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We study the transport of classical waves through three-dimensional (3D) anisotropic media close
to the Anderson localization transition. Time-, frequency-, and position-resolved ultrasonic mea-
surements are performed on anisotropic slab-shaped mesoglass samples to probe the dynamics and
the anisotropy of the multiple scattering halo, and hence to investigate the influence of disorder on
the nature of wave transport and its anisotropy. These experiments allow us to address conflict-
ing theoretical predictions that have been made about whether or not the transport anisotropy is
affected by the interference effects that lead to Anderson localization. We find that the transport
anisotropy is significantly reduced as the mobility edge is approached—a behavior similar to the one
predicted recently for matter waves in infinite anisotropic 3D media.

The transport of a wave—quantum or classical—
through a disordered medium can be inhibited by inter-
ference effects, a phenomenon known as Anderson local-
ization [1–3]. In three-dimensional (3D) systems, and
only in 3D for the orthogonal symmetry class for which
no particular symmetry is broken, a transition occurs
between the extended regime (diffusive transport) and
the localization regime (exponentially suppressed trans-
port) when the disorder is increased [4]. For classical
waves, the localization regime is difficult to reach due
to the very strong scattering needed to observe it; typ-
ically the scattering strength k`s has to be close to 1
(where k is the wave number and `s is the scattering
mean free path) according to the Ioffe-Regel criterion
[5, 6]. Anderson localization might be easier to achieve
in strongly anisotropic media because of the reduced ef-
fective dimensionality [7, 8]. In such media, the scaling
behavior is expected to be the same as in isotropic sys-
tems, and a single critical point remains. The effect of
the anisotropy on the transition is nevertheless not triv-
ial and there has been a lot of effort to incorporate it
in numerical models, in particular in the context of cold
atoms [9]. Additionally, early theoretical work using the
self-consistent (SC) theory of localization predicted that
the transport anisotropy (defined as the ratio of the dif-
fusion tensor’s components) is not affected by interfer-
ence effects [10, 11]. This view has been challenged in
Ref. [12], in which the authors use a more sophisticated
version of the SC theory (see also Ref. [13]) and predict
that the transport anisotropy is significantly reduced if
not vanishingly small at the mobility edge. The question
concerning the influence of the anisotropy on the trans-
port of waves in very strongly scattering disordered sys-
tems is therefore not settled, motivating us to investigate
it experimentally using ultrasound.

Ultrasonic waves have proven to be advantageous to
observe localization [14–19], whereas 3D localization of
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light remains elusive [20, 21]. Because we work with exci-
tations of energy much exceeding both the single phonon
energy hf and the thermal energy kBT at room tem-
perature T , our experiments can be interpreted using a
classical wave equation and do not require low T to be
meaningful. This is an important advantage with respect
to quantum waves (electrons or cold atoms) and allows us
to relax all the constraints inherent to low-temperature
experiments. We also do not have to worry about inter-
actions, present for electrons and cold atoms and having
drastic effects on the transport properties (many-body
localization, for example), provided that we stay in the
linear regime of wave propagation. The length scales
involved are also arguably more convenient since for typ-
ical ultrasonic experiments the wavelength is of the or-
der of a millimeter for the wave frequency f ∼ 1 MHz.
The characteristic lengths in the samples are therefore
between a fraction of a millimetre and a few centime-
tres, whereas the length scales in optical or matter wave
experiments are orders of magnitude shorter. The am-
plitude and phase of acoustic signals can also be mea-
sured directly, which is generally very difficult in optics
(in most experiments only the intensity is measured). Fi-
nally, time-, frequency-, and position-resolved ultrasonic
experiments have been designed to measure transport
quantities without the measurements being hindered by
absorption [19, 22]. Using these techniques, we study
experimentally, close to the Anderson localization tran-
sition, two anisotropic samples with differently oriented
structural anisotropy, and focus in particular on the evo-
lution of the transport anisotropy upon approaching the
mobility edge. Our experiments provide a clear answer to
the question of whether or not the transport anisotropy
is significantly modified as the Anderson transition is ap-
proached.

