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Abstract

Polynomial multiplication is known to have quasi-linear complexity in both the dense and the sparse
cases. Yet no truly linear algorithm has been given in any case for the problem, and it is not clear whether it
is even possible. This leaves room for a better algorithm for the simpler problem of verifying a polynomial
product. While finding deterministic methods seems out of reach, there exist probabilistic algorithms for the
problem that are optimal in number of algebraic operations.

We study the generalization of the problem to the verification of a polynomial product modulo a sparse
divisor. We investigate its bit complexity for both dense and sparse multiplicands. In particular, we are able
to show the primacy of the verification over modular multiplication when the divisor has a constant sparsity
and a second highest-degree monomial that is not too large. We use these results to obtain new bounds on
the bit complexity of the standard polynomial multiplication verification. In particular, we provide optimal
algorithms in the bit complexity model in the dense case by improving a result of Kaminski and develop the
first quasi-optimal algorithm for verifying sparse polynomial product.

1 Introduction

Polynomials are one of the most basic objects in computer algebra and the study of fast polynomial operations
remains a very challenging task. Polynomials can be represented using either the dense representation, that
stores all the coefficients in a vector, or the more compact sparse representation, that only stores nonzero
monomials. Depending on which representation is chosen the problems might have a very different flavor
leading to two very separate lines of research.

Polynomial multiplication is the most noticeable problem that attracted a lot of attention since many
decades, culminating nowadays with quasi-optimal algorithms [2, 15]. Although such algorithms are really
efficient in theory and in practice, there are not yet optimal and they often rely on complex approaches that
can be error prone. Therefore, looking for rather simple procedure to verify the correctness of polynomial
products is of great interest. From a theoretical perspective, the goal is then to provide asymptotically faster
algorithms than those for multiplying polynomials, ultimately seeking for an optimal algorithm. In practice
the objective is barely to find simpler and faster procedures that reveal easier to trust.

In this work, we intend to present the most recent advances in verifying polynomial products in both the
dense and sparse case, to extend such results to either optimal algorithms or to more reliable solutions in
practice. Finally, we extend the problem to some specific modular multiplication of polynomials which seems
to not having been explored yet.

Dense polynomial multiplication We know from the early 60’s that dense polynomial arithmetic is sub-
quadratic, and that it can even be quasi-linear when the so-called FFT applies [4]. It has been more than two
decades later that Cantor and Kaltofen [2] provide a quasi-linear algorithm without any assumption on the
polynomial algebra. They show that two dense polynomials of degree less than n over an algebra A can be
multiplied with O (n log n log log n) operations inA . In regards to the bit complexity model, the operations in
the base ringA cannot count O (1) anymore, and the previous algorithms may not lead to the best complexity
estimates for specific domains such as A = Fq or A = Z. There, the use of Kronecker substitution together
with fast integer multiplication turns out to be the best alternative [8, Section 8.4]. It has been showed by
Harvey and van der Hoeven in [13] that one can reach a bit complexity of O (n log q log(n log q)4log∗(n)) for poly-
nomial multiplication over Fq[X ] for any prime field Fq. We shall mention that very recently, such complexity
have been further improved to O (n log q log(n log q)) bit operations [15] under some mild hypothesis. For

1



polynomials with integer coefficients bounded by an integer C , the complexity falls down to multiplying two
integers of bit length O (n(log n+ log C)) which gives O (n(log2 n+ log C log n+ log C log log C) = Õ (n log C)1

when we assume that n-bits integer multiplication complexity is I(n) = O (n log n) [14]. For clarity in the
presentation, we will often use M(n) as the number of operations in R required to multiply two dense poly-
nomials of size n, while Mq(n) will denote the bit complexity for such multiplication over a prime field Fq.

Sparse polynomial multiplication In the sparse representation, a polynomial F =
∑n

i=0 fiX
i ∈ R[X ] is

expressed as a list of pairs (ei , fei
) such that all the fei

are nonzero. We denote by #F the sparsity of the
polynomial F which corresponds to its number of nonzero coefficients. Let F be a polynomial of degree n,
and log C be a bound on bit length of its coefficients. Then, the size of the sparse representation of F is
O (#F(log n+ log C)) bits. Contrary to the dense case, note that fast algorithms for sparse polynomials must
have a (poly-)logarithmic dependency on the degree, and that the size of the output does not exclusively
depend on the size of the inputs. Indeed, the product of two polynomials F and G has at most #F#G nonzero
coefficients. But it may have as few as 2 nonzero coefficients, as shown by the following example.

Example 1. Let F = X 14 + 2X 7 + 2, G = 3X 13 + 5X 8 + 3 and H = X 14 − 2X 7 + 2. Then FG = 3X 27 + 5X 22 +
6X 20 + 10X 15 + 3X 14 + 6X 13 + 10X 8 + 6X 7 + 6 has nine terms, while FH = X 28 + 4 has only two.

Another difference with the dense case is that studying the complexity in a pure algebraic model remains
meaningless, unless you assume a transdichotomous model on the degree, meaning that the integer compu-
tation on the exponents is always O (1) [3, 25]. The classical approach for computing the product of two
polynomials of sparsity T is to generate all the T 2 possible monomials, and to sort them and merge those
of equal degree to collect the monomials of the result. Using radix sort, this algorithm takes for instance
O (T 2(I(log C)+ log n)) bit operations over Z and it exhibits a T 2 factor in the space complexity, whatever the
number of terms in the result. Many improvements have been proposed to reduce this space complexity, to
extend the approach to multivariate polynomials, and to provide fast implementations in practice [19, 22, 23].
Yet, none of these results reduces the T 2 factor in the time complexity. In general, no complexity improvement
is expected as the output polynomial may have as many as T 2 nonzero coefficients. However, this number
of nonzero coefficients can be overestimated, giving the opportunity for output-sensitive algorithms. Such
algorithms have first been proposed for special cases. Notably, when the output size is known to be small due
to sufficiently structured inputs [26], especially in the multivariate case [17, 16], or when the support of the
output is known in advance [18].

Output-sensitive multiplication algorithms try to take into account the two reasons that can decrease the
sparsity of the product. The first one is exponent collisions, while the second one occurs when these collisions
imply some coefficient cancellations. The exponent collision is captured by the sumset of the exponents of
F =

∑T
i=1 fiX

αi and G =
∑T

j=1 g jX
β j , that is {αi + β j : 1 ≤ i, j ≤ T}. Arnold and Roche call this set the

structural support of the product FG and its size the structural sparsity [1]. If H = FG, then the structural
sparsity S of the product FG satisfies 2 ≤ #H ≤ S ≤ T 2. Observe that although #H and S can be close, their
difference can reach O (T 2) as shown by the next example.

Example 2. Let F =
∑T−1

i=0 X i , G =
∑T−1

i=0 (X
iT+1 − X iT ) and H = FG. We have #F = T , #G = 2T and the

structural sparsity of FG is T 2 + 1 while H = X T 2
− 1 has sparsity 2.

For polynomials with non-negative integer coefficients, no coefficient cancellation can occur and Cole
and Hariharan describe a multiplication algorithm requiring Õ (S log2 n) operations in the RAM model with
O (log(Cn)) word size [3], where log(C) bounds the bitsize of the coefficients. Arnold and Roche improve this
complexity to Õ (S log n + #H log C) bit operations for polynomials with both positive and negative integer
coefficients [1]. A recent algorithm of Nakos avoids the dependency on the structural sparsity for the case
of integer polynomials [25], using the same word RAM model as Cole and Hariharan. Unfortunately, the bit
complexity of this algorithm, Õ ((T log+#H log2 n) log(Cn) + log3 n), is not quasi-linear. More recently, we
propose in [9] the first quasi-optimal algorithm for sparse polynomial multiplication yielding a bit complexity
of Õ (T ′(log n+ log C)) where T ′ = max(T,#H). More precisely, taking k = T ′(log n+ log c) which is the bit
length of the input and output, we are able to reach a bit complexity of O (k log2 k log2 T (log T + log log k)).

Verification of polynomial products Considering the non-optimality of polynomial multiplication in both
representations, it is quite natural to ask whether it is rather a simple task or not to verify an instance of the
problem. More formally, given three polynomials F, G and H, can we assert that H is equal to the product
of F and G in less operations than computing the product itself? Furthermore, we want such procedure to

1Here, and throughout the article, Õ ( f (n)) denotes O ( f (n) logk( f (n))) for some constant k > 0.
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be as simple as possible and to not rely on polynomial multiplication if possible. Unfortunately, doing this
with a deterministic procedure is not yet known, but using probabilistic algorithms lead to positive answers as
shown by several papers [6, 29, 32, 10]. Here and henceforth, polynomials are assumed to have coefficients
in an integral domain R , rather than in a more general algebra.

For dense polynomials this verification amounts to choosing a random element α in a finite subset of R
and to assert that H(α) − F(α)G(α) is zero. In that case, the complexity for the verification becomes O (n)
operations in R , which is optimal. Of course, the probability of error is less than one as soon as R has more
than n elements. If this not the case, for instance when R = F2, it is not desirable to choose α in a sufficient
large extension of R to have O (n) elements. The latter would require an extension of degree O (log n) and it
would raise the complexity to O (nM(log n)). This is actually larger than the complexity M(n) of computing
the product. In [20], Gamin’s solved the latter problem by replacing the evaluation, that corresponds to
computing within R[X ]/(X − α), by doing a polynomial multiplication within R[X ]/(X i − 1) for a random
integer i < n. More precisely, by choosing i = O (n1−e) for some 0< e < 1/2, his verification algorithm runs in
O (n) operations inR , whatever its size, with a probability of error bounded away from one. While the result
sounds optimal from a theoretical perspective, it might be mitigated for practical applications as it verifies
polynomial multiplication of degree n by doing multiplication of polynomials of degree O (n1−e).

All these results remain valid under the bit complexity model, but the obtained complexity might not be
optimal. For polynomials over Fq[X ], both approaches using products in Fq[X ]/(X − α) or in Fq[X ]/(X i −
1) lead to a bit complexity of O (nI(log q)) = O (n log q log log q). While being non optimal, they remain
however asymptotically faster than the computation of the initial products by a factor log n/ log log q. Actually,
Kaminski’s approach has a better bit complexity than the standard method and can even yield a linear bit
complexity in favorable cases. For polynomials over Z[X ], the result is more surprising as it is possible to
reach an optimal bit complexity of O (n log C) for any input. This result should be attributed to Kaminski, as
he provided in [20] all the necessary materials while not noticing the result explicitly. It seems surprising,
but we haven’t found any references advertising such result. Thus, we propose to provide the description of
those optimal verifications of polynomial products.

For sparse polynomials, the verification of products remains less studied. It is misleading to think that
using polynomial evaluation is satisfactory. Assuming that only T coefficients are nonzero, sparse polynomial
evaluation is not quasi-linear in the input size O (T (log n+ log C)). Indeed, computing αn requires O (log n)
operations in R which implies a complexity of O (T log n) operations in R when applied to the T nonzero
monomials. Since one needs to use a subset ofR of size at least n to ensure a nonzero probability of success,
this implies that the bit complexity is at least O (T log2 n). Using similar ideas as Kaminski’s [20], we proposed
recently in [9] to verify sparse polynomial identities by doing the computation inR[X ]/(X p−1) for a random
prime p. In particular, we prove that choosing p = O (T 2 log n) ensures that (H − FG)mod (X p − 1) = 0
implies that H − FG = 0 with good probability and that the computation can be done in quasi-linear time
with Õ (T (log n+ log C)) bit operations.

Another important measure for randomized verification algorithms is the probability of failure. All the
known verification algorithms are True-biased one-sided Monte Carlo algorithms. This means that they al-
ways return True if H = FG and return False with probability at least 1−ε otherwise. Given an algorithm with
error probability at most ε, we can attain any smaller probability of error τ by repeating O ( logτ

logε ) rounds of the
algorithm. This shows that the complexity of the algorithm is actually dependent on the target error probabil-
ity. In our results, we always explicitly indicate this dependency. We can distinguish several regimes of values
for the error probability: the constant regime ε = O (1), the inverse polynomial regime ε = 1/nO (1) and the
inverse exponential regime ε= 1/2O (n), where n is the input degree. Given an algorithm with constant error
probability, one can attain any smaller constant probability using a constant number of rounds. This keeps
the same asymptotic complexity. The same is true for two probabilities inside the inverse polynomial regime.
To get to the inverse polynomial regime from the constant regime, the number of rounds must be O (log n),
slightly increasing the asymptotic complexity. The inverse exponential regime can then be attained using a
polynomial number of rounds. In our context of linear and quasi-linear algorithms, the inverse exponential
regime is not attainable in general. The best known verification algorithms have linear bit complexity in the
inverse polynomial regime.

Contributions As an extension of our prior work [9], we propose to study more generally the verification of
polynomial multiplication inR[X ]/P where P is a monic sparse polynomial. In the dense case, this generalizes
a work from one of the authors on the probabilistic verification on polynomial middle product [10]. By reusing
our modular product’s verification, we show that we can address the difficulty of Kaminski’s approach that
verifies polynomial products using products of roughly the same degree, more than

p
n. In particular, we

3



show that we can avoid the dependency on polynomial multiplication in every cases. When dealing with
finite field arithmetic it is quite common to rely on irreducible polynomials that are sparse [24]. Therefore,
having the possibility to verify multiplication over finite fields in less operations than computing the product
seems of great interest. In particular, we show that the verification of products in Fqs can be done in O (s#P)
operations in Fq where P ∈ Fq[X ] is the monic irreducible polynomial of degree s used to define Fqs . Clearly
for irreducible polynomial with constant sparsity, as it is often the case over F2 [11] and more generally
Fq [24], this offers an optimal verification procedure. Finally, for sparse polynomials, this work extends
our prior result for R[X ]/(X p − 1) in [9] that was of great importance to achieve the first quasi-linear time
algorithm for sparse polynomial multiplication. We hope our new insight on this problem will leverage other
fast algorithms for sparse polynomial operations, especially for the division problem [27].

