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Abstract

In rare event analysis, the estimation of the failure probability is a crucial objective. However, focusing only on the
ccurrence of the failure event may be insufficient to entirely characterize the reliability of the considered system. This paper
rovides a common estimation scheme of two complementary moment independent sensitivity measures, allowing to improve
he understanding of the system’s rare event. Numerical applications are performed in order to show the effectiveness of the
roposed estimation procedure.

eywords: Sensitivity analysis; Moment independent importance measure; Reliability; Reliability-oriented sensitivity measures; Risk analysis

1. Introduction

In diverse disciplines, systems modeling is often achieved by considering a black-box model for which the
bservation is expressed as a deterministic function of external parameters representing some physical variables.
hese basic variables are usually assumed random in order to take phenomenological uncertainties into account.
hen, sensitivity analysis (SA) techniques play a crucial role in the handling of these uncertainties and in the
omprehension of the system behavior. These techniques aim at identifying and ranking inputs with respect to
heir impact on the output. In addition, SA methods present two main objectives: decrease the output uncertainty
y reducing uncertainty of the most influential inputs, and simplify the model by omitting contribution of least
nes. The influence criterion depends on the considered SA approach. There are various SA techniques in literature
nd essentially two families stand out: local and global sensitivity analysis (GSA) methods, see [4,5,23,38] and
ssociated references for a review. Local methods aim at studying the behavior of the output locally around a
ominal value of inputs. In contrast, global methods consider the whole variation range of inputs.

Sensitivity analysis may also be performed with a rare event perspective. Reliability-oriented sensitivity analysis
ROSA) differs from the classical one in the nature of the output quantity of interest under study. Indeed, sensitivity
nalysis focuses on the model output whereas ROSA is broadly concerned with a reliability measure, typically the
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failure probability associated to an unsafe and undesired state of the system. Various ROSA methods have been
proposed. First, several global sensitivity methods have been developed: for instance, a failure probability-based
method [14], variance decomposition-based methods [31,36,40,41], a method based on density perturbation [26]
or, more recently, a quantile-oriented sensitivity approach [8]. Local sensitivity method (often based on partial
derivatives of the failure probability with respect to distribution parameters) are also available, see for instance [12]
for a comprehensive review of these methods.

Recently, this scope has been expanded by [29] which proposes to classify ROSA methods in two different
amilies:

• First, target (or regional) sensitivity analysis, which aims at studying the impact of inputs over a function of
the output, typically the indicator function of a critical domain.

• Second, conditional sensitivity analysis, which aims at studying the impact of inputs exclusively within the
critical domain, namely, conditionally to the failure event.

These two points of view can lead to widely different answers. To illustrate this aspect, consider for instance the
ollowing simple toy model:

Y = X1 + 1X1>3|X2| (1)

here X1 and X2 are independent centered Gaussian random variables with respective variance 1 and 5. The random
ariables X1 and X2 are viewed as the system input and Y as the system output. Let us consider that for this system,
Y > 3} is the failure event, and try to answer the following question: which out of X1 and X2 is more important

from a rare event perspective? Actually, the answer depends on the viewpoint considered:

• if one is interested in the impact of the input on the failure occurring or not, then of course X1 is highly
influential and X2, that only kicks in Y upon failure, plays no role;

• if one is now interested in the most influential input upon failure occurring, then X2 should intuitively be
more important than X1 because of its higher variance.

In this paper we propose two new target and conditional ROSA moment-independent indices η̄i and δ f
i in order to

lleviate some of the limitations of classical variance-based indices [31]. These proposed indices and variance-based
ndices require exactly the same simulation budget: for both methods, the entire simulation budget is devoted to
ampling from the input distribution conditional on failure for which a variety of standard methods can be used, for
nstance adaptive importance sampling, subset simulations or, if the code is too expensive, surrogate models. Once
his sampling is done, the estimation of η̄i and δ f

i is post-processing of the sample without new calls to the model.
The rest of this paper is organized as follows: Section 2 aims at introducing two different ROSA indices, η̄i

nd δ f
i , which are intrinsically linked to GSA method of Borgonovo [3]. In Section 3 we present our simultaneous

stimation scheme for η̄i and δ f
i measures and numerical applications are performed in Section 4 to assess its

fficiency. Section 5 discusses how this scheme can be extended to a more general context. Our estimation scheme
relies on the maximum entropy method which is recalled in the Appendix.

2. Two complementary moment independent sensitivity measures

In this paper we focus on Borgonovo’s indices originally proposed in [3], although our method can be generalized
to more general indices as discussed in Section 5. Let in the sequel Z | Z ′ denote a random variable with random
distribution the distribution of Z conditioned on Z ′ and a deterministic scalar function M : Rd

→ R. To measure
the sensitivity of the output Y = M(X) with respect to one of its input X i , where X = (X1, . . . , Xd ), Borgonovo [3]
roposed in the case where (X i , Y ) is absolutely continuous with respect to Lebesgue measure the index

δi =
1
2
E
[ fY − fY |Xi


L1(R)

]
, (2)

i.e., half the average of the L1 distance between the density of Y and the random density of Y conditioned on
X i . If X i has a high influence on Y , the conditional density should be different from the non-conditioned one and
i should thus take large values. For further references and more details on δ-sensitivity measures the reader can
onsult [5].
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In this paper we will adopt a more general definition of Borgonovo’s index, which will make it possible to
onsider cases where (X i , Y ) is not absolutely continuous with respect to Lebesgue measure. The motivation stems

from considering the influence of X i not only on Y but also on possibly discrete functions of Y such as 1Y>s ,
where s is a fixed critical value and where 1Y>s = 1 if Y > s and 0 otherwise. It captures the influence of X i on
the failure occurring or not.

For this generalization, we see Borgonovo’s index as a measure of dependency between X i and Y . Namely, let
dTV(Z1, Z2) denote the total variation distance between the distributions of the random variables Z1 and Z2. When
Z1 and Z2 are absolutely continuous with respect to Lebesgue measure, we have dTV(Z1, Z2) =

1
2∥ fZ1 − fZ2∥L1(R)

and so we adopt the following generalization of Borgonovo’s index:

δi = E [dTV (Y, Y | X i )] = dTV
(
(X i , Y ), (X i , Y ′)

)
(3)

such that Y ′ and Y are independent and identically distributed random variables. The second equality holds when
(X i , Y ) is absolutely continuous with respect to some product measure λ(dx)⊗µ(dy) (typically, (X i , Y ) is absolutely
continuous with respect to Lebesgue measure, or X i is and Y is a discrete random variable).

