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In rare event analysis, the estimation of the failure probability is a crucial objective. However, focusing only on the occurrence of the failure event may be insufficient to entirely characterize the reliability of the considered system. This paper provides a common estimation scheme of two complementary moment independent sensitivity measures, allowing to improve the understanding of the system's rare event. Numerical applications are performed in order to show the effectiveness of the proposed estimation procedure.

Introduction

In diverse disciplines, systems modeling is often achieved by considering a black-box model for which the observation is expressed as a deterministic function of external parameters representing some physical variables. These basic variables are usually assumed random in order to take phenomenological uncertainties into account. Then, sensitivity analysis (SA) techniques play a crucial role in the handling of these uncertainties and in the comprehension of the system behavior. These techniques aim at identifying and ranking inputs with respect to their impact on the output. In addition, SA methods present two main objectives: decrease the output uncertainty by reducing uncertainty of the most influential inputs, and simplify the model by omitting contribution of least ones. The influence criterion depends on the considered SA approach. There are various SA techniques in literature and essentially two families stand out: local and global sensitivity analysis (GSA) methods, see [START_REF] Borgonovo | A common rationale for global sensitivity measures and their estimation[END_REF][START_REF] Borgonovo | Sensitivity analysis: a review of recent advances[END_REF][START_REF] Iooss | A review on global sensitivity analysis methods[END_REF][START_REF] Wei | Variable importance analysis: a comprehensive review[END_REF] and associated references for a review. Local methods aim at studying the behavior of the output locally around a nominal value of inputs. In contrast, global methods consider the whole variation range of inputs.

Sensitivity analysis may also be performed with a rare event perspective. Reliability-oriented sensitivity analysis (ROSA) differs from the classical one in the nature of the output quantity of interest under study. Indeed, sensitivity analysis focuses on the model output whereas ROSA is broadly concerned with a reliability measure, typically the • First, target (or regional) sensitivity analysis, which aims at studying the impact of inputs over a function of the output, typically the indicator function of a critical domain. • Second, conditional sensitivity analysis, which aims at studying the impact of inputs exclusively within the critical domain, namely, conditionally to the failure event.

These two points of view can lead to widely different answers. To illustrate this aspect, consider for instance the following simple toy model:

Y = X 1 + 1 X 1 >3 |X 2 | (1)
where X 1 and X 2 are independent centered Gaussian random variables with respective variance 1 and 5. The random variables X 1 and X 2 are viewed as the system input and Y as the system output. Let us consider that for this system, {Y > 3} is the failure event, and try to answer the following question: which out of X 1 and X 2 is more important from a rare event perspective? Actually, the answer depends on the viewpoint considered:

• if one is interested in the impact of the input on the failure occurring or not, then of course X 1 is highly influential and X 2 , that only kicks in Y upon failure, plays no role; • if one is now interested in the most influential input upon failure occurring, then X 2 should intuitively be more important than X 1 because of its higher variance.

In this paper we propose two new target and conditional ROSA moment-independent indices ηi and δ f i in order to alleviate some of the limitations of classical variance-based indices [START_REF] Perrin | Efficient evaluation of reliability-oriented sensitivity indices[END_REF]. These proposed indices and variance-based indices require exactly the same simulation budget: for both methods, the entire simulation budget is devoted to sampling from the input distribution conditional on failure for which a variety of standard methods can be used, for instance adaptive importance sampling, subset simulations or, if the code is too expensive, surrogate models. Once this sampling is done, the estimation of ηi and δ f i is post-processing of the sample without new calls to the model. The rest of this paper is organized as follows: Section 2 aims at introducing two different ROSA indices, ηi and δ f i , which are intrinsically linked to GSA method of Borgonovo [START_REF] Borgonovo | A new uncertainty importance measure[END_REF]. In Section 3 we present our simultaneous estimation scheme for ηi and δ f i measures and numerical applications are performed in Section 4 to assess its efficiency. Section 5 discusses how this scheme can be extended to a more general context. Our estimation scheme relies on the maximum entropy method which is recalled in the Appendix.

Two complementary moment independent sensitivity measures

In this paper we focus on Borgonovo's indices originally proposed in [START_REF] Borgonovo | A new uncertainty importance measure[END_REF], although our method can be generalized to more general indices as discussed in Section 5. Let in the sequel Z | Z ′ denote a random variable with random distribution the distribution of Z conditioned on Z ′ and a deterministic scalar function M : R d → R. To measure the sensitivity of the output Y = M(X) with respect to one of its input X i , where X = (X 1 , . . . , X d ), Borgonovo [START_REF] Borgonovo | A new uncertainty importance measure[END_REF] proposed in the case where (X i , Y ) is absolutely continuous with respect to Lebesgue measure the index

δ i = 1 2 E [   f Y -f Y |X i   L 1 (R) ] , (2) 
i.e., half the average of the L 1 distance between the density of Y and the random density of Y conditioned on X i . If X i has a high influence on Y , the conditional density should be different from the non-conditioned one and δ i should thus take large values. For further references and more details on δ-sensitivity measures the reader can consult [START_REF] Borgonovo | Sensitivity analysis: a review of recent advances[END_REF].

In this paper we will adopt a more general definition of Borgonovo's index, which will make it possible to consider cases where (X i , Y ) is not absolutely continuous with respect to Lebesgue measure. The motivation stems from considering the influence of X i not only on Y but also on possibly discrete functions of Y such as 1 Y >s , where s is a fixed critical value and where 1 Y >s = 1 if Y > s and 0 otherwise. It captures the influence of X i on the failure occurring or not.

For this generalization, we see Borgonovo's index as a measure of dependency between X i and Y . Namely, let d TV (Z 1 , Z 2 ) denote the total variation distance between the distributions of the random variables Z 1 and Z 2 . When Z 1 and Z 2 are absolutely continuous with respect to Lebesgue measure, we have

d TV (Z 1 , Z 2 ) = 1 2 ∥ f Z 1 -f Z 2 ∥ L 1 (R)
and so we adopt the following generalization of Borgonovo's index:

δ i = E [d TV (Y, Y | X i )] = d TV ( (X i , Y ), (X i , Y ′ ) ) (3) 
such that Y ′ and Y are independent and identically distributed random variables. The second equality holds when (X i , Y ) is absolutely continuous with respect to some product measure λ(dx)⊗µ(dy) (typically, (X i , Y ) is absolutely continuous with respect to Lebesgue measure, or X i is and Y is a discrete random variable).