All our techniques and results extend to the more general problem of verifying a polynomial identity of the
form

∑

i FiGi mod P = 0, where the sum may have an arbitrary number of terms. It would be interesting to be
able to extend these results to more general polynomial identities. As a very simple example, given F1, F2, F3,
H and P ∈ R[X ] for some integral domainR , what is the complexity of the verification of H = F1F2F3 mod P?
Obviously if the inputs are dense polynomials, the computation of F1F2F3 mod P can be done in quasi-linear
time. But the question is to design an algorithm than runs faster than performing the computation. In the
sparse case, the computation may increase the input size quite a lot and even a quasi-linear time algorithm is
lacking. More generally, the problem is to verify identities of the form

∑

i

∏

j

∑

k · · ·
∏

` Fi, j,k,...,` mod P = 0.
This problem can be phrased as a Modular Polynomial Identity Testing (Modular PIT) problem. The standard
Polynomial Identity Testing (PIT) problem takes as input an arithmetic circuit, or equivalently a straight-line
program, and consists in deciding whether the polynomial it represents is zero. In this extension, a polynomial
P is also given as input and the question is whether the polynomial represented by the circuit is divisible by
P. The standard PIT problem admits polynomial-time, and even quasi-linear-time, randomized algorithm. A
very important open question is whether it also admits a polynomial-time deterministic algorithm. For the
Modular PIT problem, the question is already to design efficient randomized algorithms. If the dense case,
the challenge is to obtain faster algorithms than performing the product, ideally linear-time algorithms. In
the sparse case, it is not even known how to solve the problem in randomized polynomial-time. Our results
may be seen as a first step towards this goal.

Outline We start our work in Section 2 by introducing all the technical materials that serve to demonstrate
our main results. Then, Section 3 is devoted to the study of the evaluation of modular multiplication. In par-
ticular, we provide algorithms and their thorough analysis for evaluating (FG)mod P on αwithout computing
FG mod P. The results of that section serve to derive efficient algorithms in Section 4 for the verification of
modular multiplication of polynomials. Finally, we present in Section 5 the more general results on the ver-
ification of classical polynomial multiplication. In particular, we extend the work of Kaminski [20] for the
dense case with a thorough analysis of its bit complexity that enables to reach optimal verification. We also
give a more detailed presentation of our first quasi-optimal algorithm for the sparse case that appears in [9].

2 Preliminaries

2.1 Notations and complexities

Let Q ∈ R[X ] be a degree-n polynomial. We denote its coefficient of degree i by qi . The sparsity of Q is its
number of nonzero monomials and is denoted by #Q. The support of Q is the set supp(Q) = {i : qi 6= 0}. If Q
is a polynomial over Z, we denote by ‖Q‖∞ its norm, defined as max0≤i≤n |qi |. We denote by log(·) the base-2
logarithm and by ln(·) the natural logarithm. We also use logb(·) to denote the base-b logarithm defined by
logb(x) =

log x
log b .

We work in this paper with dense and sparse polynomials. A dense polynomial is represented as the vector
of its coefficients, which has size n+ 1 for a degree-n polynomial. A sparse polynomial is represented by the
list of its nonzero monomials. We consider that we work, for sparse polynomials, with an abstract structure of
sparse vector. In practice, this can be implemented by several data structures, depending on the operations that
need to be performed. A standard choice in sparse polynomial arithmetic is the use of heaps [19, 22, 23]. To
get better complexities, we might resorting to van Emde Boas Trees [5, Chapter 20] as in Section 3.3.We also
use sparse vectors in some algorithms to represent data which are not directly polynomials. The underlying
data structure is the same as for sparse polynomials.
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Complexity of dense polynomial multiplications We denote by M(n) the number of ring operations
needed to compute a product of degree-n dense polynomials over an integral domain. We can take M(n) =
O (n log n log log n) [2]. We denote by Mq(n) the bit complexity of the multiplication of two degree-n dense
polynomials over a finite field Fq. The best known bounds on Mq(n) are O (n log q log(n log q)4log∗(n log q)) [13]
unconditionally and O (n log q log(n log q)) assuming the existence of some Linnik constant [15]. To simplify
the notation, we assume the existence of this Linnik constant. The cost of multiplying two elements in an
extension field Fqd is the cost of degree-d polynomial multiplications, that is O (Mq(d)). Let F , G ∈ Z[X ]
of degree n and norm C . Their product has norm at most nC2. To compute FG, we can evaluate both F
and G on some power of 2 larger than nC2, multiply the resulting integers (that have size n log(nC2)), and
read the coefficients of FG directly on the output integer. Let I(m) = O (m log m) denote the bit complexity
of multiplying two m-bit integers [14]. Then the bit complexity of multiplying F and G is I(n log(nC2)) =
O (n log2 n+ n log n log C + n log C log log C).

Complexity of polynomial evaluation The evaluation of a dense degree-n polynomial F ∈ R[X ] on a
point α ∈ R requires O (n) operations in R using for instance Horner scheme. If α lies in an extension
ring Rext of R , the evaluation requires O (n) operations in Rext. If F has coefficients in a finite field Fq, this
translates directly to a linear number of operations in Fq. Now if F has coefficients in Z, one must take into
account the growth of the integers during the computation. Using a divide-and-conquer approach to use
balanced integer multiplications, the cost of the evaluation is O (I(n log C) log(n log C)) bit operations where
C = max(|α|,‖F‖∞). We note that this cost is quasi-linear in the worst case output size while using Horner
scheme would have been quadratic.

To evaluate a sparse polynomial F ∈ R[X ] on α ∈ R , we compute the relevant powers of α and then
perform #F multiplications and additions in R . Computing each power independently yields O (#F log n)
operations inR . Using simultaneous exponentiation [31], the cost is reduced to O (log n+#F log n/ log log n)
operations in R . Again, this directly translates to operations in Fq if R = Fq. For polynomials with integer
coefficients, the growth is much more severe than in the dense case. Indeed, αn has O (n log |α|) bits. This
implies that the bit complexity is at least linear in n which is exponentially larger than the input size. The
cost is actually not better than with dense polynomials.

2.2 Bounds on polynomial products and modular reductions

Reducing a polynomial modulo P changes its norm and sparsity. We provide bounds on these growths. They
rely on the gap between the degree of P and its second degree, that is the degree of its second highest-degree
monomial.

Definition 1. Let P = X n +
∑k

i=0 piX
i for k < n and pk 6= 0. The second degree of P is the integer k. The gap

parameter γ of P is γ= 1
n (n− k).

In particular, the second degree of P is (1 − γ)n. The parameter γ is between 0 and 1. If γ is close to
0, the polynomial actually has no gap, while γ = 1 corresponds to a binomial aX n + b. We note that given
this definition, 1

γ is always upper bounded by n. Polynomials with a large gap are also known as sedimentary
polynomials [24]. A polynomial is said t-sedimentary if it is of the form X n + H where deg(H) = t. A t-
sedimentary polynomial is a polynomial with gap parameter (n − t)/n and conversely a monic polynomial
with a gap parameter γ is (1− γ)n-sedimentary.

The norm of the product of two polynomials is classically related to their norms and degrees. This can be
slightly refined using the sparsities instead of the degrees.

Lemma 2.1. Let F and G be two polynomials over Z. Then ‖FG‖∞ ≤min(#F,#G)‖F‖∞‖G‖∞.

Proof. Let H =
∑

k hkX k be the product of F and G. Then hk =
∑

i+ j=k fi g j . Let T = min(#F, #G). Then
the sum to define hk has size of most T . Since | fi | ≤ ‖F‖∞ for all i and |g j | ≤ ‖G‖∞ for all j by definition,
|hk| ≤ T‖F‖∞‖G‖∞, whence the result.

The modular reduction of polynomials has a bigger impact on the norm. It is actually related to several
parameters such as the gap parameter of the divisor and the difference of the degrees. The following example
shows a large increase in the norm, as well as a densification of the result.

Example 3. Let P = X 80+7X 65+2X 61−8X 59+X 56+3 and Q = X 131+4X 120+8X 118−3X 108−3X 80+X 71+5X 32.
Here the gap parameter of P is γ = 3

16 , #P = 6, #Q = 7 and ‖P‖∞ = ‖Q‖∞ = 8. The polynomial Q mod P
has degree 79, sparsity 53 and norm 11912.
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The following proposition bounds the growth on the different parameters of the polynomial after a mod-
ular reduction.

Proposition 2.2. Let Q be a sparse polynomial of degree at most n− 1+ k and P a monic polynomial of degree
n with #P ≥ 2. The polynomial Q mod P has at most #Q(#P − 1)d

k
γn e monomials. If Q and P are defined over

Z, ‖Q mod P‖∞ ≤ ‖Q‖∞(#P‖P‖∞)
d k
γn e.

Proof. We analyse the growth of the norm and the sparsity while performing the euclidean division.
Instead of following the classical quadratic algorithm, we first reduce once all the monomials of Q with

degree at least n to obtain a new dividend. We repeat this process until the dividend has degree less than n. Let
us define the sequence (Q[i])i by Q[0] =Q and Q[i+1] = (Q[i] mod X n)+ (Q[i] quo X n)(X n− P). Then Q[i] mod
P = Q mod P for all i. Since deg(Q[i] quo X n) = deg(Q[i]) − n and deg(X n − P) ≤ (1 − γ)n, deg(Q[i+1]) ≤
max(n− 1, deg(Q[i])− γn), whence deg(Q[i])≤max(n− 1, deg(Q)− iγn).

Also, #Q[i+1] is at most #Q[i](#P − 1), thus #Q[i] ≤ #Q(#P − 1)i . Finally,

‖Q[i+1]‖∞ ≤ ‖Q[i]‖∞(1+min(#Q[i],#P − 1)‖P‖∞).

Therefore, ‖Q[i]‖∞ ≤ (#P‖P‖∞)i‖Q‖∞.
Since deg(Q[i])≤ n+ k− 1− iγn, deg(Q[i])< n if i = d k

γn e. This implies that Q[i] =Q mod P.

2.3 Random primes and random irreducible polynomials

We collect in this section some useful results to produce random prime numbers and random irreducible
polynomials over finite fields.

Proposition 2.3 ([28]). If λ≥ 21, there are at least 3
5λ/ lnλ prime numbers in [λ, 2λ].

Using this proposition together with Miller-Rabin probability test, we can produce integers that are prime
with good probability [30].

Proposition 2.4. There exists an algorithm RANDOMPRIME(λ,ε) that returns an integer q in [λ, 2λ], such that
q is prime with probability at least 1− ε. It requires O (log( 1

ε ) log2(λ)I(logλ) log logλ) bit operations.

Proposition 2.5. Let H ∈ R[X ] be a nonzero polynomial of degree at most n and sparsity at most T , 0< ε < 1
and λ=max(21, 10

3ε T ln n). With probability at least 1−ε, RANDOMPRIME(λ, ε2 ) returns a prime number p such
that H mod X p − 1 6= 0.

Proof. It is sufficient, for H mod X p−1 to be nonzero, that there exist one exponent e of H that is not congruent
to any other exponents e j modulo p. In other words, it is sufficient that p does not divide any of the T − 1
differences δ j = e j − e.

Noting that δ j ≤ n, the number of primes in [λ, 2λ] that divide at least one δ j is at most (T−1) ln n
lnλ . Since

there exists 3
5λ/ lnλ primes in this interval, the probability that a prime randomly chosen from it divides at

least one δ j is at most ε/2. RANDOMPRIME(λ,ε/2) returns a prime in [λ, 2λ] with probability at least 1−ε/2,
whence the result.

The following two propositions will be useful to either reduce integer coefficients modulo some prime
number or to construct irreducible polynomials over finite fields.

Proposition 2.6. Let H ∈ Z[X ] be a nonzero polynomial, 0 < ε < 1 and λ ≥max(21, 10
3ε ln‖H‖∞). Then with

probability at least 1− ε, RANDOMPRIME(λ, ε2 ) returns a prime q such that H mod q 6= 0.

Proof. Let hi be a nonzero coefficient of H, a random prime from [λ, 2λ] divides hi with probability at most
5
3 ln‖H‖∞/λ≤ ε/2. Since RANDOMPRIME(λ,ε/2) returns a prime in [λ, 2λ] with probability at least 1−ε/2
the result follows.

Proposition 2.7 ([30, Chapter 19]). The number of irreducible monic polynomial of degree d over a field Fq is

between qd

2d and qd

d .

Proposition 2.8 ([30, Chapter 20]). There exists an algorithm that, given a finite field Fq, an integer d and
0< ε < 1, computes a degree-d polynomial in Fq[X ] that is irreducible with probability at least 1−ε. It requires
O (log( 1

ε )d
2M(d)(log q + log log d)) operations in Fq or O (log( 1

ε )d
4 log q) operations in Fq if using only naive

polynomial multiplications.

Remark 2.9. Shoup [30] presents Las Vegas algorithms for Propositions 2.4 and 2.8. We consider Monte Carlo
versions of his algorithms. Also, he analyses the complexities with naive algorithms. Our complexity estimates
use fast integer and polynomial arithmetic.
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3 Evaluation for polynomial multiplication in a quotient ring

As seen earlier, the verification of polynomial multiplication mainly relies on the evaluation of the polynomial
identity at a random point. In this section we present algorithms to efficiently compute the evaluation of a
modular product (FG)mod P on a point α, without computing (FG)mod P. There, the modulus P is always
considered as a sparse polynomial, while F and G can be either dense or sparse.

