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Key Points:8

• We infer a stochastic model for the distribution of subsurface fault slip associated9

with the 2020 Elazığ earthquake10

• We account for uncertainties in both the depth-dependence of the assumed elas-11

tic structure and the location and geometry of the fault12

• Our models are characterized by two primary patches of fault slip where distri-13

bution appears to be controlled by geometrical complexities14
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Abstract15

Until the Mw 6.8 Elazığ earthquake ruptured the central portion of the East Anatolian16

Fault (EAF, Turkey) on January 24, 2020, the region had only experienced moderate mag-17

nitude (Mw < 6.2) earthquakes over the last century. We use geodetic data to constrain18

a model of subsurface fault slip. We adopt an unregularized Bayesian sampling approach19

relying solely on physically justifiable prior information and account for uncertainties in20

both the assumed elastic structure and fault geometry. The rupture of the Elazığ earth-21

quake was mostly unilateral, with two primary disconnected regions of slip. This rup-22

ture pattern may be controlled by structural complexity. Both the Elazığ and 2010 Mw23

6.1 Kovancılar events ruptured portions of the central EAF that are believed to be cou-24

pled during interseismic periods, and the Palu segment is the last portion of the EAF25

showing a large fault slip deficit which has not yet ruptured in the last 145 years.26

Plain Language Summary27

The Elazığ earthquake ruptured the central portion of the East Anatolian Fault28

(EAF), a major strike-slip fault in eastern Turkey, on January 24, 2020. Before this event,29

the region had only experienced moderate magnitude earthquakes over the last century.30

We aim at understanding the rupture of this earthquake, and how it relates to the his-31

torical ruptures of the EAF. To do so, we use measurements of displacement at the sur-32

face to image the subsurface slip on the fault that occurred during the earthquake. As33

the characteristics of the crust are poorly known, we make realistic assumptions on the34

fault geometry and Earth structure, and build on novel approaches to account for the35

possible biases of our assumptions and to characterize the uncertainties of the imaged36

slip. We suggest that the Elazığ earthquake rupture may be controlled by structural com-37

plexity of the fault, and that two main regions of slip surround a fault bend acting as38

a barrier to rupture propagation. We also suggest that the fault segment located between39

Lake Hazar and the city of Palu is the last portion of the central EAF, showing a large40

deficit of the fault slip, which has not yet ruptured in the last 145 years.41

1 Introduction42

A large portion of Turkey is located on the Anatolian Plate (AP), which is slowly43

extruding westward as a result of the north-south collision between the Arabian and Eurasian44

tectonic plates (e.g., Mckenzie, 1970; McKenzie, 1972; McClusky et al., 2000). The west-45
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Figure 1. Tectonic setting and assumed characteristics for the Elazığ earthquake. (a) Tec-

tonic setting of the area, plate boundaries are shown in thick black lines. East and North Ana-

tolian Faults are labelled (EAF and NAF), as well as the Dead Sea fault (DSF) and Karlıova

Triple Junction (KTJ). (b) Active fault traces (Basilic et al., 2013) and seismicity since 1976

(GCMT, Dziewonski et al., 1981) around the EAF and NAF. The Elazığ earthquake focal mech-

anism (GCMT) is in red. (c) Details of assumed (dark red) a.nd mapped (gray) fault trace at the

surface. Two structural bends of the causative fault geometry are highlighted. Possible epicenters

are shown with white, red, purple and orange stars (from left to right on the map), respectively

from GCMT, Jamalreyhani et al. (2020), KOERI and AFAD (2020). (d) Assumed fault geometry

at depth and associated uncertainty (standard deviation of 5◦ around the assumed dip and 1

km around the fault surface trace). (e) Assumed shear moduli with depth (derived from Maden,

2012; Ozer et al., 2019) and associated uncertainties.
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ward motion of the AP is predominantly accommodated along the North and East Ana-46

tolian faults (NAF and EAF, Fig. 1). The NAF experienced a sequence of destructive47

earthquakes that struck within the last eighty years (e.g., A. Barka, 1996; Stein et al.,48

1997; Armijo et al., 1999; Şengör et al., 2005). In contrast, the EAF is generally assumed49

to be less active, and has only experienced small to moderate events over the last cen-50

tury, although large (M > 7) earthquakes have occured in the historical record (e.g., Am-51

braseys, 1970; Ambraseys & Jackson, 1998; Hubert-Ferrari et al., 2020).52

The EAF is a left-lateral 600-km-long strike-slip fault linking the Dead Sea fault53