Our slab-shaped samples are made of elongated,
roughly ellipsoidal, aluminium particles brazed together.
The method to fabricate the samples is covered in de-
tail in Refs. [23–25]. The links between the particles
strongly influence the scattering strength of the result-
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ing network. Once a sample is fabricated, it is possible
to enhance sound scattering in it by etching the links by
putting the sample in hydrochloric acid. Etching makes
it possible to reach the critical regime near the Anderson
localization transition. By comparing the highly reflec-
tive surface area of the polished outside surfaces with the
highly reflective surface area of the inside cut surfaces of
test samples, using the image-analysis software ImageJ
[26] to measure the fraction of the total image area due
to aluminium, we verified that the etching process is uni-
form.

The first sample investigated (A1) is made of small
aluminium particles (approximately 3 mm × 1.5 mm ×
1.5 mm) aligned along the z axis that is perpendicular
to the slab. After etching, the density of this sample is
1.269 g/cm3 (the aluminium volume fraction is approxi-
mately 47%). The second sample (A2) consists of bigger
aluminium particles (approximately 4 mm × 2 mm × 2
mm) with the long axis of the particles aligned along the
y axis in the plane of the slab. The density of this sample
after etching is 1.002 g/cm3 (the aluminium volume frac-
tion is approximately 37%). The scattering strength k`s
in strongly scattering acoustic samples can be estimated
from measurements of the average transmitted wave field
[27, 28]. In our anisotropic samples, the scattering is so
strong that the challenge of separating the average field
from the multiply scattered waves makes the estimation
difficult. Nonetheless, the data suggest that k`s ∼ 1 for
A1e (where ‘e’ stands for ‘etched’), and k`s ∼ 2 for A2e
at the frequencies of interest. These values indicate very
strong scattering and are close to the Ioffe-Regel criterion
of localization k`s ∼ 1 [5, 6].

To study the transport of ultrasound in our anisotropic
samples, we measure the time dependence of the trans-
mitted intensity profile for a point-like excitation at the
origin x = y = z = 0. This quantity has been measured
previously in isotropic samples made of aluminium beads
to investigate Anderson localization of ultrasonic waves
without being obscured by absorption [14, 19]. Experi-
mentally, the transmitted acoustic field ψ(ρ, t) is mea-
sured at 9 detector positions near the sample surface
z = L: ρ =(x, y) = {(0, 0), (±15, 0), (±20, 0), (0,±15),
(0,±20)} mm, for 55 × 55 = 3025 different source posi-
tions at the opposite slab surface z = 0. For each mea-
surement, the origin of the reference frame is fixed at
the source position. The separation between the source
positions on the grid is equal to about one wavelength,
enabling averaging over source positions to be done to
estimate ensemble averages. The average transmitted in-
tensity I(ρ, t) ∝ 〈|ψ(ρ, t)|2〉 is then used to calculate the
transverse width squared:

w2
ρ(t) = −ρ2/ ln

[
I(ρ, t)

I(0, t)

]
, (1)

where t denotes propagation time through the sam-

ple and ρ =
√
x2 + y2. In the diffusive regime and

for isotropic transport, I(ρ, t) = I(ρ, t) and the width
squared is simply w2

ρ(t) = 4Dt, where D is the diffusion

coefficient of ultrasound. In the localization regime, the
wave is confined in the transverse direction and the width
squared saturates at long times [29]. The width squared
is therefore a direct measure of the dynamic spread of
the wave through the sample and of its confinement by
localization effects, if present.

