the 
FedAvg algorithm with the mentioned DNN and CNN 
models for the task of HAR. The performance of the FedAvg 
is evaluated twice against the test-set, once by the aggregated 
model on the server and then by all the client models against 
their own test-set where the average accuracy is presented, 
which we note as the federated accuracy. We have adopted 
the F1 score, which is the harmonic mean of precision and 
recall, as our primary evaluation metric. It is defined here: 
 
  𝐹!_𝑆𝑐𝑜𝑟𝑒	 = 	
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In line with standard practices in HAR research, the macro 
average of the individual F1 scores of all classes, is also 
reported. It is more resilient to class imbalances in the test 
dataset, i.e.:  
 
 𝑚𝑎𝑐𝑟𝑜	𝐹!	_	𝑆𝑐𝑜𝑟𝑒	 = 	 (∑()1!	𝐹)!_𝑠𝑐𝑜𝑟𝑒)/|𝐶|	 
 
Where 𝐹)!_𝑠𝑐𝑜𝑟𝑒 is the F1 score of the ith class and 𝐶 is the 
set of classes. When reported, the Accuracy is computed as 
the number of correct classifications divided by the total 
number of instances. This measure is not insightful with 
regard to class imbalance.  



 

4.2 Results on UCI Dataset 
Table 1 presents the state-of-the-art accuracy when using a 
centralized approach on the UCI dataset, based on a standard 
train-test supervised learning. With a standard centralized 
training approach, our own CNN model was able to reach an 
accuracy of 94.64%, which is in the lower scale of the state-
of-the-art results [94.61-97.62]. However, we did not use any 
preprocessing or aggressive hyper-parameter tuning. Our 
DNN model got a lower accuracy of 90.23%, which confirms 
that CNN is more suited for the task. It is important however 
to recall here that the aim of the study is not to improve the 
state-of-the-art performance on the HAR field but to evaluate 
FedAvg using credible and standard deep models.    
 

Studies Base Models Accuracy %  

Ronao and Cho, 2016 CNN 94,61 

Jiang and Yin, 2015 CNN 95,18 

Ronao and Cho, 2015 CNN 94,79 

Ronao and Cho, 2015 CNN 90,00 

Almaslukh, 2017 SAE 97,50 

Ignatov, 2018 CNN 96,06 

Anguita et al, 2013 SVM 96,37 

Cho and Yoon, 2018  CNN+Sharpen 97,62 

Cho and Yoon, 2018 CNN 97,29 

Our study DNN 90,23 

Our study CNN 94,64 

 
Table 1. State-of-the-art performances of classical centralized 

approaches on the UCI dataset. 
 

Table 2 hereafter presents the server accuracy obtained on the 
UCI dataset using FedAvg. Results are compared to our 
centralized baseline models, presented in Table 1. 
 

Models Server - 
Accuracy F1 Macro 

F1 
Nb of 

Clients 
Federated - 
Accuracy 

Baseline DNN 90.23% 90.23% 89.98% N/A N/A 
Baseline CNN 94.64% 94.64% 94.69% N/A N/A 
FedAvg DNN 94.37% 94.12% 94.26% 5 93.78% 
FedAvg CNN 97.47% 97.13% 97.28% 5 96.11% 

 
Table 2. Classical vs. FedAvg at the server level (UCI). 

 
The server accuracy of the aggregated DNN model  on the 
UCI balanced dataset obtained an accuracy of 94.37% while 
the federated accuracy was 93.78%. The federated accuracy 
was computed as the average client test accuracy. Overall, the 

macro-F1 is similar to the global F1 for each model which 
means that models are not biased towards some majority 
classes. Hereafter, Figure 2 shows the accuracy and loss vs 
communication rounds for the DNN model. The server train 
and test accuracy and loss measures are reported after the 
aggregation of the communication round. The clients train 
and test accuracy and loss are evaluated before the 
communication round (i.e., before sending to the server). The 
figures show the curves of the average accuracy and loss as 
well as the standard deviation over the clients’ one. On Figure 
2, while the CNN aggregated model (server-side) has an 
accuracy of 97.47%, its federated accuracy (client-side) has 
reached an accuracy of 96.11%, see Figure 3 that provides the 
accuracy and loss over 50 communication rounds. 

 
 

Figure 2. DNN performance vs communication rounds on UCI. 
 

 
 

Figure 3. CNN performance vs communication rounds on UCI. 
 

4.3 Results on REALWORLD Dataset 

The F1-measures of other state-of-the-art centralized 
approaches on the REALWORLD dataset using a standard 
train-test supervised learning are presented below in Table 3. 
 

Literature Models Accuracy %  

Sztyler et al, 2017 RFC 81,00 

Our study DNN 82,40 

Our study CNN 84,45 

 
Table 3. State-of-the-art performances of classical centralized 

approaches on the REALWORLD dataset. 
 
Training with the standard centralized approach and a DNN 
model, we got a test accuracy of 82.40%. The CNN model 
achieved an accuracy of 84.45%. These performances are 



 

above the other results of the state-of-the-art which add 
credence to our baseline model choice.  In table 4, we show 
comparative results between our baseline models and the 
models obtained through FedAvg trained on the 
REALWORLD dataset. 
 