(DSF, Fig. 1) to the Karlıova Triple Junction (KTJ, Fig. 1) where it intersects with the54

right-lateral NAF (e.g., Yilmaz et al., 2006; Duman & Emre, 2013). The EAF has a com-55

plex geometry divided into several main segments, each of them characterized by bends,56

pull-apart basins or compressional structures (e.g., Duman & Emre, 2013), and also com-57

prises multiple secondary sub-parallel and seismically active structures delineating a 50-58

km-wide fault zone (e.g., Bulut et al., 2012). The EAF accomodates a displacement of59

9 to 15 mm/yr (Cetin et al., 2003; Reilinger et al., 2006; Cavalié & Jónsson, 2014; Ak-60

tug et al., 2016; Bletery et al., 2020), with creep dominantly at depths greater than 561

km (Cavalié & Jónsson, 2014; Bletery et al., 2020). As a comparison, the NAF shows62

creep rates around 20-25 mm/yr below a locking depth of 7-25 km (e.g. Cakir et al., 2014a;63

Hussain et al., 2018; Kaneko et al., 2013; Walters et al., 2011; Wright et al., 2001). Shal-64

lower portions of the EAF are characterized by an highly varying inter-seismic slip deficit,65

some portions being fully coupled while others appear to be at least partially creeping66

(Bletery et al., 2020).67

The January 24 2020 Mw 6.8 earthquake ruptured the EAF between the Hazar Pull-68

apart Basin and the city of Pütürge (Fig. 1). In the area, the main fault has been mapped,69

from the interpretation of aerial photos and field studies, as a sinuous trend interrupted70

by bends and step-overs whose widths do not exceed a kilometer (Duman & Emre, 2013).71

Coseismic surface rupture does not show a significant horizontal component and is prob-72

ably mostly gravitational (Tatar et al., 2020). In this study, we investigate the subsur-73

face rupture of the Elazığ earthquake and its relationship to fault geometry and inter-74

seismic slip deficit. While assuming a fault structure with a realistic geometry, we also75

account for its inherent uncertainties, as well as uncertainties related to assumptions on76

the crustal structure. We adopt a Bayesian sampling approach which allows us to sam-77

ple a large panel of possible slip models and to estimate the posterior uncertainty on the78

–4–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Geophysical Research Letters

Figure 2. Observations used in thus study. (a) Surface displacement in the satellite line-

of-sight (LOS) direction from a Sentinel-1 (S1) ascending (asc.) interferogram, overlayed with

coseismic GNSS offsets (Melgar et al., 2020). (b) Surface displacement from a Sentinel-1 de-

scending (dsc.), (c) an ALOS-2 (A2) ascending interferogram, and (d) an ALOS-2 descending

interferogram. (e) Pixel-offset (PO) surface displacement in the satellite along-track (azimuth) di-

rection from the ALOS-2 descending pair, and (f) from the ALOS-2 ascending pair. The surface

projection of the satellite LOS direction is positive in the ground-to-satellite direction.

inverted slip distribution. This approach allows us to describe the rupture of the Elazığ79

in detail, while discussing how it may have been driven by structural complexity. Finally,80

we also provide an updated intepretation of the seismic budget for the central EAF.81

2 Bayesian Inference framework82

2.1 Data83

We derive the earthquake surface displacement from four Synthetic Aperture Radar84

(SAR) interferometric pairs and two SAR pixel offsets images (summarized in Table S2,85

Figs 2 and S1 for a closer view on the deformation). We computed two ALOS-2 ascend-86

ing and descending interferograms, and two Sentinel-1 ascending and descending inter-87
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ferograms. Copernicus Sentinel-1 data have been acquired by the European Space Agency88

(ESA) and processed with the NSBAS software (Doin et al., 2012). ALOS-2 data are89

collected by the Japan Aerospace Exploration Agency (JAXA) and have been processed90

using the InSAR Scientific Computing Environment (ISCE) software (Rosen, 2012) aug-91

mented with an additional module for processing ALOS-2 data (Liang & Fielding, 2017a).92

We also applied pixel offset tracking analysis to ALOS-2 images on both tracks (Liang93

& Fielding, 2017b). Resulting surface displacements have lower precision and higher noise94

than LOS measurements, but provide useful information on the deformation along the95

satellite track (azimuthal) direction. Due to snowy conditions in January, both L-band96