We are mainly interested in the variation of the trans-
port anisotropy as the mobility edge is approached. In
the diffusive regime, the anisotropy can be quantified by
the ratio of the different elements Dxx, Dyy, Dzz of the
(diagonal) diffusion tensor D, irrespective of whether the
medium is finite or not. As one gets closer to the lo-
calization transition, this way of quantifying transport
anisotropy becomes ill-adapted to experimental studies,
since the ratio of the elements of D is not directly accessi-
ble and may not even be uniquely defined in finite-sized
samples, where D becomes position dependent. More-
over, for sample A1, the transport anisotropy is not di-
rectly visible in the intensity profile I(ρ, t) and requires
a careful comparison with theoretical models to be as-
sessed. In contrast, for sample A2, the anisotropy is in
the plane of the slab and is thus expected to manifest it-
self by a deviation of I(ρ, t) from a circularly symmetric
shape, leading to a difference between w2

x(t) and w2
y(t),

which are short-hand notations for w2
ρ with ρ = (x, 0)

and ρ = (0, y), respectively. We can therefore define a
parameter Aρ characterizing the transport anisotropy as

Aρ = lim
t→∞

w2
y(t)

w2
x(t)

∣∣∣∣∣
x=y=ρ

. (2)

In the diffusive regime this is equivalent to Aρ =
Dyy/Dxx.

We first present the results for sample A1, for which
the long axis of the particles is parallel to the z axis and
Dxx = Dyy = D⊥ 6= Dzz. Before etching, the trans-
port near f = 1 MHz is diffusive (w2

ρ ∝ t), with signifi-
cant anisotropy. Fits of the experimental data for I(ρ, t)
and w2

ρ(t) with the diffusion theory yield the transport
anisotropy Dzz/D⊥ ' 2.5. In contrast, after etching, a
completely different behavior is found, with w2

ρ(t) bend-
ing over significantly with time at all investigated fre-
quencies f from 0.4 to 1.3 MHz. Representative data
at 0.5 and 1.2 MHz are shown in Fig. 1, where at both
frequencies w2

ρ(t) tends to saturate with time at a low

value w2
ρ(t→∞)/L2 ≤ 1. Note that SC theory predicts

w2
ρ(t→∞)/L2 ∼ 1 for thick isotropic samples at the mo-

bility edge [29]. Thus, Fig. 1 clearly indicates that the
transport is not diffusive for sample A1e, and that local-
ization is close to taking place in this frequency range,
with the tendency of the width squared to saturate be-
ing more pronounced at 1.2 MHz. At both frequencies,
w2
ρ(t) depends on the value of ρ, which is the expected

behavior near a mobility edge [14].
The absence of a transport theory for anisotropic

media of finite size makes it challenging to determine
with certainty whether Anderson localization has been
reached in sample A1e. Nevertheless, the significant de-



3

1 0 - 1 2
1 0 - 1 1
1 0 - 1 0
1 0 - 9
1 0 - 8
1 0 - 7

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 00
0 . 2
0 . 4
0 . 6
0 . 8

1

0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0

No
rm

aliz
ed 

int
ens

ity

E x p t  T h e o r y
  
  
  

A 1 e :  5 0 0  k H z( a )
Wi

dth
 sq

uar
ed 

T i m e  ( µs )

A 1 e :  5 0 0  k H z

E x p t  T h e o r y
  
  

( b )

E x p t  T h e o r y
  
  

A 1 e :  1 . 2  M H z( c )

T i m e  ( µs )

A 1 e :  1 . 2  M H z( d )

FIG. 1. (a), (c) Time of flight (TOF) profiles I(ρ, t) and (b),
(d) width squared w2

ρ(t) as functions of time for the etched
sample A1e at 0.5 MHz and 1.2 MHz, respectively (band-
width of 50 kHz). Symbols represent experimental data and
solid lines represent fits with the isotropic SC theory. The
legend for (a) also applies to (c). The missing data near 125
µs are not shown because of contamination by a spurious elec-
tronic pickup pulse. At 0.5 MHz, the best fits are obtained for
L/ζ = 0.5 [k`s > (k`s)c]; at 1.2 MHz, we obtain L/ξ = 2.5
[k`s < (k`s)c]. The good quality of fits suggests that the
transport is diffusive (although strongly renormalized by lo-
calization effects) at 0.5 MHz and that Anderson localization
is reached at 1.2 MHz. The good fit quality also suggests that
the transport anisotropy is greatly reduced at both frequen-
cies.

