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We study a model of wireless networks where users move at speed θ ≥ 0, which has the original feature of being defined through a fixed-point equation. Namely, we start from a two-class processor-sharing queue to model one representative cell of this network: class 1 users are patient (non-moving) and class 2 users are impatient (moving). This model has five parameters, and we study the case where one of these parameters is set as a function of the other four through a fixed-point equation. This fixed-point equation captures the fact that the considered cell is in balance with the rest of the network. This modeling approach allows us to alleviate some drawbacks of earlier models of mobile networks. Our main and surprising finding is that for this model, mobility drastically improves the heavy traffic behavior, going from the usual 1 1-scaling without mobility (i.e., when θ = 0) to a logarithmic scaling log(1/(1-)) as soon as θ > 0. In the high load regime, this confirms that the performance of mobile systems benefits from the spatial mobility of users. Finally, other model extensions and complementary methodological approaches to this heavy traffic analysis are discussed.

Introduction

Background and undesirable ergodicity assumption

Since the emergence of wireless networks and following their continual development, the impact of user mobility on network performance has attracted significant attention. In [START_REF] Grossglauser | Mobility increases the capacity of ad-hoc wireless networks[END_REF], the authors showed that mobility creates a multi-user diversity leading to a significant improvement in per-user throughput. Since this seminal work, the observation that mobility increases throughput has been confirmed in a wide variety of situations captured by various stochastic models; see [START_REF] Baynat | Impact of mobility in dense LTE-A networks with small cells[END_REF][START_REF] Bonald | A: How mobility impacts the flow-level performance of wireless data systems[END_REF][START_REF] Bonald | Flow-level performance and capacity of wireless networks with user mobility[END_REF][START_REF] Borst | Mobility-driven scheduling in wireless networks[END_REF][START_REF] Borst | Capacity of wireless data networks with intra-and inter-cell mobility[END_REF][START_REF] Borst | A stochastic network with mobile users in heavy traffic[END_REF][START_REF] Ma | Opportunities in mobile crowd sensing[END_REF][START_REF] Simatos | Spatial homogenization in a stochastic network with mobility[END_REF]. These different works also show that various reasons can lead to an increase in performance, for instance opportunistic channel-aware scheduling or the mobility itself which acts as a distributed load balancing algorithm. Interestingly, to the best of our knowledge, the first paper to show that mobility could under certain circumstances actually degrade delay only appeared recently [START_REF] Anton | On the impact of mobility in cellular networks[END_REF].

In all these models, user mobility is represented by an ergodic process on a finite region of the plane. For instance, in [START_REF] Grossglauser | Mobility increases the capacity of ad-hoc wireless networks[END_REF] users follow a stationary and ergodic trajectory on the unit disk; in [START_REF] Bonald | A: How mobility impacts the flow-level performance of wireless data systems[END_REF][START_REF] Bonald | Flow-level performance and capacity of wireless networks with user mobility[END_REF][START_REF] Borst | Mobility-driven scheduling in wireless networks[END_REF][START_REF] Borst | Capacity of wireless data networks with intra-and inter-cell mobility[END_REF], users follow an irreducible Markovian trajectory in a network consisting of a finite number of cells. In our view, one of the limitations of such a modeling assumption is the highly unrealistic behavior it displays under congestion. Indeed, in the congestion regime, users stay in the network for a long time, so that if their trajectory is ergodic, they necessarily visit the same place a large number of times, as if they were walking circularly.

High-level model description and motivation

In the present paper, we pursue the modeling approach started in [START_REF] Olivier | Performance analysis ofdata traffic in small cells networks with user mobility[END_REF][START_REF] Simonian | Performance of data traffic in small cells networks with inter-cell mobility[END_REF]. The main idea to alleviate the aforementioned drawback resulting from the ergodic trajectory assumption is to focus on a single cell and abstract the rest of the network as a single state. By doing so, we only keep track of the precise location of users when they are located in the considered cell: when located elsewhere (either outside the network or in the rest of the network) we do not track them precisely. This simple model could be generalized by focusing on several cells rather than a single one (see the discussion in Sect. 5). Users can thus be in one of three "places", as pictured in Fig. 1: (1) outside the network, meaning that they do not require service (the left fluffy shape); [START_REF] Baynat | Impact of mobility in dense LTE-A networks with small cells[END_REF] in the considered cell (the middle hexagon);

(3) in the network but not in the considered cell, i.e., in the rest of the network (the right fluffy shape). Moreover, our work is motivated by presently rolled-out LTE networks where cells can be small in range (pico, femto cells). In this context, users experience similar radio conditions and we will therefore assume below that they receive the same transmission capacity, independently of their location within the cell. While focusing on the spatial mobility aspect of users, the present study consequently ignores the possible spatial variations of transmission capacity inevitably presented by larger cells. In the following, this equal capacity is denoted by 1/μ.
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Fig. 1 Description of the model considered in the paper. Without imposing the balance condition corresponding to the fixed-point equation (FP), this is a two-class processor-sharing queue with one impatient class, namely the class-2 of mobile users, with arrival rate λ 2 + λ f net = λ f tot . The balance equation (FP) accounts for the fact that a typical cell at equilibrium is considered, with equal flows from and to the rest of the network

Mathematical model and results

Our mathematical model is introduced in two steps. At this stage, we only give a highlevel description of our model in order to give the big picture: details are provided in Sect. 2.

We first introduce a "free" model X f , which is simply a two-class processor-sharing queue with one impatient class: from the mobile network perspective, patient users correspond to static users who do not move, and impatient users to mobile users who move and thus potentially leave the cell for the rest of the network. The non-zero transition rates of the Markov process X f are given by

x ∈ N 2 -→ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ x + e 1 at rate λ 1 ,
x + e 2 at rate λ 2 + λ f net ,

xe 1 at rate μ

x 1 x 1 + x 2 ,
xe 2 at rate μ

x 2 x 1 + x 2 + θ x 2 , (1.1) 
with e 1 = (1, 0) and e 2 = (0, 1) (see Sect. 2.1 for a detailed interpretation of these parameters); as specified below, θ represents the impatience/mobility rate. In a second step, we introduce our full model which is obtained from the free model (1.1) by enforcing a balance condition in the form of the fixed-point equation (FP). This fixed-point equation means that the flows of mobile users to and from the rest of the network must balance out. This condition consequently means that the considered cell is "typical", in that the cell imposes a load on the rest of the network equal to the reciprocal load from the rest of the network to the considered cell.

If 1 = λ 1 /μ denotes the load of static (i.e., patient) users and 2 = λ 2 /μ the load of mobile (i.e., impatient) users, the stability condition without enforcing this balance equation is 1 < 1 since class-2 users are impatient and thus cannot accumulate (see Lemma 2.1). From the mobile network perspective, the interpretation is that mobile users can always escape to the rest of the network where they are not tracked. The stability condition 1 < 1 is therefore clearly fictitious, because even if we do not keep track of the precise location of mobile users in the rest of the network, they still impose a load on the network which should be accounted for. When enforcing the balance equation (FP), the stability condition then becomes 1 + 2 < 1 which is the natural expected stability condition since, considering the cell as a representative cell of a larger network, 1 + 2 is the normalized load per cell (see Lemma 2.4).