Section 3.1 describes our method in the simpler case where P is a binomial. We obtain linear-time evalu-
ations, whether F and G are dense or sparse. Section 3.2 generalizes the method to the product of two dense
polynomials modulo a sparse modulus, and Section 3.3 presents the case of a sparse modular product.

3.1 Evaluation of a product modulo a binomial

Let us first present our method to evaluate a modular product FG mod P where P = X n − 1. This special
case illustrates our more general method. It also has its own interest since it is used as the main tool for the
verification of a product of two polynomials in Section 5, either for dense or sparse representation.

We first describe the algorithm for dense polynomials F and G.

Theorem 3.1. Let F and G be two polynomials in R[X ] of degrees less than n and α ∈ R . The polynomial
(FG)mod X n − 1 can be evaluates on α using O (n) operations in R .

Proof. Let H = FG and M = H mod X n−1. We denote by fi (resp. gi , hi , mi) the coefficient of degree i of the
polynomial F (resp. G, H, M). Let also ~g = (g0, . . . , gn−1)T , ~h= (h0, . . . , h2n−2)T and ~m= (m0, . . . , mn−1)T .

It is a well-known fact that considering F as fixed, the multiplication by F is a linear map described by a
Toeplitz matrix. More precisely, we have ~h= TF ~g where

TF =























f0
f1 f0
...

. . .
fn−1 . . . . . . f0

fn−1 f1
. . .

...
fn−1























.

Since M = H mod X n − 1, mi = hi + hi+n−1 for 0≤ i < n− 1 and mn−1 = hn−1. Therefore, ~m= CF ~g where CF
is the circulant matrix

CF =









f0 fn−1 · · · f1
f1 f0 · · · f2
...

...
...

fn−1 fn−2 · · · f0









.

On the other hand, evaluating M on α corresponds to the inner product ~αn ~m where ~αn = (1,α, . . . ,αn−1).
Therefore, our aim is to compute ~αnCF ~g. The standard way to perform this evaluation corresponds to first
computing ~m= CF ~g and then ~αn ~m. As noticed by Giorgi [10], the bracketing (~αnCF )~g yields a faster algorithm
due to the structure of the matrix CF .

Let ~c = ~αnCF . Then c j+1 =
∑n−1
`=0 α

` f(`− j−1)mod n = fn− j−1 + α
∑n−2
`=0 α

` f(`− j)mod n. Since for j > 0 we have
∑n−2
`=0 α

` f(`− j)mod n = c j −αn−1 fn− j−1, we obtain the recurrence relation
¨

c j+1 = αc j − P(α) fn− j−1 for j ≥ 0

c0 = F(α)
(1)

where P = X n − 1 and c0 = F(α).
It is immediate that exploiting such recurrence relation for computing the evaluation of (FG)mod P leads

to a complexity of O (n) operations in R . Indeed, once c0 and P(α) = αn − 1 are computed each other c j can
be computed sequentially at cost O (1).

For completeness, we provide the full description of this method in Algorithm 3.1.
We can actually be more precise on the number of operations required by Algorithm 3.1. In particular

when α does not lie into R but in an extension Rext of R , we can distinguish between operations in R and
Rext. In the next corollary, we call scalar multiplications those that are multiplications of an element of Rext
by an element of R . The following analysis minimizes the number of non-scalar multiplications.
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Algorithm 1 EVALUATIONMODULOBINOMIAL

Input: F , G ∈ R[X ] with deg(F), deg(G)< n, and α ∈ R .
Output: (FG mod X n − 1)(α)

1: c← F(α)
2: Pα← αn − 1
3: β ← cg0
4: for j = 1 to n− 1 do
5: c← αc − Pα fn− j
6: β ← β + cg j

7: return β

Corollary 3.2. Let F and G be two polynomials in R[X ] of degree less than n and α ∈ Rext. The polynomial
(FG)mod X n − 1 can be evaluated on α using 2n− 2 multiplications and 3n− 2 additions in Rext, and 3n− 2
scalar multiplications.

Proof. We can first compute α2, α3, . . . , αn using (n− 1) multiplications. Then, F(α) can be computed using
(n− 1) scalar multiplications and additions, and P(α) = αn − 1 require one more addition. The initial value
cg0 of β requires one scalar multiplication. Then each iteration of the loop require one multiplication, two
scalar multiplications and two additions. Therefore, the complete evaluation require 3n−2 additions, 2n−2
multiplications and 3n− 2 scalar multiplications.

To minimize the total number of multiplications instead, we remark that one can also evaluate F using
Horner’s scheme with (n−2)multiplications, one scalar multiplication and (n−1) additions. Then αn has to be
computed using at most 2 log n multiplications. This results in 3n−2 additions, 2n−3+2 log n multiplications
and 2n scalar multiplications. The total number of multiplications (scalar or not) is a bit less.

We now turn to the analysis of the algorithm for F and G given in sparse representation.

Theorem 3.3. Let F and G be two sparsely represented polynomials in R[X ] of degrees less than n and α ∈ R .
The polynomial (FG)mod X n − 1 can be evaluated on α using O ((#F +#G) log n) operations in R .

Proof. We use the same notations as in the previous proof. If the support of G is supp(G) = { j0, . . . , j#G−1}
with j0 < · · · < j#G−1, the inner product ~c~g is equal to

∑#G−1
k=0 c jk g jk . This means that only the #G entries

c j0 , . . . , c j#G−1
of ~c need to be computed. Applying the recurrence relation (1) as many times as necessary, we

obtain the new recurrence relation
¨

c jk+1
= α jk+1− jk c jk − P(α)

∑ jk+1

`= jk+1α
` fn−` for k ≥ 0

c j0 = ((X
j0 F)mod X n − 1)(α).

(2)

The initial value c j0 can be computed using O (#F log n) operations in R since it needs #F exponentiations
of α with exponent bounded by n. Most values of fn−` are actually equal to zero since F is sparse.

A nonzero coefficient ft of F appears in the definition of c jk+1
if and only if n− jk+1 ≤ t < n− jk. Thus, each

ft is used exactly once to compute all the c jk ’s. Since for each summand, one needs to compute α` for some
` < n, the total cost for computing all the sums is O (#F log n) operations in R . Similarly, the computation
of α jk+1− jk c jk for all k ∈ [0, #G − 2] costs O (#G log n) operations in R plus #G − 1 additions of O (log n)-bit
integers to get the exponents. As one operation inR requires at least one bit operation, the integer additions
that costs O (#G log n) bit operations are negligible. The last remaining step is the final inner product which
costs O (#G) operations in R , whence the result.

As in the dense case, one can be more precise on the complexity if α liesin an extensionRext. In contrary to
the dense case where there is more operations inR than inRext, one can note that the number of operations
in R is negligible in the sparse case.

Corollary 3.4. Let F and G be two sparsely represented polynomials inR[X ] of degrees less than n and α ∈ Rext.
The polynomial (FG)mod X n − 1 can be evaluated on α using log n+O ((#F +#G) log n/ log log n) operations
in Rext plus #G − 1 additions of O (log n)-bit integers.

Proof. We first notice that in the sparse case the operations on α dominate the complexity. These operations
are operations inRext. To improve the complexity estimates, we remark that in the sparse settings we need to
compute αt for several values of t. The computation of c j0 requires to know #F values of αt , more precisely
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those with t = `− j0 mod n for each nonzero coefficient f` of F . To apply Equation (2), one needs to compute
αt for t = jk+1− jk, 1≤ k < #G, and for t = ` where fn−` 6= 0. The value αn is also needed to compute P(α).
Finally, the inner product requires to compute αt for each nonzero gt . Altogether, one needs αt for at most
2(#F+#G) values of t, each at most n. They can be computed independently using fast exponentiation, using
at most O ((#F +#G) log n) multiplications, as it is done in Theorem 3.3. Actually, Yao [31] shows that these
values of αt can be computed simultaneously using only log n+O ((#F +#G) log n/ log log n)multiplications.
Once these αt have been computed, computing c j0 and the c jk ’s by means of Equation (2), as well as the inner
product ~c~g, only require O (#F +#G) operations.

3.2 Evaluation of a dense modular product

In this section, we extend the previous algorithm to the evaluation of a polynomial FG mod P where P is any
monic sparse polynomial. We first consider the case where F and G are given in dense representation. The
case where they are given is sparse representation is postponed to the next section.

The algorithm goes along the same lines as the evaluation modulo X n−1. Let F [i] = (X i F)mod P. We can
rewrite FG mod P =

∑n−1
i=0 gi F

[i] where gi is the coefficient of degree i in G. The evaluation of this equality
on a point α yields the formula

(FG mod P)(α) =
n−1
∑

i=0

gi F
[i](α). (3)

To make use of this formula, we need to be able to efficiently evaluate each F [i] on α. Note that consecutive
F [i]’s are bound by the recurrence relation F [i+1] = (X F [i])mod P. Since deg(F [i]) = n− 1, (X F [i])mod P =
X F [i] − f [i]n−1P where f [i]n−1 is the coefficient of degree n − 1 of F [i]. Consequently we have the following
recurrence relation

¨

F [i+1](α) = αF [i](α)− f [i]n−1P(α) for i ≥ 0

F [0](α) = F(α)
(4)

The evaluations of each F [i] on α can thus be computed iteratively from F(α), only knowing the coefficient
f [i]n−1 of F [i] for 0< i < n− 1.

We first present an algorithm to compute these coefficients. Note that we did not need such an algorithm
when P = X n−1 since these coefficients were given for free as we had f [i]n−1 = fn−1−i . In the general case, the
computation is based on the recurrence relation F [i+1] = X F [i] − f [i]n−1P, which implies

f [i+1]
k = f [i]k−1 − f [i]n−1pk (5)

for 0 < k ≤ n− 1. This allows to compute each f [i]n−1, starting from the values of f [0]k for all k. These values
are given as input since F [0] = F by definition. Note that since P is a sparse polynomial, Equation (5) actually
reduces to an equality f [i+1]

k = f [i]k−1 in many cases. Algorithm 2 takes this into account and only performs the
required updates.

Algorithm 2 LEADINGCOEFFICIENTS

Input: Two polynomials P and F in R[X ], with deg(F)< deg(P) = n and P monic.
Output: The vector [ f [0]n−1, f [1]n−1, . . . , f [n−2]

n−1 ], where f [i]n−1 is the coefficient of degree n−1 of F [i] = (X i F)mod P.
1: V ← [ fn−1, fn−2, . . . , f1]
2: for i = 0 to n− 2 do
3: for k ∈ supp(P) such that i < k < n do
4: V [i + n− k]← V [i + n− k]− pkV [i]
5: return V

Lemma 3.5. Algorithm 2 is correct. It uses O (n#P) operations in R .

Proof. The number of operations is clear: all operations are performed at Step 4 and it is called O (n#P) times.
Note that the external for loop can be stopped as soon as there exists no k ∈ supp(P) such that i < k < n. In
other words, i never goes beyond deg(X n − P)− 1.

To show the correctness of Algorithm 2, we prove by induction that after iteration i of the external loop,
the following property P (i) holds:

V [ j] = f [ j]n−1 for any j ≤ i + 1 and V [ j] = f [i+1]
n−( j−i) for j > i + 1.
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Before the first iteration, P (−1) holds since it reads V [ j] = f [0]n− j−1 for all j, and F = F [0] by definition.
Suppose that P (i − 1) holds. In particular, V [ j] = f [ j]n−1 for j ≤ i. During iteration i, only V [i + 1] to

V [n− 2] can be modified so these equalities remain after that iteration. For j > i, V [ j] = f [i]n−( j−i+1) before
the iteration by hypothesis. After the iteration, it becomes

V [ j] = f [i]n−( j−i+1) − pn− j+iV [i] = f [i]n− j+i−1 − pn− j+i f [i]n−1.

Equation (5) shows that V [ j] = f [i+1]
n− j+i after Step 4, and P (i) holds.

To conclude, after the last iteration, V [ j] = f [ j]n−1 for all j ≤ n− 2 and the algorithm is correct.

We can now make use of Algorithm 2 to evaluate FG mod P on a point α. In the following algorithm, we
assume that α belongs to some extension ringRext ofR . Our analysis distinguishes between operations inR
and in Rext.

Algorithm 3 MODULAREVALUATION

Input: P, F , G ∈ R[X ] with deg(F), deg(G)< deg(P) = n, P monic, and α ∈ Rext.
Output: (FG mod P)(α)

1: V ← [ f [0]n−1, . . . , f [n−2]
n−1 ] using a call to LEADINGCOEFFICIENTS(P, F)

2: Pα← P(α)
3: Fα← F(α)
4: β ← Fαg0
5: for i = 1 to n− 1 do
6: Fα← αFα − V [i − 1]Pα
7: β ← β + Fαgi

8: return β

Theorem 3.6. Algorithm 3 is correct. It uses O (n#P) operations in R and O (n) operations in Rext.

Proof. Step 6 relies on Equation (4) to compute Fα = F [i](α). Step 7 uses this evaluation together with Equa-
tion (3) to correctly compute (FG mod P)(α). The first step requires O (n#P) operations inR by Lemma 3.5.
(It does not depend on α.) The other steps require O (n) operations in Rext.

As before, we notice that the operations inRext are sometimes scalar multiplications, that is multiplications
of an element of Rext by an element of R . We provide an analysis that minimizes the number of non-scalar
multiplications.