In a rare event context, we are interested in the impact of X i not only on Y but also on the occurrence of some
rare event which we write {Y > s}. This means that we are interested in the influence of X i on the random variable
1Y>s : the corresponding generalized Borgonovo’s index is therefore given by

ηi = E [dTV(1Y>s,1Y>s | X i )] = E [|P(Y > s) − P(Y > s | X i )|] (4)

which is actually twice the index proposed in Cui et al. [14]. One of the drawbacks of this index is that it is
unnormalized as it is upper bounded by twice the rare event probability 2P(Y > s). To obtain a [0, 1]-valued index,

e use the relation

ηi = 2P(Y > s) × dTV(X i , X i | Y > s) (5)

bserved in [35] and that can be derived using Bayes’ Theorem, to propose the [0, 1]-valued index

η̄i = dTV(X i , X i | Y > s) =
1
2

 fXi − fXi |Y>s


L1(R) . (6)

Complementary to this approach, we may also be interested in the influence of X i upon failure, which corresponds
to considering δi but when all the random variables involved are conditioned upon the failure Y > s. Thus, this
conditional index, denoted by δ f

i , is given by

δ
f

i = E [dTV(Y | Y > s, Y | {Y > s, X i })] . (7)

When (X i , Y ) is absolutely continuous, this is a particular case of (3) and so if we denote by (X̃ i , Ỹ ) a random
variable distributed as (X i , Y ) conditioned on Y > s, then we have in this case

δ
f

i =
1
2

 f X̃i ,Ỹ
− f X̃i

fỸ


L1(R2)

. (8)

Instead of focusing on Y , the indices ηi and η̄i target a different output, namely 1Y>s and will thus be referred
as target indices. Similarly, instead of working in the normal mode, the indices δ f

i are concerned with the system
conditioned upon failure and will thus be referred to as conditional indices. See Section 5 for more on this
terminology.

For the toy model (1), we have Y > s if and only if X1 > s: this directly implies P(Y > s | X1) = 1X1>s and
P(Y > s | X2) = P(Y > s) and then

η̄1 = 1 − P(X1 > s) ≈ 0.9987 and η̄2 = 0. (9)

This confirms the intuition that, as far as we are concerned with the failure occurring or not, X1 is highly
influential and X2, not at all. However, in this simple Gaussian case we can directly compute the δ f

i ’s through
umerical integration, which gives

δ
f

1 ≈ 0.0781 and δ f
2 ≈ 0.7686. (10)

Thus upon failure, X2 has become much more influential than X1. This simple toy example illustrates the
f
omplementarity of the indices η̄i and δi from a rare event perspective, and our goal in this paper is to show how
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they can be simultaneously and accurately estimated with only one run of sequential Monte Carlo or importance
sampling, regularly considered in the context of rare event probability estimation P(Y > s). In other words, we
show that upon estimating this probability, one also gets “for free”, that is without additional calls to the function
M, an estimation of η̄i and δ f

i .

3. Simultaneous estimation of δ
f

i and η̄i

We consider throughout this article a general computer code Y = M(X) where the scalar output Y depends
on a d-dimensional real valued random vector X = (X1, . . . , Xd ) of Rd through a deterministic scalar function
M : Rd

→ R called “black box”. Without loss of generality, it is assumed that the failure event corresponds to the
exceeding of a critical threshold s by the output Y , i.e., is of the form {Y > s}.

We further assume that for every i , (X i , Y ) is absolutely continuous with respect to Lebesgue measure with
density fXi ,Y and marginals fXi and fY . As above, we denote by X̃ = (X̃1, . . . , X̃d ) a random variable distributed
as X conditioned on Y > s and define Ỹ = M(X̃). Thus, (X̃ i , Ỹ ) is also absolutely continuous with respect to
Lebesgue measure with density f X̃i ,Ỹ

with marginals f X̃i
and fỸ . Our simultaneous estimation scheme is obtained

by combining state-of-the-art estimation techniques which we recall next.
The approach proposed in this paper to provide an estimation of η̄i and δ f

i is based on three stages:

1. we apply a rare event simulation technique (Monte Carlo method, importance sampling, sequential Monte
Carlo, etc.) to estimate the failure probability P(Y > s). It can be combined with the building of a surrogate
model.

2. we get a failure conditioned sample X̃ (see Section 3.2).
3. we estimate the two proposed ROSA indices δ f

i and η̄i from X̃ (see Section 3.3).

The simulation budget required to perform these three steps is fully concentrated on the first and second stages.

3.1. Estimation of δi

We review in this section some general aspects of moment-independent sensitivity indices estimation. Initial
estimations of δ-sensitivity measures relied on their original definition in terms of total variation distance between
conditional and unconditional distributions. Involving L1 norms of differences of conditional and unconditional out-
put probability density functions, this approach typically necessitates expensive double-loop estimation procedures
with a prohibitive cost [3,28,32]. Alternative approaches were proposed in [42,43], but these two methods rest on
strong technical assumptions such as independence between input or approximation of the black box M within the
cut-HDMR (high-dimensional model representation) framework. An apparently efficient single-loop method was
proposed in [39], but simulation results provided in [19] questioned its consistency. The interested reader is for
instance referred to the introduction of [18] for a more detailed discussion on these estimation issues.

In the present paper, the estimation of δi is performed by using the method described in [18]: it does not rely
on any assumption on the model and works in particular for dependent input. It rests on the copula-representation
of δi noted in [37], namely

δi =
1
2

∫
0≤u,v≤1

|ci (u, v) − 1| dudv, (11)

where ci is the density copula of (X i , Y ), i.e., the density of (FXi (X i ), FY (Y )). Based on this representation, the
pproximation proposed in [18] uses a maximum entropy estimation ĉi of ci imposing estimated fractional moments

as constraints, and then a Monte Carlo estimation 1
2N ′

∑N ′

k=1|ĉi (U k
1 ,U

k
2 )−1| of the integral with the (U k

1 ,U
k
2 ) being

i.i.d. random variables uniformly distributed on [0, 1]2.
At this point we stress an important point: all these estimation techniques assume that one can sample from the

input distribution X. As explained in the introduction however, estimating δ f
i amounts to applying these techniques

when the input distribution is that of X conditioned on failure, which is in general unknown. Thus, before applying
˜
these methods one needs to be able to sample from X.



3.2. Generating conditioned samples X̃

3.2.1. General aspects
The most naive method for generating failure samples is the rejection method. For a given sample (X1, . . . ,XN )

i.i.d. with common distribution fX, a subsample is obtained by recording samples which satisfy M(Xk) > s.
However, this approach leads to a huge computational cost when the failure probability is low.

When some information is known on the failure event, this cost can be reduced by leveraging “good” auxiliary
distributions in importance sampling techniques [10]. In reliability, a method widely used for designing auxiliary
distributions is shifting the input distribution to a design point, which may be determined thanks to FORM/SORM
methods [30]. Importance sampling is then combined with Monte Carlo Markov Chain to generate samples
distributed as X̃ [1].

