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Joint Blind Deconvolution and Robust Principal
Component Analysis for Blood Flow Estimation in

Medical Ultrasound Imaging
Duong-Hung Pham, Adrian Basarab, Ilyess Zemmoura, Jean-Pierre Remenieras and Denis Kouamé

Abstract—This paper addresses the problem of high-resolution
Doppler blood flow estimation from an ultrafast sequence of
ultrasound images. Formulating the separation of clutter and
blood components as an inverse problem has been shown in the
literature to be a good alternative to spatio-temporal singular
value decomposition (SVD)-based clutter filtering. In particular, a
deconvolution step has recently been embedded in such a problem
to mitigate the influence of the experimentally measured point
spread function (PSF) of the imaging system. Deconvolution was
shown in this context to improve the accuracy of the blood flow
reconstruction. However, measuring the PSF requires non-trivial
experimental setups. To overcome this limitation, we propose
herein a blind deconvolution method able to estimate both the
blood component and the PSF from Doppler data. Numerical
experiments conducted on simulated and in vivo data demonstrate
qualitatively and quantitatively the effectiveness of the proposed
approach in comparison with the previous method based on
experimentally measured PSF and two other state-of-the-art
approaches.

Index Terms—medical ultrasound, clutter separation, blood
flow, sensitive Doppler, robust PCA, blind deconvolution.

I. INTRODUCTION

THE last few years have witnessed an upsurge of interest in
the retrieval of high-sensitivity and high-resolution blood

flow from ultrafast sequences of ultrasound (US) images. The
reason behind this fact stems from the increasing demand
of more accurate detection and visualization of underlying
vascular structures, especially in small vessels where blood
velocities become low, e.g., in cerebral or peritumoral area [1]
or where tissues are moving fast, e.g., in cardiac or abdom-
inal regions [2], [3]. Indeed, such advances are of extreme
importance to ensure a better treatment of related diseases
such as brain gliomas (tumors) or peri-tumoral infiltration. To
estimate the desired blood flow image, numerous methods have
been proposed, whose principal goal is to suppress completely
unexpected clutter signals originating from tissue components
from blood flow [4]. Among them, finite impulse response
(FIR) and infinite impulse response (IIR) filters [5], [6], the
two simplest methods, aimed to perform high-pass filtering on
the ultrasonic signal along the temporal dimension. However,
IIR filters possess a long settling time whereas FIR filters need
a high-order to discriminate clutter signals from blood flow.
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This results in an insufficient number of temporal samples
at each spatial location in the case of US images built by the
means of focused ultrasonic beams [7]. Additionally, the high-
pass filtering approach suffers from an intrinsic inefficiency
of clutter removal when blood flow moves slowly or when
tissue motion is non-negligible. Moreover, only the temporal
information is taken into account for the tissue and blood
separation while neglecting the importance of the high spatial
coherence of the tissue compared with the blood signal.
Inspired by the latter fact, a clutter reduction technique based
on singular value decomposition (SVD) of the spatio-temporal
(time and depth) correlation matrix of successive temporal
samples was introduced in [8]. Different techniques were
subsequently proposed to extend this study such as the down-
mixing approach based on an eigen-based estimation of tissue
motion [9], real-time eigen-based clutter rejection technique
[10] or blood velocity estimation method using principal
component analysis (PCA) [11]. However, since the use of
focused beam strategies as in conventional US imaging leads
to a low number of both temporal and spatial samples, the
SVD efficiency in all the aforementioned methods remains
limited [12].