The study of this model is driven by the desire to understand the impact of mobility on performance. We wish, in particular, to address questions such as: given the total load = 1 + 2 < 1, does the network perform better if the proportion 2 / of mobile users increases? Answering such a question being generally difficult, we here resort to the approximation obtained in the heavy traffic regime where ↑ 1. In addition to providing useful insight into the impact of mobility on performance, this model turns out to exhibit a highly original heavy traffic behavior, whereby the number of users in system scales like log(1/(1 -)) as ↑ 1. If all users were static, we would have the usual (1 -) -1 scaling; our model therefore suggests that not only throughput but also delay is improved with mobility.

To the best of our knowledge, this unusual heavy traffic scaling only appeared earlier [START_REF] Lin | The average response time in a heavy-traffic SRPT queue. SIGMET-RICS Perform[END_REF] in the case of the shortest-remaining-processing-time service discipline with heavy tailed service distribution. In this case, such an improvement is conceivable: indeed, since the service distribution is heavy tailed, very long jobs are not so rare. If the service discipline is FIFO, then these jobs impose a very large delay on the numerous smaller jobs that arrive after them. With SRPT, in contrast, only the large jobs spend a long time in the network, essentially due to their large service requirement. As regards the impact of mobility in wireless networks, it has been already observed [START_REF] Simonian | Performance of data traffic in small cells networks with inter-cell mobility[END_REF], through an approximate analysis and extensive simulation, that the performance gain due to mobility can be related to an "opportunistic" displacement of mobile users within the network; in fact, any local increase in traffic in one given cell induces the displacement of the moving users to a neighboring cell in order to complete their transmission, hence alleviating the traffic for remaining (static or moving) users in the original cell. Our contribution in this paper is to theoretically justify this statistical behavior in the heavy traffic regime.

Organization of the paper

We start by introducing our model and Theorem 2.5, the main result of the paper, in Sect. 2. In this section, we will also present a conjecture refining our main result, which is discussed in Sect. 5. Sections 3 and 4 are devoted to the proof of Theorem 2.5.

Model description and main result

We now introduce our model in details: as above, we first address a "free" model simply represented by a two-class processor-sharing queue with one impatient class; further, we introduce the full model which derives from the free model by enforcing a balance condition in the form of a fixed-point equation (FP). We then state our main result and explain the main steps of the proof.

Free model

In the free model represented by the Markov process X f , with non-zero transition rates (1.1), we consider two classes of users:

(1) class-1 users are static: they arrive to the cell from the outside at rate λ 1 , require a service which is exponentially distributed with parameter μ and are served according to the processor-sharing service discipline. They consequently leave the network (to the outside) at an aggregate rate μx 1 /(x 1 + x 2 ), with x i the number of class-i users;

(2) class-2 users are mobile: they arrive to the cell from the outside at rate λ 2 , require a service which is exponentially distributed with parameter μ and are served according to the processor-sharing service discipline. As for class-1 users, they leave the network to the outside upon completing service at an aggregate rate μx 2 /(x 1 + x 2 ); the difference with class-1 users is that they are mobile and can thus leave the cell (now, to the rest of the network and not the outside) before completing service. We assume that each mobile user leaves the cell at rate θ , and so class-2 users leave the cell for the rest of the network at an aggregate rate θ x 2 . Finally, mobility can also make users enter the cell from outside the network and we assume that this happens at rate λ f net . As to the processor-sharing discipline considered for both user classes, we recall that it accounts at flow level for the fair sharing of the total capacity of the base station [START_REF] Bonald | Wireless downlink data channels: user performance and cell dimensioning[END_REF].

At this stage, it is apparent from rates (1.1) that differentiating the outside and the rest of the network is artificial and bears no consequence on the distribution of this Markov process. All that matters is the total arrival rate λ f tot := λ 2 + λ f net and the total service rate μx 2 /(x 1 + x 2 ) + θ x 2 of class-2 users. This distinction, however, will become crucial later.

The distribution of the Markov process X f with non-zero transition rates (1.1) thus depends on the five parameters λ 1 , λ 2 , λ f net , θ and μ (and more precisely, on λ 2 and λ f net only through their sum λ f tot = λ 2 + λ f net ). The superscript f refers to "free", as the "full" process in that we will be mainly interested in belongs to this class, but with λ f net chosen as a function of the other four parameters λ 1 , λ 2 , θ and μ. In the rest of the paper, we write i = λ i /μ and = 1 + 2 . The following result describes the stability region of X f , which depends on whether θ = 0 or θ > 0. Whenever X f is positive recurrent, we denote by X f (∞) its stationary distribution. Here and throughout the paper, vector inequalities are understood component-wise, so for instance [START_REF] Anton | On the impact of mobility in cellular networks[END_REF] Stability of X f depends on whether θ = 0 or θ > 0 in the following way:

E(X f (∞)) < ∞ means that E(X f i (∞)) < ∞ for i ∈ {1, 2}. Note finally that X f is not reversible. Lemma 2.
• if θ = 0, then X f is positive recurrent if + λ f net /μ < 1, null recurrent if + λ f net /μ = 1 and transient if + λ f net /μ > 1; • if θ > 0, then X f is positive recurrent if 1 < 1, null recurrent if 1 = 1 and transient if 1 > 1.
In either case, when the process is positive recurrent, then we have

E(X f (∞)) < ∞.
These results can be proved with Lyapunov-type arguments and the comparison with suitable M/M/1 queues. Such arguments are standard and the proof is therefore omitted.

Constrained model

The previous result formalizes the behavior pointed out in the introduction, namely that in the presence of mobile users (i.e., when θ > 0), mobile users do not matter as regards to stability. In fact, if they accumulate, they can then escape to the rest of the network where they are not tracked. However, this is only an artifact of our modeling approach since mobile users that escape to the rest of the network should somehow be accounted for. The constrained model X that we now introduce aims at doing this; it is obtained by taking λ f net as a function of the other four parameters through a fixed-point equation.

The fixed-point equation

In the free model, the three parameters λ 1 , λ 2 and μ govern the transitions involving the outside, while the two parameters θ and λ f net govern transitions within the network. Out of these five parameters, all but λ f net can be considered as exogenous and dictated by the users' behavior: how often they arrive, how fast they move, etc. In contrast, λ f net is hard to directly tie down with users' behavior and is more an artifact of our modeling approach.

In order to fix the value of λ f net in an exogenous way, the idea is to impose a balance condition. Roughly speaking, we assume that the cell is in equilibrium (see Sect. 5 for a discussion on this assumption) and that the flows of mobile users to and from the rest of the network balance each other. Provided that X f is positive recurrent, we thus want to impose the balance equation

λ f net = θ • E X f 2 (∞) . (FP)
We note that (FP) is a fixed-point equation, as

E(X f 2 (∞)
) is a function of λ f net , the other four parameters being kept fixed. Provided that there exists a unique solution to (FP) with the four parameters λ 1 , λ 2 , μ and θ given (necessary and sufficient conditions for this will be stated below), this unique solution is denoted by net . We then consider the process X with the same transition rates (1.1) as the free process, but where the value of the parameter λ f net has been set to net , chosen as a function of λ 1 , λ 2 , μ and θ via (FP). The process X will be the main object of investigation in this paper.

Definition 1 Provided that there exists a unique solution to (FP), denoted by net = net (λ 1 , λ 2 , μ, θ), the constrained model X is the N 2 -valued Markov process with non-zero transition rates given by (1.1) with λ f net = net .