Another efficient method to generate conditioned samples X̃ is the adaptive Sequential Monte Carlo (SMC)
procedure proposed and studied in [11] that we present in the next section. Several variants have been proposed in
different scientific communities. It was adapted in [2] (called subset simulation) for rare event assessment purpose
and studied theoretically from the Markov processes point of view in [11].

As a final remark, one can mention that importance sampling-based methods and subset simulation may be
combined with a surrogate model such as Kriging as it is a powerful tool in the context of costly-to-evaluate
computer models. For instance, we can mention the method AK-MCS (Active learning reliability method with
Kriging and Monte Carlo Simulation) [20] which couples Kriging and Monte Carlo method, AK-IS (Active learning
reliability method with Kriging and Importance Sampling) [21] which combines Kriging and importance sampling
or AK-SS (Active learning reliability method with Kriging and Subset Simulation) [22] which associates Kriging
and Subset Simulation. However, the counterpart (for the purpose of the present paper) remains the difficulty to
catch and measure the impact of the modeling errors induced by the surrogate model itself.

We favor in this article the use of the SMC procedure. It is described in the next section and applied to all
the numerical test-cases of this article. Nevertheless, any of the above mentioned techniques could be applied to
generate samples with the same distribution as X̃. For that purpose, we have also performed this generation with
AK-IS [21] for one example of Section 4 to show that coupled with a surrogate model, it is possible to sample
from X̃ with a low simulation cost.

3.2.2. Sequential Monte Carlo
In what follows, by duplicating a finite set {xk} into N , we mean drawing N times independently and uniformly

from {xk}. The algorithm parameters are Nx , ρ, Ax and T , corresponding respectively to the number of particles,
the threshold for the quantile, the number of steps of the Metropolis–Hastings sampler, and the exploration (or
proposal) kernel in this sampler.

Initialization: set p = 0, generate (X1
p, . . . ,XNx

p ) i.i.d. according to fX and compute Y k
p = M(Xk

p) for k =

1, . . . , Nx ;

Selection: let γp be the ρ-quantile of the Y k
p : if γp > s, then stop, otherwise duplicate the ρNx particles with

Y k > γp into Nx particles.

Mutation: apply Ax times the Metropolis–Hastings algorithm with exploration kernel T and target distribution
X | M(X) > γp to each of the Nx particles, denote by (X1

p+1, . . . ,XNx
p+1) the newly obtained particles with

corresponding Y k
p+1 = M(Xk

p+1), increment p and go back to the selection step.

The black box is called for every particle at every step of the Metropolis–Hastings sampler in order to compute
the acceptance probability, so that if m denotes the (random) number of steps of this algorithm, then the number
of calls to the black box M is equal to Nx (1 + m Ax ).

As noted in [11], at the end of this algorithm the (X1
m, . . . ,XNx

m ) are approximately distributed according to
X | Y > γm but are not independent. To improve independence and tune the final size of the sample, an additional
step is considered. There are thus two additional parameters, the size N of the sample and the number of steps A
of the Metropolis–Hastings sampler in this additional step.

Sampling: duplicate the Nx particles (X1
m, . . . ,XNx

m ) into N particles, and apply A times to each particle the
Metropolis–Hastings algorithm with exploration kernel T and target distribution X | M(X) > s.
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This adds N × A calls to the black box, and the output of this algorithm is a sample (X̃1, . . . , X̃N ) which is
pproximately i.i.d. according to X̃ = X | M(X) > s together with the corresponding values Ỹ k

= M(X̃k).

.3. Simultaneous estimation of δ f
i and η̄i

We now explain how to combine the method for estimating δi with the adaptive SMC sampler described above
o have a simultaneous estimation of δ f

i and η̄i .

tep 1 — Input realizations generation. Using the adaptive SMC procedure of Section 3.2, obtain (X̃1, . . . , X̃N )
approximately i.i.d. from fX̃ and their corresponding value Ỹ k

= M(X̃k) by M.

tep 2 — Density estimation. Use the sample ((X̃ k
i , Ỹ k), k = 1, . . . , N ) to obtain estimates f̂ X̃i

and ĉi of the
density f X̃i

of X̃ i and of the copula ci of (X̃ i , Ỹ ), respectively. In this article, they are both estimated with the
maximum entropy method with estimated fractional moments (see Appendix) but any other efficient density
and copula estimation technique can be chosen.

tep 3 — Indices estimation. Use the estimates f̂ X̃i
and ĉi to obtain estimates of η̄i and δ f

i as follows:

• for η̄i , estimate the one-dimensional integral ∥ fXi − f̂ X̃i
∥L1(R) either by direct numerical approximation,

or if fXi can be sampled from, by Monte Carlo method via

ˆ̄ηi =
1
N ′

N ′∑
k=1

⏐⏐⏐⏐⏐ f̂ X̃i
(X k

i )

fXi (X k
i )

− 1

⏐⏐⏐⏐⏐ (12)

where the X k
i are i.i.d. with common distribution X i ;

• for δ f
i , generate ((U k

1 ,U
k
2 ), k = 1, . . . , N ′) i.i.d. uniformly distributed on [0, 1]2 and estimate δ f

i by

δ̂
f

i =
1

2N ′

N ′∑
k=1

|ĉi (U k
1 ,U

k
2 ) − 1| . (13)

It has to be pointed out that the proposed procedure can be applied to output models with correlated inputs even
f the interpretation of the results could remain difficult. A potential perspective is to combine this proposed work
ith Shapley effect estimation of Borgonovo’s indices [33] as Shapley effects are easier to interpret.
As promised, the proposed algorithm also provides simultaneous estimation of both δ f

i and η̄i from one common
MC procedure: indeed, after the first step no more call to the black box M is needed. In particular, the (random)
umber of calls to the black box is Nx + m Ax Nx + AN as explained in Section 3.2 (Nx + m Ax Nx calls for the
ailure probability estimation and AN calls for sensitivity analysis). If this number of calls is too expensive for a
iven application, all these procedures can be combined with active learning of a surrogate model for probability
stimation such as in [21,22]. In that case, the AN calls to the black box for sensitivity analysis become AN calls
o the surrogate model.

. Numerical applications

In this section, the proposed estimation scheme is applied on four output models. Firstly, we consider two
nalytical cases for which the unconditional and conditional output distributions are known so that theoretical values
f the importance measures δ f

i and η̄i are available by using numerical integration. We then consider a single degree
f freedom oscillator with d = 6 independent and lognormally distributed inputs. Finally, as a last test case, we
tudy a launcher stage fallout model which takes d = 6 input parameters into account.