To cope with this drawback, a recent extension of applying
SVD to the Casorati matrix of ultrafast US datasets has been
proposed in [12], and demonstrated a considerable improve-
ment in both clutter filtering and blood flow recovery, even
in the case of moving tissue and slow blood flow. Despite
its efficiency, this approach strongly depends on the manual
choice of two rank thresholds, used to separate the singular
vectors corresponding to blood flow subspace from those
corresponding to tissue and noise subspaces, thus seriously
hindering its practical applicability [13]. To overcome this
limitation, several studies have been carried out such as an ef-
ficient estimator for automatic thresholding of subspaces [14],
the use of robust principal component analysis (RPCA) for
blood flow reconstruction in ultrafast US imaging [15]–[17], or
improvements of this method using either sparse regularisation
in a specific basis [18], or sparse coding through a specific
dictionary [19]. Furthermore, embedding a deconvolution step
in RPCA, called deconvolutive RPCA (DRPCA) enabled to
take into account the inherent low resolution of the ultrafast
Doppler data incurred by the inference of the point spread
function (PSF) characterizing the imaging system in use [20].
However, DRPCA is based on the knowledge of the PSF that
requires to be measured by an independent acquisition proce-
dure, thereby causing considerable inconvenience to users or
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being infeasible in practical situations.
In an independent work [21], Michailovich et al. introduced

an appealing method for blind deconvolution (BD) of 2D
US images. This method enabled an accurate PSF estimation
together with the reconstruction process of a 2D US image
with an increased spatial resolution and improved contrast,
using only partial information of the PSF, i.e., its power
spectrum. Investigating how the joint analysis of both DRPCA
and BD methods can be beneficial for joint blood flow retrieval
and PSF estimation in the context of ultrafast US imaging
represents the main goal of the present paper. The remainder of
the paper is organized as follows. Basics about SVD, DRPCA
and BD are regrouped in Section II. The proposed algorithm of
blood flow estimation is detailed in Section III. Finally, results
on both simulated and in vivo ultrafast US data, demonstrating
the effectiveness of the proposed approach over state-of-the-art
methods, are reported in Section IV.

II. BACKGROUND

In this section, nomenclature and notations related to SVD,
DRPCA and BD methods are provided. Throughout this paper,
z denotes a scalar, z a vector and Z a matrix. Subscript
Zn,m denotes the element in the nth row and mth column
of Z while superscript Z(k) represents Z at iteration k. In
some contexts, the vectorized counterpart of the matrix Z in
standard lexicographical order will be considered, defined by
the same notation Z.

A. Problem formulation

Let us consider the value of a complex analytic signal after
demodulation at a given lateral and axial coordinates (x, z) at
time, i.e., frame number, t, written as:

S(x, z, t) = I(x, z, t) + iQ(x, z, t),

where I(x, z, t) and Q(x, z, t) are the in-phase and quadrature
(IQ) components. This IQ signal is commonly modelled as a
superposition of the tissue signal T (x, z, t), the blood signal
B(x, z, t) and an additive noise component N(x, z, t) as
follows [12]:

S(x, z, t) = T (x, z, t) +B(x, z, t) +N(x, z, t).

Assume that Nt RF frames of size Nz × Nx, with Nz the
dimension in the axial direction and Nx the dimension in
the lateral direction, are recorded via ultrafast US imaging.
Constructing the Casorati matrix from this 3D Doppler data,
i.e. stacking these frames into a 2D matrix, leads to the
following model:

S = T +B +N , (1)

where S,T ,B and N ∈ CNzNx×Nt are respectively the
dataset Casorati, tissue, blood and noise matrices. The main
goal of this work is to formulate an optimization problem
to able to retrieve B and T from S under some constraints
imposed to these matrices. Before going into the details of
the proposed method, the following subsections summarize
the most common methods for blood flow retrieval based on
SVD and RPCA.

B. SVD-based method

This method consists in factorizing the Casorati matrix S
by the means of SVD as follows [12]:

S = UΣV † =

r∑
k=1

ukσkv
†
k,

where U ∈ CNzNx×NzNx and V ∈ CNt×Nt are respectively
unitary matrices consisting of the spatial (left) uk and temporal
(right) vk singular vectors and Σ ∈ RNzNx×Nt is a non-
square diagonal matrix whose entries are its singular values
σk. The superscript † stands for the conjugate transpose while
r = min(NzNx, Nt) denotes the rank of S. Note that the
Σ entries are sorted in a descending order such that the first
largest singular values are associated with the tissue signal
with the highest energy and spatial coherence, the intermediate
ones with the blood signal and the smallest ones with the
noise. Besides, since NzNx×NzNx is generally a very large
number, in practice only the first NzNx ×Nt elements of U
and Nt ×Nt elements of Σ are computed to reduce running
time and memory burden. After having determined the clutter
Tc and blood Tb rank thresholds, generally by manual tuning,
to remove the contribution of the tissue signal and the noise,
the blood flow component is estimated by:

