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ARTICLE

Benchmarking joint multi-omics dimensionality
reduction approaches for the study of cancer
Laura Cantini 1✉, Pooya Zakeri 2,5, Celine Hernandez 1,6, Aurelien Naldi 1,7, Denis Thieffry 1,

Elisabeth Remy 3 & Anaïs Baudot 2,4✉

High-dimensional multi-omics data are now standard in biology. They can greatly enhance

our understanding of biological systems when effectively integrated. To achieve proper

integration, joint Dimensionality Reduction (jDR) methods are among the most efficient

approaches. However, several jDR methods are available, urging the need for a compre-

hensive benchmark with practical guidelines. We perform a systematic evaluation of nine

representative jDR methods using three complementary benchmarks. First, we evaluate their

performances in retrieving ground-truth sample clustering from simulated multi-omics

datasets. Second, we use TCGA cancer data to assess their strengths in predicting survival,

clinical annotations and known pathways/biological processes. Finally, we assess their

classification of multi-omics single-cell data. From these in-depth comparisons, we observe

that intNMF performs best in clustering, while MCIA offers an effective behavior across

many contexts. The code developed for this benchmark study is implemented in a Jupyter

notebook—multi-omics mix (momix)—to foster reproducibility, and support users and future

developers.
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Due to the advent of high-throughput technologies, high-
dimensional “omics” data are produced at an increasing
pace. In cancer biology, in particular, national and

international consortia, such as The Cancer Genome Atlas
(TCGA), have profiled thousands of tumor samples for multiple
molecular assays, including mRNA, microRNAs, DNA methyla-
tion, and proteomics1. Moreover, multiomics profiling approa-
ches are currently being transposed at single-cell level, which
further stresses the need for methods and tools enabling the joint
analysis of such large and diverse datasets2.

While multiomics data are becoming more accessible, studies
combining different omics are more common. This multiomics
integration is frequently performed by sequentially combining
results obtained on single omics (a.k.a. late or early integration),
but the genuine joint analysis of multiomics data (a.k.a. inter-
mediate integration) remains very rare3. Achieving proper mul-
tiomics integration is crucial to bridge the gap between the vast
amount of available omics and our current understanding of
biology. By integrating multiple sources of omics data, we can
reduce the effect of experimental and biological noise. In addition,
different omics technologies are expected to capture different
aspects of cellular functioning. Indeed, the different omics are
complementary, each omics containing information that is not
present in others, and multiomics integration is thereby expected
to provide a more comprehensive overview of the biological
system. In cancer research, omics have been profiled at different
molecular layers, such as genome, transcriptome, epigenome, and
proteome. Integrating these large-scale and heterogeneous sour-
ces of data allows researchers to address crucial objectives,
including (i) classifying cancer samples into subtypes, (ii) pre-
dicting the survival and therapeutic outcome of these subtypes,
and (iii) understanding the underlying molecular mechanisms
that span through different molecular layers4.

Designing theoretical and computational approaches for the
joint analysis of multiomics datasets is currently one of the most
relevant and challenging questions in computational biology4,5.
Indeed, the different types of omics have a large number of
heterogeneous biological variables and a relatively low number of
biological samples, thereby inducing statistical and computational
challenges, in addition to the typical challenges of “Big Data”.
Moreover, each omics has its own technological limits, noise, and
range of variability. All these elements can mask the underlying
biological signals. Multiomics integrative approaches should be
able to capture not only signals shared by all omics data, but also
those emerging from the complementarity of the various
omics data.

The joint analysis of multiple omics can be performed with
various integrative approaches, classified in broad categories5,6.
Bayesian methods, such as Bayesian Consensus Clustering (BCC)7,
build a statistical model by making assumptions on data distribu-
tion and dependencies. Network-based methods, such as Similarity
Network Fusion (SNF)8, infer relations between samples or features
in each omics layer, and further combine the resulting networks.
Dimensionality Reduction (DR) approaches decompose the omics
into a shared low-dimensional latent space9,10. Four recent reviews
tested and discussed some of these methods from a clustering
performance perspective11–14. Pierre-Jean et al.13, Rappoport
et al.11, and Tini et al.14 selected one method from each of the
aforementioned three categories, while Chauvel et al.12 focused on
Bayesian and DR approaches.