In a rare event context, we are interested in the impact of X i not only on Y but also on the occurrence of some rare event which we write {Y > s}. This means that we are interested in the influence of X i on the random variable 1 Y >s : the corresponding generalized Borgonovo's index is therefore given by

η i = E [d TV (1 Y >s , 1 Y >s | X i )] = E [|P(Y > s) -P(Y > s | X i )|] (4) 
which is actually twice the index proposed in Cui et al. [START_REF] Cui | Moment-independent importance measure of basic random variable and its probability density evolution solution[END_REF]. One of the drawbacks of this index is that it is unnormalized as it is upper bounded by twice the rare event probability 2P(Y > s). To obtain a [0, 1]-valued index, we use the relation

η i = 2P(Y > s) × d TV (X i , X i | Y > s) (5) 
observed in [START_REF] Wang | A new efficient simulation method based on Bayes' theorem and importance sampling Markov chain simulation to estimate the failure-probability-based global sensitivity measure[END_REF] and that can be derived using Bayes' Theorem, to propose the [0

, 1]-valued index ηi = d TV (X i , X i | Y > s) = 1 2   f X i -f X i |Y >s   L 1 (R) . (6) 
Complementary to this approach, we may also be interested in the influence of X i upon failure, which corresponds to considering δ i but when all the random variables involved are conditioned upon the failure Y > s. Thus, this conditional index, denoted by δ f i , is given by δ

f i = E [d TV (Y | Y > s, Y | {Y > s, X i })] . (7) 
When (X i , Y ) is absolutely continuous, this is a particular case of (3) and so if we denote by ( Xi , Ỹ ) a random variable distributed as (X i , Y ) conditioned on Y > s, then we have in this case

δ f i = 1 2    f Xi , Ỹ -f Xi f Ỹ    L 1 (R 2 ) . (8) 
Instead of focusing on Y , the indices η i and ηi target a different output, namely 1 Y >s and will thus be referred as target indices. Similarly, instead of working in the normal mode, the indices δ f i are concerned with the system conditioned upon failure and will thus be referred to as conditional indices. See Section 5 for more on this terminology.

For the toy model (1), we have Y > s if and only if X 1 > s: this directly implies P(Y > s | X 1 ) = 1 X 1 >s and P(Y > s | X 2 ) = P(Y > s) and then η1 = 1 -P(X 1 > s) ≈ 0.9987 and η2 = 0.

(

) 9 
This confirms the intuition that, as far as we are concerned with the failure occurring or not, X 1 is highly influential and X 2 , not at all. However, in this simple Gaussian case we can directly compute the δ f i 's through numerical integration, which gives δ f 1 ≈ 0.0781 and δ f 2 ≈ 0.7686. [START_REF] Bucklew | Introduction to Rare Event Simulation[END_REF] Thus upon failure, X 2 has become much more influential than X 1 . This simple toy example illustrates the complementarity of the indices ηi and δ f i from a rare event perspective, and our goal in this paper is to show how they can be simultaneously and accurately estimated with only one run of sequential Monte Carlo or importance sampling, regularly considered in the context of rare event probability estimation P(Y > s). In other words, we show that upon estimating this probability, one also gets "for free", that is without additional calls to the function M, an estimation of ηi and δ f i .

Simultaneous estimation of δ f i and ηi

We consider throughout this article a general computer code Y = M(X) where the scalar output Y depends on a d-dimensional real valued random vector X = (X 1 , . . . , X d ) of R d through a deterministic scalar function M : R d → R called "black box". Without loss of generality, it is assumed that the failure event corresponds to the exceeding of a critical threshold s by the output Y , i.e., is of the form {Y > s}.

We further assume that for every i, (X i , Y ) is absolutely continuous with respect to Lebesgue measure with density f X i ,Y and marginals f X i and f Y . As above, we denote by X = ( X1 , . . . , Xd ) a random variable distributed as X conditioned on Y > s and define Ỹ = M( X). Thus, ( Xi , Ỹ ) is also absolutely continuous with respect to Lebesgue measure with density f Xi , Ỹ with marginals f Xi and f Ỹ . Our simultaneous estimation scheme is obtained by combining state-of-the-art estimation techniques which we recall next.

The approach proposed in this paper to provide an estimation of ηi and δ f i is based on three stages: 1. we apply a rare event simulation technique (Monte Carlo method, importance sampling, sequential Monte Carlo, etc.) to estimate the failure probability P(Y > s). It can be combined with the building of a surrogate model. 2. we get a failure conditioned sample X (see Section 3.2). 3. we estimate the two proposed ROSA indices δ f i and ηi from X (see Section 3.3). The simulation budget required to perform these three steps is fully concentrated on the first and second stages.

Estimation of δ i

We review in this section some general aspects of moment-independent sensitivity indices estimation. Initial estimations of δ-sensitivity measures relied on their original definition in terms of total variation distance between conditional and unconditional distributions. Involving L 1 norms of differences of conditional and unconditional output probability density functions, this approach typically necessitates expensive double-loop estimation procedures with a prohibitive cost [START_REF] Borgonovo | A new uncertainty importance measure[END_REF][START_REF] Liu | A new computational method of a moment-independent uncertainty importance measure[END_REF][START_REF] Plischke | Global sensitivity measures from given data[END_REF]. Alternative approaches were proposed in [START_REF] Zhang | A new method for evaluating Borgonovo moment-independent importance measure with its application in an aircraft structure[END_REF][START_REF] Zhang | Structural reliability analysis based on the concepts of entropy, fractional moment and dimensional reduction method[END_REF], but these two methods rest on strong technical assumptions such as independence between input or approximation of the black box M within the cut-HDMR (high-dimensional model representation) framework. An apparently efficient single-loop method was proposed in [START_REF] Wei | Monte Carlo simulation for moment-independent sensitivity analysis[END_REF], but simulation results provided in [START_REF] Derennes | A nonparametric importance sampling estimator for moment independent importance measures[END_REF] questioned its consistency. The interested reader is for instance referred to the introduction of [START_REF] Derennes | Estimation of moment independent importance measures using a copula and maximum entropy framework[END_REF] for a more detailed discussion on these estimation issues.

In the present paper, the estimation of δ i is performed by using the method described in [START_REF] Derennes | Estimation of moment independent importance measures using a copula and maximum entropy framework[END_REF]: it does not rely on any assumption on the model and works in particular for dependent input. It rests on the copula-representation of δ i noted in [START_REF] Wei | Moment-independent sensitivity analysis using copula[END_REF], namely

δ i = 1 2 ∫ 0≤u,v≤1 |c i (u, v) -1| dudv, (11) 
where c i is the density copula of (X i , Y ), i.e., the density of (F X i (X i ), F Y (Y )). Based on this representation, the approximation proposed in [START_REF] Derennes | Estimation of moment independent importance measures using a copula and maximum entropy framework[END_REF] uses a maximum entropy estimation ĉi of c i imposing estimated fractional moments as constraints, and then a Monte Carlo estimation 1

2N ′ ∑ N ′ k=1 | ĉi (U k 1 , U k 2 ) -1| of the integral with the (U k 1 , U k 2 ) being i.i.d. random variables uniformly distributed on [0, 1] 2 .
At this point we stress an important point: all these estimation techniques assume that one can sample from the input distribution X. As explained in the introduction however, estimating δ f i amounts to applying these techniques when the input distribution is that of X conditioned on failure, which is in general unknown. Thus, before applying these methods one needs to be able to sample from X.