B̂ =

Tb∑
k=Tc

ukσkv
†
k. (2)

C. RPCA-based methods

RPCA is an interesting alternative to SVD, able to ex-
plicitely take into account prior knowledge about the blood
flow. Specifically, the blood flow B can be assumed to be
sparse in number of practical applications. Conventionally,
sparsity is promoted by the minimization of the l1-norm. In
contrast to the blood component, tissue T possesses a very
small change over time and can be thus considered as having
a low rank, usually modelled by the nuclear norm denoted by
||.||∗. AssumingN is a Gaussian noise and taking into account
these two assumptions, RPCA is expressed as the following
optimization problem:

[B̂, T̂ ] = argmin
B,T

{
||S −B − T ||2F+λ||B||1+ρ||T ||∗

}
, (3)

where .̂ denotes the estimated variables, ||.||F is the Frobenius
norm and λ, ρ > 0 are two hyperparameters balancing the
trade-off between the sparsity of the blood and the low-
rankness of the tissues [16], [20].

A common technique to solve the above problem is to use
the augmented Lagrangian-based alternating direction method
of multipliers (ADMM), by solving iteratively several sub-
problems over each variable separately [22]. The augmented
Lagrangian related to (3) can be written as follows:

L (B,T ,ν) = λ||B||1+ρ||T ||∗+
µ

2
||S −B − T +

1

µ
ν||2F ,

where ν is the Lagrange multiplier and µ is the Lagrangian
penalty parameter controlling the convergence speed of the
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algorithm. At each iteration k, ADMM performs the following
three steps, until a predefined stopping criteria is met:

B̂
(k+1)

= argmin
B

(λ||B||1+
µ

2
||B − (S − T (k) +

1

µ
ν(k))||2F )

T̂
(k+1)

= argmin
T

(ρ||T ||∗+
µ

2
||T − (S −B(k+1) +

1

µ
ν(k))||2F )

ν(k+1) = νk + µ(S −B(k+1) − T (k+1)).

It is worth noting that the two first steps above are convex
problems possessing closed-form solutions: soft thresholding
(ST) [23] and singular value thresholding (SVT) [24], respec-
tively.

Although powerful, the standard RPCA approach does not
consider the significant impact of the PSF limiting the spatial
resolution of the Doppler data. To deal with this challenge, a
deconvolution step using a measured PSF was combined with
the RPCA model, resulting into the DRPCA algorithm in [20].
Within this method, the blood flow B is modelled as:

B = Hm ~X,

where ~ stands for the 2D convolution, Hm is the measured
PSF and X ∈ CNzNx×Nt is the high resolution blood com-
ponent to be estimated. It is worth mentioning here that using
circulant boundary conditions for computational efficiency in
the Fourier domain and considering the vectorized version of
X , such a 2D convolution product can be written as:

B =HX,

where H ∈ CNzNxNt×NzNxNt is a block circulant with
circulant blocks (BCCB) matrix obtained from the PSF Hm

(see, e.g., [25]). Plugging this convolution model in (3) results
into:

[X̂, T̂ ] = argmin
x,T

{
||S −HX − T ||2F

+ λ||X||1+ρ||T ||∗} . (4)

Similar to (3), (4) can be also solved using an ADMM-
based algorithm, as shown in [20]. However, DRPCA requires
the knowledge of the PSF Hm. In [20], it was measured
experimentally, using the same imaging system as the one
used for in vivo data acquisition, but on a dedicated wire
phantom. As highlighted previously in the introduction, the
need of experimentally measuring the PSF is an important
limitation of DRPCA approach.