Remark 2.2

The balance equation (FP) can also be interpreted in the stand-alone context of the free process. In the free process, θE(X f 2 (∞)) is the rate at which impatient users leave the system because of impatience. If we allow these customers to retry, we can then interpret λ f net as the retrial rate, and (FP) then has the natural meaning that these customers will eventually re-enter the queue.

Our main result is that even a slight amount of mobility (i.e., θ > 0 even very small, instead of θ = 0) dramatically increases the performance of the network and leads to an unusual log(1/(1 -)) heavy traffic scaling. To explain this we first discuss the case θ = 0 with no mobility.

Heavy traffic regime

When we say ↑ 1, we mean that we consider a sequence of systems indexed by n, where the parameters λ n 1 , λ n 2 , μ n and, θ n in the n-th system satisfy n < 1, (where

n i = λ n i /μ n , n = n 1 + n 2 ) and, as n → ∞, we have λ n i → λ i , μ n → μ, θ n → θ with λ 1 , λ 2 , μ, θ ∈ (0, ∞), = 1,
where = 1 + 2 and i = λ i /μ. We then use the notation ⇒ to mean weak convergence as ↑ 1.

We will also consider convergence when other parameters vary. We use, in particular, the notation ⇒ λ f tot to mean weak convergence as λ f tot → ∞, and also introduce another parameter ε > 0 and use the notation ⇒ λ f tot ,ε to mean weak convergence first as λ f tot → ∞ and then as ε ↓ 0. To be more precise, Z ⇒ λ f tot ,ε Z means that for any continuous and bounded function f we have lim sup

λ f tot →∞ E ( f (Z )) -E f (Z ) --→ ε→0 0.

The case  = 0

Consider now the case θ = 0. We distinguish two cases:

• if ≥ 1, then the free process is transient or null recurrent, and so (FP) is not defined;

• if < 1, 0 is the only solution to (FP) because E(X f 2 (∞)) < ∞ by Lemma 2.
1. Thus, the constrained model is only defined for < 1; in this case, it corresponds to the free process with λ f net = 0 and is in particular positive recurrent. The following result, taken from [START_REF] Rege | Queue-length distribution for the discriminatory Processor-Sharing queue[END_REF], states that its heavy traffic behavior obeys the usual (1 -) -1 scaling. E,E) with E an exponential random variable with parameter 2.

Lemma 2.3 If θ = 0, then (1 -)X(∞) ⇒ (

The case  > 0

We now show that, whatever the value of θ > 0, the behavior changes dramatically and leads to an unusual log(1/(1 -)) scaling. We first investigate the existence and uniqueness to the fixed-point equation (FP). The proof relies on monotonicity and continuity arguments detailed in [START_REF] Olivier | Performance analysis ofdata traffic in small cells networks with user mobility[END_REF] and it is thus only briefly recalled here.

Lemma 2.4 Assume that θ > 0. If < 1, then there exists a unique solution to (FP).

If 1 < 1 but ≥ 1, then there is no solution to (FP).
This result is comforting: indeed, < 1 is the "natural" stability condition. Comparing Lemmas 2.1 and 2.4, we see that imposing (FP) changes the stability condition from 1 < 1 (mobile users do not matter) to < 1 (mobile users matter). Moreover, we observe the peculiar feature that, whenever the stability condition is violated, the Markov process is not defined at all, and not simply transient as is usually the case. This is due to the fact that we seek to impose a long-term balance equation through (FP), which cannot be sustained for a system out of equilibrium.

For completeness and since the key equation (2.2) will be useful later, we provide a short sketch of the proof of Lemma 2.4. So consider θ > 0 and assume

1 < 1, since otherwise X f (∞) is not defined. Let Q(λ f net ) = P(X f (∞) = 0),
the other four parameters being fixed. The balance of flow for the free system entails

λ 1 + λ 2 + λ f net = μ P(X f (∞) = 0) + θ E(X f 2 (∞)), or equivalently, Q(λ f net ) = 1 -- λ f net μ + θ μ E(X f 2 (∞)). ( 2.1) 
In particular, (FP) is equivalent to

P(X f (∞) = 0) = 1 -. (2.2)
Since P(X f (∞) = 0) > 0, this relation shows that no solution can exist for ≥ 1. Assume now that < 1. It is intuitively clear that Q is continuous and strictly decreasing to 0: as class-2 users arrive at a higher rate, the probability of the system being empty decreases strictly and continuously to 0. As Q(0) > 1after (2.1), this entails the existence and uniqueness of solutions to (FP). We recall that this unique solution is written net and define tot = λ 2 + net as the total arrival rate of class-2 users in the constrained model.

According to Lemma 2.4, the heavy traffic behavior consists of letting ↑ 1 when θ > 0. The following result is the main result of the paper. Extensions of this result are discussed in Sect. 5.

Theorem 2.5

Assume that θ > 0. As ↑ 1, the sequence

X(∞) log(1/(1 -))
is tight and any of its accumulation points is almost surely smaller than the point ξ ξ ξ * given by

ξ ξ ξ * = (ξ ξ ξ * 1 , ξ ξ ξ * 2 ) = 1 1 -1 , 1 .
This result shows that adding even a slight amount of mobility, i.e., going from θ = 0 to θ > 0, dramatically changes the heavy traffic behavior, making X(∞) scale like log(1/(1 -)) instead of 1/(1 -). We could actually show that log(1/(1 -)) is indeed the right order, i.e., accumulation points are > 0 (see Sect. 5).

Remark 2.6

It is surprising that this upper bound does not depend on θ . Indeed, when θ = 0, Lemma 2.3 implies that X(∞)/ log(1/(1 -)) ⇒ ∞ and so interchanging limits suggests that X(∞)/ log(1/(1 -)) should converge to a limit ξ ξ ξ(θ) that should blow up as θ ↓ 0. This is not the case, however, and we actually conjecture that X(∞)/ log(1/(1 -)) converges to a limit independent of θ (see Sect. 5). That limits cannot be interchanged testifies to the subtlety of the result, which, we believe, is due to the fact that we need an unusual large deviation result for a system with two time-scales; see Sect. 5.2.

Let us now explain where this unusual log(1/(1 -)) scaling comes from: the idea is to reduce the problem to questions on the free process X f by writing

X(∞) log(1/(1 -)) = tot log(1/(1 -)) × X(∞) tot . (2.
3)

It is easy to see that tot → ∞ as ↑ 1. Thus, as X is a particular case of X f , understanding the asymptotic behavior of X(∞)/ tot as ↑ 1 amounts to understanding the asymptotic behavior of X f (∞)/λ f tot as λ f tot → ∞. The following result specifies this behavior. Lemma 2.7 Assume that θ > 0 and 1 < 1. Then as λ f tot → ∞, the sequence X f (∞)/λ f tot is tight and any accumulation point is almost surely smaller than the constant θ -1 ξ ξ ξ * with ξ ξ ξ * given as in Theorem 2.5.

As ↑ 1, in particular, the sequence X(∞)/ tot is tight and any accumulation point is almost surely smaller than the constant θ -1 ξ ξ ξ * .