Generating conditioned samples X

General aspects

The most naive method for generating failure samples is the rejection method. For a given sample (X 1 , . . . , X N ) i.i.d. with common distribution f X , a subsample is obtained by recording samples which satisfy M(X k ) > s. However, this approach leads to a huge computational cost when the failure probability is low.

When some information is known on the failure event, this cost can be reduced by leveraging "good" auxiliary distributions in importance sampling techniques [START_REF] Bucklew | Introduction to Rare Event Simulation[END_REF]. In reliability, a method widely used for designing auxiliary distributions is shifting the input distribution to a design point, which may be determined thanks to FORM/SORM methods [START_REF] Melchers | Radial importance sampling for structural reliability[END_REF]. Importance sampling is then combined with Monte Carlo Markov Chain to generate samples distributed as X [START_REF] Au | Probabilistic failure analysis by importance sampling Markov chain simulation[END_REF].

Another efficient method to generate conditioned samples X is the adaptive Sequential Monte Carlo (SMC) procedure proposed and studied in [START_REF] Cérou | Sequential Monte Carlo for rare event estimation[END_REF] that we present in the next section. Several variants have been proposed in different scientific communities. It was adapted in [START_REF] Au | Estimation of small failure probabilities in high dimensions by subset simulation[END_REF] (called subset simulation) for rare event assessment purpose and studied theoretically from the Markov processes point of view in [START_REF] Cérou | Sequential Monte Carlo for rare event estimation[END_REF].

As a final remark, one can mention that importance sampling-based methods and subset simulation may be combined with a surrogate model such as Kriging as it is a powerful tool in the context of costly-to-evaluate computer models. For instance, we can mention the method AK-MCS (Active learning reliability method with Kriging and Monte Carlo Simulation) [START_REF] Echard | Ak-mcs: an active learning reliability method combining Kriging and Monte Carlo simulation[END_REF] which couples Kriging and Monte Carlo method, AK-IS (Active learning reliability method with Kriging and Importance Sampling) [START_REF] Echard | A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF] which combines Kriging and importance sampling or AK-SS (Active learning reliability method with Kriging and Subset Simulation) [START_REF] Huang | Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and subset simulation[END_REF] which associates Kriging and Subset Simulation. However, the counterpart (for the purpose of the present paper) remains the difficulty to catch and measure the impact of the modeling errors induced by the surrogate model itself.

We favor in this article the use of the SMC procedure. It is described in the next section and applied to all the numerical test-cases of this article. Nevertheless, any of the above mentioned techniques could be applied to generate samples with the same distribution as X. For that purpose, we have also performed this generation with AK-IS [START_REF] Echard | A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF] for one example of Section 4 to show that coupled with a surrogate model, it is possible to sample from X with a low simulation cost.

Sequential Monte Carlo

In what follows, by duplicating a finite set {x k } into N , we mean drawing N times independently and uniformly from {x k }. The algorithm parameters are N x , ρ, A x and T , corresponding respectively to the number of particles, the threshold for the quantile, the number of steps of the Metropolis-Hastings sampler, and the exploration (or proposal) kernel in this sampler.

Initialization: set p = 0, generate (X 1 p , . . . , X N x p ) i.i.d. according to f X and compute Y k p = M(X k p ) for k = 1, . . . , N x ; Selection: let γ p be the ρ-quantile of the Y k p : if γ p > s, then stop, otherwise duplicate the ρ N x particles with Y k > γ p into N x particles.
Mutation: apply A x times the Metropolis-Hastings algorithm with exploration kernel T and target distribution X | M(X) > γ p to each of the N x particles, denote by (X 1 p+1 , . . . , X N x p+1 ) the newly obtained particles with corresponding Y k p+1 = M(X k p+1 ), increment p and go back to the selection step. The black box is called for every particle at every step of the Metropolis-Hastings sampler in order to compute the acceptance probability, so that if m denotes the (random) number of steps of this algorithm, then the number of calls to the black box M is equal to

N x (1 + m A x ).
As noted in [START_REF] Cérou | Sequential Monte Carlo for rare event estimation[END_REF], at the end of this algorithm the (X 1 m , . . . , X N x m ) are approximately distributed according to X | Y > γ m but are not independent. To improve independence and tune the final size of the sample, an additional step is considered. There are thus two additional parameters, the size N of the sample and the number of steps A of the Metropolis-Hastings sampler in this additional step.

Sampling: duplicate the N x particles (X 1 m , . . . , X N x m ) into N particles, and apply A times to each particle the Metropolis-Hastings algorithm with exploration kernel T and target distribution X | M(X) > s.

This adds N × A calls to the black box, and the output of this algorithm is a sample ( X1 , . . . , XN ) which is approximately i.i.d. according to X = X | M(X) > s together with the corresponding values Ỹ k = M( Xk ).

Simultaneous estimation of δ f i and ηi

We now explain how to combine the method for estimating δ i with the adaptive SMC sampler described above to have a simultaneous estimation of δ f i and ηi .

Step 1 -Input realizations generation. Using the adaptive SMC procedure of Section 3.2, obtain ( X1 , . . . , XN ) approximately i.i.d. from f X and their corresponding value Ỹ k = M( Xk ) by M.

Step 2 -Density estimation. Use the sample ((

X k i , Ỹ k ), k = 1, . . . , N
) to obtain estimates f Xi and ĉi of the density f Xi of Xi and of the copula c i of ( Xi , Ỹ ), respectively. In this article, they are both estimated with the maximum entropy method with estimated fractional moments (see Appendix) but any other efficient density and copula estimation technique can be chosen.

Step 3 -Indices estimation. Use the estimates f Xi and ĉi to obtain estimates of ηi and δ f i as follows:

• for ηi , estimate the one-dimensional integral ∥ f X i -f Xi ∥ L 1 (R) either by direct numerical approximation,
or if f X i can be sampled from, by Monte Carlo method via

ηi = 1 N ′ N ′ ∑ k=1 ⏐ ⏐ ⏐ ⏐ ⏐ f Xi (X k i ) f X i (X k i ) -1 ⏐ ⏐ ⏐ ⏐ ⏐ (12) 
where the X k i are i.i.d. with common distribution X i ;

• for δ f i , generate ((U k 1 , U k 2 ), k = 1, . . . , N ′ ) i.i.d. uniformly distributed on [0, 1] 2 and estimate δ f i by δ f i = 1 2N ′ N ′ ∑ k=1 | ĉi (U k 1 , U k 2 ) -1| . ( 13 
)
It has to be pointed out that the proposed procedure can be applied to output models with correlated inputs even if the interpretation of the results could remain difficult. A potential perspective is to combine this proposed work with Shapley effect estimation of Borgonovo's indices [START_REF] Sarazin | Estimation of high-order moment-independent importance measures for Shapley value analysis[END_REF] as Shapley effects are easier to interpret.

