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Learning an MR-Sort model from data
with latent criteria preference directions

Pegdwendé Minoungou1,2, Vincent Mousseau1, Wassila Ouerdane1, Paolo Scotton3

Abstract. The Majority Rule Sorting (MR-Sort) method assigns
alternatives evaluated on multiple criteria to one of the predefined
ordered categories. The Inverse MR-Sort problem (Inv-MR-Sort) con-
sists in computing MR-Sort parameters that match a dataset. Existing
learning algorithms for Inv-MR-Sort consider monotone preference
on criteria. We extend this problem to the case where the preference
directions on criteria are not known. We propose and test an algorithm
that learns from the training data the preference direction of each
criterion together with the other MR-Sort parameters.

1 Introduction

A computer-products retail company is distributing a new Windows
tablet, and wants to send targeted marketing emails to clients who
might be interested in this new product. To do so, clients are to be
classified into two categories: potential buyer and not interested. To
avoid spamming, only clients in the former category will receive an
email. To sort clients, four clients characteristics are considered as
criteria, all of them being homogeneous to a currency e.g. e : the
turnover over the last year of (i) Windows PC, (ii) Pack Office, (iii)
Linux PC, and (iv) Dual boot PC.

As the company wants to advertise a new Windows tablet, both first
two criteria are to be maximized (the more a client buys Windows
PCs and Pack Office, the more he/she is interested in products with
a Windows system), and the third criterion is to be minimized (the
more a client buys Linux PCs, the less he/she is interested in products
with a Windows system). The marketing manager is convinced that
the last criterion should be taken into account, but does not know
whether it should be maximized or minimized; a subset of clients has
been partitioned into not interested/potential buyer. Based on this
dataset, the goal is to simultaneously learn the classifier parameters
and the preference direction for the last criterion.

As illustrated in the example above, this paper considers multicrite-
ria sorting problems in which alternatives are to be assigned to one of
the p predefined ordered categories C1, . . . , Cp. Among the existing
multicriteria sorting methods [6], we are interested in the Majority
rule Sorting method (MR-Sort)[14] which corresponds to a simplified
version of the ELECTRE TRI method [8].

In line with the preference learning / disaggregation paradigm
[11], we consider the case where we learn MR-Sort parameters from
preference data, i.e., from assignment examples. In the literature,
learning algorithms consider preference orders on criteria as given.
We consider the broader case where the order is not known.
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When preference orders on criteria are fully unknown, learning
an MR-Sort model from data becomes a highly flexible problem.
We consider a simpler case in which evaluations of alternatives
induce monotone preferences, but the preference directions on
criteria are unknown (i.e., whether each criterion is to be maximized
or minimized). Hence, we aim at uncovering from training data
the criteria preference directions, and the MR-Sort parameters,
simultaneously. In this paper, we design and test an algorithm that
learns MR-Sort parameters with latent criteria preference directions.

The paper is organized as follows. In the first section, we review
the literature that considers non-monotone preferences when learning
a multicriteria model from preference data. The second and third
sections recall the MR-Sort model and the inverse problem (Inv-
MR-Sort), which consists in learning MR-Sort parameters from a
dataset. In Section 4, we propose an algorithm for learning MR-
models with latent criteria preference directions. In section 5, the
proposed algorithm is numerically evaluated. A final section groups
conclusions and further research.

2 Related work
In Multiple Criteria Decision Aid (MCDA), preference learning
methods require a preference order on criteria. Such preference order
on criteria directly results from the fact that alternatives evaluations /
scores correspond to performances that are to be maximized (profit
criterion) or minimized (cost criterion). This naturally results in
monotone preference data. In our work, we still consider monotone
preferences, but we focus on determining whether each criterion is
to be maximized or minimized. We are not aware of previous work
considering such case. However, related work in the literature deals
with the case of non-monotone preferences.

In the context of preference learning / disaggregation, several
approaches consider non-monotone preferences on criteria. To the
best of our knowledge, however, all these contributions consider a
utility-based preference model, in which non-monotone attributes are
represented using non-monotone marginal utility functions.