Corollary 3.7. Let P, F, G and α as in Algorithm 3. Then (FG)mod P can be evaluated on α using 2n − 2
multiplications and (3n−5+#P) additions inRext, (3n−3+#P) scalar multiplications inRext, and (n−1)(#P−1)
multiplications and additions in R .

Proof. We first note that the number of operations performed by Algorithm 2 is at most (n − 1)(#P − 1)
multiplications and additions in R . In Algorithm 3, we need to evaluate both P and F on α. To minimize
the number of non-scalar multiplications, we first compute α2, . . . , αn using n − 1 multiplications in Rext.
We can then compute Pα using #P − 1 scalar multiplications and #P − 1 additions, and Fα using n− 1 scalar
multiplications and n−2 additions. Then, the initialization of β and the for loop require n−1 multiplications,
2n−1 scalar multiplications and 2n−2 additions. This results in 2n−2 multiplications inRext, (3n−3+#P)
scalar multiplications in Rext, and (3n− 5+#P) additions in Rext.

In a different context where the aim is specifically to compute the evaluation with no restriction to the use
of polynomial arithmetic one can first compute the polynomial FG mod P and then evaluate it on α ∈ Rext.
Such method requires O (n log n log log n) operations inR for the polynomial multiplication F×G and division
by P and O (n) operations in Rext for the evaluation. Thus we see that if P verifies #P < log n log log n our
technique is more efficient.

3.3 Evaluation of a sparse modular product

In this section, we adapt and analyse the previous algorithms for polynomials F and G given in sparse rep-
resentation. Our results depend on the difference between the highest and the second highest exponents in
P. Recall that the gap parameter γ is a measure of this difference, defined by 1− γ = 1

n max{k < n : pk 6= 0}.
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In particular, the second highest exponent with nonzero coefficient in P is (1 − γ)n. Proposition 2.2 gives
a relation between the gap parameter and the sparsity of (FG)mod P. The potential growth of the sparsity
induced by the reduction modulo P explains the dependency of our results on the gap parameter.

As G is sparse, Equation (3) becomes

(FG mod P)(α) =
∑

i∈supp(G)

gi F
[i](α), (6)

with the same notations as in the previous section. The recurrence relation F [i+1] = X F [i] − f [i]n−1P still holds,
hence F [i+1](α) = αF [i](α)− f [i]n−1P(α) too. The goal now is to efficiently compute F [i](α) for all i ∈ supp(G)
only, not for all indices i. When γ is not close to zero, there are actually few indices i such that f [i]n−1 6= 0. In
fact, the number of such indices depends on #F, #P and γ. Let I = {i1, . . . , it} denote this set of indices. We
will prove in Lemma 3.8 that this set is of size O (#F#Pd1/γ−1e). We decide to first provide some arguments
and an explicit algorithm to prove this claim.

An important remark is that for any 0≤ j < n−1, in particular those verifying j ∈ supp(G), if we assume
i to be the largest index in I not larger than j, then Equation (5) implies

F [ j](α) = α j−i F [i](α). (7)

Therefore, the recurrence relation given in (4) becomes
¨

F [ik+1](α) = αik+1−ik−1(αF [ik](α)− f [ik]n−1 P(α)) for k ≥ 0

F [i1](α) = αi1 F [0](α)
(8)

To efficiently use Equations (7) and (8) to perform the evaluation, we need to provide a sparse variant of
Algorithm 2. It computes a sparse representation of the vector V = [ f [0]n−1, . . . , f [n−2]

n−1 ], that is the sparse vector
{(i, f [i]n−1) : f [i]n−1 6= 0}.

The idea of Algorithm 4 is to mimic Algorithm 2 in the sparse settings. For simplicity of the presentation,
we first consider to store V as a sparse vector as it is sufficient to our needs for proving our claims on the size
of the set I . We will show in Corollary 3.9 that we must require another structure to minimize the complexity
attached to data management.

The initial nonzero values in V are the nonzero coefficients of F = F [0], with V [i] = fn−1−i if n− i − 1 ∈
supp(F). Let now consider the external loop in Algorithm 2. Iteration i does not require any operation if
f [i]n−1 = 0 since Equation (5) reduces to f [i+1]

k = f [i]k−1 in that case. Therefore, we must loop over indices i such
that f [i]n−1 is nonzero. For such an index i, the same updates as in Step 4 of Algorithm 2 are required. For
k ∈ supp(P), i < k < n, we must perform the update V [i + n− k]← V [i + n− k]− pk f [i]n−1. If V [i + n− k]
is already nonzero, its value is already stored in V and must be updated. Otherwise, the new value −pk f [i]n−1
must be inserted in V with index i + n− k.

It remains to be able to only loop over the indices i such that f [i]n−1 6= 0. Let us assume that iteration i has
been performed since f [i]n−1 6= 0. The proof of Lemma 3.5 shows that V [i + 1] then contains f [i+1]

n−1 . Therefore
in the sparse setting, we know that iteration i + 1 has to be performed if, and only if, V [i + 1] 6= 0. More
generally, the next index to be considered is the index of the next nonzero entry of V after V [i]. Algorithm 4
below uses such method for computing all the indices i such that f [i]n−1 is nonzero.

Algorithm 4 SPARSELEADINGCOEFFICIENTS

Input: P, F ∈ R[X ] with deg(F)< deg(P) = n, and P monic
Output: The list {(i, f [i]n−1) : 0≤ i < n− 1, f [i]n−1 6= 0}, sorted by increasing values of i.

1: L← empty list
2: V ← {(i, fn−1−i) : n− 1− i ∈ supp(F)} (sparse vector)
3: while V is not empty do
4: (i, v)← extract the element of minimal index from V
5: if v 6= 0 then
6: Add (i, v) to the list L
7: for k ∈ supp(P) such that i < k < n do
8: V [i + n− k]← V [i + n− k]− pk v
9: return L

Lemma 3.8. Algorithm 4 is correct. If the polynomial P has a gap parameter γ, the algorithm uses
O (#F#Pd1/γ−1e) operations in R and additions of O (log n)-bits integers. In particular, there are at most
#F#Pd1/γ−1e indices i such that f [i]n−1 6= 0.
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Proof. As explained above, Algorithm 4 is an adaptation of Algorithm 2 to the sparse settings that only com-
putes those f [i]n−1 that are nonzero, using Equations (7) and (8) in place of Equation (4). Instead of considering
all the Fi[n − 1] one after the other it only considers those which are not zero. Let us call “iteration i” the
iteration in the while loop that extract a pair (i, v) from V . To prove the correctness, we prove by induction
that at the end of iteration i,

V = {( j, f [i+1]
n− j+i) : j > i, f [i+1]

n− j+i 6= 0} and L = {( j, f [ j]n−1) : j ≤ i, f [ j]n−1 6= 0}.

Before the loop (“iteration −1”) the property holds, that is L is empty and V contains exactly the pairs
( j, f [0]n− j−1) such that f [0]n− j−1 6= 0.

Let us assume that the property holds at then end of iteration `, and let (i, v) be the pair extracted at the
next iteration. We first prove that f [i]n−1 = v and f [ j]n−1 = 0 for ` < j < i. By minimality of i and induction
hypothesis, f [`+1]

n− j+` = 0 for ` < j < i at the end of iteration `. In particular, f [`+1]
n−1 = 0. By Equation (5),

f [`+2]
n− j+`+1 = f [`+1]

n− j+` − f [`+1]
n−1 pn− j+`+1 = 0. And an easy recurrence shows that f [ j]n−1 = 0 for ` < j < i. Now

this implies that f [i]n−1 = f [i−1]
n−2 = · · · = f [`+1]

n−i+`. Yet by induction hypothesis, at the end of iteration `, V
contains ( j, f [`+1]

n− j+i) if f [`+1]
n− j+i 6= 0. Therefore, if f [i]n−1 is nonzero, f [`+1]

n−i+` is nonzero too and V contains the pair
(i, f [`+1]

n−i+`) = (i, f [i]n−1). In other words, the value v extracted from V is indeed equal to f [i]n−1 and the property
holds for L after iteration i.

Now with the same argument, f [i]n−1− j+i = f [`+1]
n− j+` for ` < j < i. Right before iteration i, V contains then

the pairs ( j, f [i]n−1− j+i) for f [i]n−1− j+i 6= 0. After iteration i, such pairs are replaced by ( j, f [i]n−1− j+i − pn− j+i f [i]n−1),
that is ( j, f [i+1]

n− j+i) by Equation (5). And if f [i]n−1− j+i = 0 but pn− j+i 6= 0, a new pair ( j,−pn− j+i f [i]n−1) = ( j, f [i]n− j+i)
is inserted into V . Therefore, the property holds for V too after iteration i.

The second point is to count the number of operations. Since the while loop stops when V is empty, the
number of operations inR is at most twice the number of pairs that are inserted into V during the algorithm
and the same number of additions in Z are performed as the index of each pair is computed by two additions
of number at most n. We will classify the pairs by generations. Initially, V contains #F pairs which form
generation 0. New pairs can be inserted into V when a pair (i, v) is extracted. If (i, v) is a pair of generation
t, the new pairs inserted at iteration i belong to generation t + 1. At any iteration, at most #P − 1 pairs
are inserted into V . Therefore, there are at most #F(#P − 1) pairs of generation 1, #F(#P − 1)2 pairs of
generation 2, and in general #F(#P − 1)t pairs of generation t. Now we need to bound the number of
generations. Note the pairs of generation 0 have an index i between 0 and n− 1. But at generation 1, the
new pairs have index (i+n− k) for some k ∈ supp(P), k < n. There comes the gap into account: If P has gap
parameter γ, the largest exponent less than n in supp(P) is (1−γ)n by definition. Therefore, at generation 1,
all pairs have an index at least i+n−(1−γ)n≥ γn. At generation 2, all pairs have then an index at least 2γn.
At generation t, all pairs have an index at least tγn. Since indices are bounded by n−1, there cannot be any
pair of generation t if tγn ≥ n. In other words, the largest possible generation is t = d1/γ− 1e. Altogether,
the total number of pairs inserted into V is at most

d1/γ−1e
∑

t=0

#F(#P − 1)t = #F
(#P − 1)d1/γe − 1

#P − 2

if #P > 2, and is at most d1/γe#F if #P = 2. To simplify the exposition, we bound both of them by
#F#Pd1/γ−1e in the following. Note that of course, this number is also a bound on the number of pairs
that are extracted from V during the algorithm.

This has two consequences. First, the number of extracted pairs is a bound on the size of the list at then
end of the algorithm. Therefore there are at most O (#F#Pd1/γ−1e) nonzero values f [i]n−1. Second, this number
also bounds the total number of executions of Step 8, that is the total number of operations.

Corollary 3.9. All operations of INSERTION, REMOVAL, MINIMUM and SEARCH of pairs (i,ν) in the data structure
V within Algorithm 4 can be done with O (#F#Pd1/γ−1e log log n) bit operations.

Proof. By definition the size of the sparse vector V is at most n. Therefore, using a data structure for V of
type van Emde Boas tree with a universe of size n, ensures that any requested operations can be done with
O (log log n) bit operations, see [5, Chapter 20].

Remark 3.10. As the bit-complexity of all the operations in Z of Algorithm 4 is O (#F#Pd1/γ−1e log n) the cost
driven by the data structure of V is negligible.
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Our algorithm to compute the evaluation of the polynomial FG mod P on some point α, when F and G
are given in sparse representation, relies on Equations (6), (8) and (7). More precisely, we first compute each
F [i](α) for indices i such that f [i]n−1 6= 0 by means of Equation (8). From these values, we get each F [ j](α) for
j ∈ supp(G) by means of Equation (7). Finally, we deduce (FG mod P)(α) using Equation (6).

In Algorithm 5, all these computations are intertwined. The idea is to loop over all indices j such that
either f [ j]n−1 6= 0 or j ∈ supp(G). If f [ j]n−1 6= 0, we update the value F [ j](α) using Equation (8). If j ∈ supp(G),
we accumulate partial evaluations of (FG mod P)(α) using Equations (6) and (7).

Algorithm 5 SPARSEMODULAREVALUATION

Input: P, F and G ∈ R[X ], with deg(F), deg(G)< deg(P) = n, P monic and α ∈ Rext.
Output: (FG mod P)(α)

1: V ← {(i, f [i]n−1) : 1≤ i < n− 1, f [i]n−1 6= 0}, using a call to SPARSELEADINGCOEFFICIENTS(P, F)
2: if f [0]n−1 = 0 then insert (0, 0) in V

3: Pα← P(α)
4: Fα← F(α)
5: β ← Fαg0 . β ← 0 if 0 /∈ supp(G)
6: i← 0
7: for j ∈ supp(V )∪ supp(G) \ {0}, by increasing order do
8: if j ∈ supp(V ) then
9: Fα← α j−i−1(αFα − V [i]Pα) . Equation (8)

10: i← j
11: if j ∈ supp(G) then
12: β ← β +α j−i Fαg j . Equations (6) and (7)

13: return β

Theorem 3.11. Algorithm 5 is correct. It uses O (#F#Pd
1
γ−1e) operations in R , O ((#F#Pd

1
γ−1e + #G) log n)

operations in Rext.

Proof. We prove that at the end of iteration j, Fα = F [ j](α) if j ∈ supp(F) and β =
∑

i gi F
[i](α) where the

sum ranges over indices i ∈ supp(G) ∩ {0, . . . , j}. The property is satisfied after iteration 0 (before entering
the loop) since Fα = F [0](α) and β = Fαg0 = g0F [0](α). Let us assume that the property holds before entering
iteration j. Index i denotes the previous index that belongs to supp(F). Therefore, if j ∈ supp(F), Equation (8)
ensures that Fα has the right value after iteration j since V [i] = f [i]n−1. And Equations (6) and (7) justify that
β also has the right value if j ∈ supp(G).