As promised, the proposed algorithm also provides simultaneous estimation of both δ f i and ηi from one common SMC procedure: indeed, after the first step no more call to the black box M is needed. In particular, the (random) number of calls to the black box is N x + m A x N x + AN as explained in Section 3.2 (N x + m A x N x calls for the failure probability estimation and AN calls for sensitivity analysis). If this number of calls is too expensive for a given application, all these procedures can be combined with active learning of a surrogate model for probability estimation such as in [START_REF] Echard | A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF][START_REF] Huang | Assessing small failure probabilities by AK-SS: an active learning method combining Kriging and subset simulation[END_REF]. In that case, the AN calls to the black box for sensitivity analysis become AN calls to the surrogate model.

Numerical applications

In this section, the proposed estimation scheme is applied on four output models. Firstly, we consider two analytical cases for which the unconditional and conditional output distributions are known so that theoretical values of the importance measures δ f i and ηi are available by using numerical integration. We then consider a single degree of freedom oscillator with d = 6 independent and lognormally distributed inputs. Finally, as a last test case, we study a launcher stage fallout model which takes d = 6 input parameters into account.

For each example, computation time and number of model calls are given to assess the efficiency of the proposed method. Results are obtained with a computer equipped with a 3.5 GHz Intel Xeon 4 CPU. The number of samples N ′ for the Monte Carlo integration (13) can be taken as large as possible as this stage does not require any calls to M. In the following simulations, we set N ′ = 10 7 . This number may be tuned more adaptively by computing the variance of the Monte Carlo estimates.

When the input X ∼ N (ν, Σ) is normally distributed, mutation steps in the adaptive SMC algorithm are performed by using the natural exploration kernel so-called Crank-Nicholson shaker and defined by

T (x, •) ∼ L ( √ 1 -a × L -1 (x -ν) + √ a Z ) + ν , (14) 
where a ∈ (0, 1) is a parameter of the kernel, Z ∼ N (0, I d ) and L is the lower triangular matrix in the Cholesky decomposition of Σ, i.e., Σ = LL T . Standard deviations (Sd) of estimators are computed by performing 100 runs of the proposed scheme in order to study its variability. When a theoretical value θ is available, the accuracy of an estimator θ is measured by the mean of the relative difference (RD) θ -θ θ .

Comparison with ROSA Sobol indices

It consists in analyzing the influence of the inputs X i on the variance of 1 Y >s [START_REF] Li | Moment-independent importance measure of basic variable and its state dependent parameter solution[END_REF]. First-order Sobol indices on this indicator function can thus be defined in the following way:

S 1 Y >s i = V[E[1 Y >s (X)|X i ]] V[1 Y >s (X)] , ( 15 
)
where V is the variance and S

1 Y >s i
is the first-order Sobol index associated to the variable X i . Advanced samplingbased estimation schemes for these first-order Sobol indices have been investigated in [START_REF] Wei | Efficient sampling methods for global reliability sensitivity analysis[END_REF] but still require a lot of simulations to achieve convergence. Another efficient estimation procedure using SMC has been proposed recently by [START_REF] Perrin | Efficient evaluation of reliability-oriented sensitivity indices[END_REF] as the first-order S 1 Y >s i can be rewritten as follows:

S 1 Y >s i = P(Y > s) 1 -P(Y > s) V [ f Xi (X i ) f X i (X i ) ] . (16) 
SMC enables to generate a set of samples ( X1 , . . . , XN ) approximately i.i.d. from f X from which it is possible to estimate a density f Xi and finally, the Sobol indices are computed with the empirical variance. The following steps describe the complete procedure.

Step 1 -Input realizations generation. Using the adaptive SMC procedure of Section 3.2, obtain ( X1 , . . . , XN ) approximately i.i.d. from f X and estimate P(Y > s) with Pf .

Step 2 -Density estimation. Use the sample ( X k i , k = 1, . . . , N ) to obtain an estimate f Xi of the density f Xi of Xi ; In this article, this density is estimated with the maximum entropy method with estimated fractional moments (see Appendix) but any other efficient density estimation technique can be chosen;

Step 3 -Indice estimation. Estimate the first-order Sobol indices S 1 Y >s i from f Xi and Pf as follows:

Ŝ1 Y >s i = ( Pf 1 -Pf ) ⎛ ⎜ ⎝ 1 N ′ N ′ ∑ k=1 ( f Xi (X k i ) f X i (X k i ) ) 2 - ⎛ ⎝ 1 N ′ N ′ ∑ k=1 f Xi (X k i ) f X i (X k i ) ⎞ ⎠ 2 ⎞ ⎟ ⎠ (17) 
where the X k i are i.i.d. with common distribution X i .

Sobol indices take values between 0 and 1. Higher order Sobol indices can also be defined but are more complicated to estimate as they require the estimation of multivariate densities. For the same reason, total Sobol indices are also difficult to estimate as they imply the estimation of (d -1)-dimensional densities. The sum of all Sobol indices at all order is equal to 1.

There are mainly three limits to this approach: the inputs have to be independent for a correct interpretation of the results and the variance should be a valuable indicator of the output variability which is not always the case in practice [START_REF] Borgonovo | A new uncertainty importance measure[END_REF][START_REF] Borgonovo | Moment independent and variance-based sensitivity analysis with correlations: An application to the stability of a chemical reactor[END_REF][START_REF] Veiga | Global sensitivity analysis with dependence measures[END_REF]. Moreover, there is good chance for all individual Sobol indices S 1 Y >s i to tend to zero when the failure probability is too low. Perrin and Defaux [START_REF] Perrin | Efficient evaluation of reliability-oriented sensitivity indices[END_REF] underlined this limit for the use of Sobol indices in a sensitivity analysis context. The proposed indices δ f i and ηi do not suffer from ROSA Sobol limitations as the input random variables could be dependent even if the interpretation of the indices may remain complicated. The indices δ f i and ηi are also moment independent indices and thus do not rely on output variance. Furthermore, the proposed indices are not impacted by a too significant rarity of the failure event.

The estimation of S

1 Y >s i
, δ f i and ηi is based on the same sample ( X1 , . . . , XN ) and thus the computational cost for the estimation of these ROSA indices is similar.

Example 1: back to the toy model of the introduction

We go back to the toy model (1) of the introduction, i.e., Y = X 1 + 1 X 1 >s |X 2 | where s = 3, X 1 and X 2 are independent, X 1 ∼ N (0, 1) and X 2 ∼ N (0, 5). We compare in Table 1 theoretical values with estimates obtained with the proposed method. The failure probability can also be evaluated with SMC to 1.35 × 10 -3 with 17% coefficient of variation. In average, runs last 317 s and make 34,640 calls to the black box (19,460 calls for the failure probability estimation, 15,000 calls for sampling with X and 0 call for the ROSA index estimation). From the different relative differences, one can see that δ f i and ηi estimates are close to their respective reference values and present reasonable variability with regard to the budget allocated to the estimation. Sobol indices S 1 Y >s i and target sensitivity index ηi gives very similar results and share thus the same ROSA interpretation.