Historically, Despotis and Zopounidis [5] are the first to consider
single peaked value functions with an additive piece-wise linear model.
The UTA-NM method proposed in [13] allows for non-monotone
marginals and prevents over-fitting by introducing a shape penaliza-
tion. Also in the context of an additive utility model, Eckhardt and
Klieger [7] define a heuristic pre-processing technique to transform
arbitrary attributes input into a space monotone w.r.t. the Decision
Maker’s (DM) preferences. Liu et al. [15] model sorting with a piece-
wise linear additive sorting model, using a regularization framework
to limit non-monotonicity. Guo et al. [10] propose a progressive pref-
erence elicitation for multicriteria sorting using a utility model with



non-monotone attributes. A framework to rank alternatives with a
utility model using slope variation restrictions for marginals is pro-
posed in [9]. Based on a mixed-integer program, [12] proposes to
disaggregate an additive piece-wise linear sorting model. This model
uses different types of monotone (increasing, decreasing) and non-
monotone (single peaked, single caved) marginal value functions.
They finally illustrate the method on an application concerning nano-
material exposure management. Recently, Sobrie et al. [18] consider
single-peaked preferences when learning an MR-Sort model in a
medical application.

3 The MR-Sort model

The Majority Rule Sorting method (MR-Sort) [14] is a multiple crite-
ria method which aims at assigning alternatives evaluated on multiple
criteria to one of the predefined ordered categories C1, . . . , Cp (C1

and Cp are the worst and best categories, respectively). We denote
N = {1, ..., n} the set of n criteria, and Xi the set of possible
evaluations on criterion i ∈ N . An alternative a is thus represented by
a tuple of evaluations (a1, . . . , an) ∈

∏
i∈N Xi, ai ∈ Xi being the

evaluation of alternative a on criterion i. We denote X =
∏

i∈N Xi

the cartesian product of criteria scales.
Evaluations on each criterion should either be maximized (in case

of a “profit” criterion, i.e., the greater, the better), or minimized (in
case of a “cost” criterion, i.e., the lower, the better). Hence, the prefer-
ence order <i⊂ X2

i for each criterion i ∈ N is defined as follows:

• for “profit” criterion, ai <i a
′
i iff ai ≥ a′i, ai, a′i ∈ Xi,

• for “cost” criterion, ai <i a
′
i iff ai ≤ a′i, ai, a′i ∈ Xi,

MR-Sort considers p − 1 multicriteria limit profiles
b1, . . . , bp−1 separating consecutive categories, where profile
bh = (bh1 , .., b

h
n) ∈ X delimits the frontier between Ch and Ch+1.

Furthermore, we denote b0 (bp, resp.) the lower profile of category
C1 (the upper profile of category Cp, resp.) defined such that
ai <i b

0
i , ∀i,∀ai ∈ Xi (not(ai <i b

p
i ),∀i,∀ai ∈ Xi, resp.).

MR-Sort assigns alternative a ∈ X to category Ch, h ∈
{1, . . . , p} (denoted c(a) = h), when the set of criteria for which ai
is better than the lower profile of Ch (ai <i b

h−1
i ) forms a majority,

but the set of criteria for which ai is better than the upper profile of
Ch (ai <i b

h
i ) is not a majority. The notion of majority is formalized

using weights w1, ..., wn attached to criteria (with wi ≥ 0, ∀i, and∑
i∈N wi = 1), and a majority threshold λ ∈ [0.5; 1]: a subset of

criteria I ⊆ N is a majority iff
∑

i∈I wi ≥ λ. Finally, the MR-Sort
rule can be expressed as follows:

c(a) = h ⇔
∑

i:ai<ib
h−1
i

wi ≥ λ and
∑

i:ai<ib
h
i

wi < λ (1)

The Non-Compensatory Sorting (NCS) method [3, 4] has been ax-
iomatized in [3, 4], and MR-Sort corresponds to NCS when majorities
can be represented additively, and without vetoes.

4 Learning MR-Sort model from preference data

In order to set appropriate values for the MR-Sort parameters (weights,
majority level, and limit profiles), we consider a learning paradigm, in
which a set of assignment examples is provided by the decision-maker;
the aim is to extend these assignments using an MR-Sort model. To
do so, we search for the MR-Sort parameters that best match the set
of assignment examples.