For each example, computation time and number of model calls are given to assess the efficiency of the proposed
ethod. Results are obtained with a computer equipped with a 3.5 GHz Intel Xeon 4 CPU. The number of samples

N ′ for the Monte Carlo integration (13) can be taken as large as possible as this stage does not require any calls
o M. In the following simulations, we set N ′

= 107. This number may be tuned more adaptively by computing

he variance of the Monte Carlo estimates.
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When the input X ∼ N (ν,Σ) is normally distributed, mutation steps in the adaptive SMC algorithm are
erformed by using the natural exploration kernel so-called Crank–Nicholson shaker and defined by

T (x, ·) ∼ L
(√

1 − a × L−1(x − ν) +
√

aZ
)

+ ν , (14)

where a ∈ (0, 1) is a parameter of the kernel, Z ∼ N (0, Id ) and L is the lower triangular matrix in the Cholesky
ecomposition of Σ, i.e., Σ = LLT .

Standard deviations (Sd) of estimators are computed by performing 100 runs of the proposed scheme in order
o study its variability. When a theoretical value θ is available, the accuracy of an estimator θ̂ is measured by the
ean of the relative difference (RD) θ−θ̂

θ
.

4.1. Comparison with ROSA Sobol indices

It consists in analyzing the influence of the inputs X i on the variance of 1Y>s [27]. First-order Sobol indices on
this indicator function can thus be defined in the following way:

S1Y>s
i =

V[E[1Y>s(X)|X i ]]
V[1Y>s(X)]

, (15)

here V is the variance and S1Y>s
i is the first-order Sobol index associated to the variable X i . Advanced sampling-

based estimation schemes for these first-order Sobol indices have been investigated in [36] but still require a lot of
simulations to achieve convergence. Another efficient estimation procedure using SMC has been proposed recently
by [31] as the first-order S1Y>s

i can be rewritten as follows:

S1Y>s
i =

P(Y > s)
1 − P(Y > s)

V
[ f X̃i

(X i )

fXi (X i )

]
. (16)

MC enables to generate a set of samples (X̃1, . . . , X̃N ) approximately i.i.d. from fX̃ from which it is possible to
estimate a density f̂ X̃i

and finally, the Sobol indices are computed with the empirical variance. The following steps
describe the complete procedure.

Step 1 — Input realizations generation. Using the adaptive SMC procedure of Section 3.2, obtain (X̃1, . . . , X̃N )
approximately i.i.d. from fX̃ and estimate P(Y > s) with P̂ f .

tep 2 — Density estimation. Use the sample (X̃ k
i , k = 1, . . . , N ) to obtain an estimate f̂ X̃i

of the density f X̃i

of X̃ i ; In this article, this density is estimated with the maximum entropy method with estimated fractional
moments (see Appendix) but any other efficient density estimation technique can be chosen;

Step 3 — Indice estimation. Estimate the first-order Sobol indices S1Y>s
i from f̂ X̃i

and P̂ f as follows:

Ŝ1Y>s
i =

(
P̂ f

1 − P̂ f

)⎛⎜⎝ 1
N ′

N ′∑
k=1

(
f̂ X̃i

(X k
i )

fXi (X k
i )

)2

−

⎛⎝ 1
N ′

N ′∑
k=1

f̂ X̃i
(X k

i )

fXi (X k
i )

⎞⎠2
⎞⎟⎠ (17)

where the X k
i are i.i.d. with common distribution X i .

Sobol indices take values between 0 and 1. Higher order Sobol indices can also be defined but are more complicated
to estimate as they require the estimation of multivariate densities. For the same reason, total Sobol indices are also
difficult to estimate as they imply the estimation of (d − 1)-dimensional densities. The sum of all Sobol indices at
all order is equal to 1.

There are mainly three limits to this approach: the inputs have to be independent for a correct interpretation of
the results and the variance should be a valuable indicator of the output variability which is not always the case
in practice [3,6,15]. Moreover, there is good chance for all individual Sobol indices S1Y>s

i to tend to zero when
the failure probability is too low. Perrin and Defaux [31] underlined this limit for the use of Sobol indices in a
sensitivity analysis context. The proposed indices δ f

i and η̄i do not suffer from ROSA Sobol limitations as the

input random variables could be dependent even if the interpretation of the indices may remain complicated. The
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Table 1
Estimates of δ f

i , η̄i and S1Y>s
i of example 1. 34,640 calls to the function M. Failure probability estimated to

1.35 × 10−3 with 17% coefficient of variation. Set of parameters for the adaptive SMC algorithm: Nx = 500,
Ax = 3, ρ = 0.3935, a = 0.5, A = 5 and N = 3000.

Input Theoretical value δ f
i (rank) Estimation δ̂ f

i

Mean (rank) Sd RD

X1 0.0781 (2) 0.0930 (2) 0.0101 −0.1908
X2 0.7686 (1) 0.7200 (1) 0.0077 0.0632

Input Theoretical value η̄i (rank) Estimation ˆ̄ηi

Mean (rank) Sd RD

X1 0.9987 (1) 0.9997 (1) 0.0095 −0.001
X2 0 (2) 0.0315 (2) 0.0103 –

Input Theoretical value S1Y>s
i (rank) Estimation Ŝ1Y>s

i

Mean (rank) Sd RD

X1 1 (1) 1.0225 (1) 0.0672 −0.0225
X2 0 (2) 1.26 × 10−5 (2) (2) 5.53 × 10−6 (2) –

indices δ f
i and η̄i are also moment independent indices and thus do not rely on output variance. Furthermore, the

roposed indices are not impacted by a too significant rarity of the failure event.
The estimation of S1Y>s

i , δ f
i and η̄i is based on the same sample (X̃1, . . . , X̃N ) and thus the computational cost

or the estimation of these ROSA indices is similar.

.2. Example 1: back to the toy model of the introduction

We go back to the toy model (1) of the introduction, i.e., Y = X1 + 1X1>s |X2| where s = 3, X1 and X2 are
ndependent, X1 ∼ N (0, 1) and X2 ∼ N (0, 5). We compare in Table 1 theoretical values with estimates obtained
ith the proposed method. The failure probability can also be evaluated with SMC to 1.35 × 10−3 with 17%

oefficient of variation. In average, runs last 317 s and make 34,640 calls to the black box (19,460 calls for the
ailure probability estimation, 15,000 calls for sampling with X̃ and 0 call for the ROSA index estimation). From
he different relative differences, one can see that δ f

i and η̄i estimates are close to their respective reference values
nd present reasonable variability with regard to the budget allocated to the estimation. Sobol indices S1Y>s

i and
arget sensitivity index η̄i gives very similar results and share thus the same ROSA interpretation.