Next, (2.2) shows that

tot log(1/(1 -)) = tot -log P(X(∞) = 0)
and so, for the same reason as above, understanding the asymptotic behavior of tot / log(1/(1 -)) as ↑ 1 amounts to understanding the asymptotic behavior of

-log P(X f (∞) = 0)/λ f tot as λ f tot → ∞.
Lemma 2.8 Assume that θ > 0. For any 1 < 1, we then have

lim inf λ f tot →∞ - 1 λ f tot log P(X f (∞) = 0) ≥ 1 θ .
In particular, lim sup

↑1 tot log(1/(1 -)) ≤ θ.
In view of (2.3), the two previous lemmas directly imply Theorem 2.5. In other words, the log(1/(1 -)) scaling of X(∞) arises for the two following reasons:

(1) the (at most) linear increase of Remark 2.9 In Sect. 5, we discuss refinements of these upper bounds: in particular, we show how to prove that X f (∞)/λ f tot ⇒ λ f tot θ -1 ξ ξ ξ * , and we conjecture that

X f (∞) ≤ λ f tot ξ ξ ξ * + o(λ f tot ) as λ f tot → ∞; (2) the exponential decay of P(X f (∞) = 0) ≤ e -λ f tot /θ+o(λ f tot ) as λ f tot → ∞. Lemmas 2.
P(X f (∞) = 0) = exp(-κλ f tot + o(λ f tot )) with constant κ = 1 -log(1 -1 ) θ .
Remark 2. [START_REF] Grossglauser | Mobility increases the capacity of ad-hoc wireless networks[END_REF] The linear increase in λ f tot of X f (∞) is natural in the setting of singleserver queues. Moreover, the refinement X f (∞) ≈ λ f tot ξ ξ ξ * suggests that X f (∞) is of the order of λ f tot . This makes state 0 far from the typical value of X f (∞) and the exponential decay of the stationary probability of being at 0 is thus expected in view of large deviations theory. The link with large deviations theory is discussed in more detail in Sect. 5.

Proof of Lemma 2.7

In the rest of the paper, we use several couplings. We use the notation X ≺ Y to mean that we can couple X and Y such that X ≤ Y. If X and Y are random processes, this is to be understood as X(t) ≤ Y(t) for all t, and vector inequalities are understood component-wise.

In order to prove Lemma 2.7, we first exhibit a family of processes Y indexed by some additional parameter ε > 0 and with X f ≺ Y for every ε > 0, and

Y (∞)/λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ * .
We build this coupling in two steps, and then analyze the process Y . In order to prove that

Y (∞)/λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ * , we then exhibit another family of processes Y with Y(∞)/λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ * and such that (Y(∞) -Y (∞))/λ f tot ⇒ λ f tot ,ε 0. 3.1 First coupling: X f ≺ Y
Starting from (1.1), the first step consists of neglecting the term μx 2 /(x 1 + x 2 ) in the departure rate of X f 2 by lower bounding it by 0. When we do so, this makes the departure rate smaller for the second coordinate, which makes it larger, which in turn makes the departure rate μy 1 /(y 1 + y 2 ) from the first coordinate smaller, and hence the first coordinate larger. Thus if Y is the N 2 -valued Markov process with non-zero transition rates We see x as the "small" system and we index its customers by (i, k) with i ∈ {1, 2} (the user class) and k = 1, . . . , x i . The "big" system y has the same customers and also additional ones which we label (i, -k) with i ∈ {1, 2} and k = 1, . . . , ỹix i .

y ∈ N 2 -→ ⎧ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎩ y + e 1 at
The next transition is built as follows:

• at rate λ 1 , go to (x + e 1 , y + e 1 );

• at rate λ f tot , go to (x + e 2 , y + e 2 ); • each customer (2, k) of type 2 has an exponential clock with parameter θ and leaves the system if it rings: note that if k < 0 this only affects the big system, while if k > 0 this affects both systems; • at rate μ, do the following:

1. choose a customer C from the big system uniformly at random, i.e.,

P( C = (i, k)) = 1 ỹ1 + ỹ2 ;
2. if C is in the small system, let C = C; 3. otherwise, let C be chosen uniformly at random in the small system independently from everything else;

Then remove the customer C from the small system and remove the customer C from the big system if it is of type 1.

This construction is such that

• if a class i customer arrives in the small system it also arrives in the big system;

• if a class i customer leaves the big system and not the small one, then this customer was an "additional" customer which was in the big system but not in the small one.

In particular, this construction leads to a state (x , y ) with y ≥ x . Moreover, the small system has the same dynamics as X f because C is chosen uniformly at random in the small system, and the big system has the same dynamic as Y. Thus, this indeed builds a coupling of X f and Y with X f ≤ Y, as desired.

Second coupling: Y ≺ Y

Starting from Y, we build Y by lowering the service rate of Y 1 : when Y 2 is larger than some threshold , we put the service to 0, and when Y 2 ≤ , we put μy 1 /(y 1 + ) instead of μy 1 /(y 1 + y 2 ), the former being indeed smaller than the latter when y 2 ≤ . More precisely, we fix ε > 0 (which is omitted from the notation for convenience) and we define = (1 + ε)λ f tot /θ and Y the N 2 -valued Markov process with non-zero transition rates 

y ∈ N 2 -→ ⎧ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎩ y + e 1 at
(∞)/λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ *
1 in order to prove Lemma 2.7. To do so we resort to another coupling and compare Y 1 to a birth-and-death process Y 1 .

Third coupling: Y ≺ Y

As is larger than the equilibrium point λ f tot /θ of Y 2 , excursions of Y 2 above level are rare and so Y 1 is only rarely turned off. For this reason, it is natural to compare Y with the process obtained by putting the indicator function 1 (y 2 ≤ ) to 1. To do so, let

S = {(y 1 , y 1 , y 2 ) ∈ N 3 : y 1 ≥ y 1 } ⊂ N 3 ;
we directly build the coupling that we need and consider (Y 1 , Y 1 , Y 2 ), the S-valued Markov process with the following non-zero transition rates:

(y 1 , y 1 , y 2 ) ∈ S -→ ⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ (y 1 , y 1 , y 2 + 1) at rate λ f tot , (y 1 , y 1 , y 2 -1) at rate θ y 2 , (y 1 + 1, y 1 + 1, y 2 ) at rate λ 1 , (y 1 -1, y 1 -1, y 2 ) at rate μα(y 1 )1 (y 2 ≤ ) , (y 1 -1, y 1 , y 2 ) at rate μα(y 1 )1 (y 2 > ) , (y 1 , y 1 -1, y 2 ) at rate μβ y 1 -y 1 (y 1 )1 (y 2 ≤ ) , (3.1)
with

α(y) = y y + and β δ (y) = α(y + δ) -α(y) = δ (y + )(y + + δ) .
In words, what this process does is the following:

• Y 1 and Y 2 are independent Markov processes;

• Y 1 is a state-dependent single-server queue with arrival rate λ 1 and instantaneous service rate μα(y 1 ) when in state y 1 ; 

• Y 2 is an M/M/∞
Y := (Y 1 , Y 2 ).
In particular, this coupling defines several Markov processes, such as

Y 1 , Y 2 , Y := (Y 1 , Y 2 ), Y = (Y 1 , Y 2 ) and (Y 1 , Y 1 , Y 2 ).
For ease of notation, we will use the notation E x to denote the law of these Markov processes starting at x, where the dimension of x depends on the process considered. For instance, if σ is measurable with respect to Y 2 and ϕ : N → R + is measurable, we will use the notation

E (σ ), E z, σ 0 ϕ • Y 1 , E z, σ 0 ϕ • Y 1 or E z,z , σ 0 ϕ • Y 1 -ϕ • Y 1
to mean the following:

E (σ ) = E(σ | Y 2 (0) = ), E z, σ 0 ϕ • Y 1 = E σ 0 ϕ • Y 1 | Y 2 (0) = , Y 1 (0) = z , E z, σ 0 ϕ • Y 1 = E σ 0 ϕ • Y 1 | Y 2 (0) = , Y 1 (0) = z and E z,z , σ 0 ϕ • Y 1 -ϕ • Y 1 = E σ 0 ϕ • Y 1 -ϕ • Y 1 | Y 1 (0) = z, Y 1 (0) = z , Y 2 (0) = .
Recall that the goal is to prove that

Y 1 (∞)/λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ * 1 :
what we will do is first prove this result for Y 1 , which is much simpler since Y 1 is a birth-and-death process (whereas Y 1 on its own is not Markov) and then transfer this result to Y 1 .