ALOS-2 and C-band Sentinel-1 data decorrelate at higher topographic elevations. Note97

that surface displacements derived from the InSAR data contain from 3 to 7 days of post-98

seismic deformation, which might affect our modeling of the coseismic phase (Ragon, Sladen,99

Bletery, et al., 2019; Twardzik et al., 2019). InSAR and dense pixel offsets from the ALOS-100

2 descending track cover 1 year of preseismic and 1 month of postseismic deformation,101

and thus also include long-term deformation. To improve computational efficiency, we102

resample InSAR observations based on model resolution (Lohman & Simons, 2005) with103

quadtree regions ranging from 12 km to 1.2-2 km wide. We remove data points that are104

within 500 m of the fault trace to prevent spatial aliasing. We estimate measurement105

uncertainties following Jolivet et al. (2012, Fig. S2). We also use 3 components coseis-106

mic GNSS offsets at 6 stations located within 120 km of the rupture (Fig. 2). These off-107

sets have been processed by Melgar et al. (2020) and extracted from high-rate GNSS dis-108

placements.109

2.2 Fault geometry and elastic structure110

Duman and Emre (2013) mapped the main surface trace of the Pütürge segment111

as a relatively continuous sinusoidal trend interrupted by small bends and step-overs whose112

width do not exceed the kilometer. Over the Lake Hazar releasing bend (Fig. 1c), the113

fault trace divides into multiple parallel lineaments that outline a 10 km wide fault zone114

(e.g., Garcia Moreno et al., 2011). Around Doğyanol, the fault strike abruptly changes115

by 10◦. West of the rupture area, two major bends affect the Pütürge segment before116

it links to the Erkenek segment. The strike change around Doğyanol has been well out-117

lined by InSAR data as well (Figs 2, S1), although the rupture did not reach the sur-118

face. We build on these observations, as well as on the location of the aftershocks and119
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previous seismicity (Bulut et al., 2012; Melgar et al., 2020) to define the surface geom-120

etry of the causative fault. Hereafter, we will refer to the two bends of the causative fault121

as the main bend (bend of ∼ 10◦ around the city of Doganyol, refer to Fig. 1c) and the122

second bend (east of the main bend).123

InSAR data show largest amplitudes north of the fault (Fig. 2), suggesting that124

the fault is slightly dipping northward, as confirmed by the aftershocks (Melgar et al.,125

2020; Pousse-Beltran et al., 2020). We thus assume a fault dipping of 79◦ northward (Fig. 1d),126

from its south-western end to 30 km eastward, the dip angle linearly decreases to 75◦127

further east. We discretize the fault into 203 triangular subfaults whose side range from128

1.5 km at the surface to 4-5 km at depth. We also assume a layered crustal model (Tab. S1)129

derived from the seismic velocity models for NE Turkey proposed by Maden (2012) and130

by the Vp/Vs ratio proposed by Ozer et al. (2019), and compute coseismic Green’s func-131

tions following Zhu and Rivera (2002).132

2.3 Bayesian Sampling of the inverse problem133

In this study, we explore the full solution space of co-seismic slip distributions com-134

patible with geodetic observations in order to sample the range of plausible models. The135

sampling is performed with a Bayesian approach implemented in the AlTar2 package,136

originally formulated by Minson et al. (2013). AlTar combines the Metropolis algorithm137

with a tempering process to iteratively sample the solution space. A large number of sam-138

ples are tested in parallel at each transitional step, which is followed by a resampling step,139

allowing us to select only the most probable models. The probability of each sample to140

be selected depends on its ability to fit the observations dobs within the uncertainties141

Cχ = Cd + Cp, where Cd represents the observational errors and Cp the epistemic142

uncertainties introduced by approximations of the forward model (e.g., Minson et al.,143

2013; Duputel et al., 2014; Ragon et al., 2018; Ragon, Sladen, & Simons, 2019).144

The solution space is evaluated through repeated updates of the probability den-145

sity function (PDF) of each sampled parameter146

p(m, βi) ∝ p(m) · exp[−βi · χ(m)], (1)

where m is the sampled model, p(m) the prior information on this sample, i corresponds147

to each iteration and β evolves dynamically from 0 to 1 to optimize the parameter space148

exploration (Minson et al., 2013). χ(m) is the misfit function which quantifies the dis-149
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crepancies between observations and predictions within uncertainties described by the150

covariance matrix Cχ (Tarantola, 2005; Minson et al., 2013, 2014; Duputel et al., 2014)151

χ(m) =
1

2
[dobs −G(m)]T ·C−1

χ · [dobs −G(m)]. (2)