D. Blind deconvolution

Blind deconvolution (BD) methods aim at retrieving a
high resolution image from its corresponding low resolution
observed image, modelled as the 2D convolution of the high
resolution image and a poorly determined or unknown PSF.
In US imaging, BD has been recently used to estimate both
the spatially invariant PSF and the tissue reflectivity function
(TRF) from 2D RF images [21]. Concretely, considering a
2D IQ image G is the low resolution version of the TRF F
degraded by a PSF He and a noise Ω, it can be written as
G = He~F +Ω. Note that subscript e denotes the PSF He

to be estimated, in contrast to the measured PSF Hm defined

in the previous subsection. Following [21], BD in US imaging
can be formulated as the following optimization problem:

[Ĥe, F̂ ] = arg min
He,F

{
1

2
||G−He ~ F ||2F+ϕ(F )

}
,

s.t. |F (He)|= H̃, (5)

where H̃ is the magnitude of the 2D Fourier transform (F ) of
the PSF and ϕ is a regularization function. Note that H̃ can
be assumed known given its straightforward estimation from
G by homomorphic filtering [26], [27]. Furthermore, in what
follows, ϕ is chosen as the Huber function, due to its ability
to characterise complex echogenicity patterns using only one
stochastic model [21]:

ϕ(F ) = γ

N−1∑
n=0

M−1∑
m=0

{
|Fn,m|2, Fn,m ≤ a
2a|Fn,m|−a2, otherwise

, (6)

where γ > 0 is a regularization parameter, and a > 0 is a
parameter balancing the prior between smoothness and sparse-
ness. Moreover, (5) can be solved by alternating minimization
over F and He, as follows:

F̂
(k+1)

= argmin
F

{
1

2
||G−H(k)

e ~ F ||2F+ϕ(F )

}
, (7)

Ĥe
(k+1)

= argmin
He

{
1

2
||G−He ~ F

(k+1)||2F
}
,

s.t. |F (He)|= H̃. (8)

It is worth mentioning that under the assumption that ϕ is
convex, (7) admits an efficient solution using proximal algo-
rithm, while (8) is reformulated in the Fourier domain using
Parseval’s theorem leading to the optimal phase estimation of
an all-pass filter that can be efficiently solved by a filter design
procedure (for more details the reader may refer to [21], [28]).

III. PROPOSED BD-RPCA METHOD

The proposed algorithm aims at estimating a high resolution
blood flow X together with the tissue component T and
the PSF He from ultrafast US Doppler signals. This novel
algorithm is based on a suitable combination of DRPCA and
BD methods. The resulting optimization problem to be solved
is formulated as follows:

[X̂, Ĥe, T̂ ] = arg min
X,He,T

{
||S −He ~X − T ||2F

+ λ||X||1+ρ||T ||∗} , s.t. |F (He)|= H̃. (9)

To solve (9), we propose a two-step alternating algorithm as
follows:

i) For a fixed He, (9) becomes:

[X̂
(k+1)

, T̂
(k+1)

] = argmin
X,T

{
||S −H(k)

e ~X − T ||2F

+ λ||X||1+ρ||T ||∗} .
This subproblem is solved by RPCA as shown in Section
II-C, resulting in estimates X̂ and T̂ .

ii) For fixed X and T , and assuming that He is spatio-
temporally invariant, the proposed algorithm estimates the
PSF by taking the temporal mean of all clutter filtered
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frames computed in step i), that results into a 2D image.
With this in mind, (9) is reformulated based on the
distributive property of the convolution as follows:

[Ĥe
(k+1)

] = argmin
He

{
||
∑
Nt

(
S − T (k+1)

)
− He ~

∑
Nt

(X(k+1))||2F

}
, s.t.|F (He)|= H̃, (10)

where
∑
Nt

(Z) denotes the temporal mean of a 2D matrix

Z. This procedure is performed by reshaping the 2D
matrix Z ∈ CNzNx×Nt into its corresponding 3D matrix
in CNz×Nx×Nt and then taking the mean along the
third dimension. Then, (10) can be solved by the BD
algorithm in Section II-D while ignoring the estimation
of
∑
Nt

(X(k+1)).