Control of Y 1

Let us now prove that

Y 1 (∞)/λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ * 1 . Let first y ± = (1 ± ε) ξ ξ ξ * 1 .
Since the function α is increasing, when Y 1 is above level y + its departure rate is at least μα(y + ). Thus, if L + is an M/M/1 queue with arrival rate λ 1 and departure rate μα(y + ), we have Y 1 ≺ L + + y + . Likewise, if L -is an M/M/1 queue with arrival rate μα(y -) and departure rate λ 1 , we have y --L -≺ Y 1 .

Recall that ξ ξ ξ * 1 = 1 /(1 -1 ) and that 1 < 1: the load of L + is

λ 1 μα(y + ) = 1 ((1 + ε) ξ ξ ξ * 1 + ) (1 + ε) ξ ξ ξ * 1 = 1 + ε 1 1 + ε < 1 and the load of L -is μα(y -) λ 1 = 1 -ε 1 -ε 1 < 1.
We thus deduce that L ± are subcritical M/M/1 queues (uniformly in λ f tot , with ε > 0 fixed), so that

L ± (∞) λ f tot ⇒ λ f tot 0. Since y ± /λ f tot → λ f tot (1 ± ε)(1 + ε)θ -1 ξ ξ ξ * 1 , we obtain y --L -(∞) λ f tot , L + (∞) -y + λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ * 1 and in view of y --L -≺ Y 1 ≺ L + -y + , we finally get the desired result for Y 1 (∞), namely Y 1 (∞)/λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ * 1 .

Transfer to Y 1

We now transfer the result for Y 1 (∞) to Y 1 (∞) thanks to their coupling (3.1). Recall that Y 1 and Y 1 obey the same dynamics, with the exception that service in Y 1 is interrupted when Y 2 makes excursions above . To formalize this idea, define recursively the stopping times σ 0 = 0 and

τ k = inf {t ≥ σ k : Y 2 (t) ≥ + 1} , σ k+1 = inf {t ≥ τ k : Y 2 (t) = } and let Z k = Y 1 (σ k ), Z k = Y 1 (σ k ).
Note that Z and Z are ergodic Markov chains. Let Z ∞ and Z ∞ be their respective stationary distribution and note, since Y 2 and Y 1 are independent, that Z ∞ = Y 1 (∞) in distribution. Now let σ = σ 1 and τ = τ 0 ; for any function ϕ : N → R + , define the functions ϕ and ϕ by

ϕ (z) = E z, σ 0 ϕ • Y 1 and ϕ (z) = E z, σ 0 ϕ • Y 1 .
The following result then relates the stationary distribution of Y 1 (∞) and Y 1 (∞) to that of Z ∞ and Z ∞ , respectively. In the sequel, we write

f = sup t≥0 | f (t)| for the L ∞ -norm of a function f : R + → R. Lemma 3.1 For any bounded function ϕ : N → R + we have E [ϕ(Y 1 (∞))] = 1 E (σ ) E ϕ (Z ∞ ) and E ϕ(Y 1 (∞)) = 1 E (σ ) E ϕ (Z ∞ ) .
Proof We present the arguments only for Y 1 , as the same arguments apply to Y 1 . In this proof, → denotes almost sure convergence as n → ∞. Since (σ k ) k≥0 is a (possibly delayed) renewal process, by the strong Markov property we have

1 n σ n 0 ϕ • Y 1 → E (σ ) × E(ϕ(Y 1 (∞))).
The rest of the proof is devoted to showing that we also have

1 n σ n 0 ϕ • Y 1 → E( ϕ (Z ∞ )). Recall that [σ k , σ k+1 ] represents the kth cycle of Y 2 : Y 2 (σ k ) = , then Y 2 reaches
+ 1 at time τ k and goes back to at time σ k+1 . For each cycle, Y 1 starts in a random location Y 1 (σ k ): call the i-th z-cycle the i-th cycle of Y 2 such that Y 1 starts in z, and denote its corresponding time interval by

[σ i (z), σ i+1 (z)]. If ϒ i (z) = σ i+1 (z) σ i (z) ϕ • Y 1
represents the "reward" accumulated along the i-th z-cycle, then writing

N n (z) = n-1 k=0 1 Z k = z
for the number of z-cycles starting before time n, partitioning the cycles depending on their starting point (for Y 1 ) provides

1 n σ n 0 ϕ • Y 1 = 1 n z≥0 N n (z) k=1 ϒ i (z) = z≥0 N n (z) n × 1 N n (z) N n (z) i=1 ϒ i (z).
The ergodic theorem for Z implies that N n (z)/n → P(Z ∞ = z). Moreover, for each fixed z, the (ϒ k (z), k ≥ 0) are i.i.d. with common distribution that of σ 0 ϕ • Y 1 under P z, , so the strong law of large numbers implies that

1 N n (z) N n (z) i=1 ϒ i (z) → E z, σ 0 ϕ • Y 1 = ϕ (z).
Wrapping up, this suggests that

z≥0 N n (z) n × 1 N n (z) N n (z) i=1 ϒ i (z) → z≥0 P(Z ∞ = n) ϕ (z),
which is equal to E( ϕ (Z ∞ )), as desired. Let us justify the latter assertion. If we restrict the sum in z to a finite number of terms, then the previous arguments can then be applied and they give, for any z * ≥ 0,

1 n z≤z * N n (z) i=1 ϒ i (z) → z≤z * P(Z ∞ = z) ϕ (z) = E( ϕ (Z ∞ ); Z ∞ ≤ z * ).
Since ϕ ≥ 0 (because ϕ ≥ 0), monotone convergence implies that the above righthand side converges to E( ϕ (Z ∞ )) as z * → ∞. Thus, in order to complete the proof, it remains to show that lim sup

n→∞ 1 n z≥z * N n (z) i=1 ϒ i (z) ----→ z * →∞ 0.
We have

1 n z≥z * N n (z) i=1 ϒ i (z) ≤ ϕ n z≥z * i≤N n (z) (σ i+1 (z) -σ i (z)) = ϕ n n-1 k=0 δ k+1 1 Z k ≥ z * ,
where δ k+1 = σ k+1 -σ k . The process (δ k+1 , Z k ) is Markov: given the past until time k, δ k+2 is independent and distributed according to σ under P , and Z k+1 corresponds to the evolution of Y 1 in-between a Z k -cycle of Y 2 with length δ k+1 . Note that, because each sequence (δ k+1 ) and (Z k ) is tight, the sequence (δ k+1 , Z k ) is also tight and since it is also Markov, it converges to (δ ∞ , Z ∞ ), say. Thus, the ergodic theorem implies that

1 n n-1 k=0 δ k+1 1 Z k ≥ z * → E δ ∞ ; Z ∞ ≥ z * ,
and since E(δ ∞ ) = E (σ ) < ∞, we obtain the desired result by monotone convergence and letting z * → ∞.