We solve for both slip amplitude and rake, within the assumed unrestrictive pos-152

itive uniform prior distribution p(m) = U(0 m, 20 m) for the strike-slip parameters,153

and within the restrictive Gaussian prior distribution centered on zero for the dip-slip154

parameters p(m) = N (0 m, 1 m).155

Ad-hoc choices of regularization, such as smoothing or moment minimization, ar-156

tificially restrict the range of possible models and strongly bias the inferred slip distri-157

butions towards simplistic overly-smoothed solutions (e.g., Du et al., 1992; Causse et al.,158

2010). In our approach, we do not impose any type of prior regularization and explore159

the entire solution space, i.e. the entire range of possible slip models. The final output160

thus consists in a series of models sampled from among the most plausible models of the161

full solution space. To explore the results, we consider probabilistic variables, such as162

a combination of the mean of the sampled models and the associated posterior uncer-163

tainty (standard deviation).164

2.4 Accounting for epistemic uncertainties165

Our estimates of fault slip are driven by the quality and quantity of observations,166

but also by the way we build the forward model and any other prior information we in-167

clude in the problem. Any prior choice made to evaluate the Green’s function (includ-168

ing problem parameterization and description of the Earth interior) will have a signif-169

icant impact on inferred model parameters (e.g., Beresnev, 2003; Hartzell et al., 2007;170

Yagi & Fukahata, 2008; Razafindrakoto & Mai, 2014; Duputel et al., 2014; Gallovič et171

al., 2015; Diao et al., 2016; Mai et al., 2016). So-called epistemic uncertainties stem from172

our imperfect description, or simplification, of the parameters describing the Earth in-173

terior, such as crustal properties (e.g., rheology), fault geometry or regional character-174

istics (e.g., topography, Langer et al., 2020). In contrast, aleatoric uncertainties will de-175

rive from random, or unknown, processes. In this study, we account for the epistemic176

uncertainties caused by our poor knowledge of the fault dip, the fault position, and the177

elastic layered crustal structure, following the methodologies presented by Duputel et178

–8–
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Figure 3. Inferred average slip model and associated posterior uncertainty for the Elazığ

earthquake. (a) Map view of the fault trace, subfaults contours at depth and local setting. Possi-

ble epicenters are shown with white, red, purple and orange stars (from left to right on the map),

respectively from GCMT, Jamalreyhani et al. (2020), KOERI and AFAD (2020). (b) Depth view

of the average total slip amplitudes and directions. (c) Standard deviation of the inferred strike-

slip parameters. (d) Observed and predicted surface displacement in the LOS direction from

Sentinel-1 ascending and descending, and ALOS-2 ascending, InSAR.

al. (2014); Ragon et al. (2018); Ragon, Sladen, and Simons (2019). A part of the aleatoric179

uncertainties is also quantified with our stochastic approach.180

We assume 1 km uncertainty (1σ) in the location of the surface projection of the181

fault, and 5◦ uncertainty (1σ) in the fault dip, the fault rotating as a whole around its182

assumed dip (Fig. 1). We assume uncertainties on the shear modulus for every layer (Pois-183

son’s ratio is held constant within each layer), the uncertainty decreasing with depth (Fig. 1,184

Tab. S1).185
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3 Results186

We infer primarily strike-slip fault slip (Fig. 3). Most of the slip is imaged around187

the main bend (localized around the city of Doganyol, Fig. 3a). Slip exceeds 3 m within188

two slip patches, from 2 to 10 km depth west of the main bend and from 7 to 10 km depth189

east of the main bend. Associated posterior uncertainty for these patches can reach up190

to ∼1 m for highest amplitudes (Fig. 3c). West of the main bend, the rupture extends191

down to greater depths (7 - 15 km) with moderate slip amplitudes of ∼2 m. At depth,192

the posterior model uncertainty reaches up to 1 m. The posterior marginal distributions193

all show well-delineated Gaussian shapes (Fig. S3), even for the smallest slip amplitudes.194

The posterior PDFs on subfaults in between these two main slip patches indicate well195

resolved very low slip amplitudes (Fig. S3), suggesting that the two patches are discon-196

nected (Fig. 3c).197

One other narrow slip patch can be observed west of the main bend, at the loca-198

tion of the second bend. Slip is imaged from the surface to 4-km-depth, with maximum199

amplitudes reaching 2.5 m at the surface, and with relatively small posterior uncertainty.200