4.1 MR-Sort and Inv-MR-Sort

In this paper, we refer to an assignment as a function mapping a
subset of reference alternatives A? ⊂ X to the ordered set of
categories C1, . . . , Cp. These reference alternatives highlight values
of interest on each criterion i ∈ N , X?

i =
⋃

x∈X?{xi}. We refer to
the problem of finding suitable preference parameters specifying an
MR-Sort model by Inv-MR-Sort.

We call learning set a couple: L = (A∗, C), where
C = (c(a),∀a ∈ A∗); that is each alternative a ∈ A∗ is as-
signed to a desired category c(a) ∈ C. Hence, Inv-MR-Sort takes as
input a learning set L and returns MR-Sort parameters (b, w, λ) that
best match the learning set.

Example 4.1. Consider the example mentioned in the introduction in
which a set of clients should be sorted into two categories with respect
to their interest in buying a new Windows tablet: C1 clients which
are not interested , and C2 potential buyers of this product. In this
sorting problem, we consider three criteria: Windows PC turnover
(ke), Pack Office Turnover (ke), and the Linux PC turnover (ke). As
previous Windows PC and Pack office purchases indicate an interest
in a Windows environment, both first criteria should be maximized
(profit criterion); conversely, as previous purchases of Linux PCs in-
dicates disinterest for Windows products, the third criterion should be
minimized (cost criterion). We have a learning set of five clients evalu-
ated on all three criteria together with a desired assignment, see Table
1 below. Given this learning set, Inv-MR-Sort computes the following
set of parameters: b1=(540ke, 53ke,310ke), w=(0.55,0.12,0.33),
λ=0.61.

Windows PC
Turnover (↑)

Pack Office
Turnover (↑)

Linux PC
Turnover (↓) Category

client 1 500 ke 20 ke 300 ke C1

client 2 200 ke 10 ke 350 ke C1

client 3 800 ke 90 ke 150 ke C2

client 4 600 ke 50 ke 300 ke C2

client 5 900 ke 70 ke 250 ke C2

Table 1: Example 1: learning set of 5 clients

Previous works have tackled the problem of learning an MR-Sort
model (or a similar sorting model) from a dataset. [16] proposed a
nonlinear programming formulation to learn the parameters for the
ELECTRE TRI sorting method, which is an ancestor of the MR-Sort
model, see [8]). Later on, [14] uses a mixed-integer linear program to
solve the Inv-MR-Sort problem. These two techniques only allow for
solving instances of small size due to computational difficulty.

More recently efficient Boolean Satisfiability formulations for
learning NCS models from data have been proposed [2], [1]. These
SAT/MaxSAT formulations make it possible to handle larger datasets.
Recently, an evolutionary population-based heuristic has been
proposed to solve Inv-MR-Sort, see [19], [17]. We provide hereafter
a description of this heuristic, as our work takes this heuristic as a
starting point.

4.2 Heuristic for Inv-MR-Sort

The heuristic proposed in [17, 19] is an evolutionary population-based
algorithm and learns an MR-Sort model that best matches a learning
set composed of assignment examples. Each individual in the popula-
tion is an MR-Sort model, i.e., values for limit profiles bh, criteria
weights wi, and the majority level λ; we denote each individual by



(〈b〉, w, λ). After an initialization step which generates a first popula-
tion, the algorithm proceeds to evolving the population of MR-Sort
models iteratively until a model in the population perfectly restores
the learning set, or a maximum number ofmaxit iterations is reached.

At each iteration, the algorithm tries to improve the fitness of each
MR-Sort model in the population (fitness corresponds to classification
accuracy (CA), i.e., the proportion of correctly restored examples in
the learning set) by performing two consecutive steps: (i) optimize
the weights and majority level (limit profiles being fixed) using linear
programming (LP), and (ii) improve heuristically the limit profiles
(weights and majority level being fixed). The 50% best models are
kept in the population for the next iteration, while 50% new MR-Sort
models are randomly generated. We summarize below in Algorithm 1
the main steps of the heuristic as well as its inputs/outputs.