From these initial reviews, DR approaches emerged as parti-
cularly well-performing. Of note, DR is employed in computa-
tional biology in different contexts, such as data visualization or
matrix completion. We focus here on DR for multiomics data
integration. DR methods are well-adapted to solve high-
dimensional mathematical problems. Furthermore, the richness

of the information contained in their output enhances their
relevance for multiomics integration. Indeed, DR methods enable
the classification of samples (clustering/subtyping), the clinical
characterization of the identified clusters/subtypes and a variety
of other downstream analyses, including the analysis of cellular
processes and/or pathways (Fig. 1a). Thus, DR combined with
dedicated downstream analyses provides information on all the
key objectives mentioned above, namely the classification of
samples into subtypes, their association with outcome/survival, as
well as the reconstruction of their underlying molecular
mechanisms. As a consequence, the design of DR approaches for
the joint analysis and integration of multiple omics (jDR) is
currently a highly active area of research8,9,11,12,15.

Here, we report an in-depth comparison of nine representative
state-of-the-art multiomics joint Dimension Reduction (jDR)
approaches, in the context of cancer data analysis. We extensively
benchmark these approaches, spanning the main mathematical
formulations of multiomics jDR, in three different contexts
(Fig. 1b). First, we simulate multiomics datasets and evaluate the
performance of the nine jDR approaches in retrieving ground-
truth sample clustering. Second, we use TCGA multiomics cancer
data to assess the strengths of jDR methods in predicting survival,
clinical annotations, and known pathways/biological processes.
Finally, we evaluate the performance of the methods in classifying
multiomics single-cell data from cancer cell lines.

All these analyses allow formulating recommendations and
guidelines for users, as well as indications for methodological
improvements for developers. We also provide the Jupyter
notebook multiomics mix (momix) and its associated Conda
environment containing all the required libraries installed
(ComputationalSystemsBiology/momix-notebook). Overall,
momix can be used to reproduce the benchmark, but also to test
jDR algorithms on other datasets, and to evaluate novel jDR
methods and compare them to reference ones.

Results
Joint Dimensionality Reduction approaches and principles.
Joint Dimensionality Reduction (jDR) approaches aim to reduce
high-dimensional omics data into a lower dimensional space. The
rationale behind the use of jDR in biology is that the state of a
biological sample is determined by multiple concurrent biological
factors, from generic processes (e.g., proliferation and inflamma-
tion) to cell-specific processes. When measuring omics data, we take
a snapshot of the state of a biological sample and thus detect a
convoluted mixture of various biological signals active in the
sample. The goal of jDR is to deconvolute this mixture and expose
the different biological signals contributing to the state of the bio-
logical sample. We consider P omics matrices Xi, i ¼ 1; :::; P of
dimension ni × m with ni features (e.g., genes, miRNAs, CpGs) and
m samples. A jDR jointly decomposes the P omics matrices into the
product of ni × k omics-specific weight/projection matrices (Ai) and
a k × m factor matrix (F) (Fig. 1a). Here and in the following, we
will denote as factors the rows of the factor matrix, and as meta-
genes the columns of the weight/projection matrix corresponding to
transcriptomic data (see Methods). Factors and metagenes repre-
sent the projections on the sample space and gene space, respec-
tively, of the biological signals present in the profiled samples. The
factor matrix (F) can be used to cluster samples, while the columns
of the weight matrices (Ai) can be used to extract markers by
selecting the top-ranked genes, or to identify pathways by applying
preranked GSEA (see ref. 10 for further details). A description of the
mathematical formulations of the nine jDR approaches is provided
in the Methods section.