This patch is not connected with the main slip patches, and does not seem to correspond201

to any Mw > 4 aftershock (relocated by Melgar et al., 2020; Pousse-Beltran et al., 2020).202

This slip may be coseismic or afterslip (given that the InSAR data span a period up to203

one month after the mainshock).204

Observations are well fit by the predictions of our model (Table S3, Figs. 3(d), S5,205

S6, S7 and S8 for the InSAR and GNSS data respectively), within the assumed uncer-206

tainties and possible remaining noise (in particular for the pixel-offset data). Account-207

ing for epistemic uncertainties mitigates overfitting (Ragon et al., 2018). Residuals are208

expected to be larger than if epistemic biases are neglected. The descending interfero-209

grams present larger residuals (Figs. S5, S6, S7) because the assumed fault geometry is210

primarily constrained by ascending data, and the descending imaging geometry is less211

favorably oriented (the LOS has a 45◦ angle with the fault strike).212

We also infer the slip distribution of the Elazığ earthquake assuming a planar fault213

structure dipping of 85◦ towards the north and embedded within a homogeneous half214

space, without introducing any epistemic uncertainty (Fig S9). Unlike our preferred model,215

the slip is concentrated in a single shallow and extended slip patch with low posterior216

uncertainty. Highest amplitudes (up to 3.5 m) are reached above the main bend, from217

–10–
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Figure 4. Comparison between the spatial distributions of the 2020 Elazığ earthquake rupture,

historical earthquakes, highly coupled sections of the EAF, and seismic moment accumulated since last

historical rupture in relation with seismic moment released by the most recent event. (continued)

1.5 to 9 km depth. Low slip values are inferred at depths greater than 10 km and lower218

than 1.5 km. Some slip is also inferred around the second bend. As expected, the fit of219

the predicted displacement to the observations is good (Table S3, Figs. S10, S11, S12 and220

S13), descending interferograms still presenting larger residuals, and slightly better than221

with our preferred inference.222

4 Discussion and Conclusion223

–11–
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Figure 4. Comparison between the spatial distributions of the 2020 Elazığ earthquake rupture,

historical earthquakes, highly coupled sections of the EAF, and seismic moment accumulated since last

historical rupture in relation with seismic moment released by the most recent event. (A) Map view of

two segments the East Anatolian Fault (black lines), overlayed with historical and recent seismicity from

1900 to January 2020 (Retrieved from AFAD, 2020; NEIC, 2020; Melgar et al., 2020), shallow interseismic

slip deficit (Bletery et al., 2020) and our assumed fault trace for the 2020 Elazığ event (thick black line).

(B) Possible rupture extents for the 4 most recent Mw > 6.5 earthquakes that struck the mapped seg-

ments of the EAF before the Elazığ event, inferred from Ambraseys (1989); Hubert-Ferrari et al. (2020).

Red stars denote the locations of the mainshock and aftershock of the 1874 sequence (Ambraseys, 1989).

Fault segments of the central EAF are indicated, from Duman and Emre (2013). (C) Depth extent of the

slip amplitude inferred for the 2020 Elazığ event (Fig. 3), along with the highly coupled sections of the

EAF between 2003 and 2010 (Bletery et al., 2020), and the possible extent of the 2010 Mw 6.1 Kovancılar

earthquake estimated from the spatial coverage of aftershocks and basic scaling laws (Wells & Copper-

smith, 1994; Tan et al., 2011), as well as historical and recent seismicity from 1900 to January 2020. (D)

For highly coupled portion of each segment, comparison of PDFs of accumulated seismic moment since

last historical rupture (in purple), with the seismic moment (M0) of last recent earthquakes, i.e. the 2020

Elazığ (red) or 2010 Kovancılar (orange) events. For the Pütürge segment, the PDF and mean of accu-

mulated seismic moment since the time needed to accumulate the Elazığ event M0 are shown in gray, and

the PDFs of the Elazığ M0 are derived from our preferred slip model (red), with a version accounting for

uncertainties in the shear modulus (µ = 2.8 ± 0.3 101 GPa, light red).