Algorithm 1: Inv-MR-Sort heuristic, [19]
Input: L: learning set
Output: model (〈b〉, w, λ) that best match L in the population
it← 1
Initialize POP , a population of nmod models
while (it ≤ maxit) and (no model in POP fully restores L)

do
foreach model (〈b〉, w, λ) ∈ POP do

Optimize weights w and threshold λ using LP
Improve profiles 〈b〉 heuristically

end
Renew the bnmod/2c worst models in POP
it← it+ 1

end
return (〈b〉, w, λ) that best match L in POP

5 Learning an MR-model with latent criteria
preference directions

The heuristic described by [17, 19] assumes the monotonicity of
criteria in the MR-Sort model to be learned. In [17], the definition
of the Inv-MR-Sort problem assumes, without loss of generality,
that the decision-maker (DM) preferences are increasing with the
criteria performances (the greater, the better). In this work, we aim at
extending the Inv-MR-Sort problem to the case where preferences
are still monotone, but the criteria preference directions are not
known, i.e., we do not know whether criteria are to be maximized or
minimized.

Hence, we aim at learning from a learning set, criteria weights w,
the majority threshold λ, the profiles 〈b〉, and the criteria preference
direction (at least for one of them). Example 5.1 extends Example 4.1,
and illustrates this learning situation when the preference direction is
to be learned only for one criterion.

Example 5.1 (Example 4.1 cont.). Pursuing example 4.1, we add
a criterion ”Dual boot PC Turnover” considered as important by
the DM. It evaluates the dual-boot PC purchases (in ke) for a given
client. As mentioned before, the preference direction of this criterion
is not known a priori. We report in Table 2 the performance table with
the additional latent criteria (Dual boot PC Turnover), as well as the
classification of the 5 clients.

5.1 How to learn preference directions
Consider a situation (similar to example 5.1) in which all criteria
directions are known except for criterion i. Suppose we use Algorithm

1 to learn an MR-Sort model (〈b〉, w, λ) from a dataset, hypothesizing
incorrectly the preference direction for criterion i (supposing criterion
i is to be maximized when the ground truth states that is should be
minimized, or vice versa). In such a case, Algorithm 1 will favor
models that inhibited criterion i so as to best restore the learning set.
Models that inhibit criterion i are those for which wi = 0, or the ones
for which bhi > Maxa∈A∗{ai}, ∀h or bhi < Mina∈A∗{ai}, ∀h.

Indeed, if Algorithm 1 returns a model (〈b〉, w, λ) with a weight
wi close to zero, or profiles 〈b〉 such that bhi are close to the endpoints
of the scale Xi, this is a strong sign that the direction of preference
could be incorrectly hypothesized. Such consideration will be useful
to define the algorithm proposed in §5.3.

5.2 Inv-MR-Sort problem with latent criteria
preference directions

The preference direction di describes how the preference relation
<i on criterion i relates to the evaluations on the criterion scale Xi.
Criterion i has an increasing (decreasing, resp.) preference direction,
noted di = 1 (di = −1, resp.), when criterion i is to be maximized
(minimized, resp.), i.e. is a profit (cost, resp.) criterion. The vector
of criteria preference directions is noted: d = {d1, ..., dn}; d can be
considered as another parameter of the MR-Sort model. In our paper,
a criterion whose preference direction is not known (and yet to be
learned) is called a criterion with latent preference direction.

Therefore, we extend the Inv-MR-Sort problem to a broader prob-
lem that encompasses the learning of limit profiles, weights and ma-
jority thresholds, together with the preference directions of latent
criteria. We denote it IMSq|n, the Inv-MR-Sort problem that aims at
learning q preference directions over n criteria in the model (q ≤ n).
We callQ the set of latent preference direction criteria (Q ⊆ N and
|Q| = q). In the following, we consider the IMSq|n problem, that
aims at inferring the tuple of parameters (b, w, λ, {di : ∀i ∈ Q}).

5.3 An algorithm for Inv-MR-Sort with latent
criteria preference directions

We present in this section, a two-step method to solve IMSq|n
(Inv-MR-Sort with q latent criteria preference directions). The two
consecutive steps consist first in (i) learning the unknown preference
directions, and then (ii) learning other parameters (w, 〈b〉, λ).