The evaluations P(α) and F(α) require O (#P log n) and O (#F log n) operations in Rext respectively.
Steps 9 and 12 each require O (log n) operations in Rext to compute powers of α and O (1) additions with
integers of size O (log n) to compute the appropriate exponent. These steps are executed O (#V + #G)
times. Since #V = O (#F#Pd1/γ−1e) this gives a total of O ((#F#Pd

1
γ−1e +#G) log n) operations in Rext plus

O ((#F#Pd
1
γ−1e +#G) log n) bit operations for the integer additions. Since we can easily assume that one op-

eration in Rext will cost more than one bit operation, the latter complexity is dominated by the computation
part in Rext. The cost of Step 1 is given by Lemma 3.8

. We can still use van Edme Boas tree to iterate over the union of the supports of V and G at Step 7 with
a total of O ((#F#Pd

1
γ−1e+#G) log log n) bit operations which is less than the number bit operations required

by the additions in Z and thus negligible.

Obviously, since polynomial multiplication over integral domains is commutative, the roles of F and G
can be exchanged in Algorithm 5. In particular if #G < #F , this exchange decreases the complexity in
Theorem 3.11. In other words, the statement remains valid if #F is replaced by min(#F, #G) and #G by
max(#F, #G). The same remark applies to subsequent results.

Remark 3.12. As in Corollary 3.4, we can decrease the number of operations over Rext by using simultaneous
exponentiation on α. This results in log n+O ((#F#Pd1/γ−1e +#G) log n/ log log n) operations in Rext.

If the gap parameter γ is close to 1
n , the polynomial FG mod P is in general a dense polynomial even if FG

is sparse and the dense modular evaluation will be more appropriate. On the contrary, FG mod P remains
sparse if γ is close to 1, in particular if γ≥ 1

2 .

Remark 3.13. If γ≥ 1
2 , the evaluation requires O ((#F#P +#G) log n) operations in Rext.

13



Remark 3.14. The factor #F#Pd
1
γ−1e+#G in the complexity may be larger than the actual sparsity of FG mod P.

For instance, the sparsity can be 0 if P divides FG. Yet, it is smaller than the general bound #F#G(#P − 1)d
1
γ e

given by Proposition 2.2. Thus in general it is more efficient to use our method than to directly evaluate FG mod P
if the polynomial is known.

4 Verification of polynomial modular product

This section is devoted to the verification of polynomial modular product. That is, given F , G, H and P, such
that deg(F), deg(G), deg(H)< deg(P) = n, we want to test whether H = FG mod P. The idea is classical, that
is to evaluate the identity at a random point. Contrary to the more straightforward verification of polynomial
multiplication, we cannot do such evaluation directly since we do not know the polynomial Q = (FG −
(FG mod P))/P. As seen in the previous section, we provide new algorithms to do such evaluation efficiently
without reverting to the computation of Q. We remind that P is always taken monic. Note that this is a mild
assumption since (FG)mod P = (FG)mod (λP) for any invertible constant λ.

In the following, all algorithms are analysed both when the polynomials F , G and H are dense and when
they are sparse. On the other hand, P is always considered as a sparse polynomial. We shall recall that γ
denotes the gap parameter of P, defined by 1− γ= deg(P − X n), and it serves to control the densification of
the modular reduction.

We first begin in Section 4.1 with an abstract case where the polynomials are defined over an integral
domain. There, we analyse the algorithms by counting the number of ring operations. In Sections 4.2 and 4.3
we discuss some adaptations of the algorithm to the case of integers and small finite fields in order to provide
finer analysis in the bit complexity model.

4.1 Modular product verification in R[X ]
Algorithm 6 depicted below is straightforward from Theorems 3.6 or 3.11. We mainly provide his description
to serve as a starting point for its adaptations in the next sections. The algorithm covers both the dense and
the sparse case. The only difference is at Step 1.

Algorithm 6 MODULARVERIFICATION

Input: F , G, H and P ∈ R[X ], P monic of degree n and F , G and H of degrees < n ; 0< ε < 1.
Output: True if H = FG mod P, False with probability at least 1− ε otherwise.

1: if F , G and H are given in sparse representation then
2: if #H > #F#G(#P − 1)d1/γe then return False . Proposition 2.2
3: α← random element from a subset E of R , of size ≥ 1

ε (n− 1)
4: β ← (FG mod P)(α) . using Theorem 3.6 or 3.11
5: return True if β = H(α), False otherwise

Theorem 4.1. If R has at least 1
ε (n− 1) elements, Algorithm 6 is correct.

If F , G and H are dense, the algorithm uses O (#Pn) operations in R .
If F , G and H are sparse, the algorithm uses O ((#F#Pd

1
γ−1e +#G +#H) log n) operations in R .

Proof. Step 1 dismisses a trivial mistake if the polynomials are sparse. If H = (FG)mod P, H(α) = (FG mod
P)(α) for any α and the algorithm always returns True. Otherwise, let ∆ = H − (FG)mod P. Then ∆ has
degree < n, hence has at most n − 1 roots since it is nonzero. Therefore, the probability that α, randomly
chosen in E , is a root of ∆ is at most (n − 1)/ 1

ε (n − 1) = ε. The algorithm returns True in that case with
probability at most ε.

The complexity is given by the cost of a single modular product evaluation that is stated in Theorem 3.6
for the dense case and in Theorem 3.11 for the sparse case.

If R is not large enough, the algorithm fails and it is customary to revert to an extension ring Rext to
perform the evaluation in a larger set. Using Theorems 3.6 and 3.11, we get the following extension when
the polynomials are evaluated on a random point of Rext rather than R .

Corollary 4.2. Let R be an integral domain with less than 1
ε (n− 1) elements, and Rext an extension ring of R

with at least 1
ε (n−1) elements. Then Algorithm 6 can be adapted by choosing a random element fromRext, with

the same probability of success. It uses O (n#P) operations in R and O (n) operations in Rext if F , G and H are
dense, and O ((#F#Pd

1
γ−1e +#G +#H) log n) operations in Rext if they are sparse.
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In the dense case, Algorithm 6 uses an optimal number of operations in R as soon as #P is constant.
It is always faster than a modular product when #Pn < M(n) that is when #P < log(n) log log(n) for a
general ring R . In the sparse case, Theorem 4.1 is not linear in the input size. Indeed, #P is raised to a
potentially large power d 1

γ − 1e and more importantly there is a factor log n in the number of operations
in R while the input has only (#F + #G + #H) elements of R . Nevertheless, the efficiency of verification
has to be compared with the cost of computing FG mod P. We assume the latter to be done with a sparse
multiplication followed by a sparse division with P. This hypothesis seems reasonable as no work have been
done to optimize such operation yet. Letting aside the division, the number of operations in R for sparse
multiplication could be either O (#F#G) with naive approach or Õ (#F +#G +#(FG)) using [9]. Assuming
#P to be constant, our verification has a complexity of O ((#F +#G+#H) log n) which is always faster when
#(FG) = o(#F#G/ log n). If we assume that #(FG) = O (#F#G), our verification will be faster at least when
n= 2O (#F+#G) and #P constant. Depending on the cost of the division, our algorithm could be faster in more
cases.

Of course, these conditions are not very restrictive. We use Algorithm 6 in Section 5 to verify classical poly-
nomial multiplication, where P will be a binomial of degree either logarithmic in the sparsity or polynomial
in the input degree.

Yet the efficiency of Algorithm 6 depends heavily on the integral domain R . Indeed the complexity of
polynomial multiplication in R[X ] can be faster than O (n log n log log n) operations in R [13, 15]. Further-
more, if R is small, one operation in Rext corresponds to a non-constant number of operations in R . In the
following sections we consider polynomials over the integers or finite fields and we provide thorough analyses
together with adapted versions when necessary.

4.2 Modular product verification in Z[X ]
If the polynomials are defined over Z, there is no difficulty with the size of E in Algorithm 6. However we
must prevent the integers growth during the evaluation. It is very classical to choose a random prime q and
to map the whole computation into Fq. To do so, we must ensure two properties on the prime q. First, q
must be large enough to use the algorithm, that is at least 1

ε (n−1). Second, if H 6= (FG)mod P, we need this
inequality to hold modulo q as well. For this second property, we define∆= H− (FG)mod P. To ensure that
∆ does not vanish modulo q, we need that at least one coefficient of ∆ is nonzero modulo q. We then need
to bound its coefficients to assess the latter fact.

Proposition 4.3. The coefficients of ∆ are bounded by ‖H‖∞ +min(#F, #G)‖F‖∞‖G‖∞(#P‖P‖∞)
d 1
γ e.

Proof. The coefficient of∆ are bounded by ‖H‖∞+‖FG mod P‖∞. The bound follows from Proposition 2.2,
with Q = FG and ‖Q‖∞ ≤min(#F, #G)‖F‖∞‖G‖∞ by Lemma 2.1.

Using this bound and Proposition 2.6 we can determine an appropriate prime q to adapt the Algorithm 6
to the integer case. This is done in the Algorithm MODULARVERIFICATIONOVERZ below.

Algorithm 7 MODULARVERIFICATIONOVERZ
Input: F , G, H and P ∈ Z[X ], P monic of degree n and F , G and H of degrees < n ; 0< ε < 1.
Output: True if H = FG mod P, False with probability at least 1− ε otherwise.

1: ∆∞← ‖H‖∞ +min(#F, #G)‖F‖∞‖G‖∞(#P‖P‖∞)
d 1
γ e

2: q← RANDOMPRIME(λ, ε2 ) where λ=max(21, 2
εn, 20

3ε ln∆∞)
3: (Fq, Gq, Hq, Pq)← (F mod q, G mod q, H mod q, P mod q)
4: return MODULARVERIFICATION(Fq, Gq, Hq, Pq, ε2 )

Theorem 4.4. Algorithm 7 is correct. If C = max(‖P‖∞,‖F‖∞,‖G‖∞,‖H‖∞) and T = max(#F,#G, #H),
the algorithm requires O (log2( n

ε log C) log log( n
ε log C) log 1

ε I(log( n
ε log C))) bit operations to get a prime number,

plus

• O ((#Pn+ n log C
log( n

ε log C) )I(log( n
ε log C))) bit operations if F , G and H are dense, or

• O ((T#Pd
1
γ−1e log n+ (T +#P) log C

log( n
ε log C) )I(log( n

ε log C))) bit operations if F , G and H are sparse.

Proof. To ensure that MODULARVERIFICATION works properly, we need q to be at least 2
ε (n− 1). This is the

case since λ ≥ 2
εn. The algorithm always returns the correct answer when H = (FG)mod P. Otherwise,
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it may incorrectly return True in two cases: Either Hq = (FqGq)mod Pq while the equality does not hold
over Z, or MODULARVERIFICATION incorrectly returns True. Both situations occur with probability at most
ε
2 . Indeed, by Proposition 4.3, ∆∞ is always a bound on ‖∆‖∞ where ∆ = H − (FG)mod P. Therefore,
Proposition 2.6 shows that with probability at least ε2 , the number q chosen at Step 2 is a prime number such
that ∆mod q 6= 0. The error probability of Algorithm 7 is thus at most ε.

Let us now analyse the complexity of the algorithm. As a first step, we shall express q in terms of the input
size. Since #P, #F , #G ≤ n,∆∞ = O (n

1+d 1
γ eC2+d 1

γ e). Thus, ln∆∞ = O (
1
γ (log n+log C)) = O (n(log n+log C))

since 1
γ ≤ n. This implies q = O ( n

ε (log n+ log C)) and log q = O (log( n
ε log C)).

By Proposition 2.4, Step 2 costs O (log 1
ε log2 q log log qI(log q)) bit operations, that is

O
�

log 1
ε log2( n

ε log C) log log( n
ε log C)I(log( n

ε log C))
�

. (9)

Step 3 requires O (n log C
log q I(log q)) bit operations in the dense case, and O ((T +#P) log C

log q I(log q)) bit operations
in the sparse case. By Theorem 4.4, Step 4 requires O (#PnI(log q)) bit operations in the dense case and
O (T#Pd

1
γ−1e log nI(log q)) bit operations in the sparse case. Adding the complexities of all these steps leads

to the claimed bit complexity.

Remark 4.5. In most cases, the cost of finding a prime number is negligible in comparison to the rest of the
algorithm. In the dense case, it is negligible as long as ε = 1/nO (1). In the sparse case, it is negligible when
the degree n is not too large compared to the other input parameters. More precisely, this is the case when
n
ε = ((T +#P) log C)O (1).

When computing a multiplication followed by a modular reduction with polynomials in Z[X ], the size
of the coefficients can grow significantly as shown by the bound on ‖FG mod P‖∞ given in the proof of
Proposition 4.3. At the opposite, our verification algorithm is done with bounded integers of bit length
O (log( n

ε log C)). This is logarithmic in the input size in dense representation and linear in the sparse one.
Our verification therefore avoids paying the coefficient growth, contrary to the direct computation. Taking
this growth into account to compare our verification algorithm with the computation seems hard. We only
detail the cases where our algorithm is already faster even without considering the coefficient growth. We
shall mention that for sparse polynomial, #(FG mod P)might be smaller that #H. In our analysis, we assume
for simplicity that both have approximately the same size.