.3. Example 2: an analytical test case

Let us consider the following output model:

Y = X1 + X2
2 (18)

here X1 and X2 are i.i.d. standard Gaussian random variables and the failure event is {Y > 15}. This model
s in the same vein as the previous toy model but slightly more realistic. Unconditional and conditional output
istributions are known: Y | X1 follows a χ2-distribution shifted by X1 and Y | X2 is normally distributed with
nit variance and mean X2. We thus have the following expressions for the densities:

fY (y) =

∫
∞

0

e−
(y−t)2

2 −
t
2

2π
√

t
dt (19)

and

fY |X1 (y) =
e−

(y−X1)
2

√ 1y≥X1 and fY |X2 (y) =
e−

(y−X2)2

2
√ (20)
2π (y − X1) 2π
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Table 2
Estimates of δ f

i , η̄i and S1Y>s
i of example 2. 25,200 calls to the function M. Failure probability estimated to 1.24 × 10−4 with 18%

coefficient of variation. Set of parameters for the adaptive SMC algorithm: Nx = 300, Ax = 3, ρ = 0.5507, a = 0.5, A = 3 and N = 5000.

Input Theoretical value δi (rank) Theoretical value δ f
i (rank) Estimation δ̂ f

i

Mean (rank) Sd RD

X1 0.4930 (1) 0.001 (2) 0.0721 (2) 0.0266 −71.1
X2 0.3049 (2) 0.4136 (1) 0.3998 (1) 0.0343 0.0334

Input \ Theoretical value η̄i (rank) Estimation ˆ̄ηi

\ Mean (rank) Sd RD

X1 \ 0.2093 (2) 0.2066 (1) 0.0605 0.0129
X2 \ 0.9969 (1) 0.9723 (2) 0.0567 0.0247

Input \ Theoretical value S1Y>s
i (rank) Estimation Ŝ1Y>s

i

\ Mean (rank) Sd RD

X1 \ 4.05 × 10−5 (2) 5.50 × 10−5 (2) 3.35 × 10−5
−0.3481

X2 \ 0.7074 (1) 0.7814 (2) 0.1012 −0.1046

for the conditional densities. Thus, theoretical values of sensitivity measures (δ1, δ2), (δ f
1 , δ

f
2 ), (η̄1, η̄2) and (S1Y>s

1 ,

S1Y>s
2 ) are available via numerical integration. We gathered in Table 2 the estimates of δ f

i and η̄i obtained from
MC. The failure probability can also be evaluated with SMC to 1.24 × 10−4 with 18% coefficient of variation. In
verage, runs need 350 s to compute all the δ and η-indices and make 25,200 calls to the black box (10,200 calls
or the failure probability estimation, 15,000 calls for sampling with X̃ and 0 call for the ROSA index estimation).

One can see that estimates {δ̂
f

i } respect the good importance ranking, namely X2 > X1. However, the estimation
f δ f

1 exhibits an important difference between average values and reference ones. This difference is due to the
act that the samples {Xk

} obtained with the SMC procedure are not completely independent and distributed from
fX̃ since only A = 3 steps of the Metropolis–Hastings sampler are performed in the final sampling step. Indeed,
ncreasing A from 3 to 30 leads to average values of δ̂ f

1 of 0.0206 with a standard deviation of 0.0091.
In this example, the indices {δ

f
i } enable to detect a drastic change in the importance ranking. Indeed, the

ontribution of the first input X1 becomes negligible at the failure of the system whereas it is the most influential
nder nominal operation. The indices {η̄i } and Sobol indices Ŝ1Y>s

i lead to the same conclusion, namely that the
nfluence of the input X2 at the failure predominates with η̄2 close to 1.

.4. Example 3: a single degree of freedom (SDOF) oscillator

In this subsection, a non linear SDOF oscillator [9] made of a mass m and two springs with free length r and
espective stiffness c1 and c2 is considered. It is subjected to a rectangular load pulse with random duration t and
mplitude F . The model output is defined as

Y = −3r +

⏐⏐⏐⏐⏐ 2F
c1 + c2

sin

(√
c1 + c2

m
t
2

)⏐⏐⏐⏐⏐ , (21)

.e., the difference between the maximum displacement response of the system and 3r . The six input variables c1,
2, r , m, t and F are assumed to be independent and lognormally distributed with respective parameters given in
able 3. The failure of the system is achieved when the output Y exceeds the threshold 0.

We gathered in Table 4 the estimates of δ f
i and η̄i obtained from SMC. The associated failure probability is

stimated to 8.54×10−5 with 91% coefficient of variation. The δi ’s are obtained with the method described in [18].
n average, runs last 960 s and make 51,725 calls to the black box (21,725 calls for the failure probability estimation,
0,000 calls for sampling with X̃ and 0 call for the ROSA index estimation). It appears that the global importance
anking X4 < X2 < X5 < X1 < X6 < X3 drastically differs from the importance ranking provided by the
onditional sensitivity indices δ f

i . Especially, the most influential input X3 = r becomes negligible conditionally on
he failure event. Changes are more nuanced as far as target indices are concerned. Indeed, target sensitivity indices
¯ give approximately the same ranking, except that X and X predominate. The Sobol indices Ŝ1Y>s are very low
i 1 2 i



Table 3
Distribution parameters (the mean and the standard deviation of the associated normal
distribution) of input variables of the SDOF oscillator.

Input Mean Sd

c1 2 0.2
c2 0.2 0.02
r 0.6 0.05
m 1 0.05
t 1 0.2
F 1 0.2

Table 4
Estimates of δ f

i , η̄i and S1Y>s
i for the SDOF oscillator. 51,725 calls to the function M. Failure probability estimated to 8.54 × 10−5 with

91% coefficient of variation. Set of parameters for the adaptive SMC algorithm: Nx = 500, Ax = 3, ρ = 0.4866, A = 10 and N = 3000.

Input Estimation δ̂i Estimation δ̂ f
i Estimation ˆ̄ηi Estimation Ŝ1Y>s

i

Mean (rank) Sd Mean (rank) Sd Mean (rank) Sd Mean (rank) Sd

X1 = c1 0.0769 (3) 0.0066 0.0995 (1) 0.0210 0.8332 (2) 0.0653 0.0062 (2) 0.0062
X2 = c2 0.0231 (5) 0.0050 0.0322 (6) 0.0090 0.1352 (5) 0.0340 0 (5) 0
X3 = r 0.4441 (1) 0.0063 0.0329 (5) 0.0117 0.6494 (3) 0.0690 0.0017 (3) 0.0014
X4 = m 0.0219 (6) 0.0051 0.0343 (4) 0.0101 0.1306 (6) 0.0874 0 (6) 0
X5 = t 0.0751 (4) 0.0075 0.0474 (3) 0.0150 0.3312 (4) 0.0710 0.0001 (4) 0
X6 = F 0.1554 (2) 0.0074 0.0871 (2) 0.0191 0.9078 (1) 0.0317 0.0142 (1) 0.0431

Table 5
Estimates of δ f

i , η̄i and S1Y>s
i for the SDOF oscillator with a higher budget allocated to the adaptive

SMC algorithm. 262,500 calls to the function M. Failure probability estimated to 9.11 × 10−5

with 27% coefficient of variation. Set of parameters for the adaptive SMC algorithm: Nx = 500,
Ax = 10 (instead of 3), ρ = 0.1813, A = 10 and N = 3000.