viations from classical diffusion observed in Fig. 1 are
likely to be accompanied by a suppression of transport
anisotropy according to the recent theoretical work [12].
It is then tempting to fit the data with the SC theory
for isotropic media. Indeed, if the anisotropy does dis-
appear, then we could expect the theory to work. Note
that for isotropic systems, comparison of this theory with
experimental data for I(ρ, t) and w2

ρ(t) has enabled the
localized and extended regimes to be distinguished, and
mobility edges identified [14, 18, 19]. Proximity to a mo-
bility edge is conveniently assessed by the localization
length ξ when k`s < (k`s)c (localization regime) and the
correlation length of fluctuations ζ when k`s > (k`s)c
(diffusive regime) [19]. Here (k`s)c ∼ 1 is the value of
k`s at the mobility edge [30]. Both ξ and ζ diverge at
the mobility edge.

Fits of excellent quality are obtained when the
isotropic SC theory is used to fit the experimental data
for sample A1e, see Fig. 1. At 0.5 MHz [Fig. 1(a) and (b)],
the best fits are found for L/ζ = 0.5 [k`s/(k`s)c = 1.003],
consistent with the system being still in the extended
regime but very close to the mobility edge at this fre-
quency. We can also infer, since the fits are good, that
the transport anisotropy is greatly reduced this close to
the mobility edge (recall that Dzz/D⊥ ' 2.5 for this sam-
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FIG. 2. Comparison of width squared for samples A2 and
A2e at several frequencies, up to the maximum frequency at
which the transmitted signals were large enough for w2

ρ(t) to
be measured. As the frequency increases, the widths squared
bend over more and more, and the difference between w2

x(t)
and w2

y(t) decreases, giving a clear visualization of the re-
duction in transport anisotropy as the Anderson transition is
approached.

ple before etching). At 1.2 MHz [Fig. 1(c) and (d)] the
best fits are found for L/ξ = 2.5 [k`s/(k`s)c = 0.988], in-
dicating Anderson localization of ultrasound. Thus, not
only do the good fits obtained using the isotropic SC the-
ory with L/ξ = 2.5 indicate that Anderson localization
has been achieved, but they also show that the transport
anisotropy must be so greatly reduced in the localization
regime that it has negligible impact on the fit quality.

To obtain information on the evolution of the trans-
port anisotropy in the approach to localization in a more
direct way, we now turn to sample A2, for which the
anisotropy is in the plane of the slab (particles’ major
axis parallel to the y axis). The behavior of the width
squared, as a function of structural disorder and fre-
quency, is illustrated in Fig. 2, which shows a comparison
of the widths squared for both the unetched and etched
samples, at four different frequencies and for two ρ val-
ues. For the unetched sample A2 (panel (a)), the width
squared at 800 kHz shows only modest deviations from
the linear growth in time that is characteristic of purely
diffuse behavior, and the separation between the width
squared for ρ = (x = ρ, 0) and ρ = (0, y = ρ) is large
(compare closed and open symbols of the same color and
type). For the etched sample A2e, the transverse spread-
ing of wave energy is much slower, with w2

ρ(t) bending
over significantly as time increases, at all frequencies. In
particular, as the frequency is increased, w2

x(t) and w2
y(t)

bend over more and more, and get closer and closer to-
gether. Notably, at 3.1 MHz, the width squared indicates
substantial confinement of the wave energy and the val-
ues corresponding to the two different directions are very
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FIG. 3. Comparison of the transport anisotropy defined by
Eq. (2) as a function of frequency for samples A2 in panel (a)
and A2e in panel (b). The anisotropy measured separately for
ρ = 20 mm and ρ = 15 mm is presented with symbols while
the average anisotropy for transverse distances of 15 and 20
mm is shown by the dotted lines. As the frequency increases,
leading to an increase in the effective disorder (see the effect
on the width squared in Fig. 2), the anisotropy decreases, with
Aρ approaching 1 (no anisotropy) at the highest frequency for
which data could be obtained. The decrease in anisotropy is
more pronounced at the greater transverse distance of ρ = 20
mm.