4.1 A stochastic view of the 2020 Elazığ coseismic rupture224

Assuming a realistic fault geometry and cristal structure, and accounting for re-225

lated epistemic uncertainties, we estimate the slip distribution of the 2020 Elazığ earth-226

quake with a Bayesian inference approach. We show that the coseismic rupture affects227

almost the full width of the Pütürge segment, down to 15-km-depth, with a geodetic mo-228

ment M0 = 2.34± 0.25 1019 N ·m and an equivalent moment magnitude of 6.84 (µ =229

2.8±0.3 101 GPa). Two disconnected slip patches host most of the slip: one patch shows230

slip exceeding 3 m from ∼ 3 to ∼ 10 km depth east of the main bend, while the second231

slip patch extends from 7-km-depth down to 15-km-depth with slip amplitudes larger232

than 2 m just west of the main bend (Fig. 3).233
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A large shallow slip (0-5 km, 2.5 m in amplitude) is also imaged around the sec-234

ond bend. While the standard deviation associated with this shallow slip patch is rel-235

atively small, its amplitude is poorly constrained by scarce, and possibly noisy, data points236

largely affected by snowy conditions (Figs. S5, S6, S7). Some of our InSAR data cov-237

ering up to one month after the mainshock, some imaged deformation, such as this shal-238

low patch, might actually be postseismic. Yet, the surface displacement from 1 week to239

5 months after the mainshock does not reach more than a few centimeters (Fig. S14),240

suggesting that, if afterslip occurred, it was in the hours following the mainshock and241

with a limited amplitude (as the amplitude of early afterslip often scales with the longer242

term postseismic deformation, e.g., Twardzik et al., 2019), thus probably not excessively243

affecting our slip estimates.244

The inferred slip distribution changes significantly if we assume a planar fault em-245

bedded in a homogeneous crust and we neglect uncertainties stemming from the assump-246

tion of a simplified Earth interior. In particular, a single and shallower slip patch is in-247

ferred around the epicenter, no slip larger than 50 cm being imaged above 2 km, or larger248

than 80 cm below 10 km depth. The pronounced slip deficit imaged when assuming a249

simplified forward model (Fig. S15) might suggest that the shallow slip deficit observed250

by Pousse-Beltran et al. (2020) may be an artifact deriving from modeling choices, as251

proposed by Xu et al. (2016) and Ragon et al. (2018).252

The location of the epicenter, as estimated from different institutions and authors,253

comes with more than 16 and 20 kilometers uncertainty in depth and position, respec-254

tively (e.g., Jamalreyhani et al., 2020; Tatar et al., 2020). While some models proposed255

a location around the main bend, many others proposed epicenters rather located in be-256

tween the two bends (Fig. 3). Robust interpretation on rupture directivity is largely af-257

fected by uncertainty in epicenters location, although our results suggest the rupture of258

the Elazığ earthquake might be mostly unilateral to the SW.259

Our estimates of the pattern of fault slip differ from other estimates based on sim-260

ilar data (e.g., Melgar et al., 2020; Pousse-Beltran et al., 2020; Cheloni & Akinci, 2020;261

Doğru et al., 2020). Our preferred model is very different from Pousse-Beltran et al. (2020);262

Cheloni and Akinci (2020); Doğru et al. (2020), where peak slip reaches only 2 m over263

the main bend. In contrast, our preferred model shares many characteristics with the264

preferred one of Melgar et al. (2020), especially for the peak slip location and the over-265
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all shape of the ruptured areas, although they image large slip values east of the KO-266

ERI epicenter. Melgar et al. (2020) preferred model being primarily driven by high-rate267

GNSS data and assuming a 1D crustal structure, these shared characteristics suggest that268

assuming a layered crustal model is necessary to infer robust slip estimates in this re-269

gion.270

4.2 Structurally driven slip on the Pütürge segment271

Fault segmentation and bends are thought to act as geometric barriers that can272

influence, or even drive, rupture initiation, termination and propagation (e.g., G. King273

& Nabelek, 1985; A. A. Barka & Kadinsky-Cade, 1988; Wesnousky, 2006; Duan & Oglesby,274

2005; Aochi et al., 2002; Perrin et al., 2016; Klinger, 2010). Similarly, creeping sections275

might act as barriers to earthquake propagation (e.g., G. C. P. King, 1986; Chlieh et al.,276