It should be also noted that RPCA is used to initialize the
values of the blood and tissue, prior to the process of the
proposed algorithm, allowing an efficient convergence speed-
up. The pseudo algorithm related to the proposed blood flow
retrieval method, named BD-RPCA, is given in Algorithm 1.

Algorithm 1: BD-RPCA
Input: observed Casorati matrix S.
Initialize: tol = 10−6, [X(0),T (0)] = RPCA(S);
while ||X(k+1) −X(k)||F> tol do

1) compute temporal mean: M (k+1)
ST =

∑
Nt

(
S − T (k)

)
2) estimate PSF: [H(k+1)

e ] = BD
(
M

(k+1)
ST

)
3) update: [X(k+1),T (k+1)] = DRPCA

(
S,H(k+1)

e

)
end
Output: high-resolution blood X(k+1) and estimated

PSF H(k+1)
e .

IV. NUMERICAL RESULTS

This section presents several numerical experiments on both
simulated and in vivo US data to illustrate the contribution of
BD-RPCA over the three existing methods SVD [12], RPCA
and DRPCA [20]. All the experiments were conducted using
MATLAB R2019b on a computer with Intel(R) Core(TM) i5-
8500 CPU @3.00 GHz and 16GB RAM.

A. Simulation results

In this simulation, we consider a static vessel whose di-
mensions Nz × Nx × Nt are respectively 451 × 161 × 400
samples, as shown in Fig. 1. Such a vessel is associated to
the static tissue generated from randomly distributed scatterers
with Gaussian random amplitudes. The US frame rate was set
to 12.8 kHz. The pixel increments in the directions x and
z are respectively dx = 0.0333 cm and dz = 0.0086 cm
while the sampling frequency was set to 9 MHz. In addition,
two moving rectangles of sizes 12 × 70 and 10 × 35 pixels
were simulated inside the vessel so that their interior points

1 41 81 121 161
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X

 [nb]

1

101

201

301

401

N
Z
 [

n
b

]

Fig. 1. Simulated B-mode image. Note that Nz [nb] and Nx[nb] denote the
lateral and axial distances in number of samples.

randomly move using circshift MATLAB function in order to
mimic the blood flow. The resulting image was convolved with
an experimentally measured PSF to simulate the loss of spatial
resolution. Note that this measured PSF was also used within
DRPCA in the estimation process, as proposed in [20].

TABLE I
OPTIMAL SETTING OF λ AND µ FOR THE SIMULATION

RPCA DRPCA BD-RPCA
λ 0.0111 0.0111 0.0037

µ 0.1113 0.0223 0.0074

1) Hyperparameter tuning: To ensure a fair comparison,
hyperparameters associated with each method were tuned by
cross-validation to their best possible values. For SVD, the
clutter and blood rank thresholds as introduced in (2) were
chosen as Tc = 2 and Tb = 15, respectively. For the RPCA-
based methods, we recall that λ and ρ reflect the compromise
between the blood sparsity and the tissue low-rankness while
µ handles the algorithm convergence rate. As suggested in
[16] for the general RPCA problem, ρ was set to 1 while the
reference values λref =

1√
max(Nz×Nx,Nt)

and µref = µ0×λref,

where µ0 is a fixed multiplier: 10 for RPCA and 2 for DRPCA
or BD-RPCA, were used in order for the optimal tuning to be
carried out more efficiently. Given this consideration, the best
λ and µ values selected for this simulation are shown in Table
I. It is interesting to note that the λ associated within RPCA
or DRPCA is about 3 times higher than the one used within
BD-RPCA. Moreover, when using BD, γ was set to 0.002 and
a to 0.05.

Note also that the most common Power Doppler image for
representing the retrieved blood flow was used for visualisation
purpose. The Power Doppler image measured in dB, denoted
by IPD, is calculated from the estimated blood flow B, for a
given position (x, z), as follows:

IPD(x, z) = 10 log 10

(
1

Nt

Nt∑
k=1

B(x, z, k)2

)
.



IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL (T-UFFC) 5

1 41 81 121 161

N
X
 [nb]

1

101

201

301

401

N
Z
 
[
n

b
]

(a)

1 41 81 121 161

N
X
 [nb]

1

101

201

301

401

N
Z
 
[
n

b
]

(b)

1 41 81 121 161

N
X
 [nb]

1

101

201

301

401

N
Z
 
[
n

b
]

(c)

1 41 81 121 161

N
X
 [nb]

1

101

201

301

401

N
Z
 
[
n

b
]

(d)

1 41 81 121 161

N
X
 [nb]

1

101

201

301

401

N
Z
 
[
n

b
]

(e)

1 41 81 121 161

N
X

 [nb]

1

101

201

301

401

N
Z
 [

n
b

]

-35

-30

-25

-20

-15

-10

-5

0

Fig. 2. Power Doppler images estimated from the simulated data in the noiseless case with: (a) SVD; (b) RPCA; (c) DRPCA; (d) BD-RPCA and (e) the
corresponding ground truth. All the images are displayed with a dynamic range of 35 dB.
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Fig. 3. (a) Lateral cross-profiles at the solid horizontal lines of Fig. 2; (b) Axial cross-profiles at the dashed vertical lines of Fig. 2.

2) Noise-free case: Let us first display, in Fig. 2, the
estimated Power Doppler results given by the four studied
methods and the ground truth for the noiseless case. From
these results, one may remark that Power Doppler images
estimated by both SVD and RPCA are quite noisy and blurred,
whereas the one obtained by BD-RPCA presents considerably
sharper edges around the two rectangles, very similar to
DRPCA. This observation is further confirmed by the plots
in Fig. 3, showing respectively the lateral and axial variations
at two different positions as depicted in Fig. 2. From these
plots, it can be seen that the lateral and axial profiles given
by BD-DRPCA have sharp slopes extremely close to the ones
given by DRPCA as well as to the ground truth, whereas those
obtained by SVD and RPCA are obviously much less resolved.

TABLE II
QUALITY ASSESSMENT FOR THE NOISELESS CASE

SVD RPCA DRPCA BD-RPCA
NRMSE 0.0890 0.0832 0.0409 0.0411

PSNR [dB] 21.092 21.685 27.840 27.800

Additionally, since the ground truth of simulated images
is available, the blood flow retrieval performance was quan-
titatively evaluated in terms of normalized root mean square
error (NRMSE) and peak signal-to-noise ratio (PSNR). These
metrics are defined as follows:

NRMSE =

√
||IPD − ÎPD||2F
||IPD||2F

,

PSNR[dB] = 10 log 10

(
d2max

MSE

)
,

where ÎPD and IPD are respectively the estimated Power
Doppler image and its corresponding ground truth. Regarding
the PSNR formula, MSE = 1

NzNx
||IPD− ÎPD||2F is the mean

square error (MSE) between the two images while dmax = 35
denotes the maximum pixel value, i.e., the dynamic range, of
the image. The quantitative results reported in Table II clearly
exhibit a very slightly lower estimation accuracy of BD-RPCA
compared to DRPCA and considerably better than the two
other approaches, confirming the coherence with the previous
visual observation. Note however the noticeable difference be-
tween BD-RPCA and DRPCA: whilst the proposed approach
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is unsupervised and able to estimate the PSF jointly with the
blood flow, the latter uses the true PSF used to simulate the
Doppler data.

Finally, we depict in Fig. 4 the estimated PSF obtained with
the proposed algorithm, in comparison with the experimentally
measured PSF used to simulate the data. One may remark
the ability of the the proposed blind deconvolution approach
to estimate the unknown PSF with reasonable accuracy, thus
proving its interest for ultrafast US imaging.

0

20

0.5

510

1

0 0

(a)

0
15

2

0.5

10
4

1

5
6 0

(b)

Fig. 4. (a) PSF Hm used to simulate the Doppler data; (b) estimated PSF
He by BD-RPCA. Note that these two PSFs are normalized between 0 and
1 for visualization comparison purpose.