In the first step, Algorithm 1 is executed on a modified version of
the IMSq|n in which latent criteria are duplicated, yielding a problem
that takes into account the two types of preference directions for the
q latent criteria. This allows to induce the appropriate preference
directions for the q latent criteria. In the second step, Algorithm 1 is
performed with the q preference directions that are fixed, in order to
determine the remaining parameters of the MR-Sort model.

5.3.1 The first stage

The first stage performs consecutively:

• the transformation of IMSq|n to an intermediate problem
(IMS0|n+q) obtained through the duplication of criteria with un-
known preference directions,

• the resolution of IMS0|n+q with Algorithm 1.
• the deduction of the q preference directions of the initial problem

from the outcome of IMS0|n+q



Windows PC Turnover (↑) Pack Office Turnover (↑) Linux PC Turnover (↓) Dual-boot PC Turnover (?) c(a)

client 1 500 ke 20 ke 300 ke 150 ke 1
client 2 200 ke 10 ke 350 ke 130 ke 1
client 3 800 ke 90 ke 150 ke 100 ke 2
client 4 600 ke 50 ke 300 ke 100 ke 2
client 5 900 ke 70 ke 250 ke 100 ke 2

Table 2: Assignment examples: dataset of 5 clients and 4 criteria with one unknown preference direction (Dual-boot PC turnover)

From IMSq|n to IMS0|n+q: Considering IMSq|n, we duplicate
the subsetQ into a similar setQ′; the preference directions of criteria
in Q′ and Q are opposite. More precisely, w.l.o.g., we choose to
set an increasing preference direction (di = 1) to criteria in Q, and
a decreasing preference direction (di = −1) to criteria in Q′. In
problem IMS0|n+q , alternatives in the learning set have the same
evaluations for criteria inQ′ and inQ.

Thus, we associate to each criterion i ∈ Q a criteria i′ ∈ Q′ that
shares the same performance values over the alternatives: they both
account for the same initial criterion whose preference direction is
unknown. We call AC the set of such pairs of criteria (i, i′). This
modified problem thus obtained can be translated as IMS0|n+q , since
there are no more unknown preference directions and the total number
of criteria rises to n+ q. The intuition behind the duplication of i to
i′ is to foster the algorithm to inhibit the criterion with the “incorrect”
preference direction, while making the other criterion more influential.
Resolution of IMS0|n+q: At this step, we solve IMS0|n+q using
Algorithm 1. The problem comprises n+ q criteria which implies the
learning of n+ q weights, profiles 〈b〉 of dimension n+ q, as well as
a threshold λ.
Deduction of the q preference directions: After the resolution of
IMS0|n+q , we interpret the preference directions of the q latent
criteria. Our reasoning is the following. Considering the resulted
parameters (w, 〈b〉, λ) of IMS0|n+q:

• ∀ (i, i′) ∈ AC , if wi = 0 and wi′ 6= 0, then we conclude that the
correct criterion is the cost criterion i′, since i is inhibited in the
model (wi = 0).

• ∀ (i, i′) ∈ AC , if wi 6= 0 and wi′ = 0, then we conclude that the
correct criterion is the profit criterion i, since i′ is inhibited in the
model (wi′ = 0).

• ∀ (i, i′) ∈ AC , if wi 6= 0 and wi′ 6= 0, we ground our analysis
on the position of profiles 〈b〉 on criteria i and i′. As mentioned
in §5.1, profiles on criterion i (or i′) close to the end points of the
scale Xi (or Xi′ ) indicates that criterion i (or i′) is “inhibited”.
Therefore, we will select the preference direction corresponding to
criterion i or i′ as the one for which the profile is the further away
from the endpoints of the scales Xi and Xi′ .
Consider the simplest case with 2 categories, p = 2 (the case with
more than two categories p > 2 can be considered at the cost of
additional technicalities). Let us consider the bi-partition of the set
X?

i = X?1
i ∪ X?2

i (X?
i′ = X?1

i′ ∪ X?2
i′ , respectively) such that

X?1
i = {xi ∈ X?