Models Server - 
Accuracy F1 Macro F1 Nb of Clients Federated - 

Accuracy 
Baseline DNN 82.40% 82.40% 82.50% N/A N/A 
Baseline CNN 84.45% 84.45% 84.50% N/A N/A 
FedAvg DNN 72.32% 72.31% 74.89% 15 92.43% 
FedAvg CNN 76.08% 75.75% 77.72% 15 95.10% 
 
Table 4. Classical vs FedAvg at the server level (REALWORLD)  

 
Using the FedAvg approach on the DNN model, the server 
and clients had an accuracy of 72.32% and 92.43%, 
respectively. Figure 4 shows the corresponding accuracy and 
loss over 50 communication rounds. For the CNN model, 
FedAvg model held an accuracy of 76.08% and 95.10%, 
respectively on server and client. Figure 5 shows the 
corresponding accuracy and loss over 50 com rounds.  

 
 

 
Figure 4. DNN performance vs com. rounds (REALWORLD). 

 

 
Figure 5. CNN performance vs com. rounds (REALWORLD). 

5 Discussion  
Our experiments show different behaviors for the same FL 
algorithm but with different datasets and models. The most 
striking difference is the one of the datasets. In the case of 
UCI, the FedAvg with the CNN model performs on par with 
the state-of-the-art compared to the centralized approach. 
However, with the REALWORLD dataset, FedAvg gives a 
lower performance.  In that case, it can also be observed a 
large difference in accuracy between the server model and the 
clients’ ones. This behavior might be due to the fact that we 
used one subject’s data as a client and because the number of 
clients is higher (15) for REALWORLD than UCI (5). 
In the case of REALWORLD, clients tend to converge 
rapidly to very high accuracy on their own test set (95%) but 

get lower accuracy on the whole test set (around 65%). This 
explains why the server cannot get high performance, since 
clients’ models are learning in different directions, hence 
averaging weights blinding is not an efficient way to benefit 
from each client invariants. The large standard deviation of 
the client losses supports this interpretation. Although, as the 
curves suggest, this could be called ‘overfitting’ this is a 
desirable behavior since the client’s model is self-
specializing to the device/user. In fact, the notions of 
overfitting/specialization in a federated learning setting must 
be clarified and the way to assess them systematized. 
These experiments also show that designing a FL experiment 
in which clients are modeled with different datasets is much 
more realistic and challenging than settings where data is 
evenly distributed among clients. On this aspect, one 
comparable work was performed by [Sozinov et al., 2018] on 
the Heterogeneity Human Activity Recognition Dataset 
[Stisen et al., 2015] in which they report effects of device and 
subject heterogeneity and distribution on FedAvg.  
It also appears that UCI data is much more uniform and less 
noisy than the REALWORLD one. The REALWORD 
dataset is more realistic since it involves 7 different 
smartphone positions and has been performed outdoors. This 
can be backed up by the federated accuracy on the 
REALWORLD dataset performing very well but is lacking 
with the server’s aggregated model. To further check the 
ecological aspect of the dataset, we ported the trained models 
to a Google Pixel 2 android device using TensorFlow Lite. 
The model trained from the UCI dataset often fails to 
accurately predict activities in the wild, which contradicts the 
accuracy evaluated against its own test-set. On the contrary, 
the model trained from the REALWORLD dataset, when 
tested in the wild showed more satisfying results.  
The second difference is related to models. The DNN and the 
CNN model seem to exhibit the same behavior with respect 
to the overall performances. However, the CNN model shows 
a much larger standard deviation than the DNN one along 
with the communication rounds. One problem of FedAvg is 
that it performs averaging coordinate-wise which might have 
significant detrimental effects on the performance of the 
averaged model. As raised by [Wang et al., 2020], this issue 
arises due to the fact that during FL some invariants are 
captured by parameters that only differ in their ordering in 
different client models. Although it might be expected that 
these discrepancies get solved with more communication 
rounds, it is not desirable in terms of communication cost and 
it is not guaranteed if the clients’ data is very different from 
each other. This is particularly acute with CNN which 
contains more features layer than the dense model and whose 
dropout layer might imply that invariants are learned by 
different sets of neurons in the client’s model. To get a better 
analysis of this behavior, it would be necessary to analyze the 
divergence of model weight layer per layer along the 
communication round. This can be achieved using standard 
matrix similarity measures (e.g. Mantel Test) or dedicated 
deep learning analysis [Kornblith et al., 2019].   



 

6 Conclusion  
Federated learning generates expectations and significant 
efforts have been made to find techniques to improve model 
accuracy and communication cost. However, research work 
is still needed to understand FL behaviors, define relevant 
evaluation methods, and bring experiments out of the 
simulation mode. Our experiments with two families of 
neural networks and two different datasets show that issues 
such as data heterogeneity challenge the FedAvg algorithm 
and necessitate better analysis strategies. From our 
experiments it seems that FedAvg is better suited to realistic 
heterogeneous and imbalanced datasets (REALWORLD) 
than carefully balanced and in-lab datasets (UCI) since 
experiments with REALWORLD demonstrate a high degree 
of personalization.  
     Our next step is to evaluate the performance of      
advanced FL algorithms such as FedMa [Wang et al., 2020] 
and FedPer [Arivazhagan et al., 2019] since it has been 
shown they can better tackle the heterogeneity problem in 
HAR [Li et al., 2019]. On the longer term, since FL studies 
have been mainly restricted to an extension of classical 
centralized off-line learning, it is necessary to evaluate FL in 
practice. In particular  how to handle client personalization 
(server generalization vs client overfitting), asynchronous 
communication and identify biases in large scale deployment 
(users, devices, geographic and even cultural biases). 
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