3) Noisy case: To further test the robustness of the different
blood flow recovery methods in the presence of noise, each
frame generated as explained previously was contaminated by
an additive white Gaussian noise (AWGN), as done in [29].
The AWGN level is characterized by the blurred signal-to-
noise ratio (BSNR) expressed in dB as follows:

BSNR[dB] = 10 log 10

(
||HX − E(HX)||2F

Nσ2
n

)
where E stands for the empirical average, N for the total
number of image pixels and σ2

n for the noise variance. Note
that the hyperparameter setting associated with each technique
was kept the same as for the noiseless case and that the
evaluation results represent the averages of the estimations
computed by repeating each simulation 100 times.

Fig. 5 illustrates the variation of the two evaluation metrics
NRMSE and PSNR obtained when applying the different
retrieval techniques to the simulated data with varying input
BSNR values (from 0 dB to 60 dB). Examining these plots,
it is firstly noticeable that as the input BSNR value increases,
the evaluation results given by each reconstruction technique
go down in terms of NRMSE and go up in terms of PSNR,
and then all stagnate when some particular value for BSNR
(about 15 dB) is reached. It can be easily predicted that each
of these curves will get closer and closer to the corresponding
upper bound as depicted in Table II for the noiseless case if
the input BSNR value continues to rise. Moreover, one may
remark that DRPCA still yields the best blood flow recovery
accuracy whatever the input BSNR value due to the use of the
true measured PSF. However, for BSNR values larger or equal
to 15 dB, BD-RPCA that relies on estimated PSF exhibits an

asymptotic behaviour with a just slightly lower performance.
Specifically, the average difference between these two methods
from 15 dB to 60 dB is of approximately 10−2 in terms of
NRMSE and roughly 1.5 dB in terms of PSNR. Furthermore,
it is obvious from Fig. 5 that BD-RPCA substantially outper-
forms SVD and RPCA regardless of the noise level.

To conclude, all the above simulated results confirm the
quasi-equivalent ability of BD-RPCA to DRPCA in estimating
high-resolution and high-sensitivity blood flow of ultrafast
Doppler data with moderate noise levels, i.e., BSNR values
of 15 − 20 dB and higher, with the advantage of the former
that an a priori knowledge of the PSF is not required.

B. In vivo results

Ultrafast Doppler sequences were acquired on the brain
of a patient undergoing a brain surgery (Regional University
Hospital Bretonneaux of Tours Department of Neurosurgery)
with open skull, dura mater removed just before surgery. Two
regions of interest were selected in our protocol: healthy brain
with mainly large cerebral arteries and the glioma with a com-
plex vascular structure and very small flow in small vessels.
These acquisitions were done with a clinical research protocol
(ELASTOGLI) approved by the institutional review board
(CCP: Comit de Protection des Personnes, CCP agreement N o

123748) and local ethical committee. They strictly complied
with the ethical principles for medical research involving
human subjects of the World Medical Association Declaration
of Helsinki. Acquisitions were done using the AixplorerTM
(Supersonic Imagine) ultrasound scanner with an SL10-2
probe (192 elements). The research package (SonicLab V12)
enabled to upload on the scanner a particular US sequence of
1000 frames, compounded angles [−5o, 0o,+5o] with pulse
repetition frequency (PRF) of 3KHz, frame rate of 1KHz,
imaging depth of [1mm-40mm]. One-second acquisition was
downloaded on the hard disk for off-line beamforming and
signal processing. The size of the two resulting datasets was
260× 192× 1000 pixels.