close to each other, showing that the transport anisotropy
has almost vanished. These observations demonstrate
that the etching has increased the disorder inside the
sample, and that it is reasonable to expect that the mo-
bility edge is close to 3.1 MHz (because the width squared
looks like it is about to saturate at long times). Thus, as
the width squared approaches the behavior expected at
the mobility edge (saturation at a constant value ∼ L2

as t → ∞), the anisotropy is progressively reduced and
appears to have almost disappeared at 3.1 MHz.

The anisotropy Aρ is shown in Fig. 3 as a function
of frequency for both the unetched and etched samples.
The evolution of the anisotropy is indicated by symbols
for two transverse distances ρ = 15 and 20 mm, while
the dotted curve denotes their average. This direct mea-
surement clearly demonstrates that there is a substantial
decrease of the anisotropy as the frequency, and hence
the effective disorder strength, is increased. In particu-
lar, it is interesting to look at the differences in the mea-
sured anisotropy with transverse distance. At ρ = 20
mm, the anisotropy continues to decrease as the highest
attainable frequency of 3.1 MHz is reached and appears
to extrapolate to 1 at a slightly higher frequency. (At
3.1 MHz, Aρ=20 = 1.045 ± 0.065, and is actually consis-
tent with 1 even at this frequency.) However, at ρ = 15
mm, the anisotropy is larger at all frequencies, and its
decrease in the upper part of the accessible frequency
range is less obvious. These data strongly suggest that
as the localization transition is approached, the shape of

the multiply scattering halo I(ρ, t) changes: it remains
somewhat anisotropic near ρ = 0 but its anisotropy ap-
pears to nearly vanish at large distances ρ. It is tempt-
ing to consider that large distances ρ may capture more
closely in a finite sample the situation encountered in the
infinite medium, where the SC theory has predicted that
the transport anisotropy is strongly suppressed or even
vanishes at the mobility edge [12]. Thus, our experiments
seem to confirm the predictions of Piraud et al. [12]. In
addition, our results demonstrate that in real samples,
which are necessarily of finite size, the way in which the
suppression of the anisotropy shows up is more complex.

In summary, we have shown that samples made of elon-
gated aluminium particles, aligned along a given direc-
tion, are suitable to investigate Anderson localization of
ultrasound in anisotropic media. To assess the transport
anisotropy, we have proposed a generalized definition in
terms of the anisotropy in the width of the multiple scat-
tering halo, which reduces to the standard definition as
a diffusion coefficient ratio in diffuse media but has the
advantage of being directly measurable experimentally
for finite samples in both the extended and localization
regimes. Thus, we have demonstrated that the trans-
port anisotropy is significantly reduced as the mobility
edge is approached and that the wave transport tends
towards isotropic behavior very close to the localization
transition. This work constitutes the first experimental
observation of this behavior, and supports the more re-
cent SC theory prediction for infinite media [12]. Our
findings indicate that the “ellipsoidal” cutoff in the SC
theory used in Refs. [10, 11] may not be valid, as the
predictions it produces are not consistent with our data.
It is worth mentioning that our anisotropic samples fea-
ture a much more gradual approach to the localization
regime as the frequency is varied than what was observed
in previously studied samples made of aluminium beads
[19]. This is likely due to the irregular shape and the
polydispersity of the anisotropic particles, as well as to
the control over the scattering strength (via the brazing
conditions and post-fabrication etching of the samples)
that enabled the critical regime to be reached. This re-
sult motivates further experimental work with such sam-
ples to explore their behavior near the mobility edge;
assuming such experiments are successful and sufficient
configurational averaging can be achieved, a finite-time
scaling analysis could be performed in order to extract
the critical exponent of the Anderson transition [31, 32].
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