Remark 4.6. For ε= 1/nO (1), Algorithm 7 is faster than the polynomial modular product

(i) when the polynomials are dense and #P <min( log n
log log n , log C

log log log C );

(ii) when the polynomials are sparse and n
ε = ((T +#P) log C)O (1).

Proof. We assume ε = 1/nO (1). In particular, log n
ε = O (log n). To simplify the analysis, we place ourselves

in the case of a negligible cost for finding the prime q, as described in Remark 4.5. In the sparse case, this
implies that n

ε must be polynomial in (T + #P) log C . Therefore log n < min(T,#P) and I(log(n log C)) =
I(log log C). This makes our verification faster than computing the modular product since the latter requires
at least #(FG mod P) = O (T 2#Pd

1
γ e) operations on integers of bit length log C .

For the dense case, we compare to the cost of multiplying two polynomials of degree n and coefficients
bounded by C . As seen in the introduction, this reduces to integer multiplication with Kronecker substitution
and it costs I(n(log n+ log C)) = O (n(log2 n+ log n log C + log C log log C) bit operations. By Theorem 4.4 our
verification needs O (#PnI(log n+ log log C) + n log C log(log n+ log log C)) bit operations. The second term
is dominated by the complexity of multiplying the polynomials when ε= 1/nO (1). The first term is

O (#Pn((log n+ log log C) log log n+ (log n+ log log C) log log log C)).

When #P <min( log n
log log n , log C

log log log C ), this term is bounded by O (n(log2 n+ log n log C + log C log log C)), that is
the complexity of computing the product.

4.3 Modular product verification in Fq[X ]

The situation over a finite field Fq is different since there is no growth to prevent. When q is large enough,
Theorem 4.1 applies directly. Otherwise, one can revert to computing in a sufficiently large extension field of
Fq, where Corollary 4.2 can be applied. We first give the precise complexity bounds for these two cases.
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Corollary 4.7. Let F, G, H and P ∈ Fq[X ] as in Algorithm 6. One can test whether H = (FG)mod P using
Algorithm 6, with O (log 1

ε (logq
n
ε )

2M(logq
n
ε )(log q+log logq

n
ε )) operations in Fq to get an irreducible polynomial

of degree O (logq
n
ε ) , plus

• O (n#P + nM(logq
n
ε )) operations in Fq if F , G and H are dense, or

• O (T#Pd
1
γ−1e log nM(logq

n
ε )) operations in Fq if F , G and H are sparse with at most T nonzero monomials.

Proof. Let us assume that q < 1
ε (n− 1) otherwise Theorem 4.1 applies straightforwardly. In that case, Corol-

lary 4.2 requires to choose a random point in an extension Fqd of Fq with at least 1
ε (n− 1) elements. More

precisely, we use Proposition 2.8 to produce with probability 1− ε2 an irreducible polynomial of degree d over
Fq, where d is the smallest integer such that qd ≥ 2

ε (n − 1). The algorithm may be incorrect if either the
polynomial used to defined Fqd fails to be irreducible, or if the Algorithm 6 fails. If we choose α at random in
Fqd , the error probability of Algorithm 6 is at most ε2 . This gives a total probability of error of at most ε.

By definition, the degree of the extension is d = O (logq
n
ε ). The cost of generating the irreducible poly-

nomial of degree d is O (log 1
εd2M(d)(log q+ log d)) by Proposition 2.8. Using Corollary 4.2 and the fact that

an operation in Fqd costs M(d) operations in Fq, we obtain the claimed costs.

Remark 4.8. If ε = 1/nO (1), the cost of getting an irreducible polynomial is negligible in the dense case. Then
the algorithm requires O (#Pn + nM(logq n)) operations in Fq. If we add the degree constraint log n = o(T ),
the cost of getting an irreducible polynomials is also negligible in the sparse case and the algorithm requires
O (T#Pd

1
γ−1e log nM(logq n)) operations in Fq.

As #(FG mod P) is bounded by T 2#Pd
1
γ e and computing FG mod P requires at least one operation in Fq

for each monomial, this remark gives directly a case where the verification is faster than the modular product
in general. Moreover, naive algorithms can be used to perform products in the extension of Fq.

Remark 4.9. When ε = 1/nO (1) and n = TO (1), Algorithm 6 in the sparse case is in general faster than the
modular multiplication and requires Õ (T#Pd

1
γ−1e) bit operations if q < n

ε .

In the dense case, we can see from Remark 4.8 that the verification complexity might in fact be larger than
the cost of computing the modular product FG mod P. Indeed, assuming Mq(n) = O (n log q(log n+log log q))
bit operations [15], we have Mq(logq

n
ε ) = O (log n

ε (log log n
ε+log log q)). While the cost of computing FG mod

P uses Mq(n) bit operations, our verification requires O (#Pn log q log log q+ n log n
ε (log log n

ε + log log q)) bit
operations. When #P is not a constant, the latter is always larger. The following remark precise when we
can expect a positive result.

Remark 4.10. Assuming #P to be constant and ε = 1/nO (1), Algorithm 6 in the dense case with R = Fq is
asymptotically faster than the modular multiplication when

(i) log n
ε < q < n

ε , since modular multiplication costs O (n log q log n) bit operations while verification, which
does need an extension, is O (n log n

ε log log n
ε ).

(ii) n
ε < q < 2

n
ε , since modular multiplication costs O (n log q log n) bit operations while verification, which

does not use an extension, is O (n log q log log q);

If the field is very large q > 2
n
ε , Algorithm 6 is asymptotically as fast as the modular multiplication. The

dominant factor in both complexity is O (n log q log log q).

We shall mention that the verification cost in (i) of Remark 4.10 assumes the use of fast multiplication of
polynomials in order to check fast multiplication of polynomial of degree O (n). Even though this dependency
is not a problem in theory it might not be satisfactory in practice. One solution would be to use a naive
polynomial multiplication for the extension field arithmetic but this further tightens the superiority of the
verification.

Remark 4.11. Assuming that extension field arithmetic is done naively using quadratic polynomial multiplica-
tion, Algorithm 6 remains faster than modular multiplication only when n1/3 < q in the dense case.

We now propose an novel method that enables us to improve all the dense cases where an extension field is
necessary, while not relying on any polynomial arithmetic. More precisely, we show that fast verification does
exist when q < log n, which is of great interest for the field F2. It is based on the evaluation of polynomials
on matrices rather than scalars, combined with Freivalds algorithm for verifying matrix multiplication [7].
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Indeed, choosing α from an extension field inherently leads to depend on polynomial multiplication.
Instead of picking a random point that is probably not a root of ∆ = H − (FG)mod P when ∆ 6= 0, we pick
a polynomial R ∈ Fq[X ] of degree k < n that is probably not a divisor of ∆ 6= 0. To test whether R divides ∆,
we evaluate ∆ on the companion matrix CR of R, defined by

CR =













0 0 · · · 0 −r0
1 0 · · · 0 −r1
0 1 · · · 0 −r2
...

...
. . .

...
...

0 0 · · · 1 −rk













where R=
∑k

i=0 riX
i . This strategy relies on the fact that R is the minimal polynomial of its companion matrix.

Therefore, R(CR) = 0 and any polynomial ∆ such that ∆(CR) = 0 must be a multiple of R. In other words,
R divides ∆ if and only if ∆(CR) = 0. We will show that taking R irreducible over Fq of degree k = O (log n)
makes this approach faster then the one using extension field when ε is constant. Furthermore, it will extend
the possibility to have fast verification for any fields, whatever the size of the polynomials.

To check whether ∆(CR) = 0, we need to evaluate H and (FG)mod P on CR, and to verify that the
evaluations match. Of course, one cannot directly evaluate those polynomials on CR as it would cost O (nkω)
operations in Fq for the dense case, where ω < 2.3729 is the best exponent for matrix multiplication [21].
Since k = O (log n), this would not give any improvement to Remark 4.10.

Instead, we rely on the so-called Freivald’s technique to verify matrix multiplication [7]. The idea is that
the matrix product C = A× B ∈ Rk×k can be verified by asserting that uC = (uA) × B for a random vector
u ∈ {0, 1}n with a probability of error of 1/2. To assert that two polynomials evaluations on the matrix CR
match, it is sufficient to verify that their projection by the vector u are equal. Given a degree-n polynomials
H ∈ Fq[X ], one can compute uH(CR) in O (nk) operation in Fq using Horner evaluation:

uH(CR) = u
n
∑

i=0

hiCR
i =

�

n
∑

i=1

hiuCR
i−1

�

CR + uh0. (10)

Since matrix-vector product with CR only costs O (k) operations in Fq, and Horner procedure only uses n of
those matrix-vector products, the cost is clear.

Remark 4.12. It is sufficient to replace the evaluation of F(α) and P(α) by uF(CR) and uP(CR) in Algorithm 3
(MODULAREVALUATION) to reach a complexity of O (n(#P+deg(R))) operations in Fq for computing u(FG mod
P)(CR) in the dense case. More informally, it is sufficient to say that any of the operations in Rext have now the
cost of one matrix-vector product with CR.

Theorem 4.13. Let F, G, H and P ∈ Fq[X ], as in Algorithm 6. We can check whether H = FG mod P in
O (#Pn+ n logq n log 1

ε ) operations in Fq with a probability of error at most ε if H 6= FG.

Proof. Let 0< ε1 <
1
4 be a fixed probability. The algorithm needs two steps. First it computes with probability

at least 1− 1
ε1

an irreducible polynomial R of degree d = dlogq
2n
ε1
e using Proposition 2.8. Second, it computes

uH(CR) and u(FG mod P)(CR) for some random vector u ∈ {0, 1}d . If both evaluations are distinct, the
algorithm returns False. Otherwise, it repeats O (log 1

ε ) these two steps until one of the repetition fails. If this
is the case it return false, otherwise the algorithm return true.

If H = (FG)mod P, the algorithm always returns True. Let us assume that H 6= (FG)mod P, and let
∆= H−(FG)mod P. For the algorithm to return True, each repetition must ensure that uH(CR) = u(FG mod
P)(CR). This may happen if either R divides ∆, whence H(CR) = (FG mod P)(CR), or R does not divide ∆
but uH(CR) = u(FG mod P)(CR). Since there are at least qd/2d irreducible polynomials of degree d in Fq by
Proposition 2.7 and at most n/d of them divide ∆, the probability that R divides ∆ is at most 2n/qd ≤ ε1
provided R is irreducible. Taking into account the probability that R is not irreducible, the probability that R
divides ∆ is at most 2ε1. Then, using Freivalds standard argument, if R does not divide ∆, the probability
u∆(CR) = 0 is at most 1

2 . Altogether, the probability that one iteration returns True is at most 1
2 + 2ε1 < 1.

Therefore, the probability that log 1
ε/ log( 1

2 + 2ε1) independent iterations all return True is at most ε.
Let us now analyse the complexity of the algorithm. Since ε1 is a constant, the second step uses O (#Pn+

n logq n) operations in Fq using Remark 4.12. The first step is negligible, even if naive polynomial arithmetic
is used. Note that in this complexity, #Pn is the cost of Algorithm 2 (LEADINGCOEFFICIENTS). Since it is
deterministic and only depends on P and F , it can be called only once rather than at each iteration.

We then get the complexity O (#Pn+ n logq n log 1
ε ).
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Remark 4.14. Note that compared to using evaluation at α in an extension field, no operation depends on ε. If
ε is fixed, the new method replaces a factor M(logq n) in the complexity by logq n. Moreover our new approach
requires only simple computations: additions of vectors, multiplication of a vector by a scalar and matrix-vector
product with a companion matrix. Furthermore, when #P and ε are constants, the verification is always faster
than the modular multiplication, whatever the size of q.

This new method still requires some polynomial arithmetic even if only naive polynomial multiplication
is used. This is because the algorithm called to provide the degree-d polynomial R relies on polynomial
products and GCDs to ensure that R is probably irreducible. In order to remove the dependency to polynomial
arithmetic, we can just choose a random monic degree-d polynomial R and compute the evaluation on CR
even if R is not irreducible. This implies to take several random polynomials R to reach the target probability
ε.

Corollary 4.15. Let F, G, H and P ∈ Fq[X ], as in Algorithm 6. Without using any polynomial multiplication
we can check whether H = FG mod P in O (#Pn+ n(logq n)2 log 1

ε ) operations in Fq with a probability of error
at most ε if H 6= FG.

Proof. In the proof of Theorem 4.13, we replace one evaluation on CR with R irreducible with probability at
least 1−ε1 by few evaluations on several CR with R random monic polynomial of degree d. As the probability
of a random monic polynomial R to be irreducible is at least 1

2d by Proposition 2.7, we need to generate
O (d log 1

ε1
) random polynomials R to reach a probability at least 1−ε1 that at least one of them is irreducible.

Thus the evaluation part of the algorithm is repeated O (d) = O (logq n) times since ε1 is constant.

Even if this new approach does not improve the complexity from evaluation at α in an extension field
using naive polynomial multiplication, it allows to remove completely the dependency to any polynomial
multiplication algorithm While this result might not being seen useful as first sight, it will be used in Sec-
tion 5.1 to provide efficient verification for polynomial multiplication. Indeed, in that case we will need to
use verification with P being of degree smaller than the input degree.