Example 2: an analytical test case

Let us consider the following output model:

Y = X 1 + X 2 2 (18)
where X 1 and X 2 are i.i.d. standard Gaussian random variables and the failure event is {Y > 15}. This model is in the same vein as the previous toy model but slightly more realistic. Unconditional and conditional output distributions are known: Y | X 1 follows a χ 2 -distribution shifted by X 1 and Y | X 2 is normally distributed with unit variance and mean X 2 . We thus have the following expressions for the densities:

f Y (y) = ∫ ∞ 0 e -(y-t) 2 2 -t 2 2π √ t dt (19) 
and ) are available via numerical integration. We gathered in Table 2 the estimates of δ f i and ηi obtained from SMC. The failure probability can also be evaluated with SMC to 1.24 × 10 -4 with 18% coefficient of variation. In average, runs need 350 s to compute all the δ and η-indices and make 25,200 calls to the black box (10,200 calls for the failure probability estimation, 15,000 calls for sampling with X and 0 call for the ROSA index estimation).

f Y |X 1 (y) = e -(y-X 1 ) 2 √ 2π(y -X 1 ) 1 y≥X 1 and f Y |X 2 (y) = e -(y-X 2 ) 2 2 √ 2π (20) 
One can see that estimates { δ f i } respect the good importance ranking, namely X 2 > X 1 . However, the estimation of δ f 1 exhibits an important difference between average values and reference ones. This difference is due to the fact that the samples {X k } obtained with the SMC procedure are not completely independent and distributed from f X since only A = 3 steps of the Metropolis-Hastings sampler are performed in the final sampling step. Indeed, increasing A from 3 to 30 leads to average values of δ f 1 of 0.0206 with a standard deviation of 0.0091. In this example, the indices {δ f i } enable to detect a drastic change in the importance ranking. Indeed, the contribution of the first input X 1 becomes negligible at the failure of the system whereas it is the most influential under nominal operation. The indices { ηi } and Sobol indices Ŝ1 Y >s i lead to the same conclusion, namely that the influence of the input X 2 at the failure predominates with η2 close to 1.

Example 3: a single degree of freedom (SDOF) oscillator

In this subsection, a non linear SDOF oscillator [START_REF] Bucher | Time variant reliability analysis utilizing response surface approach[END_REF] made of a mass m and two springs with free length r and respective stiffness c 1 and c 2 is considered. It is subjected to a rectangular load pulse with random duration t and amplitude F. The model output is defined as

Y = -3r + ⏐ ⏐ ⏐ ⏐ ⏐ 2F c 1 + c 2 sin ( √ c 1 + c 2 m t 2 )⏐ ⏐ ⏐ ⏐ ⏐ , (21) 
i.e., the difference between the maximum displacement response of the system and 3r . The six input variables c 1 , c 2 , r , m, t and F are assumed to be independent and lognormally distributed with respective parameters given in Table 3. The failure of the system is achieved when the output Y exceeds the threshold 0. We gathered in Table 4 the estimates of δ f i and ηi obtained from SMC. The associated failure probability is estimated to 8.54 × 10 -5 with 91% coefficient of variation. The δ i 's are obtained with the method described in [START_REF] Derennes | Estimation of moment independent importance measures using a copula and maximum entropy framework[END_REF]. In average, runs last 960 s and make 51,725 calls to the black box (21,725 calls for the failure probability estimation, 30,000 calls for sampling with X and 0 call for the ROSA index estimation). It appears that the global importance ranking X 4 < X 2 < X 5 < X 1 < X 6 < X 3 drastically differs from the importance ranking provided by the conditional sensitivity indices δ f i . Especially, the most influential input X 3 = r becomes negligible conditionally on the failure event. Changes are more nuanced as far as target indices are concerned. Indeed, target sensitivity indices ηi give approximately the same ranking, except that X 1 and X 2 predominate. The Sobol indices Ŝ1 Y >s i are very low for the SDOF oscillator with a higher budget allocated to the adaptive SMC algorithm. 262,500 calls to the function M. Failure probability estimated to 9.11 × 10 -5 with 27% coefficient of variation. Set of parameters for the adaptive SMC algorithm: N x = 500, A x = 10 (instead of 3), ρ = 0.1813, A = 10 and N = 3000. for all the inputs even if they give the same ranking as ηi . It is due to the fact that the failure probability is too low as underlined in [START_REF] Perrin | Efficient evaluation of reliability-oriented sensitivity indices[END_REF] and thus limits the use of ROSA Sobol indices in a sensitivity analysis context. As in the previous example, variability of obtained estimates is non negligible. Here, inputs are lognormally distributed and there is no natural exploration kernel like in the Gaussian case. We can find in [START_REF] Chib | Understanding the Metropolis-Hastings algorithm[END_REF] a discussion about implementation issues for the choice of the exploration kernel. In the current example, a candidate is drawn by adding a Gaussian noise with the same standard deviation as inputs. With this choice, it appears that we respect standard practice which is to tune the proposal distribution to get around 20%-25% acceptance rate [START_REF] Sherlock | Optimal scaling of the random walk metropolis on elliptically symmetric unimodal targets[END_REF]. Then, the only way to improve previous results is to increase the budget allocated to Metropolis-Hastings steps by increasing parameter A and decreasing the parameter ρ which regulates values of thresholds involved in the SMC procedure. From Table 5 which displays associated results, one can see that previous observed variability has been reduced. The associated failure probability is now estimated to 9.11×10 -5 with 27% coefficient of variation. The new computation budget is about 262,500 calls to the model (232,500 calls for the failure probability estimation, 30,000 calls for sampling with X and 0 call for the ROSA index estimation), which is quite substantial. Nevertheless, it remains substantially less expensive than the budget required by a classical Monte Carlo procedure. Furthermore, associated computational cost may be reduced by using a surrogate model. For that purpose, we have performed the same reliability analysis with AK-IS algorithm [START_REF] Echard | A combined importance sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models[END_REF]. The sample size of importance sampling population evaluated on the surrogate model is 10,000. The failure probability is estimated by AK-IS to 9.12 × 10 -5 with 32% coefficient of variation for a reduced simulation budget of 72 calls to the function (72 calls for the failure probability estimation, 0 call for sampling with X and 0 call for the ROSA index estimation). The estimated ROSA indices are displayed in Table 6 and are of course very similar to those obtained with SMC. The use of a surrogate model does not increase here the variability of the ROSA index estimation as the failure probability is estimated accurately with AK-IS.

Input

Example 4: a launcher stage fallout model

Space launcher complexity arises from the coupling between several subsystems, such as stages or boosters and other embedded systems. Optimal trajectory assessment is a key discipline since it is one of the cornerstones of the mission success. However, during the real flight, aleatory uncertainties can affect the different flight phases at different levels (due to weather perturbations, stage combustion etc.) and be combined to lead to a failure state of the space vehicle trajectory. After their propelled phase, the different stages reach successively their separation altitudes and may fall back into the ocean (see Fig. 1). Such a dynamic phase is of utmost importance in terms of launcher safety since the consequence of a mistake in the prediction of the fallout zone can be dramatic in terms of human security and environmental impact. That is the reason why it is of prime importance to take it into account during the rare event analysis.