i : xi < b1i } and X?2
i = {xi ∈ X?

i : xi ≥ b1i }
(X?1

i′ andX?2
i′ are defined analogously). Let us denote µ2

i =
|X?2

i |
|X?

i |
the proportion of alternatives in the learning set whose evaluation
on criterion i is greater than the profile. We define µ2

i′ similarly.
Depending on µ2

i and µ2
i′ and a threshold µ ∈ [0, 1] (in our test we

consider µ = 0.9), we consider three cases:

– If µ2
i ∈ [µ, 1− µ] and µ2

i′ /∈ [µ, 1− µ], criterion i has a greater
discriminative power than criterion i′, and therefore corresponds

to the correct preference direction.

– If µ2
i /∈ [µ, 1−µ] and µ2

i′ ∈ [µ, 1−µ], criterion i′ has a greater
discriminative power than criterion i, and therefore corresponds
to the correct preference direction.

– Otherwise, we apply an ad hoc heuristic which computes, for
each pair (i, i′) ∈ AC the best classification accuracy on the
learning set, when considering criterion i and i′ as dictator, and
selects the preference direction that performs the best.

• ∀ (i, i′) ∈ AC , if wi = wi′ = 0, we apply the same ad hoc
heuristic as above which consider i and i′ as possible dictator.

5.3.2 The second stage

Once the q preference directions have been determined, we can reduce
IMS0|n+q to IMS0|n by preserving the q right criteria previously
derived and by removing their associated criteria. Next, we solve
the standard IMS0|n problem to be solved by Algorithm 1. The
resulting parameters of this last step give the remaining part of the
solution to the initial problem IMSq|n. Hence, we obtain all parame-
ters (w, b, λ, {di : i ∈ Q}) of the Inv-MR-Sort problem with latent
preference direction criteria.

6 Experimental validation of the algorithm
This section presents numerical results which makes it possible to
analyze the behavior of the proposed algorithm. The experiments
should provide insights so as to answer the following questions:

• Regarding the computing time, how does the algorithm cope with
large datasets ?

• What is the ability of the algorithms to restore an existing dataset
when criteria preference directions are latent ?

• How many assignment examples should the learning set contain so
that the learned model accurately classifies new alternatives ?

• How does the algorithm cope with noisy datasets ?

6.1 Experimental design
We ran our experiments on a machine endowed with Ubuntu 18.04.4
LTS (64 bits) with an Intel(R) Xeon(R) Gold 6248 CPU @ 2.5GHz
and 376 GB of RAM.

In our study, we consider as an input two specific random datasets
generated in accordance with a pre-constructed MR-Sort model :
datasets with noise - which could be assimilated to real preferences
data - and noise-free datasets. By this way, we can judge on a reliable
basis the restoration of models. We call this ground truth model, M0.

Once M0 is constructed, we construct L by classifying randomly
generated alternatives according toM0 and in such a manner to obtain
a balanced distribution of alternatives over categories. Besides, we
choose not to disclose the preference directions of q out of n criteria.



In our experiments, we use 100 samples of MR-Sort M0 in order
to obtain mean values as performances of learned models in terms
of computation time, restoration rate of the learning set/test set and
restoration rate of the preference directions.

We uniformly generate p−1 random values in [0,1] for the profiles
values and order them in the following order b1i ≤ b2i ... ≤ bp−1

i , ∀i ∈
N . The performance values of A∗ are also generated uniformly in
[0,1]. In order to assign values to weights, we first draw |N | − 1
numbers in [0,1]. These numbers added to 0 and 1 are ranked in
ascending order. The difference between each successive number
pairs in the ranking forms the values of criteria weights. We randomly
generate λ in ]0.5,1[.

The experimental parameters and their possible values taken into
account for the generation of a dataset are : the number of criteria |N |
in {5, 7, 9, 11}, the number of latent criteria q in {1, 2, . . . , |N |},
the number of categories p in {2, 3, 4, 5}, the learning set size
|A∗| in {100, 250, 500, 750, 1000, 1250, 1500}, and noise rate σ in
{0, 0.05, 0.1, 0.15, 0.2, 0.25}. Concerning the generation of noisy
data, the process is the following. First, we generate a learning set
from M0. Then we randomly choose σ × |A∗| examples of the learn-
ing set that will be subject to error. For these alternatives, we change
their assignment to an adjacent category.