2008; Perfettini et al., 2010; Kaneko et al., 2010).277

The coseismic rupture of the Elazığ earthquake likely started in a relatively pla-278

nar portion of the fault, in between its two main bends (refer to Fig. 3, Jamalreyhani279

et al., 2020). Similarly, peak slip amplitudes and most of the slip are located in relatively280

smooth areas, and surround the main bend where well-resolved low slip values have been281

imaged. The absence of slip in the main bend is a robust characteristic of our preferred282

slip model, which has not been imaged in previous studies (e.g., Melgar et al., 2020). The283

event thus likely ruptured a first portion of the Pütürge segment, stopped at the main284

bend acting as a barrier, and then broke a second portion, a process that has been ob-285

served in numerical simulations (e.g., Kato et al., 1999; Duan & Oglesby, 2005). A per-286

turbation of the rupture propagation by the main bend well correlates with the appar-287

ent rupture velocity decrease around the geometrical complexity (imaged by back-projection288

of waveforms, Pousse-Beltran et al., 2020), and the two distinct peaks of the source time289

function (automatically determined, Vallée & Douet, 2016).290

Slip slowly decreases towards Lake Hazar (Fig. 4). Aftershocks activity also declines291

abruptly at the basin boundary (Melgar et al., 2020; Jamalreyhani et al., 2020). The pull-292

apart basin hosting Lake Hazar might thus have acted as a geometrical barrier to the293

ruptured asperity (as also observed for the Haiyuan fault, China, Liu-Zeng et al., 2007;294

Jolivet et al., 2013). To the west, no specific geometrical complexity is imaged at the sur-295
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face, and the rupture may have stopped at the maximum length of the fault segment (Klinger,296

2010).297

Finally, the location of the main bend also corresponds to the portion of the EAF298

that shows maximum shallow interseismic slip deficit ( >90%, Fig. 4). Inferred slip partly299

overlays this portion of maximum slip deficit, but the coseismic rupture also extends over300

moderately coupled regions (30-40%) at greater depths (from 8 to 15-km-depth). The301

second bend, to the northeast of the main bend (Fig. 3), is also surrounded by large (>2302

m) slip amplitudes at shallow depths.303

Altogether, these observations suggest that the distribution of subsurface fault slip304

during the Elazığ earthquake may largely reflect complexities in the fault geometry. Rup-305

tured portions appear to be relatively smooth. In contrast, the main fault bend likely306

acted as a barrier to rupture propagation, over which no slip has been imaged, similarly307

to the structure responsible for the pull-apart basin of Lake Hazar. The bend is not prone308

either to aseismic slip (at least at shallow depths). The deepest imaged slip patch, down309

to 15-km-depth, confirms that the seismogenic depth is deeper than 10 km for the cen-310

tral EAF (Bulut et al., 2012). Our results do not seem to corroborate the shallow lock-311

ing depth (full creep below 5 km) inferred by Cavalié and Jónsson (2014). This behav-312

ior appears similar to the NAF, where large earthquakes occur on faults also prone to313

aseismic slip (Cakir et al., 2005, 2014b; Schmittbuhl et al., 2016).314

4.3 Seismic potential of the Palu segment315

From Pütürge to Bingöl, interseismic slip deficit above 5-km-depth varies along strike,316

as inferred from geodetic data from 2003 to 2010 (Bletery et al., 2020, Figs 4, S16). Three317

main sections of large shallow interseismic slip deficit (>70%) are clearly distinct: one318

on the Pütürge segment, another on the West Palu segment, and a last one east of the319

city of Palu, on the East Palu segment. Before the Elazığ event, this portion of the EAF320

was struck by 4 large earthquakes in the last 200 years. Two M ∼ 6.8 and M ∼ 7.3 oc-321

cured west of Lake Hazar in 1893 and 1905 (Ambraseys, 1989). In 1874-1875, a sequence322

of two M ∼ 7.1 and M ∼ 6.7 likely struck the region between Sivrice and Palu (Ambraseys,323

1989; Cetin et al., 2003; Hubert-Ferrari et al., 2017). East of the locality of Palu, the re-324

gion around the city of Bingöl was affected by a Mw 6.8 in 1971 (Ambraseys, 1989; Am-325

braseys & Jackson, 1998).326
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Slip deficit has accumulated on the EAF since these recent historical ruptures, and327

the newly coupled portions (from 2003 to 2010) are preferably located in between the328

historically ruptured segments (Bletery et al., 2020). The 2010 Mw 6.1 earthquake that329

occurred near Kovancılar (Akkar et al., 2011) appears to have filled the possible seismic330

gap between the 1874 sequence and the 1971 Bingöl event (Fig. 4B). Similarly, the ex-331

tent of the Elazığ rupture well overlays with a highly coupled portion of the EAF, and332

it may have filled a possible gap between the 1893/1905 earthquakes and the 1874 se-333

quence (Melgar et al., 2020; Duman & Emre, 2013).334

We compare the seismic moment accumulated since the possible last historic rup-335

ture of the Pütürge segment (1905) with the seismic moment released during the 2020336