Various methods exist to perform jDR (Supplementary
Table 1). These methods are based on different underlying
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mathematical formulations, including Principal Components
Analysis, Factor analysis, co-inertia analysis, Gaussian latent
model, matrix-tri-factorization, Non-negative Matrix Factoriza-
tion, CCA or tensor representations. We selected nine jDR

approaches representative of these main mathematical formula-
tions (Fig. 2), focusing on methods able to combine more than
two omics, implemented in R or Python, and with software
readily available and documented. These jDR approaches are

Fig. 1 Joint Dimensionality Reduction methods and benchmark workflow overview. a Multiomics are profiled from the same sample. Each omics
corresponds to a different matrix Xi. jDR methods factorize the matrices Xi into the product of a factor matrix F and weight matrices Ai. These matrices can
then be used to cluster samples and identify molecular processes. b Workflow of our benchmark, subdivided in three subparts: First, we simulated
multiomics datasets and evaluated the performance of the nine jDR approaches in retrieving ground-truth sample clustering. Second, we used TCGA
multiomics cancer data to assess the strengths of jDR methods in predicting survival, clinical annotations, and known pathways/biological processes.
Finally, we evaluated the performances of the methods in classifying multiomics single-cell data from cancer cell lines.
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iCluster16, Integrative NMF (intNMF)17, Joint and Individual
Variation Explained (JIVE)18, Multiple co-inertia analysis
(MCIA)19, Multi-Omics Factor Analysis (MOFA)15, Multi-
Study Factor Analysis (MSFA)20, Regularized Generalized
Canonical Correlation Analysis (RGCCA)21, matrix-tri-
factorization (scikit-fusion)22, and tensorial Independent Com-
ponent Analysis (tICA)23.

Seven of the nine jDR approaches are extensions of DR
methods previously used for single-omics datasets: intNMF is an
extension of non-Negative Matrix Factorization (NMF); tICA is
an extension of Independent Component Analysis (ICA); MCIA
and JIVE are different extensions of Principal Component
Analysis (PCA); and MOFA, MSFA, and iCluster are extensions
of Factor Analysis. As a consequence, the different jDR algorithms
make different assumptions on the distribution of the factors
(Methods). The different jDR approaches also make different
assumptions on the across-omics constraints on the factors
(Fig. 2). Some algorithms, such as intNMF, consider the factors
to be shared across all omics datasets. In contrast, the factors of
RGCCA and MCIA are different for each omics layer, i.e., they are
omics-specific factors. These omics-specific approaches still
maximize some measures of interrelation between the omics-
specific factors, such as their correlation (RGCCA), or their co-
inertia (MCIA). Finally, JIVE and MSFA consider mixed factors,
decomposing the omics data as the sum of two factorizations, one
containing a unique factor matrix shared across all omics, and the
second having omics-specific factor matrices. Of note, jDR
methods considering omics-specific and mixed factors take into
account the complementarity of the multiomics data.

Most of the jDR approaches can manage different features (e.g.,
genes, miRNAs, CpGs…), but require a match between the
samples of the different omics datasets (columns of the Xi

matrices, see Fig. 2). Some algorithms, such as MOFA, scikit-
fusion and JIVE, can also cope with omics matrices having not all
samples in common. This is particularly suitable for multiomics
integration, as missing samples are frequent in data collections,
such as in TCGA. For the sake of comparison, we applied here all
methods considering only the samples profiled for all omics.
Tensorial approaches, represented by tICA, require by definition
that all matrices Xi have exactly the same samples and features.
Nonetheless, the features of multiomics data are frequently
different (e.g., genes, miRNAs). A possible strategy to have the
same features for all omics would be to convert all the features to
the same level, e.g., gene symbols. This is sometimes unfeasible:
miRNAs cannot be converted to gene symbols, for instance. We
applied here another strategy, where we considered for each
omics the matrix of correlation-of-correlation between samples
(Methods). Both strategies imply a loss of information, which can

affect the results of the omics integration. In addition, the number
of features ni in the various omics is highly variable, going for
instance in TCGA from 800 microRNAs to 5000 CpGs to 20.000
genes. Omics containing more features will have a higher weight
in the jDR output. To overcome this issue, in the following, we
will first select features based on their variability, and thus make
the number of features of the various omics comparable.