Input Estimation δ̂ f
i Estimation ˆ̄ηi Estimation Ŝ1Y>s

i

Mean (rank) Sd Mean (rank) Sd Mean (rank) Sd

c1 0.0674 (2) 0.0150 0.7949 (2) 0.0325 0.0037 (2) 0.0017
c2 0.0275 (5) 0.0064 0.1131 (5) 0.0173 0 (5) 0
r 0.0346 (4) 0.0089 0.5651 (3) 0.0375 0.0008 (3) 0.007
m 0.0267 (6) 0.0056 0.0459 (6) 0.0196 0 (6) 0
t 0.0366 (3) 0.0074 0.2812 (4) 0.0200 0.0001 (4) 0.0001
F 0.1147 (1) 0.0164 0.9205 (1) 0.0149 0.0315 (1) 0.0270

for all the inputs even if they give the same ranking as η̄i . It is due to the fact that the failure probability is too low
as underlined in [31] and thus limits the use of ROSA Sobol indices in a sensitivity analysis context.

As in the previous example, variability of obtained estimates is non negligible. Here, inputs are lognormally
distributed and there is no natural exploration kernel like in the Gaussian case. We can find in [13] a discussion
about implementation issues for the choice of the exploration kernel. In the current example, a candidate is drawn
by adding a Gaussian noise with the same standard deviation as inputs. With this choice, it appears that we respect
standard practice which is to tune the proposal distribution to get around 20%–25% acceptance rate [34]. Then, the
only way to improve previous results is to increase the budget allocated to Metropolis–Hastings steps by increasing
parameter A and decreasing the parameter ρ which regulates values of thresholds involved in the SMC procedure.
From Table 5 which displays associated results, one can see that previous observed variability has been reduced. The
associated failure probability is now estimated to 9.11×10−5 with 27% coefficient of variation. The new computation
budget is about 262,500 calls to the model (232,500 calls for the failure probability estimation, 30,000 calls for
sampling with X̃ and 0 call for the ROSA index estimation), which is quite substantial. Nevertheless, it remains
substantially less expensive than the budget required by a classical Monte Carlo procedure. Furthermore, associated
computational cost may be reduced by using a surrogate model. For that purpose, we have performed the same
reliability analysis with AK-IS algorithm [21]. The sample size of importance sampling population evaluated on



Table 6
Estimates of δ f

i , η̄i and S1Y>s
i for the SDOF oscillator with AK-IS algorithm. 72 calls to the

function M. Failure probability estimated to 9.12 × 10−5 with 32% coefficient of variation. IS
sample size: 10,000.

Input Estimation δ̂ f
i Estimation ˆ̄ηi Estimation Ŝ1Y>s

i

Mean (rank) Sd Mean (rank) Sd Mean (rank) Sd

c1 0.0517 (2) 0.0192 0.7932 (2) 0.0322 0.0022 (2) 0.0023
c2 0.0220 (6) 0.0110 0.1342 (5) 0.0220 0 (5) 0
r 0.0342 (4) 0.0099 0.5412 (3) 0.0210 0.0018 (3) 0.0012
m 0.0290 (5) 0.089 0.0620 (6) 0.0123 0 (6) 0
t 0.0456 (3) 0.084 0.2504 (4) 0.0185 0.0002 (4) 0.0001
F 0.1356 (1) 0.0183 0.9101 (1) 0.0178 0.0255 (1) 0.0231

Fig. 1. Illustration scheme of a launch vehicle first stage fallout phase into the Atlantic Ocean. Multiple fallout trajectories are drawn (red
dotted lines), leading to the safe zone (yellow circular surface). Due to uncertainties, one fallout trajectory may lead to a failure impact
point (red star) [cf. [17]].

the surrogate model is 10,000. The failure probability is estimated by AK-IS to 9.12×10−5 with 32% coefficient of
variation for a reduced simulation budget of 72 calls to the function (72 calls for the failure probability estimation,
0 call for sampling with X̃ and 0 call for the ROSA index estimation). The estimated ROSA indices are displayed in
Table 6 and are of course very similar to those obtained with SMC. The use of a surrogate model does not increase
here the variability of the ROSA index estimation as the failure probability is estimated accurately with AK-IS.

4.5. Example 4: a launcher stage fallout model

Space launcher complexity arises from the coupling between several subsystems, such as stages or boosters and
other embedded systems. Optimal trajectory assessment is a key discipline since it is one of the cornerstones of
the mission success. However, during the real flight, aleatory uncertainties can affect the different flight phases at
different levels (due to weather perturbations, stage combustion etc.) and be combined to lead to a failure state
of the space vehicle trajectory. After their propelled phase, the different stages reach successively their separation
altitudes and may fall back into the ocean (see Fig. 1). Such a dynamic phase is of utmost importance in terms of
launcher safety since the consequence of a mistake in the prediction of the fallout zone can be dramatic in terms of
human security and environmental impact. That is the reason why it is of prime importance to take it into account
during the rare event analysis.

We consider in this section a simplified trajectory simulation code of the dynamic fallout phase of a generic

launcher first stage [17] which takes six input parameters into account. The input vector X contains the following



Table 7
Input probabilistic model of the launcher phase fallout model.

Input Distribution Mean Sd

X1 = ∆a (m) Normal 0 165
X2 = ∆v (m s−1) Normal 0 3.7
X3 = ∆γ (rad) Normal 0 0.001
X4 = ∆ψ (rad) Normal 0 0.0018
X5 = ∆m (kg) Normal 0 70
X6 = ∆Cd (1) Normal 0 0.1

Table 8
Estimates of δ f

i and η̄i for the launcher phase fallout model. 193,520 calls to the function M.
Failure probability estimated to 1.36 × 10−4 with 35% coefficient of variation. Set of parameters
for the adaptive SMC algorithm: Nx = 800, Ax = 10, ρ = 0.4, A = 10 and N = 5000.

Input Estimation δ̂i Estimation δ̂ f
i Estimation ˆ̄ηi

Mean (rank) Sd Mean (rank) Sd Mean (rank) Sd

X1 0.0156 (5) 0.0046 0.0149 (5) 0.0060 0.1235 (4) 0.0367
X2 0.1535 (2) 0.0056 0.0848 (1) 0.0095 0.8218 (1) 0.0518
X3 0.0683 (3) 0.0058 0.0406 (2) 0.0084 0.5768 (2) 0.0514
X4 0.1832 (1) 0.0050 0.0143 (6) 0.0052 0.0722 (6) 0.0478
X5 0.0153 (6) 0.0046 0.0160 (4) 0.0059 0.1230 (5) 0.0330
X6 0.0399 (4) 0.0058 0.0284 (3) 0.0083 0.3809 (3) 0.0660

basic variables (i.e., physical variables) representing some initial conditions, environmental variables and launch
vehicle characteristics:

X1: stage altitude perturbation at separation (∆a (m));
X2: velocity perturbation at separation (∆v (m s−1));
X3: flight path angle perturbation at separation (∆γ (rad));
X4: azimuth angle perturbation at separation (∆ψ (rad));
X5: propellant mass residual perturbation at separation (∆m (kg));
X6: drag force error perturbation (∆Cd dimensionless).