We consider in this section a simplified trajectory simulation code of the dynamic fallout phase of a generic launcher first stage [START_REF] Derennes | Nonparametric importance sampling techniques for sensitivity analysis and reliability assessment of a launcher stage fallout[END_REF] which takes six input parameters into account. The input vector X contains the following basic variables (i.e., physical variables) representing some initial conditions, environmental variables and launch vehicle characteristics:

X 1 : stage altitude perturbation at separation (∆a (m)); X 2 : velocity perturbation at separation (∆v (m s -1 )); X 3 : flight path angle perturbation at separation (∆γ (rad)); X 4 : azimuth angle perturbation at separation (∆ψ (rad)); X 5 : propellant mass residual perturbation at separation (∆m (kg)); X 6 : drag force error perturbation (∆C d dimensionless).

These variables are assumed to be independent and normally distributed with parameters gathered in Table 7. As an output, the code will give back the scalar distance Y = M(X) which represents the distance between the theoretical fallout position into the ocean and the estimated one due to the uncertainty propagation. The failure event is {Y > 15} and the associated failure probability is estimated by SMC to 1.36 × 10 -4 with 35% coefficient of variation.

Estimates of both target and conditional indices are available in Table 8. The δ i 's are obtained with the method described in [START_REF] Derennes | Estimation of moment independent importance measures using a copula and maximum entropy framework[END_REF]. In average, runs need 750 s to compute all the δ and η-indices and make 193,520 model calls (143,520 calls for the failure probability estimation and 50,000 calls for sampling with X and 0 call for the ROSA index estimation).

On the one hand, the global ranking provided by δ i shows that X 4 is the most influential input, followed by X 2 and X 3 . On the other hand, both target and conditional indices underline that the impact of X 4 becomes negligible from a rare event perspective. The rest of the ranking remains relatively unchanged and seems to indicate that X 2 and X 3 are the most influential input upon the launcher's failure regime. Like the example 2, this test case highlights the importance to perform reliability-oriented sensitivity analysis since the impact of an input parameter (here X 2 ) may depend heavily on the support of the output distribution on which the study is focused.

Generalization: target and conditional sensitivity analysis

Following the approach of [START_REF] Marrel | Statistical developments for target and conditional sensitivity analysis: application on safety studies for nuclear reactor[END_REF], we explain here how to generalize our estimation scheme in two directions:

(1) considering a more general notion of distance between distributions; (2) assessing the impact of X i on functions of Y .

More general distance

As explained in the introduction, Borgonovo's index is the total variation distance between (X i , Y ) and (X i , Y ′ ) with Y ′ independent from X i . In the absolutely continuous case, this corresponds to the L 1 distance between the joint density f X i ,Y and the product f X i f Y of its marginals, which reflects that this index is a measure of dependency between X i and Y . Of course, many other dependency measures exist, for instance the Csiszár dependency measure.

Let φ : R + → R ∪ {+∞} be a convex function with φ(1) = 0: then the Csiszár divergence between two probability measures P and Q is given by div

φ (P, Q) = ∫ φ ( dP dQ ) dQ ( 22 
)
where P is assumed to be absolutely continuous with Radon-Nikodym derivative dP dQ with respect to Q. For instance, for φ(x) = 1 2 |1 -x| this is the total variation distance, and for φ(x) = -log(x) this is the Kullback-Leibler divergence. From this divergence, we can then define the Csiszár dependency measure (CDM φ ) between two random variables Z 1 and Z 2 as

CDM φ (Z 1 , Z 2 ) = div φ ( (Z 1 , Z 2 ), (Z 1 , Z ′ 2 ) ) (23) 
with Z ′ 2 equal in distribution to Z 2 and independent from Z 1 (identifying in the above a random variable and its distribution). Because the total variation distance corresponds to the case φ(•) = 1 2 |1 -•|, we recover Borgonovo's index with this choice, i.e., we have CDM 1 2 |1-•| (X i , Y ) = δ i . Moreover, we note that this dependency measure can still be expressed in a straightforward manner from the copula c of (Z 1 , Z 2 ) provided it exists, namely

CDM φ (Z 1 , Z 2 ) = ∫ φ(c(u, v))dudv, (24) 
thereby generalizing the relation [START_REF] Cérou | Sequential Monte Carlo for rare event estimation[END_REF] at the heart of our estimation scheme for δ f i .

Impact on a function of Y

Consider any function w : M(R d ) → R + such that w(Y ) is integrable and let Pw be the probability measure which is absolutely continuous with respect to P with Radon-Nikodym derivative w(Y ). Thus, Pw is the unique probability measure defined on (Ω , F) such that

Pw (A) = E(w(Y )1 A ) E(w(Y )) (25) 
for any measurable set A ∈ F. Adopting the terminology of [START_REF] Marrel | Statistical developments for target and conditional sensitivity analysis: application on safety studies for nuclear reactor[END_REF], we can generalize the two problems laid out in the introduction as follows:

Target sensitivity analysis: what is the influence of X i on w(Y ) (rather than on Y )?

Conditional sensitivity analysis: what is the influence of X i on Y under Pw (rather than under P)?

What we have done before corresponds to the case w(y) = 1 y>s . Indeed, for this choice of w the measure Pw • X -1 is the law of X as defined earlier:

Pw (X ∈ A) = P(X ∈ A | Y > s) = P( X ∈ A). (26) 
Thus, we generalize X to Xw = (X w 1 , . . . , X w d ) by defining it as a random variable with law Pw • X -1 , and we define Ỹ w = M( Xw ).

Generalization

In view of Eqs. ( 4), ( 6) and ( 7) defining η i , ηi and δ f i , respectively, the above extensions suggest the following more general version of these indices:

η φ,w i = CDM φ (X i , w(Y )) , ηφ,w i = div φ ( X w i , X i ) and δ φ,w i = CDM φ ( X w i , Ỹ w ) . (27) 
We will assume that (X i , Y ) is absolutely continuous with respect to Lebesgue measure with density f X i ,Y , and that (X i , w(Y )) is absolutely continuous with respect to the product measure dxµ(da) with µ a measure on M(R d ) with density f X i ,w(Y ) . If w(Y ) takes values in R, one should typically think of µ as Lebesgue measure, but this more general formalism also makes it possible to encompass the important case where w(Y ) follows a discrete distribution: in this case, µ should simply be the counting measure and (X i , w(Y )) is automatically absolutely continuous (with respect to dxµ(da)).