In Fig. 6, we display Power Doppler image results given
by the different reconstruction methods obtained with the best
possible hyperparameters tuned by cross-validation, on each
dataset. Visually judging these plots, one may notice that both
DRPCA and BD-RPCA achieve, overall, similar depiction of
microvasculatures with high spatio-temporal resolution and
much clearer than the two others SVD and RPCA. To assess
quantitative measurements, contrast ratio (CR) introduced in
[31] was used because of the non availability of the ground
truth for the in vivo case. The CR was computed from two
rectangular patches of the same size 13×12 pixels: R1 (white)
representing the background and R2 (green) representing the
blood signal, taken from the same Power Doppler image as
shown in Fig. 6. Then, CR is defined as:

CR[dB] = 20 log 10

(
µR2

µR1

)
,

where µRi is the mean value of intensities in Ri, for i =
1, 2. The larger the CR, the better the performance of the
blood flow estimation. Moreover, to ensure a fair evaluation,
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Fig. 5. Quantitative measures of different retrieval techniques as a function of input BSNR in the noisy case, in terms of: (a) NRMSE; (b) PSNR.
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Fig. 6. First row panels: Power Doppler images computed on the healthy brain dataset by respectively using: (a) SVD; (b) RPCA; (c) DRPCA; (d) BDRPCA.
Second row panels: the same as first row panel but for the tumor dataset. All the images are displayed with a dynamic range of 35 dB. The arrows mean
that R2 is successively moved patch by patch in both directions and combined with R1 in order to compute CR values. The best possible hyperparameters
associated with each blood recovery technique are also provided in each plot.
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Fig. 7. CR measurement in dB of the different tested methods on: (a) healthy brain dataset in Fig. 6 (a); (b) tumor dataset in Fig. 6 (b). In these boxplots,
the red horizontal line indicates the median, the bottom and top edges of the box indicating the 25th and 75th percentiles and the black lines indicating the
entire range of data samples, per category. Red markers indicate outliers which are excluded from the statistical calculations [30].

R1 is kept fixed as a reference patch on the background while
each Power Doppler image is divided into 320 13 × 12 non-
overlapping patches R2, which leads to 320 CR values per
each tested method. Fig. 7 shows a boxplot comparison of
CR values for each of the different retrieval methods and for
each dataset. From Fig. 7, one may remark that DRPCA and
BD-RPCA, overall, produce similar results and significantly
better than SVD and RPCA. The quantitative results obtained
by taking the median values of CR are reported in Table III.
They demonstrate the consistency with the above qualitative
inspection about the performance of the blood flow estimation
of the different studied techniques.

TABLE III
CR MEDIAN VALUES FOR THE in vivo CASE

SVD RPCA DRPCA BD-RPCA
Brain 8.65 16.29 43.74 43.36

Tumor 21.09 29.60 42.89 45.21

TABLE IV
RUNNING TIMES IN S FOR EACH METHOD AND EACH STUDY CASE

SVD RPCA DRPCA BD-RPCA
Simulation 8 114 235 493

Brain 13 21 116 212

Tumor 13 19 110 221

Finally, Table IV regroups the running times associated
with each retrieval method in both simulated and in vivo
studies. It can be seen that the high-resolution results due
to the blind deconvolution approach are at the expense of
higher computational time. However, despite this limitation,
both simulated and in vivo results plead in favour of using
BD-RPCA that does not make use of PSF measurement
to reconstruct the blood flow rather than the other studied
techniques.

V. CONCLUSION

In this paper, a novel algorithm for the retrieval of blood
flow from an ultrafast sequence of US images was proposed,
based on the combination of two different techniques DRPCA
and BD. The proposed method allowed to overcome the main
limitation of the former related to the requirement of PSF mea-
surement while providing equivalent estimation performances.
Numerical experiments demonstrated the effectiveness of the
proposed technique on both simulated and in vivo datasets.
Future work will be dedicated to evaluate the clinical con-
tribution of the proposed method, in particular its ability to
improve the diagnosis power of the estimated blood flow maps.
Moreover, the main drawback of the proposed algorithm is the
high computational complexity; therefore, it would be of great
interest to develop more computationally efficient optimization
schemes to alleviate this limitation. Finally, the PSF estimate
was assumed to be spatial-temporally invariant PSF across the
3D imaging domain which constitutes a significant limitation
of the proposed method; thus, taking into account the spatial-
temporal variation features of the PSF as was done in [32]–
[34], is definitely an interesting perspective.
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