These variables are assumed to be independent and normally distributed with parameters gathered in Table 7.
As an output, the code will give back the scalar distance Y = M(X) which represents the distance between the
theoretical fallout position into the ocean and the estimated one due to the uncertainty propagation. The failure
event is {Y > 15} and the associated failure probability is estimated by SMC to 1.36 × 10−4 with 35% coefficient
of variation.

Estimates of both target and conditional indices are available in Table 8. The δi ’s are obtained with the method
described in [18]. In average, runs need 750 s to compute all the δ and η-indices and make 193,520 model calls
(143,520 calls for the failure probability estimation and 50,000 calls for sampling with X̃ and 0 call for the ROSA
index estimation).

On the one hand, the global ranking provided by δi shows that X4 is the most influential input, followed by X2
and X3. On the other hand, both target and conditional indices underline that the impact of X4 becomes negligible
from a rare event perspective. The rest of the ranking remains relatively unchanged and seems to indicate that X2
and X3 are the most influential input upon the launcher’s failure regime. Like the example 2, this test case highlights
the importance to perform reliability-oriented sensitivity analysis since the impact of an input parameter (here X2)
may depend heavily on the support of the output distribution on which the study is focused.

5. Generalization: target and conditional sensitivity analysis

Following the approach of [29], we explain here how to generalize our estimation scheme in two directions:
(1) considering a more general notion of distance between distributions; (2) assessing the impact of X i on functions

of Y .



j
b

p

w
f

w
d

s

t

5

w
p

C

d

5

5.1. More general distance

As explained in the introduction, Borgonovo’s index is the total variation distance between (X i , Y ) and (X i , Y ′)
with Y ′ independent from X i . In the absolutely continuous case, this corresponds to the L1 distance between the
oint density fXi ,Y and the product fXi fY of its marginals, which reflects that this index is a measure of dependency
etween X i and Y . Of course, many other dependency measures exist, for instance the Csiszár dependency measure.

Let φ : R+ → R ∪ {+∞} be a convex function with φ(1) = 0: then the Csiszár divergence between two
robability measures P and Q is given by

divφ (P, Q) =

∫
φ

(
dP
dQ

)
dQ (22)

here P is assumed to be absolutely continuous with Radon–Nikodym derivative dP
dQ with respect to Q. For instance,

or φ(x) =
1
2 |1 − x | this is the total variation distance, and for φ(x) = − log(x) this is the Kullback–Leibler

divergence. From this divergence, we can then define the Csiszár dependency measure (CDMφ) between two random
variables Z1 and Z2 as

CDMφ(Z1, Z2) = divφ
(
(Z1, Z2), (Z1, Z ′

2)
)

(23)

ith Z ′

2 equal in distribution to Z2 and independent from Z1 (identifying in the above a random variable and its
istribution). Because the total variation distance corresponds to the case φ(·) =

1
2 |1 − ·|, we recover Borgonovo’s

index with this choice, i.e., we have CDM 1
2 |1−·|

(X i , Y ) = δi . Moreover, we note that this dependency measure can
till be expressed in a straightforward manner from the copula c of (Z1, Z2) provided it exists, namely

CDMφ(Z1, Z2) =

∫
φ(c(u, v))dudv, (24)

hereby generalizing the relation (11) at the heart of our estimation scheme for δ f
i .

.2. Impact on a function of Y

Consider any function w : M(Rd ) → R+ such that w(Y ) is integrable and let P̃w be the probability measure
hich is absolutely continuous with respect to P with Radon–Nikodym derivative w(Y ). Thus, P̃w is the unique
robability measure defined on (Ω ,F) such that

P̃w(A) =
E(w(Y )1A)
E(w(Y ))

(25)

for any measurable set A ∈ F . Adopting the terminology of [29], we can generalize the two problems laid out in
the introduction as follows:

Target sensitivity analysis: what is the influence of X i on w(Y ) (rather than on Y )?

onditional sensitivity analysis: what is the influence of X i on Y under P̃w (rather than under P)?

What we have done before corresponds to the case w(y) = 1y>s . Indeed, for this choice of w the measure
P̃w ◦ X−1 is the law of X̃ as defined earlier:

P̃w(X ∈ A) = P(X ∈ A | Y > s) = P(X̃ ∈ A). (26)

Thus, we generalize X̃ to X̃w
= (Xw

1 , . . . , Xw
d ) by defining it as a random variable with law P̃w ◦ X−1, and we

efine Ỹw
= M(X̃w).

.3. Generalization

In view of Eqs. (4), (6) and (7) defining ηi , η̄i and δ f
i , respectively, the above extensions suggest the following

more general version of these indices:

η
φ,w

= CDM (X , w(Y )) , η̄φ,w = div
(

X̃w, X
)

and δ
φ,w

= CDM
(

X̃w, Ỹw
)
. (27)
i φ i i φ i i i φ i
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We will assume that (X i , Y ) is absolutely continuous with respect to Lebesgue measure with density fXi ,Y , and
that (X i , w(Y )) is absolutely continuous with respect to the product measure dxµ(da) with µ a measure on M(Rd )
with density fXi ,w(Y ). If w(Y ) takes values in R, one should typically think of µ as Lebesgue measure, but this
more general formalism also makes it possible to encompass the important case where w(Y ) follows a discrete
distribution: in this case, µ should simply be the counting measure and (X i , w(Y )) is automatically absolutely
continuous (with respect to dxµ(da)).

Under these assumptions, we have that:

• η
φ,w

i = E
[
divφ(w(Y ), w(Y ) | X i )

]
;

• (X̃w, Ỹw) is absolutely continuous with respect to Lebesgue measure with density

f X̃wi ,Ỹ
w (x, y) =

w(y) fXi ,Y (x, y)
E(w(Y ))

. (28)

For w(y) = 1y>s and φ(x) = |1 − x |, we have the relation (5) between ηφ,wi and η̄φ,wi which reads

η
φ,w

i = E(w(Y )) × η̄
φ,w

i . (29)

However, this relation does not seem to hold outside this case, and so in general it is not clear whether ηφ,wi
and η̄φ,wi can be easily related. Guided by the choice made in the case w(y) = 1y>s , we consider in the sequel the
index η̄φ,wi even though it may seem at first glance less natural than ηφ,wi .