This new method using companion matrix also works in the sparse case. Indeed, any power αt in Al-
gorithm 5 (SPARSEMODULAREVALUATION) are now replaced with C t

R. However, only few powers C t
R with

1 < t < n are relevant and we cannot compute all of them as in the dense case. This implies that com-
puting u(FG mod P)(CR) instead of (FG mod P)(CR) is useless in that case. Indeed, using fast exponenti-
ation together with the structure of the powers of companion matrices [12] already yield a complexity of
O ((#F#Pd

1
γ−1e+#G) log n log2

q n) operations in Fq, and we cannot hope to lower this down by some random
vector projection. In that case, using Freivald technique is useless and we have a better probability of success.
Choosing O (log n

ε log 1
ε ) polynomials R at random, at least one of them is irreducible and does not divide

∆ = H − FG mod P with probability 1 − ε. This leads to an algorithm which does not use any polynomial
product in the sparse case too. Even though it is asymptotically not as fast as the verification in an extension
field where naive polynomial arithmetic is used, it is still quasi-linear.

Corollary 4.16. Let P ∈ Fq[X ] be monic of degree n and F, G, H ∈ Fq[X ] of degree less than n and sparsity at
most T , and 0< ε < 1. Using a direct evaluation on a companion matrix, we can check whether H = FG mod P
with a probability of error at most ε if H 6= FG in O (T#Pd

1
γ−1e log n(logq

n
ε )

3 log 1
ε ) operations in Fq, without

performing any polynomial product.

5 Polynomial product verification

In this section we study the simpler problem of verifying a classical polynomial multiplication. Given three
polynomials F , G and H ∈ R[X ] of respective degrees n, n and 2n, the classical idea to verify H = FG simply
falls down to testing H(α) = F(α)G(α) for some random α in a large enough set S . As mentioned in the
introduction, this strategy may or may not have an optimal bit complexity, depending on the context. Here
we are concerned with two difficulties that arise in either the dense or the sparse cases.

If the polynomials are dense, the verification through evaluation requires a number of operations in S
that is linear in the input polynomials degree n. When R has more than n elements, taking S ⊂ R is
sufficient to use evaluation. However, multiplication in R has not a linear bit complexity and best known
results remain quasi-linear [2, 15, 14]. The evaluation therefore leads to a quasi-linear bit complexity of
O (nI(log n)) = O (n log n log log n). WhenR is too small, for instance with a small finite field, S is classically
taken as a field extension of R , large enough to make it unlikely that α is a root of H − FG. Therefore, each
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operation in S corresponds to an operation overR[X ] with non-negligible degree, meaning that the number
of operations in R is no more linear in the inputs degree n. As mentioned in the introduction, Kaminski’s
approach [20] circumvents the later problem by replacing the evaluation with a computation inR[X ]/(X i−1)
for random integer i in a prescribed range. There, his algorithm is able to verify dense polynomial products
with a linear number of operations in R whatever the ring size. However, the same difficulty as for large
rings may arise. Since operations in R do not have an linear bit complexity, unless say R = F2, this is not
always sufficient to reach an optimal bit complexity for the verification. In Section 5.1, we present Kaminski’s
approach [20] and we provide a thorough analysis in the bit complexity model. In particular, we show that
it is possible to get optimal verification in the bit complexity model for any polynomial in Z[X ] and for some
polynomials in Fq[X ], depending on the relation between q and n.

If the polynomials F , G and H are sparse with at most T nonzero coefficients, the evaluation requires a
number of operations in S that is O (T log n). However the input bit size is given by the size of the exponents
plus the size of the coefficients, that is O (T + log n) bits. Since S has to be of size at least O (log n), the
bit complexity of evaluation would be O (T log2 n) which is not even quasi-linear. In Section 5.2 we develop
a novel method, already appearing in [9], to verify sparse polynomial multiplication with a quasi-linear bit
complexity of Õ (T + log n).

5.1 Dense polynomial product verification

In [20], Kaminski describes an algorithm to verify a polynomial product H = FG ∈ R[X ] using a linear
number of operations inR , regardless of its size. His method chooses at random a polynomial P that probably
do not divides∆= H−FG if∆ 6= 0. Then he verifies H = FG ∈ R[X ]/P using fast polynomial multiplication.
Surprisingly, taking P of degree o(n) in his algorithm enables to reach a linear number of operations inR . In
the following we will often use δ > 1.78107 to be some constant value related to Euler’s constant.

5.1.1 Kaminski’s algorithm

The first step is to randomly select a polynomial from a fixed set, such that it most probably does not divide
∆ = H − FG if ∆ 6= 0. A standard approach could be to consider irreducible polynomials. This would be the
direct generalization of the evaluation method. However, Kaminski considers polynomials that are instead of
the form X i − 1, for some integers i > 0. These polynomials have two advantages: Reduction modulo X i − 1
has a linear cost and all their divisors are cyclotomic polynomials so their least common multiple (lcm) has
specific properties.

Proposition 5.1 ([20]). For any integer set I ⊂ N,
∏

i∈I Φi divides lcm{X i − 1 : i ∈ I}, where Φi is the i-th
cyclotomic polynomial in R[X ].

Kaminski also gives a lower bound on the degree of lcm{X i − 1 : i ∈ I}, depending in I . In particular the
proposition implies that a nonzero polynomial, divisible by k polynomials, of the form X i − 1, cannot have a
too small degree. In the converse direction, a nonzero polynomial ∆ of degree at most 2n cannot have too
many divisors of the form X i − 1. This is the content of Kaminski’s main theorem.

Theorem 5.2 ([20]). Let ∆ be a nonzero polynomial in R[X ] of degree ≤ 2n and 0 < e < 1
2 . Let k =

d2δne ln ln(n1−e)e. At most k− 1 polynomials in the set {X i − 1|n1−e ≤ i < 2n1−e} divide ∆.

Kaminski’s approach is then to choose a random integer i ∈ [n1−e, 2n1−e[, to reduce the input polynomials
modulo X i − 1 and to assert the equality in R[X ]/(X i − 1). We provide in Algorithm KAMINSKIVERIFICATION

a more precise description of this approach.

Algorithm 8 KAMINSKIVERIFICATION

Input: F, G, H ∈ R[X ] of degree n, n and 2n; and 0< e < 1
2 .

Output: True if H = FG, False with probability at least 1− (d2δne ln ln(n1−e)e − 1)/n1−e otherwise.
1: i← random integer in [n1−e, 2n1−e[
2: Fi , Gi , Hi ← F mod X i − 1, G mod X i − 1, H mod X i − 1
3: M ← FiGi . Using a fast multiplication algorithm
4: Mi ← M mod X i − 1
5: return Mi = Hi
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Theorem 5.3 ([20]). Let F, G and H ∈ R[X ] of degree at most n, n and 2n, 0 < e < 1
2 and an integer k as

in Theorem 5.2. Algorithm 8 uses O (n) operations in R , and its failure probability is at most (k − 1)/n1−e if
H 6= FG.

Remark 5.4. To be more precise, Algorithm 8 requires O (n) additions in R at Step 2 to compute the first three
reductions modulo X i − 1, M(n1−e) operations in R to compute the product at Step 3, and O (n1−e) additions in
R to compute the last reduction.

One shall remark that the product in Step 3 must be computed with a subquadratic algorithm such that
M(n1−e) = O (n) since e < 1/2. If the parameter e is taken close enough to 1/2, Karatsuba’s algorithm suffices
to reach a linear number of operations. The failure probability is O (log log n/n1−2e), whence the need to have
e < 1/2. We can bound this probability by O ( 1

ne′ ) for any positive integer e′ < 1 − 2e. In order to reach a
probability ε of error, the algorithm should be repeated O (logn

1
ε ) times. Note that this number of rounds is

constant if ε is taken as 1/nO (1).
The drawback of such approach is to crucially rely on a somewhat fast multiplication algorithm, and to

perform multiplications of polynomials of degrees more than
p

n. This means that optimal verification of the
product of two degree-n polynomials uses a product of polynomials of degrees close to n. In some contexts,
such as verifying an implementation, relying on the same problem is definitively problematic.

We note that all steps starting from Step 3 aim to verify Hi = FiGi mod X i−1 deterministically. It is easy to
see that those steps can be replaced by our probabilistic modular product verification developed in Section 4.
For polynomials over the integers or finite fields, this method does not require any polynomial multiplications
at all.

Corollary 5.5. If R = Z or a finite field, and F, G and H ∈ R[X ] of degrees n, n and 2n. We can check
whether H = FG with a probability of failure at most ε if H 6= FG. This requires O (n logn

1
ε ) additions inR plus

o(n logn
1
ε ) operations in R , without reverting to any polynomial multiplication. In particular, the algorithm

uses an optimal number of operations in R when ε= 1/nO (1).

Proof. We replace the last three steps of Algorithm 8 by a modular product verification, with a probability of
failure at most 1/n. Over Z or large finite fields, the complexity of this part is given by the dense version of
Theorem 4.1 with #P = 2 and degree i = O (n1−e). Over small finite fields, we rely instead on Corollary 4.15.
In both cases, one can achieve a failure probability at most 1/n with at most O (log n) repetitions of the
algorithm, for a total number of operations in R that remains o(n).

The total probability of failure of the modified algorithm is then 1/n + O (1/ne′) = O (1/ne′) for some
e′ > 0. We can repeat this modified algorithm for O (logn

1
ε ) rounds to get the announced failure probability

and complexity.

5.1.2 Analysis in the bit complexity model

In [20], Kaminski only details the algebraic complexity of its polynomial product verification, and no further
insights on the bit complexity are given. We now perform this analysis for polynomials over finite fields and
over Z. We surprisingly prove that his algorithm remains linear in number of bit operations in many cases.
For polynomials over Fq, the algorithm fails to be linear only when q is doubly exponentially larger than the
degree. For polynomials over Z, a similar condition applies. However, we are able to describe a variant of
the algorithm that has linear bit complexity for polynomials with large coefficients. Hence we prove that
polynomial product verification over Z has linear bit complexity in all cases. Our variant is based on integer
product verification, for which Kaminski actually gives also in [20] a linear-time algorithm. Of course all
those algorithms are therefore optimal.

The next theorem provides the bit complexity analysis of Kaminski’s algorithm over finite fields.

Theorem 5.6. Let F, G and H ∈ Fq[X ] of degrees n, n and 2n, and 0< e < 1
2 . Algorithm 8 requires O (n log q+

n1−e log q log log q) bit operations. When log log q = O (ne), one can verify if H = FG with failure probability at
most ε if H 6= FG, using O (n log q logn

1
ε ) bit operations which is optimal when ε= 1/nO (1).

Proof. We apply the count of operations given in Remark 5.4. The additions give the term O (n log q). The
bit complexity of the product of degree-O (n1−e) polynomials over Fq is Mq(n1−e) = O (n1−e log q log(n log q)),
which is O (n log q+ n1−e log q log log q). We obtain the claimed complexity.

The second part directly follows from the observation that O (logn
1
ε ) rounds of the algorithm yield a failure

probability at most ε.
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Note that the bound log log q = O (ne) to get a linear number of bit operations in n log q is only valid
when using the fastest known multiplication algorithm. If we replace by a slower algorithm, the bound
becomes smaller. For instance, using Karatsuba’s algorithm the product of degree-O (n1−e) polynomials uses
O (n(1−e) log3 log q log log q) ring operations. For the algorithm to still have an optimal complexity, we need
that n(1−e) log 3 log log q = O (n). This implies e ≥ 1 − 1/ log 3 ' 0.367, and the bound becomes log log q =
O (n1−(1−e) log3). If we take e close to 1/2, say 0.45, the bound reads log log q = O (n0.13) while it is log log q =
O (n0.45) using the fastest multiplication algorithm.

Further, as mentioned previously, using a fast multiplication algorithm for the verification of a polynomial
product is problematic. We now analyse the bit complexity of our variant that does not use any polynomial
product, that is of Corollary 5.5. We show that the same complexity and the same bound on q can be obtained
without any polynomial product.

Remark 5.7. Let F, G, H ∈ Fq[X ] of degrees n, n and 2n, and 0< e < 1
2 . Algorithm 8 can be implemented using

a modular product verification and without any polynomial product. This variant has bit complexity O (n log q+
n1−e log q log log q). When log log q = O (ne), one can verify if H = FG with failure probability at most ε if
H 6= FG, using O (n log q logn

1
ε ) bit operations, which is optimal when ε= 1/nO (1), and without reverting to any

polynomial product.

Proof. The proof simply consists in using Corollary 4.15 in place of Remark 5.4 in the previous proof.

Now we consider F , G and H ∈ Z[X ] with ‖F‖∞,‖G‖∞,‖H‖∞ ≤ C . We first analyse the bit complexity
of Algorithm 8 and provide conditions for the algorithm to use a linear number of bit operations. Later
we propose a variant to be able to verify H = FG with a linear number of bit operations for any integer
polynomials..

Theorem 5.8. Let F, G and H ∈ Z[X ] of degrees n, n and 2n, and norms at most C, and 0< e < 1
2 . Algorithm 8

requires O (n log C + n1−e log C log log C) bit operations. When log log C = O (ne), one can verify if H = FG with
failure probability at most ε if H 6= FG, using O (n log C logn

1
ε ) bit operations which is optimal when ε= 1/nO (1).

Proof. The first three reductions require O (n) additions in Z to compute Fi , Gi and Hi , whose norms are at
most neC . A careful computation of these additions using a binary tree uses O (

∑log n
i=1

n
2i log(iC) = O (n log C)

bit operations. Then the polynomial product is performed with inputs of degree n1−e and norm neC . As
discussed in the introduction, it requires I(n1−e(log(neC) + log n1−e)) bit operations, that is O (n1−e(log n +
log C)(log n + log log C)) = O (n log C + n1−e log C log log C). Finally the last reduction is performed with
degree 2n1−e and norm n(neC)2 in O (n log C) bit operations.

Repeating O (logn
1
ε ) times the algorithm provides the second part of the theorem.