By Lemma 3.1, we thus deduce that

E [ϕ(Y (∞))] -E ϕ(Y (∞)) = 1 E (σ ) E ϕ (Z ∞ ) -E ϕ (Z ∞ ) . (3.2)
To control the right-hand side, we decompose it as

E ϕ (Z ∞ ) -E ϕ (Z ∞ ) + E ϕ (Z ∞ ) -E ϕ (Z ∞ )
and control each difference in the next two lemmas.

Lemma 3.2

We have

E ϕ (Z ∞ ) -E ϕ (Z ∞ ) ≤ 2 ϕ E +1 (σ ).
Proof Using the strong Markov property at time τ , we can write

ϕ (z) = E z, τ 0 ϕ • Y 1 + z ≥0 P z, Y 1 (τ ) = z E z , +1 σ 0 ϕ • Y 1 and ϕ (z) = E z, τ 0 ϕ • Y 1 + z ≥0 P z, Y 1 (τ ) = z E z , +1 σ 0 ϕ • Y 1 = E z, τ 0 ϕ • Y 1 + z ≥0 P z, Y 1 (τ ) = z E z , +1 σ 0 ϕ • Y 1 ,
where the second equality comes from the fact that Y 1 and Y 1 coincide on [0, τ ] if they start at the same level. Since Y 1 is independent of Y 2 (and hence of τ ) and Y and Z have the same stationary distribution, we have

E ϕ (Z ∞ ) -E ϕ (Z ∞ ) = z≥0 P(Z ∞ = z)E z,z, +1 σ 0 ϕ • Y 1 - z≥0 P(Z ∞ = z)E z,z, +1 σ 0 ϕ • Y 1 ,
from which the result follows.

Lemma 3.3 If ϕ : R + → R is differentiable with derivative ϕ , then we have

E ϕ (Z ∞ ) -E ϕ (Z ∞ ) ≤ ϕ E(Z ∞ -Z ∞ )E (σ ).
Proof Fix temporarily z ≥ z. Using the relation

E z, σ 0 ϕ • Y 1 = E z, τ 0 ϕ • Y 1 + E z, σ τ ϕ • Y 1 ,
owing to the fact that Y 1 and Y 1 have the same dynamics on [0, τ ], write

ϕ (z ) -ϕ (z) = E z , τ 0 ϕ • Y 1 -E z, τ 0 ϕ • Y 1 + E z , σ τ ϕ • Y 1 -E z, σ τ ϕ • Y 1 .
To compute

E z , τ 0 ϕ • Y 1 -E z, τ 0 ϕ • Y 1 ,
we couple Y 1 starting from two different initial conditions z and z : in fact, when considered on [0, τ ], this is exactly what the coupling between Y 1 and Y 1 does, and so we thus have

E z , τ 0 ϕ • Y 1 -E z, τ 0 ϕ • Y 1 = E z,z , τ 0 ϕ • Y 1 -ϕ • Y 1
and so

E z , τ 0 ϕ • Y 1 -E z, τ 0 ϕ • Y 1 ≤ ϕ E z,z , τ 0 Y 1 -Y 1 ≤ ϕ (z -z)E (τ ),
with the last inequality coming from the fact that Y 1 -Y 1 is non-increasing on [0, τ ].

We now control the difference

E z , σ τ ϕ • Y 1 -E z, σ τ ϕ • Y 1 .
Consider (ϒ, ϒ ) and A such that • (ϒ, ϒ ), A and Y 2 are mutually independent;

• (ϒ, ϒ ) is distributed as (Y 1 (τ ), Y 1 (τ )) under P z,z , ;
• A is a Poisson process with intensity λ 1 .

On the interval [τ, σ ], Y 1 -Y 1 (τ ) is simply a Poisson process distributed as A: the strong Markov property therefore implies that

E z , σ τ ϕ • Y 1 -E z, σ τ ϕ • Y 1 = E +1 σ 0 ϕ(ϒ + A(s)) -ϕ(ϒ + A(s)) ds
and so

E z , σ τ ϕ • Y 1 -E z, σ τ ϕ • Y 1 ≤ ϕ E z,z , Y 1 (τ ) -Y 1 (τ ) E +1 (σ ).
Finally, using Y 1 (τ ) ≤ Y 1 (σ ) and averaging over (Z ∞ , Z ∞ ), we obtain

E ϕ (Z ∞ ) -E ϕ (Z ∞ ) ≤ ϕ E(Z ∞ -Z ∞ )(E (τ ) + E +1 (σ )),
from which the result follows since E (σ ) = E (τ ) + E +1 (σ ) by the strong Markov property.

Plugging in the bounds of the two previous lemmas into (3.2), we conclude that for any function f : R + → R + bounded, differentiable and with bounded derivative, we have

E f Y 1 (∞) λ f tot -E f Y 1 (∞) λ f tot ≤ 1 E (σ ) 2 f E +1 (σ ) + 1 λ f tot f E(Z ∞ -Z ∞ )E (σ ) , hence E f Y 1 (∞) λ f tot -E f Y 1 (∞) λ f tot ≤ 2 f E +1 (σ ) E (σ ) + 1 λ f tot f E(Z ∞ -Z ∞ ).
The two following lemmas therefore imply that

E f Y 1 (∞) λ f tot -E f Y 1 (∞) λ f tot → 0 as λ f tot → ∞ for any differentiable, bounded function f with bounded derivative. Since Y 1 (∞)/λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ * 1 , this implies that E f Y 1 (∞) λ f tot → λ f tot ,ε f (θ -1 ξ ξ ξ * 1 )
, 

which shows that Y 1 (∞)/λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ * 1 ,
θ = (1 + ε)λ f tot , so that σ ≺ T λ f tot , where σ is considered under P +1 . Since T γ = T 1 /γ in distribution, this yields E +1 (σ ) ≤ E(T 1 )/λ f tot .
Since clearly E (σ ) → ∞, we obtain the result. 

Lemma 3.5 As λ f tot → ∞, we have lim sup E(Z ∞ -Z ∞ ) < ∞. In particular, E(Z ∞ -Z ∞ )/λ f tot → 0. Proof Let k = Z k -Z k . The idea is that when k is large, then on [σ k , τ k ] the function β Y 1 -Y
-0 = -1 0 ≤ s ≤ τ, ζ ≤ β Y 1 (s-)-Y 1 (s-) (Y 1 (s-)) P (dsdζ ) + 1 τ ≤ s ≤ σ, ζ ≤ α(Y 1 (s-)) P(dsdζ ). ( 3.3) 
The first negative term translates the fact that on [0, τ ], Y 1 and Y 1 get closer at rate μβ Y 1 -Y 1 (Y 1 ) (which is the rate at which there is a departure from Y 1 and not from Y 1 ), while on [τ, σ ] they get further apart at rate μα(Y 1 ) (which is the rate at which there is a departure from Y 1 ). Moreover, as in the previous proof, let T γ be the hitting time of 0 by an M/M/1 queue started at 1 and with input rate γ and output rate (1 + ε)γ , and η be given by

μ(e η -1) = λ f tot √ 1 + ε -1 2 .
First case: 0 = 0. If 0 = 0, we then have Y 1 = Y 1 on [0, τ ] and so (3.3) reduces to