Elazığ earthquake (Fig. 4D). To do so, we calculate the seismic moment for the area rup-337

tured by the event according to our slip model, and account for uncertainties in ruptured338

area (σ = 3 km2), shear modulus (µ = 2.8 ± 0.3 101 GPa), coupling and slip rates339

(according to Bletery et al., 2020). The moment released by the 2020 event is largely greater340

than the one accumulated since 1905 (2.34±0.25 >> 0.72±0.19 1019 N ·m). Around341

475 years (since 1646) would be necessary to accumulate the moment released by the Elazığ342

earthquake, assuming constant coupling and slip rates, confirming that the Pütürge seg-343

ment did probably not rupture during the last historical events, and effectively was a seis-344

mic gap. We make the same comparison for the East Palu segment, and show that the345

moment released by the 2010 Mw 6.1 Kovancılar earthquake well matches the moment346

accumulated from the 1971 Bingöl event to 2010 (1.58± 0.2 ≈ 2.19± 0.56 1018 N ·m,347

Fig. 4D), suggesting this portion of the EAF actually ruptured during the 1971 event,348

and that all of the accumulated moment has been released at the time of the Kovancılar349

earthquake. Since 2010, the seismic moment of the East Palu segment likely accumu-350

lated again to reach 4.48± 0.5 1017 N ·m, which corresponds to a Mw ≈ 5.73351

Although the portions of the EAF that have been affected by the Elazığ and Ko-352

vancılar events show seismic activity in the 20 years preceding these events, the West353

Palu segment is characterized by relatively low seismic activity (Fig. 4). Together with354

the low slip deficit at depth (or shallow 5 km locking depth, Cavalié & Jónsson, 2014;355

Bletery et al., 2020), the lack of seismicity might suggest that the West Palu segment356

is creeping. However, this segment also shows large interseismic slip deficit in its shal-357

low portion (< 5-km-depth), and at greater depths even larger than for the Pütürge seg-358

ment (before the 2020 event, Bletery et al., 2020, Fig. S16). Ground shaking maps de-359
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rived from press reports and testimonies suggest the 1874 sequence likely initiated at depth360

just west of Lake Hazar (Ambraseys, 1989), near the epicenter of a Mw ∼ 5 earthquake361

that occurred in 2010. The West Palu segment is thus capable of producing large earth-362

quakes. Cheloni and Akinci (2020) also suggest that the Elazığ event led to an increase363

in the Coulomb stress of the Palu segment. Altogether, these observations suggest that364

the West Palu segment of the central EAF is likely seismogenic. If it were to rupture,365

the moment accumulated since 1875 on the highly coupled portion is of 7.58±2.2 1018 N ·m366

(light purple in Fig. 4D), and may reach 1.08± 0.25 1019 N ·m if the rupture extends367

from Lake Hazar to the city of Palu (dark purple in Fig. 4D), which would correspond368

to a Mw ∼ 6.6± 0.15 earthquake.369
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Bletery, Q., Cavalié, O., Nocquet, J.-M., & Ragon, T. (2020). Distribution of In-441

terseismic Coupling Along the North and East Anatolian Faults Inferred From442

InSAR and GPS Data. Geophysical Research Letters, 47 (16), e2020GL087775.443

doi: 10.1029/2020GL087775444

Bulut, F., Bohnhoff, M., Eken, T., Janssen, C., Kılıç, T., & Dresen, G. (2012).445
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Cetin, H., Güneyli, H., & Mayer, L. (2003). Paleoseismology of the Palu–Lake Hazar469

segment of the East Anatolian Fault Zone, Turkey. Tectonophysics, 374 (3),470

163–197. doi: 10.1016/j.tecto.2003.08.003471

Cheloni, D., & Akinci, A. (2020). Source modelling and strong ground motion simu-472

lations for the January 24, 2020, Mw 6.8 Elazığ earthquake, Turkey. Geophysi-473
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(2020). A 3800 yr paleoseismic record (Lake Hazar sediments, eastern Turkey):521

Implications for the East Anatolian Fault seismic cycle. Earth and Planetary522

–21–



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved.  

 

 

 

 

 

 

 

manuscript submitted to Geophysical Research Letters

Science Letters, 538 , 116152. doi: 10.1016/j.epsl.2020.116152523

Hubert-Ferrari, A., El-Ouahabi, M., Garcia-Moreno, D., Avşar, U., Altınok, S.,524
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