Noteworthy, intNMF and iCluster produce, in addition to the
factors, a clustering of the samples. Scikit-fusion can combine
omics data with additional annotation (i.e., side information, such
as pathway or process annotations). However, for the sake of
comparisons with other algorithms, scikit-fusion is applied here
without side information.

Benchmarking joint Dimensionality Reduction approaches on
simulated omics datasets. We first evaluated the jDR approaches
on artificial multiomics datasets (Fig. 3a). We simulated these
datasets using the InterSIM CRAN package24. This package
generates three omics datasets with imposed reference clustering.
Starting from real omics (DNA methylation, transcriptome and
protein expression) extracted from TCGA ovarian cancer data-
sets, InterSIM generates clusters and associates features to these
clusters by shifting their mean values by a fixed amount. InterSIM
preserves the covariance matrix between all pairs of omics and
thereby maintains realistic inter- and intraomics relationships.
Importantly, we selected this approach to avoid making
assumptions on the distribution of the data. Indeed, alternative
simulation approaches assume specific sample distributions (e.g.,
Gaussian in ref. 14). Assuming a Gaussian distribution, for
instance, would favor jDR methods that also make the assump-
tion of Gaussian sample distribution.

We simulated multiomics data with five, ten, and fifteen
clusters. In addition, each set of clusters is simulated in two
versions, either with all clusters of the same size, or with clusters
of variable random sizes (Methods).

We applied the nine jDR methods, requiring the decomposition of
multiomics data into five, ten, and fifteen factors, depending on the
simulated datasets. The performances of the nine jDR approaches are
then compared based on their clustering of samples. As mentioned
before, intNMF and iCluster are intrinsically designed for sample
clustering, while the remaining seven algorithms detect factors
without providing a direct clustering. Accordingly, we applied
directly intNMF and iCluster. For the seven other algorithms, we
obtained the clustering of the samples by applying k-means
consensus clustering to the factor matrix (Methods).

The agreement between the clustering obtained with the various
jDR algorithms and the ground-truth clustering is measured with

Fig. 2 Dimensionality reduction approaches benchmarked in this study. The list of the jDR methods benchmarked in this study is reported together with
their underlying approach, constraints on the factors, features or samples matching requirements, implementation and a summary of the benchmarking
performances. The benchmarking performances are organized as follows: simulated data, cancer survival, cancer clinical annotations, biological
annotations, and single cell.
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the Jaccard Index (JI) and Adjusted Rand Index (ARI) (Methods).
First, we observed that all methods perform reasonably well in the
different simulated scenarios (JIs >=0.6, ARI >=0.6, Fig. 3b). The
two algorithms intrinsically designed for clustering, namely intNMF
and iCluster, display the best performances. In particular, intNMF
retrieves perfectly the ground-truth clusters (JI ~ 1, 0.9 < ARI <=1).
iCluster presents some variability for five and ten clusters,
independently of the size distribution of the clusters. Regarding
the remaining seven jDR approaches, MCIA, MOFA, and RGCCA
are overall the best-performing methods. These methods are indeed
among the top-three best algorithms in 6/6, 6/6, and 5/6 simulated
scenarios, according to JI, and in 6/6, 3/6, and 5/6, according to
ARI, respectively. tICA and scikit-fusion are the less effective
methods in this benchmark. tICA structures the multiomics data
into a tensor. As described previously, to obtain these tensors, we
transformed the omics data into correlation-of-correlation matrices,
which might induce a loss of information. scikit-fusion is designed
to work with side information, which is used to build a relation
network connecting the various entities (e.g., samples, genes,
proteins). However, for the sake of comparison with the other jDR
methods, side information was not considered, and this could have
affected the results of the algorithm.