1 -0 = 1 τ ≤ s ≤ σ, ζ ≤ α(Y 1 (s-)) P(dsdζ ) ≤ P * := P([τ, σ ] × [0, 1]),
hence E z,z, e η 1 ≤ E +1 e η P * = E +1 e μ(e η -1)σ after using the strong Markov property for the first inequality and the fact that, under P +1 and conditionally on Y 2 , P * is a Poisson random variable with parameter μσ . Using the same argument as in the previous lemma, namely σ ≺ T 1 /λ f tot , we obtain

E z,z, e η 1 ≤ E e μ(e η -1)T 1 /λ f tot ≤ c := (ε -1 -1) 1/2 ,
where the last inequality is provided by Proposition 5.4 in [START_REF] Robert | Stochastic networks and queues[END_REF]. If E denotes the expectation under the stationary distribution of (Z k , Z k ), the strong Markov property then entails

E e η k+1 | F k 1 ( k = 0) ≤ c,
where

F k = σ ((Y 1 (s), Y 1 (s), Y 2 (s)), s ≤ σ k ).
Second case: 0 ≥ 1. Next, consider the case 0 ≥ 1. Then

1 0 ≤ s ≤ τ, ζ ≤ β Y 1 (s-)-Y 1 (s-) (Y 1 (s-)) P (dsdζ )
counts the number of points of P that fall below the curve β Y 1 -Y 1 (Y 1 ) before time τ . Each time a point falls below this curve, this makes Y 1 -Y 1 decrease by one, and the β curve lowers until Y 1 -Y 1 possibly hits 0 in which case β 0 = 0 and no more points can fall below this line. In particular, we have

1 0 ≤ s ≤ τ, ζ ≤ β Y 1 (s-)-Y 1 (s-) (Y 1 (s-)) P (dsdζ ) ≥ B,
where B is the Bernoulli random variable B = 1 (I ≥ 1) with

I = 1 (0 ≤ s ≤ τ, ζ ≤ β 1 (Y 1 (s-))) P (dsdζ ).
Indeed, if B = 0, then this inequality is true; if B = 1, then this means that I ≥ 1, i.e., a point of P fell below the curve β 1 (Y 1 ), and since

β 1 ≤ β Y 1 (0)-Y 1 (0)
, this necessarily implies that a point of P fell below the curve β Y 1 -Y 1 (Y 1 ), i.e., the left-hand side of the previous display is also ≥ 1. We thus derive that 1 -0 ≤ P([τ, σ ] × [0, 1]) -B and by independence between P, P , Y 1 and Y 2 , the strong Markov property provides E z,z , e η( 1 -0 ) ≤ cE z, (e -ηB ).

Averaging with respect to (Z ∞ , Z ∞ ) and using the strong Markov property, we obtain

E e η( k+1 -k ) | F k 1 ( k ≥ 1) ≤ c E (e -ηB ),
X f 1 is similar to a birth-and-death process with bounded birth-and-death rates, which makes it evolve on the linear time-scale proportional to λ f tot , while X f 2 is similar to an M/M/∞ queue and thus evolves on a constant time-scale. The process X f therefore undergoes time-scale separation, or stochastic homogenization: when there are two components with different speeds, the stochastic homogenization principle asserts that the slow one (namely, X f 1 ) only interacts with the fast one (namely, X f 2 ) through its stationary distribution. Here the stationary distribution of X f 2 is essentially a Poisson random variable with parameter λ f tot /θ and is thus independent of X f 1 , which leads to a simpler form of stochastic homogenization.

This stochastic averaging principle is well known, and there is a rich literature on large deviations theory in this case; see for instance [START_REF] Freidlin | The averaging principle and theorems on large deviations[END_REF][START_REF] Huang | Large deviations for Markov-modulated diffusion processes with rapid switching[END_REF][START_REF] Liptser | Large deviations for two scaled diffusions[END_REF][START_REF] Puhalskii | On large deviations of coupled diffusions with time scale separation[END_REF]26,[START_REF] Veretennikov | On large deviations in the averaging principle for SDE's with a "full dependence[END_REF]. However, all these works only establish large deviations principles for the empirical measure of the fast process, which is admittedly the most natural question to address. What we presently need, however, is really the probability for the fast process to be exactly in 0 as well.

Beside functional large deviations principles, the analytic singular perturbation theory can provide an alternative approach to derive sharp asymptotics of the distribution of X f (∞). This theory has been applied, in particular, in [START_REF] Yin | Continuous-Time Markov Chains and Applications. A two-time scale approach[END_REF] to obtain asymptotics of the solutions of backward or forward Kolmogorov equations for jump processes with two time-scales; coupled queueing systems ( [START_REF] Knessl | On the performance of state-dependent single server queues[END_REF][START_REF] Knessl | Applications of singular perturbation methods in queueing[END_REF], [START_REF] Schuss | Theory and Applications of Stochastic Processes, An analytical Approach[END_REF] -Chap. 9) have been also addressed in this framework. Specifically, an asymptotic expansion for the whole distribution of X f (∞) on N 2 of the form

P(X f (∞) = A ξ ξ ξ) = 1 A exp -A • H (ξ ξ ξ) -h 0 (ξ ξ ξ) + O 1 A , ξ ξ ξ = (x, y) ∈ R 2 + ,
is assumed to exist with large (a-dimensional) scaling parameter A = λ f net /θ , and where real functions H , h 0 on R 2 + satisfy H (ξ ξ ξ * ) = 0 (with the point ξ ξ ξ * as in Theorem 2.5) together with smoothness properties. At the present stage, with no claim to formally justify the existence of such an expansion, these singular perturbation methods enable one to determine the functions H and h 0 explicitly, giving, in particular, H (ξ ξ ξ) = (x) + (y), ξ ξ ξ = (x, y), for simple functions and ; the latter relation thus provides another argument for the asymptotic independence (at logarithmic order) of the components of X f (∞) discussed above. This singular perturbation framework for the estimation of the whole distribution of the vector X f (∞) and its justification is the object of current investigations [START_REF] Simatos | Heavy load analysis of the multi-class Processor-Sharing queue with impatience, In preparation 26[END_REF].

Model generalization

In this paper, our goal was to initiate the analysis of a new class of stochastic models for mobile networks. The general idea of these models is to forget about keeping track of all users, but instead to focus on a subset of the whole network and take into account the rest of the network through a balance equation. Here, we focused as a first step on a single cell of equilibrium but more general situations can be considered. Specifically, in the case of a single cell, we could for instance consider an "imbalance" parameter β > 0 and consider the balance equation

λ f net = βθ • E X f 2 (∞)
instead of (FP). This new fixed-point equation would mean that the ratio of flows from and to the rest of the network is equal to β. Thus, for β > 1 this would amount to considering a cell where more users enter than exit, and the opposite for β < 1. Of course, such an imbalance could not be sustained for the whole network but could hold locally. Studying what happens to the constrained model when enforcing this equation instead of (FP) constitutes an interesting research direction. Finally, another way to generalize the model would be to consider several cells instead of only one. In this case, there are different flows from and to the rest of the network, as well as within the considered cells. The first difficulty to solve would be to find a relevant balance equation generalizing (FP), which would probably be multidimensional. For instance, if one considers n cells, there would now be potentially 2n +n +n(n -1)/2+n parameters: one arrival rate per class and per cell, one capacity per cell, a mobility rate between each pair of cells and a mobility rate from each cell to the rest of the network.