Under these assumptions, we have that:

• η φ,w i = E [ div φ (w(Y ), w(Y ) | X i ) ] ;
• ( X w , Ỹ w ) is absolutely continuous with respect to Lebesgue measure with density

f X w i , Ỹ w (x, y) = w(y) f X i ,Y (x, y) E(w(Y )) . ( 28 
)
For w(y) = 

However, this relation does not seem to hold outside this case, and so in general it is not clear whether η φ,w i and ηφ,w i can be easily related. Guided by the choice made in the case w(y) = 1 y>s , we consider in the sequel the index ηφ,w i even though it may seem at first glance less natural than η φ,w i . In order to generalize our estimation scheme, we first need a generalization of the adaptive SMC algorithm of Section 3.2. To sample from the tilted distribution Pw , usual particle algorithms can be used such as the Metropolis-Hastings sampler with input target density w(M(•)) f X (•)/E(w(Y )). In the case w(y) = 1 y>s it is hard to sample directly from Pw and intermediate distributions, say Pw p with w p = 1 y>γ p , are needed. In this case and with a general w, one can for instance use the sequential Monte Carlo samplers proposed in [START_REF] Del Moral | Sequential Monte Carlo samplers[END_REF].

Assume now that one is given a sample ( Xw,1 , . . . , Xw,N ) approximately i.i.d. with common distribution Xw and their values Ỹ w,k = M( Xw,k ) by M. As discussed above, in the case w(y) = 1 y>s this is precisely the purpose of the adaptive SMC algorithm of Section 3.2. Then Step 2 of our estimation scheme remains unchanged and leads to:

• an estimate f X w i of the density f X w i of X w i ; • an estimate ĉw of the copula c w of ( X w i , Ỹ w ). Using [START_REF] Jaynes | Information theory and statistical mechanics[END_REF] we then have the following two estimations of ηφ,w 

f X i (x)
) f X i (x)dx [START_REF] Melchers | Radial importance sampling for structural reliability[END_REF] or by a Monte Carlo approximation:

ηφ,w i = 1 N ′ N ′ ∑ k=1 φ ( f X w i (X k i ) f X i (X k i ) ) (31) 
with the X k i i.i.d. with common distribution f X i . For δ φ,w i , draw i.i.d. random variables (U k 1 , U k 2 ) uniformly distributed on [0, 1] 2 and consider δφ,

w i = 1 N ′ N ′ ∑ k=1 φ ( ĉw (U k 1 , U k 2 )
) .

(32)

Conclusion

The aim of this paper is twofold:

-first, it expands the GSA method of Borgonovo in a reliability context. Two different ROSA indices, δ f i and ηi , have been introduced and a generalization in the more general framework of Csiszár dependency measure has been formalized. The complementarity of δ f i and ηi has been illustrated through several test cases of increasing complexity. Indeed, on the one hand, the target ROSA measure ηi aims at studying the impact of an input over the failure probability P(Y > s) or, more precisely, over the indicator function 1 Y >s . On the other hand, the conditional ROSA measure δ f i aims at quantifying the influence of an input upon the failure, namely, conditionally on the failure event.

-second, it shows that both indices δ f i and ηi can be simultaneously estimated from one common sample { Xk , Ỹ k } verifying M( Xk ) = Ỹ k > s which can be obtained for the most common rare event probability estimation techniques. The estimation of ηi and δ f i is thus a post-processing of the sample without new calls to the model. When the latter is costly-to-evaluate, the rare event probability estimation can lead to a simulation cost which is not reasonable in practice. Nevertheless, this constraint may be overcome by considering a surrogate model. We show that the indices δ f i and ηi can then be estimated with a surrogate model at low computational cost and are of interest in an industrial context.

Fig. 1 .

 1 Fig. 1. Illustration scheme of a launch vehicle first stage fallout phase into the Atlantic Ocean. Multiple fallout trajectories are drawn (red dotted lines), leading to the safe zone (yellow circular surface). Due to uncertainties, one fallout trajectory may lead to a failure impact point (red star) [cf. [17]].

1 =

 1 y>s and φ(x) = |1 -x|, we have the relation (5) between η E(w(Y )) × ηφ,w i .

  by numerically integrating the one-dimensional integral div φ ( X w i , X i ) =

Table 1

 1 Estimates of δ of example 1. 34,640 calls to the function M. Failure probability estimated to 1.35 × 10 -3 with 17% coefficient of variation. Set of parameters for the adaptive SMC algorithm: N x = 500, A x = 3, ρ = 0.3935, a = 0.5, A = 5 and N = 3000.

		f i , ηi and S i 1 Y >s			
	Input	Theoretical value δ i (rank) f	Estimation δ f i	
				Mean (rank)	Sd	RD
	X 1	0.0781 (2)		0.0930 (2)	0.0101	-0.1908
	X 2	0.7686 (1)		0.7200 (1)	0.0077	0.0632
	Input	Theoretical value ηi (rank)	Estimation ηi	
				Mean (rank)	Sd	RD
	X 1	0.9987 (1)		0.9997 (1)	0.0095	-0.001
	X 2	0 (2)		0.0315 (2)	0.0103	-
	Input	Theoretical value S i 1 Y >s	(rank)	Estimation Ŝ1 Y >s i	
				Mean (rank)	Sd	RD
	X 1	1 (1)		1.0225 (1)	0.0672	-0.0225
	X 2	0 (2)		1.26 × 10 -5 (2) (2)	5.53 × 10 -6 (2)	-

Table 2

 2 Estimates of δ of example 2. 25,200 calls to the function M. Failure probability estimated to 1.24 × 10 -4 with 18% coefficient of variation. Set of parameters for the adaptive SMC algorithm: N x = 300, A x = 3, ρ = 0.5507, a = 0.5, A = 3 and N = 5000.

		f i , ηi and S i 1 Y >s				
	Input	Theoretical value δ i (rank)	Theoretical value δ i (rank) f	Estimation δ f i	
					Mean (rank)	Sd	RD
	X 1	0.4930 (1)	0.001 (2)		0.0721 (2)	0.0266	-71.1
	X 2	0.3049 (2)	0.4136 (1)		0.3998 (1)	0.0343	0.0334
	Input	\	Theoretical value ηi (rank)	Estimation ηi	
		\			Mean (rank)	Sd	RD
	X 1	\	0.2093 (2)		0.2066 (1)	0.0605	0.0129
	X 2	\	0.9969 (1)		0.9723 (2)	0.0567	0.0247
	Input	\	Theoretical value S i 1 Y >s	(rank)	Estimation Ŝ1 Y >s i	
		\			Mean (rank)	Sd	RD
	X 1	\	4.05 × 10 -5 (2)		5.50 × 10 -5 (2)	3.35 × 10 -5	-0.3481
	X 2	\	0.7074 (1)		0.7814 (2)	0.1012	-0.1046
	for the conditional densities. Thus, theoretical values of sensitivity measures (δ 1 , δ 2 ), (δ 1 , δ f 2 ), ( η1 , η2 ) and (S f 1 1 Y >s 1 Y >s S 2	,

Table 3

 3 Distribution parameters (the mean and the standard deviation of the associated normal distribution) of input variables of the SDOF oscillator.for the SDOF oscillator. 51,725 calls to the function M. Failure probability estimated to 8.54 × 10 -5 with 91% coefficient of variation. Set of parameters for the adaptive SMC algorithm: N x = 500, A x = 3, ρ = 0.4866, A = 10 and N = 3000.