We execute our approach as described in Section 5 in order to
solve IMSq|n. M0 represents a ground truth on which the resulting
models of the approaches are validated. We expect a good rendering
of solutions sinceM0 comes from a real MR-Sort model, at least with
noise-free datasets.

We define 4 measures in order to evaluate the quality of the restored
models : the execution time, the classification accuracy CA of the
learning set, the classification accuracy CA on the test set. The latter
is measured on a dataset of 10000 alternatives. We also consider
two indicators in order to appreciate the restoration of preference
directions : PDR1 which is the rate of restoring all the preference
directions at once, while PDR2 is the proportion of restoring one
preference direction on average.

6.2 Results

Figure 1: Classification Accuracy (CA) of the test set (generalization)
per number of criteria (n) and learning set size for a problem involving
1 latent criterion, 2 categories and noisy-free learning sets

6.2.1 Execution time and memory requirements

The execution time of the approach increases in function of 4 param-
eters : the learning set size, the number of criteria n, the number of

latent criteria q and the number of categories p. As an example, the
execution time on a laptop rises to 545 seconds when considering
the problem IMS1|11, with 5 categories and 1500 alternatives in the
learning set without noise. The memory space required is less than
50MB.

6.2.2 Varying the number of criteria (n)

First, our approach was executed for a series of problems involving
different criteria with 1 latent criterion, 2 categories and considering
noisy-free data sets. The ability of the algorithm to restore assignment
examples diminishes with the increase of the number of criteria in
the problem (Figure 1). However the classification accuracy surges to
95% with 500 alternatives in the learning set considering the problem
IMS1|11 and then converges towards 1.

6.2.3 Varying the number of criteria with latent preference
directions (q)

Second, we tested our approach on instances of 7 criteria, 2 categories,
with noisy-free data sets and varied the number of latent criteria.
The classification accuracy of the learning set is flawless (ranges
between 99% and 100%) regardless the number of latent criteria and
the learning set size. The classification accuracy in generalization
converges towards 1 regardless the number of latent criteria (Figure
2a). The algorithm behaves exactly in the same manner independently
of the number of latent criteria, i.e without additional difficulties to
restore assignments. With only 250 alternatives in the learning set,
96% of new assignments are restored. The PDR1 increases with the
size of the learning set and converges differently depending of the
number of latent criteria, towards 1 (Figure 2b). Nevertheless, the
algorithm behaves in general better with less latent criteria. With 750
alternatives in the learning set, the algorithm performs with a CA
more than 85% considering 7 latent criteria. This is by far better than
the random probability of retrieving the preference directions of 7
latent criteria that is 1/27 (≈ 0,8%).

6.2.4 Varying the number of categories

Third, we tested our approach on instances of 7 criteria, 7 latent cri-
teria, with noisy-free data sets and varied number of categories. The
classification accuracy decreases progressively according to the in-
crease of the number of categories in the problem (Figure 3a). Despite
this, the CA (in generalization) still increases when the learning size
set becomes greater. With 5 categories, and 500 assignment examples
in the learning set, the algorithm is able to restore more than 90% of
new assignment examples.

The preference direction restoration degrades moderately with more
than 2 categories, but increases with the size of the learning set (Figure
3b). The PDR1 reaches at least 80% with more than 750 alternatives
in the learning set regardless the number of categories.

6.2.5 Considering noisy learning sets

The fourth test of our approach concerns the case with 7 criteria, 7
latent criteria, 2 categories and considering the presence of the noise
(σ) in the learning set. The figure 4a teaches us the ability of our
approach to restore more than 100*(1 − σ)% of new assignments
examples, which means that the algorithm is fairly robust. In addition,
the CA (in generalization) still increases proportionally to the presence
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Figure 2: Results for problems involving 7 criteria, 2 categories and noisy-free learning sets per number of latent criteria q and learning set size
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Figure 3: Results for problems involving 7 criteria, 7 latent criteria and noisy-free learning sets per number of categories p‘ and learning set size

of errors. As an example, the CA attained 85% with 25% of noise
when the learning set size is 500.