  7 and 2.8 are proved in Sects. 3 and 4.

  queue with arrival rate λ f tot and service rate θ ;• Y 1 has the same arrivals as Y 1 , but departures are different: there are additional departures at rate β y 1 -y 1 (y 1 ) when Y 2 ≤ , and no departure when Y 2 > .Since the function β has been chosen so that β y 1 -y 1 (y 1 ) + α(y 1 ) = α(y 1 ),

we see that (Y 1 , Y 2 ) is a Markov process with the same transition matrix as Y , and so we will actually write Y = (Y 1 , Y 2 ) and we have Y ≥

  as claimed.Proof For γ > 0, let T γ be the hitting time of 0 by an M/M/1 queue started at 1 and with input rate γ and output rate (1 + ε)γ . Above level + 1, Y 2 is upper bounded by an M/M/1 queue with input rate λ f tot and output rate

	Lemma 3.4 As λ f tot → ∞, we have E +1 (σ )/E (σ ) → 0.

where here and in the rest of the proof, E corresponds to an initial state of (Y 1 , Y 2 ) distributed as (Y 1 (∞), ). Assume at this stage that E (e -ηB ) → 0 ( 3 . 4 ) (we will prove this claim at the end of the proof). Then Theorem 2.3 in [START_REF] Hajek | Hitting-time and occupation-time bounds implied by drift analysis with applications[END_REF] gives, for large enough λ f tot ,

from which we get

Since e η → ∞ with λ f tot , we obtain the desired result. In order to conclude the proof, we now prove the claim (3.4). Since B is a Bernoulli random variable, we have E (e -ηB ) = e -η P(B = 1) + P(B = 0) and as η → ∞, we only have to show that

where 4 , we have

which vanishes as λ f tot → ∞ since β 1 ( 2 ) decays like 1/ 3 . Moreover, by proceeding as in Sect. 3.4 and comparing Y 1 with a subcritical M/M/1, it is easy to see that P(Y 1 (∞) ≥ 3/2 ) → 0. It thus remains to control the two last terms P (τ ≤ 4 ) and

), which can be done by comparison with a subcritical M/M/1 queue. In fact, it is well known that it takes an exponential time for a subcritical M/M/1 queue to reach high values (see for instance Proposition 5.11 in [START_REF] Robert | Stochastic networks and queues[END_REF]) and we can compare Y 1 and Y 2 to such a queue to transfer this behavior to these two processes:

• for Y 1 , we can use the fact that, when in the range [ 3/2 , 2 ], it is smaller than a subcritical queue M/M/1 queue with input rate λ 1 and output rate μα( 3/2 ); • for Y 2 , we can use the fact that, when in the range [ , ] with lower bound = (λ f tot /θ + )/2, it is smaller than a subcritical M/M/1 queue with input rate λ f tot and output rate θ .

The proof is thus complete.

Proof of Lemma 2.8

Fix an integer k ≥ μ/θ , let S = {-k, -k + 1, . . . , } and Z be the S-valued Markov process with non-zero transition rates

Compared to the transition rates of X f 2 , this amounts to upper bounding the rate μx 2 /(x 1 + x 2 ) by θ k, which makes X 2 smaller. Note also that the downward rate θ(k + z) is 0 for z = -k, so Z indeed lives in S. This implies Z ≺ X f 2 and therefore

From its transition rates, it is apparent that Z + k is an M/M/∞ queue with input rate λ f tot and service rate θ , and so Z (∞)k follows a Poisson distribution with parameter λ f tot /θ . In particular,

and solog P(Z (∞) = 0)/λ f tot → θ -1 , which gives the desired bound.

Possible extensions

In this paper, we aimed to prove the minimal result that shows that mobility makes delay increase like log(1/(1 -)) in heavy traffic, instead of the usual 1/(1 -) scaling. However, we can go a bit further than Theorem 2.5 by formulating an interesting conjecture, which we can only partially prove. In this section, we will also discuss the link with large deviations theory, and possible extensions of our model.

Extension of Theorem 2.5

As explained earlier, Theorem 2.5 is a direct consequence of Lemmas 2.7 and 2.8: informally, these two lemmas state, respectively, that X(∞) ≤ θ -1 ξ * tot and

, where these inequalities are to be understood in an asymptotic sense. These two results can actually be strengthened.

Concerning the first inequality X(∞) ≤ θ -1 ξ * tot of Lemma 2.7, we can prove with similar tools as those used in Sect. 3 that X f (∞)/ tot ⇒ θ -1 ξ * . The idea is to prove a matching lower bound to that already proved, by comparing X f to a lower bounding process Y with non-zero transition rates

ye 2 at rate μ + θ y 2 .

We then have Y ≺ X f and the analysis of Y proceeds as in Sects. 3.4 and 3.5 and leads to Y (∞)/λ f tot ⇒ λ f tot ,ε θ -1 ξ ξ ξ * . We have here to choose = (1 -ε)λ f tot /θ , so that excursions of Y 2 below level are rare, and thus as for the lower bound, Y 1 essentially behaves as a birth-and-death process independent of Y 2 .

The second inequality tot ≤ θ log(1/(1-)) of Lemma 2.8 can also be strengthened, but this is actually much more difficult. More precisely, we can show that lim inf

which, using the convergence

Together with the bound lim sup

of Theorem 2.5, this implies that log(1/(1 -)) is indeed the right order of magnitude of X(∞).

In order to prove (5.1), since we have

we see that it is enough to controllog P(X f 1 (∞) = 0)/λ f tot . Using subtle and rather heavy perturbation arguments that we do not detail, we can actually prove the expected result that P(X f 1 (∞) = 0) has the same exponential order as the corresponding birthand-death process with death rate μx/(x + λ f tot /θ ), obtained by replacing x 2 by its equilibrium value λ f tot /θ , i.e., that

which implies the more precise result that tot / log(1/(1 -)) → -θ log(1 -1 ).

We finally conclude this part with a more precise conjecture. Because of time-scale separation arguments explained in Sect. 5.2, we believe that X f 1 (∞) and X f 2 (∞) are asymptotically independent and that

where the approximation is thought to hold in the logarithmic order. Actually, thanks to perturbation analysis, we know how to prove that

and we would need an asymptotically matching upper bound. As argued above, we havelog P(X f 1 (∞) = 0) ∼ -θ log(1-1 )λ f tot , while it is easy to show by suitable comparison with an M/M/∞ queue thatlog P(X f 2 (∞) = 0) ∼ -θλ f tot . These various arguments thus lead to the following conjecture.

• ξ ξ ξ * , as ↑ 1, with the point ξ ξ ξ * defined in Theorem 2.5.

If this statement were true, it would have the surprising feature that the heavy traffic limit is independent of the parameter θ : all that matters is that θ > 0, but the precise value is irrelevant in heavy traffic. Moreover, this would give the approximation

for the total number of users with 2 ≈ 1 -1 and where M(x) = 1/(xx log x). As the function x ∈ [0, 1] → xx log x is increasing, this would suggest that for a given load , the system performance is improved with a larger fraction 1 -1 of mobile users.

Large deviations for processes undergoing time-scale separation

In order to prove the above conjecture, what we miss is formalizing the approximation (5.2). There is a vast literature on large deviations for Markov processes; we did not find, however, any reference that fits our framework.

What is specific in our problem of controlling the stationary probability in state 0 = (0, 0) of X f is that the two components X f 1 and X f 2 evolve on different timescales. When λ f tot is large, Lemma 2.7 shows that X f (∞) is of the order of λ f tot . But