		Input			Mean		Sd		
		c 1			2		0.2		
		c 2			0.2		0.02		
		r			0.6		0.05		
		m			1		0.05		
		t			1		0.2		
		F			1		0.2		
	Table 4								
	Estimates of δ i , ηi and S f i 1 Y >s							
	Input	Estimation δi		Estimation δ f i		Estimation ηi		Estimation Ŝ1 Y >s i	
		Mean (rank)	Sd	Mean (rank)	Sd	Mean (rank)	Sd	Mean (rank)	Sd
	X 1 = c 1	0.0769 (3)	0.0066	0.0995 (1)	0.0210	0.8332 (2)	0.0653	0.0062 (2)	0.0062
	X 2 = c 2	0.0231 (5)	0.0050	0.0322 (6)	0.0090	0.1352 (5)	0.0340	0 (5)	0
	X 3 = r	0.4441 (1)	0.0063	0.0329 (5)	0.0117	0.6494 (3)	0.0690	0.0017 (3)	0.0014
	X 4 = m	0.0219 (6)	0.0051	0.0343 (4)	0.0101	0.1306 (6)	0.0874	0 (6)	0
	X 5 = t	0.0751 (4)	0.0075	0.0474 (3)	0.0150	0.3312 (4)	0.0710	0.0001 (4)	0
	X 6 = F	0.1554 (2)	0.0074	0.0871 (2)	0.0191	0.9078 (1)	0.0317	0.0142 (1)	0.0431
		Table 5							
		Estimates of δ							

f i , ηi and S 1 Y >s i

Table 6

 6 Estimates of δ f i , ηi and S 1 Y >s ifor the SDOF oscillator with AK-IS algorithm. 72 calls to the function M. Failure probability estimated to 9.12 × 10 -5 with 32% coefficient of variation. IS sample size: 10,000.

	Input	Estimation δ f i		Estimation ηi		Estimation Ŝ1 Y >s i	
		Mean (rank)	Sd	Mean (rank)	Sd	Mean (rank)	Sd
	c 1	0.0517 (2)	0.0192	0.7932 (2)	0.0322	0.0022 (2)	0.0023
	c 2	0.0220 (6)	0.0110	0.1342 (5)	0.0220	0 (5)	0
	r	0.0342 (4)	0.0099	0.5412 (3)	0.0210	0.0018 (3)	0.0012
	m	0.0290 (5)	0.089	0.0620 (6)	0.0123	0 (6)	0
	t	0.0456 (3)	0.084	0.2504 (4)	0.0185	0.0002 (4)	0.0001
	F	0.1356 (1)	0.0183	0.9101 (1)	0.0178	0.0255 (1)	0.0231

Table 7

 7 Input probabilistic model of the launcher phase fallout model.

	Input	Distribution	Mean	Sd
	X 1 = ∆a (m)	Normal	0	165
	X 2 = ∆v (m s -1 )	Normal	0	3.7
	X 3 = ∆γ (rad)	Normal	0	0.001
	X 4 = ∆ψ (rad)	Normal	0	0.0018
	X 5 = ∆m (kg)	Normal	0	70
	X 6 = ∆C d (1)	Normal	0	0.1

Table 8

 8 Estimates of δ f i and ηi for the launcher phase fallout model. 193,520 calls to the function M. Failure probability estimated to 1.36 × 10 -4 with 35% coefficient of variation. Set of parameters for the adaptive SMC algorithm: N x = 800, A x = 10, ρ = 0.4, A = 10 and N = 5000.

	Input	Estimation δi		Estimation δ f i		Estimation ηi	
		Mean (rank)	Sd	Mean (rank)	Sd	Mean (rank)	Sd
	X 1	0.0156 (5)	0.0046	0.0149 (5)	0.0060	0.1235 (4)	0.0367
	X 2	0.1535 (2)	0.0056	0.0848 (1)	0.0095	0.8218 (1)	0.0518
	X 3	0.0683 (3)	0.0058	0.0406 (2)	0.0084	0.5768 (2)	0.0514
	X 4	0.1832 (1)	0.0050	0.0143 (6)	0.0052	0.0722 (6)	0.0478
	X 5	0.0153 (6)	0.0046	0.0160 (4)	0.0059	0.1230 (5)	0.0330
	X 6	0.0399 (4)	0.0058	0.0284 (3)	0.0083	0.3809 (3)	0.0660

Appendix. Maximum entropy principle

A.1. General principle

The maximum entropy principle was introduced by Jaynes [START_REF] Jaynes | Information theory and statistical mechanics[END_REF], and the reader is for instance referred to [START_REF] Kapur | Entropy optimization principles with applications[END_REF] for more details. Let P d (S) be the set of probability density functions on S ⊂ R d , and for f ∈ P d (S) let H ( f ) be its differential entropy, defined as

In order to choose a density satisfying some constraints C ⊂ P d (S) (for instance, prescribed first and second moments), the maximum entropy principle asserts to choose among these densities the one with highest entropy, i.e., arg min

When the constraints are linear equality constraints, i.e., are of the form C = { f ∈ P d (S) : ∫ ϕ(x) f (x)dx = µ} for some ϕ : R d → R d and µ ∈ R d , then the above optimization problem is convex and a solution is of the form f (x) = ce -⟨Λ * ,ϕ(x)⟩ 1 S (x) where ⟨•, •⟩ denotes the inner product in R d , c is the normalization constant and Λ * is a feasible solution of the dual optimization problem

see for instance [START_REF] Boyd | Convex Optimization[END_REF] for more details. The above objective function is strictly convex on the set of feasible points and so admits respectively a unique minimum which can been found using standard convex optimization techniques, for instance interior-point algorithms.

The above method can be used to estimate a given density f 0 : if one knows some moments of the sought density f 0 , then the idea is simply to put this information as constraints in (A.2).

A.2. Application to Step 2 of our estimation scheme

In our case, we want to apply the above maximum entropy principle in Step 2 of our estimation scheme (see Section 3.3) to estimate the density f Xi of Xi , and the density c i of (F Xi ( Xi ), F Ỹ ( Ỹ )). Ideally, we would like to consider solutions to (A.2) with linear equality constraints but the problem is that moments of the sought distributions are unknown. To circumvent this difficulty, we use the sample (( X k i , Ỹ k ), k = 1, . . . , N ) provided by the first step to estimate these moments. Also, for reasons discussed in [START_REF] Derennes | Estimation of moment independent importance measures using a copula and maximum entropy framework[END_REF] we consider fractional moments for the constraints.

More precisely, consider ñ, n ∈ N and real numbers α

and let

where F Xi and F Ỹ are the empirical cumulative distribution functions of Xi and Ỹ , respectively, obtained from the sample (( X k i , Ỹ k ), k = 1, . . . , N ), and

Then the estimates f Xi and ĉi of f Xi and c i , respectively, are given by

x α r y α s f (x, y)dxdy = Mr,s , r, s = 1, . . . , ñ.

(A.7)

These solutions are obtained by the method described above. Note that the number of constraints is then n for estimating f Xi and ñ2 for estimating c i . In this article, n and ñ are set to 3.