As for polynomials over finite fields, the final computations can be replaced by a modular product verifica-
tion. Here this yields a slightly better complexity. This improvement translates into an exponentially smaller
constraint on the norm C for the algorithm to be optimal.

Remark 5.9. Let F, G and H ∈ Z[X ], of degrees n, n and 2n and norms at most C, and 0< e < 1
2 . Algorithm 8

can be implemented using a modular product verification and without any polynomial product. This variant has
bit complexity O (n log C + n1−e log(C) log log log(C)). When log log log C = O (ne), one can verify if H = FG
with failure probability at most ε if H = FG, using O (n log C logn

1
ε ) bit operations, which is optimal when

ε= 1/nO (1), and without reverting to any polynomial product.

Proof. The proof is once again similar, using the dense part of Theorem 4.4 for the modular product verifi-
cation. This verification is performed on polynomials of degrees O (n1−e) and norm at most neC . Its bit com-
plexity is then O (n1−e(I(log(n log C)+log(C) log log(n log C))))which is O (n log C+n1−e log(C) log log log(C)).
This proves the first part of the remark. The second part relies on repetition of Algorithm 8.

As long as the coefficients are not insanely huge compared to the degree, the previous remark applies
and the polynomial product verification is linear. More precisely, this corresponds to C ranging from O (1) to

222O (n)

. To deal with this extreme case of huge coefficients, we develop another approach that is valid as soon
as log n = O (log C). This means that all cases are covered with an optimal bit complexity. We shall mention

that both methods are applicable when C is ranging from nO (1) to 222O (n)

, which could be interesting when
designing the most efficient implementation.

To treat the huge coefficient case, we rely on a result of Kaminski about the verification of the product
of two integers. His technique is similar to the polynomial case: He reduces s-bit integers modulo 2i − 1 for
some i between s1−e and 2s1−e, and then performed the product with reduced integers.
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Theorem 5.10 ([20]). Let a, b, c be integers of at most s, s and 2s bits, 0 < e < 1
2 and k = d2δse ln ln(s1−e)e

where δ > 1.78107. We can check whether ab = c in O (s) bit operations with a probability of error at most
(k− 1)/s1−e if ab 6= c.

To verify a polynomial product H = FG over Z, we use the same idea as for computing the product. We use
Kronecker substitution. If we evaluate each polynomial on β that is some large power of two, the coefficients
of FG can directly be read on the digits of the integer F(β)G(β). These evaluations at β require no operation.
The polynomial product verification is thus reduced to an integer product verification H(β) = F(β)G(β).

Theorem 5.11. Let F, G, H ∈ Z[X ] of respective degrees n, n and 2n, and norm at most C. If log n= O (log C),
we can check whether H = FG with failure probability at most ε if H 6= FG, using O (n log C logn log C

1
ε ) bit

operations, which is optimal when ε= 1/nO (1).

Proof. As F and G have norm C and degree n, FG has norm at most nC2. Let β be the first power of 2 greater
than nC2. Then H = FG if and only if H(β) = F(β)G(β).

The integers F(β), G(β) and H(β) have bit length O (n logβ) = O (n log(nC)) = O (n log C) since log n =
O (log C). As β is a large enough power of 2, the evaluation on β does not require any operation. Therefore
all the cost comes from the verification of F(β)G(β) = H(β). This is linear in the size of F(β), G(β) and
H(β) by Theorem 5.10, hence linear in n log C .

To get the appropriate probability bound, we use O (logn log C
1
ε ) round of this algorithm. This is supported

by the fact that the probability bound in Theorem 5.10 is 1/sO (1).

5.2 Quasi-linear sparse product verification

Given three sparse polynomials F , G and H in R[X ], we want to assert that H = FG. As already mentioned,
evaluating the polynomials at a random point α cannot yield a quasi-linear algorithm. Our approach is to
take a random prime p and to verify the equality modulo X p − 1 through modular product verification. This
method is explicitly described in Algorithm 9 that works over any large enough integral domainR . We further
extend the description and the analysis of this algorithm for the specific cases R = Z and R = Fq.

Algorithm 9 SPARSEVERIFICATION

Input: H, F, G ∈ R[X ]; 0< ε < 1.
Output: True if H = FG, False with probability at least 1− ε otherwise.

1: Define 0< ε1 <
3
10 and 0< ε2 < 1 such that 10ε1

3 + (1− 10ε1
3 )ε2 ≤ ε

2: n← deg(H)
3: if #H > #F#G or n 6= deg(F) + deg(G) then return False
4: λ←max(21, 1

ε1
(#F#G +#H) ln n)

5: p← RANDOMPRIME(λ, 5ε1
3 )

6: (Fp, Gp, Hp)← (F mod X p − 1, G mod X p − 1, H mod X p − 1)
7: return True if Hp = (FpGp)mod X p − 1, False otherwise . using Theorem 4.1 with probability ε2

Theorem 5.12. If R is an integral domain of size ≥ 2
ε1ε2
(#F#G + #H) ln(n), Algorithm 9 works as speci-

fied. Assuming that n = deg(H) and T = max(#F, #G,#H), it requires O (T log( 1
ε T log n)) operations in R ,

and O (T log n log log( 1
ε T log n)) bit operations plus O (log 1

ε log3( 1
ε T log n) log2 log( 1

ε T log n)) bit operations to
obtain a prime p.

Proof. Step 3 dismisses two trivial mistakes and ensures that n is a bound on the degree of each polynomial.
If H = FG, the algorithm always returns True. Otherwise, there are two sources of failure. Either X p − 1

divides H − FG. Since this polynomial has at most #H +#F#G terms, this failure occurs with probability at
most 10ε1

3 by Proposition 2.5. Or X p − 1 does not divide H − FG but the modular product verification fails.
This occurs with probability at most ε2. Altogether, the failure probability is at most 10ε1

3 + (1− 10ε1
3 )ε2 ≤ ε.

To analyse the complexity, we consider ε1,ε2 ∼ ε (for example ε1 =
3ε
20 and ε2 =

ε
2 ). Let us remark

that p = O ( 1
ε T 2 log n). To get the prime p, Step 5 requires only O (log 1

ε log3 p log2 log p) bit operations by
Proposition 2.4. This gives the announced complexity once log p is replaced by O (log( 1

ε T log n)).
The operations in Step 6 are T divisions by p on integers bounded by n. Their cost is O (T log n

log p I(log p)) =
O (T log n log log p) bit operations, that is O (T log n log log( 1

ε T log n))), plus T additions in R .
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In Step 7, Fp, Gp and Hp have degree p = O ( 1
ε T 2 log n) and at most T monomials. They are still sparse

and we can use the sparse version of Theorem 4.1 with P = X p−1. The verification of Hp = FpGp mod X p−1
thus requires O (T log p) = O (T log( 1

ε T log n)) operations in R . Other steps have negligible cost.

To clarify the complexity, we will use the notation Oε( f (n)) as a shortcut for O ( f (n) logk 1
ε ) for some

k. Using this notation, the complexity of Algorithm 9 becomes Oε(T log(T log n)) operations in R plus
Oε(T log n log log(T log n))) bit operations as getting the prime p is logarithmic in T and log n.

The rest of the section is dedicated to the bit complexity analysis of this algorithm over integers or finite
fields. Our goal is to have bit complexities that are as close as possible to linear. To ease the comparison
with truly linear complexity, we express these bit complexities in terms of the total bit size s of the input. A
degree-n polynomial with T monomials has bit size s = O (T (log n + log q)) if it has coefficients in Fq, and
s = O (T (log n+ log C)) if it has coefficients in Z of absolute value at most C .

We first note that reducing the input polynomials modulo X p − 1 at Step 6 is already non-linear. Indeed,
we proved that this step has bit complexity Oε(T log n log log(T log n)), which is Oε(s log log s). We shall prove
that in some cases, this step is actually the dominant term in the complexity.

We begin with the analysis over the integers.

Corollary 5.13. Let F, G and H ∈ Z[X ] of degree at most n, with norm at most C and sparsity at most T . Then
Algorithm 9

has bit complexity Oε(s log s log log s), where s = T (log n+ log C) is the input size.

Proof. The modification only concerns Step 7, where we use Theorem 4.4 for the modular product verification
with

P = X p − 1 and Fp, Gp, Hp that have sparsity T and norm T C . So this step costs

Oε(T log pI(log(p log C)) + T log(T C) log log(p log T C)).

Since T ≤ n, T log p = Oε(T log n) = Oε(s). And log(p log C) = Oε(log(T log n log C)) = Oε(log(T log n) +
log log C) = Oε(log s). Thus the first term is Oε(s log s log log s). Also, T log(T C) = O (T log nC) = O (s).

As log(p log T C) = Oε(log(T log n) + log log C) = Oε(log S), the second term is Oε(s log log s).
Since Step 6 is unchanged and has bit complexity Oε(s log log s), the result follows.

The complexity is actually better for very sparse polynomials.

Remark 5.14. If F , G, H ∈ Z[X ] of bit size s have sparsity at most T = Θ(logk n) for some k, Algorithm 9 has
bit complexity Oε(s log log s).

Proof. The input size is s = Θ(logk+1 n + logk n log C). In this case, log p = Oε(log log n). In the previous
proof, there is one dominant term of order Oε(s log s log log s), while the other terms are already of order
Oε(s log log s). It is sufficient to prove that with the new assumption, the dominant term is also Oε(s log log s).

The dominant term Oε(s log s log log s) in the complexity comes from the term Oε(T log pI(log(p log C))).
Since log(p log C) = Oε(log log n+ log log C), this dominant term becomes

Oε(logk n log log n(log log n+ log log C) log(log log n+ log log C)).

Note that log log n and log log C are both O (log s), therefore this can be rewritten Oε(logk n log2 s log log s).
Since logk n= O (sk/(k+1)), this yields Oε(s log log s).

We now switch to polynomials over finite fields. There are more cases to consider, depending on the size
of the field with respect to the degree and sparsity of the inputs. The first easy case is the case of large finite
fields: If there are enough points for the evaluation, the generic algorithm keeps its guarantee of success
while offering a quasi-linear bit complexity.

Corollary 5.15. Let F, G and H ∈ Fq[X ] of degree at most n and sparsity at most T where q > 2
ε1ε2
(#F#G +

#H) ln n. Then Algorithm 9 has bit complexity Oε(s log2(s)) where s = T (log n+ log q) is the input size.

Proof. It is still enough to analyse Step 7. Each ring operation in Fq costs O (log(q) log log(q)) bit operations
which implies that the bit complexity of Step 7 is Oε(T log(T log n) log(q) log log(q)). Since both T log q and
T log n are O (s) and log log q = O (log s), the result follows.
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If the field is not large enough, we need to use some extension field. This slightly modifies the algorithm
but actually yields a better complexity bound than for large finite fields. This is due to the fact that in that
case, we choose an extension of the exact appropriate size. Note that the probability of success remains
unchanged.

Corollary 5.16. Let F, G and H ∈ Fq[X ] of degree at most n and sparsity at most T where q < 2
ε1ε2
(#F#G +

#H) ln n. Algorithm 9 has bit complexity Oε(s log s log log s), where s = T (log n+ log q) is the input size.

Proof. By Corollary 4.7 Step 7 requires Oε(T log pMq(logq p) + (logq p)2Mq(logq p)(log q + log logq p)) op-
erations in Fq. Since log p = Oε(log(T log n)) = Oε(log s) and log q = Oε(log s) too, the second term
is polylogarithmic in s. As log p = Oε(log(T log n)) the first term is Oε(T log(T log n)Mq(logq(T log n))).
Since log(T log n) = O (log n), T log(T log n) = O (s). Furthermore, log(T log n) = O (log s) and the first
term simplifies to Oε(sMq(logq s)). Now Mq(logq s) = O (log s log log s). Altogether T log pMq(logq p) =
Oε(s log s log log s). The result follows.

Again, we note that for very sparse polynomials over some fields, the complexity is even better.

Remark 5.17. Let F, G and H ∈ Fq[X ] of degree at most n and sparsity at most T , where q < 2
ε1ε2
(#F#G +

#H) ln n. The bit complexity of Algorithm 9 is

(i) Oε(s log s) if logq(T log n) = O (1),

(ii) Oε(s log log s) if T = Θ(logk n) for some constant k.

Proof. The most significant term in the complexity is Oε(T log(T log n)Mq(logq(T log n)). In the first
case, it becomes Oε(T log(T log n)Mq(1)) = Oε(T log(T log n) log q log log q). As log q = Oε(log log n),
T log q log log q = Oε(s) and the complexity becomes Oε(s log s). In the second case, the most significant
term can be bounded by Oε(T log3(T log n)). But T = O (sk/(k+1)), and this most significant term becomes
Oε(s) only. The global bit complexity is then dominated by Step 6 and is Oε(s log log s).

To conclude, the bit complexity of Algorithm 9 over integers or finite fields range from Oε(s log log s)
in the most favorable cases, to Oε(s log2 s) in more complicated situations. We note that in the best cases,
the complexity is actually dominated by the cost of the modular reduction of the exponents of the input
polynomials.

Remark 5.18. Verification of a sparse product is always faster than computing the sparse product over Z or Fq.

Proof. Assuming s = T (log n+ logζ) to be the input size of the sparse polynomial F ,G and H. Over Z we have
logζ= log C where C is the norm of the coefficients, while logζ= log q when in Fq. The best know result for
computing the product FG needs Oε(s log2(s) log2(T )(log T + log log s)) bit operations [9]. Taking the worst
case complexity for our verification yields a cost of Oε(s log2 s). This means that we are always faster by a
factor O (log2(T )(log T + log log s)). Of course, for some small finite fields we are even beyond this value.
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