The figure 4b shows us that the impact of more noise is not so
strong on the ability of the algorithm to restore preference directions.
The PDR2 increases with difficulty along with the learning set size
once in the presence of noise.

6.3 Discussion

Useful insights have been found through these experiments. First,
it is apparent that our algorithm succeeds in retrieving preference
directions as well as the other MR-Sort parameters of our problem,
considering noisy-free learning sets and 2 categories. Indeed, the clas-
sification accuracy of the learning set is excellent (≈ 99%) regardless
of the number of latent criteria and the number of criteria considered
in our tests (n ∈ {5, 7, 9, 11}). In generalization, the behaviour of
the algorithm is similar : as a matter of fact, the restoration of new
assignments is as good as the restoration of the Sobrie’s problem
(which is IMS0|n) independently of the number of latent criteria
and the learning set size. The approach also succeeds in restoring
preference directions since the restoration converges quite quickly
towards 1 (with |A?| = 1500). Moreover, additional results show that
PDR2 - which considers the restoration of one preference direction

on average - reaches 95% for IMSq|7, with 0 ≤ q ≤ 7 with only 250
assignment examples in the learning set.

Second, the computational time is fairly affordable since it is close
to the Sobrie’s heuristic. The worst-case scenario considered in our
tests (which is the learning of IMS7|7 with |A?| = 1500 and 4
categories considering 25% of noise in the learning set) indicates that
the algorithm runs less than 15 minutes and the memory space needed
is less than 50MB (using a machine endowed with 2,3 GHz Intel Core
i5 and 8Go of RAM). Indeed the execution time strongly depends
on the number of iterations of the outer loop of the algorithm ; it is
therefore controlled by design.

Unsurprisingly, considering the context without noise, the greater
the number of criteria and the number of categories, the lower is the
classification accuracy for a given learning set size and regardless the
number of latent criteria. For illustration, 100 alternatives in the learn-
ing set is sufficient to restore 95% in generalization with a 5-criteria
model and 2 categories, while to get the same restoration rate, we need
500 alternatives for a 11-criteria model. Analogously, less than 250
alternatives in the learning is responsible for a classification accuracy
at 95% in generalization for a 7-criteria model with 2 categories while
a learning set of 1000 alternatives is needed for the same CA score
and for a model with 5 categories. Therefore, it is possible to obtain a
good performance as long as we provide a large learning set.



(a) Classification Accuracy (CA) of the test set (generalization) per
noise percentage and learning set size

(b) Preference direction restoration (PDR2) per number of noise
percentage and learning set size

Figure 4: Results of our approach for a problem involving 7 criteria, 7 latent criteria, 2 categories

As expected in the presence of noisy data in the learning set, the
classification accuracy in generalization is reduced in function of the
increase of the noise introduced in the learning set. This is all the
more linked with the difficulty to learn the preference direction (ob-
served in figure 4b) as soon as we deal with noisy data in comparison
to the case without noise (in red line). Nevertheless, our approach
takes advantage of the increase of the learning set size since it still
succeeds at restoring more assignments (CA in generalization) with
more assignment examples in the learning set size.

Conclusion and Perspectives

In this paper we have considered the MR-Sort model in the case where
the direction of preference of criteria is unknown. We have proposed
a solution which extends the heuristic method introduced by Sobrie
et al. to this case. For a given learning set, our algorithm estimates
the unknown preference directions as well as the parameters of the
MR-Sort model from the learning set.

Extensive numerical simulations demonstrate the capability of the
algorithm to correctly estimate both preference directions and the
other model parameters with an accuracy over 90 % (for a noisy-free
learning set of 250 examples). Moreover, the algorithm showed to
be robust in the case of noisy data. Finally, the proposed solution
features a very contained computational complexity both in training
and inference phases. All these characteristics make this approach
very suitable for real-world applications.

As future work, we will extend this approach to other non-
monotone preferences, namely the case of single peaked preferences.
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