In order to generalize our estimation scheme, we first need a generalization of the adaptive SMC algorithm of
Section 3.2. To sample from the tilted distribution P̃w, usual particle algorithms can be used such as the Metropolis–
Hastings sampler with input target density w(M(·)) fX(·)/E(w(Y )). In the case w(y) = 1y>s it is hard to sample
directly from P̃w and intermediate distributions, say P̃wp with wp = 1y>γp , are needed. In this case and with a
general w, one can for instance use the sequential Monte Carlo samplers proposed in [16].

Assume now that one is given a sample (X̃w,1, . . . , X̃w,N ) approximately i.i.d. with common distribution X̃w and
their values Ỹw,k

= M(X̃w,k) by M. As discussed above, in the case w(y) = 1y>s this is precisely the purpose of
the adaptive SMC algorithm of Section 3.2. Then Step 2 of our estimation scheme remains unchanged and leads
to:

• an estimate f̂ X̃wi
of the density f X̃wi

of X̃w
i ;

• an estimate ĉw of the copula cw of (X̃w
i , Ỹw).

Using (24) we then have the following two estimations of η̄φ,wi and δφ,wi : for η̄φ,wi , an estimation ˆ̄η
φ,w

i can be
obtained by numerically integrating the one-dimensional integral

divφ(X̃w
i , X i ) =

∫
φ

(
f X̃wi

(x)

fXi (x)

)
fXi (x)dx (30)

r by a Monte Carlo approximation:

ˆ̄η
φ,w

i =
1
N ′

N ′∑
k=1

φ

(
f X̃wi

(X k
i )

fXi (X k
i )

)
(31)

ith the X k
i i.i.d. with common distribution fXi . For δφ,wi , draw i.i.d. random variables (U k

1 ,U
k
2 ) uniformly

istributed on [0, 1]2 and consider

δ̂
φ,w

i =
1
N ′

N ′∑
k=1

φ
(
ĉw(U k

1 ,U
k
2 )
)
. (32)

. Conclusion

The aim of this paper is twofold:

– first, it expands the GSA method of Borgonovo in a reliability context. Two different ROSA indices, δ f
i and

´
η̄i , have been introduced and a generalization in the more general framework of Csiszar dependency measure
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has been formalized. The complementarity of δ f
i and η̄i has been illustrated through several test cases of

increasing complexity. Indeed, on the one hand, the target ROSA measure η̄i aims at studying the impact of
an input over the failure probability P(Y > s) or, more precisely, over the indicator function 1Y>s . On the
other hand, the conditional ROSA measure δ f

i aims at quantifying the influence of an input upon the failure,
namely, conditionally on the failure event.

– second, it shows that both indices δ f
i and η̄i can be simultaneously estimated from one common sample

{X̃k, Ỹ k
} verifying M(X̃k) = Ỹ k > s which can be obtained for the most common rare event probability

estimation techniques. The estimation of η̄i and δ f
i is thus a post-processing of the sample without new calls to

the model. When the latter is costly-to-evaluate, the rare event probability estimation can lead to a simulation
cost which is not reasonable in practice. Nevertheless, this constraint may be overcome by considering a
surrogate model. We show that the indices δ f

i and η̄i can then be estimated with a surrogate model at low
computational cost and are of interest in an industrial context.

ppendix. Maximum entropy principle

.1. General principle

The maximum entropy principle was introduced by Jaynes [24], and the reader is for instance referred to [25]
or more details. Let Pd (S) be the set of probability density functions on S ⊂ Rd , and for f ∈ Pd (S) let H ( f ) be
ts differential entropy, defined as

H ( f ) = −

∫
S

log f (x) f (x)dx ∈ [−∞,+∞]. (A.1)

In order to choose a density satisfying some constraints C ⊂ Pd (S) (for instance, prescribed first and second
oments), the maximum entropy principle asserts to choose among these densities the one with highest entropy,

.e.,

arg min
f ∈Pd (S)

H ( f )

subject to f ∈ C
(A.2)

When the constraints are linear equality constraints, i.e., are of the form C = { f ∈ Pd (S) :
∫
ϕ(x) f (x)dx = µ}

or some ϕ : Rd
→ Rd and µ ∈ Rd , then the above optimization problem is convex and a solution is of the form

f (x) = ce−⟨Λ∗,ϕ(x)⟩1S(x) where ⟨·, ·⟩ denotes the inner product in Rd , c is the normalization constant and Λ∗ is a
easible solution of the dual optimization problem

Λ∗
= arg min

Λ∈Rn

{
⟨Λ, µ⟩ + log

(∫
S

e−⟨Λ,ϕ(x)⟩dx
)}

, (A.3)

ee for instance [7] for more details. The above objective function is strictly convex on the set of feasible points and
o admits respectively a unique minimum which can been found using standard convex optimization techniques,
or instance interior-point algorithms.

The above method can be used to estimate a given density f0: if one knows some moments of the sought density
f0, then the idea is simply to put this information as constraints in (A.2).

.2. Application to Step 2 of our estimation scheme

In our case, we want to apply the above maximum entropy principle in Step 2 of our estimation scheme (see
ection 3.3) to estimate the density f X̃i

of X̃ i , and the density ci of (FX̃i
(X̃ i ), FỸ (Ỹ )). Ideally, we would like

o consider solutions to (A.2) with linear equality constraints but the problem is that moments of the sought
istributions are unknown. To circumvent this difficulty, we use the sample ((X̃ k

i , Ỹ k), k = 1, . . . , N ) provided
y the first step to estimate these moments. Also, for reasons discussed in [18] we consider fractional moments for

he constraints.
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More precisely, consider ñ, n ∈ N and real numbers α1 < · · · < αñ and β1 < · · · < βn , and let

M̂r,s :=
1
N

N∑
k=1

(
F̂X̃i

(X̃ k
i )
)αr (

F̂Ỹ (Ỹ k)
)αs

, r, s = 1, . . . , ñ, (A.4)

here F̃X̃i
and F̃Ỹ are the empirical cumulative distribution functions of X̃ i and Ỹ , respectively, obtained from the

ample ((X̃ k
i , Ỹ k), k = 1, . . . , N ), and

M̂ i
t :=

1
N

N∑
k=1

(X̃ k
i )βt , t = 1, . . . , n. (A.5)

Then the estimates f̂ X̃i
and ĉi of f X̃i

and ci , respectively, are given by

f̂ X̃i
= arg min

f ∈P1(Supp(X̃i ))
H ( f )

subject to
∫

Supp(X̃i )
xβt f (x)dx = M̂ i

t , t = 1, . . . , n,
(A.6)

and
ĉi = arg min

f ∈P2([0,1]2)
H ( f )

subject to
∫

[0,1]2
xαr yαs f (x, y)dxdy = M̂r,s, r, s = 1, . . . , ñ.

(A.7)

These solutions are obtained by the method described above. Note that the number of constraints is then n for
stimating f X̃i

and ñ2 for estimating ci . In this article, n and ñ are set to 3.
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