Benchmarking joint Dimensionality Reduction approaches on
cancer datasets. In the second step, we downloaded TCGA mul-
tiomics data for ten different cancer types11 (http://acgt.cs.tau.ac.il/
multi_omic_benchmark/download.html). These data are composed
of three omics layers: gene expression, DNA methylation, and
miRNA expression. The number of samples ranges from 170 for

Acute Myeloid Leukemia (AML) to 621 for Breast cancer. Impor-
tantly, we do not have ground-truth cancer subtypes to evaluate the
performances of the jDR methods. However, in Breast cancer, we
compared the jDR clustering results with two subtypings: the ER/
PR/HER-2 subtyping based on Estrogen Receptor (ER), Proges-
terone Receptor (PR) and HER-2 immunohistochemistry mar-
kers25, and the Cluster of Cluster Assignment (COCA) integrative
classification performed by the TCGA consortium26. Both subtyp-
ings cannot be considered as ground-truth for evaluating jDR
clustering performances. The ER/PR/HER-2 overlaps with the
PAM50 subtyping, which is obtained using only transcriptomics
data, and composed of four subtypes: Basal, Her2, Luminal A and
Luminal B27. The COCA subtyping is integrative but has been
obtained by separately clustering different omics and then per-
forming a consensus of the obtained results. Thereby, it does not
take into account the complementarity of the various omics.

We decomposed the multiomics Breast cancer datasets in four
factors, and used the Jaccard Index (JI) and Adjusted Rand Index
(ARI) to evaluate the overlap between the clustering obtained
from these four factors and the Breast cancer subtypings ER/PR/
HER-2 and COCA (Supplementary Fig. 1). Most of the methods
display low JI ([0.2;0.6]) and ARI ([0.2;0.5]) values. JIVE shows
the best performances according to both JI and ARI (JI= 0.4,
ARI= 0.4). MCIA has the best performances according to ARI
(ARI= 0.5), and intNMF has good performances according to JI,
but with high variability ([0.2;0.8]), which results in a low ARI
value (ARI= 0.28).

In order to evaluate the methods on the full set of cancer
multiomics, we then tested the associations of the factors with

Fig. 3 jDR clustering of simulated multiomics datasets. a Workflow of the simulation sub-benchmark from the data generation with interSIM, to the jDR
output and its clustering based on k-means. b Boxplots of the Jaccard Index computed between the clusters identified by the different jDR methods and the
ground-truth clusters imposed on the simulated data (for 5, 10, and 15 imposed clusters). For each method (e.g., RGCCA), performances on heterogeneous
and equally sized clusters are reported (denoted as RGCCA and RGCCA_EQ, respectively). The corresponding Adjusted Rand Index (ARI) values are
further reported near to the name of the jDR methods along the x-axis. The number of samples here considered is 100 and the results are obtained over
1000 independent runs of k-means clustering. Data are presented as mean values ± sd, whiskers denote max, and min values.
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survival, clinical annotations and biological annotations
(Fig. 4). It is to note that the Factor Analysis approach MSFA
did not converge to any solution and was thereby not
considered. We applied the eight remaining jDR approaches
to each of the ten cancer multiomics datasets, jointly
decomposing them in ten factors, as in the work of Bismeijer
and colleagues28. Most cancer subtyping approaches indeed
revealed ten or fewer clusters of samples (i.e., subtypes). We
hence compared the performances of the eight jDR algorithms
regarding their ability to identify factors predictive of survival,
as well as factors associated with clinical annotations. We also
evaluated the weight matrices resulting from the jDR methods
by assessing their enrichment in known biological pathways
and processes.

To test the association of the jDR factors with survival, we used
the Cox proportional-hazards regression model (Fig. 4a). We

observed first that the number of factors associated with survival
depends more on the cancer type than on the jDR algorithm
(Fig. 5 and Supplementary Fig. 2). Indeed, for three cancer types
(Colon, Lung, and Ovarian), none of the jDR methods was able to
identify survival-associated factors. This result is in agreement
with previous observations testing the association of multiomics
clusters with survival on the same TCGA data with the log-rank
test11. In four other cancer types (sarcoma, liver, kidney, and
breast), all jDR algorithms identified one or two survival-
associated factors. Finally, in Melanoma, GBM, and AML, the
majority of the jDR methods identified three or four survival-
associated factors. In general, MCIA, RGCCA, and JIVE achieved
the best performances, finding factors significantly associated
with survival in seven out of ten cancer types. These approaches
also offered the most significant p-values in the higher number of
cancer types. MCIA performed the best for kidney cancer

Fig. 4 graphic summary of the cancer sub-benchmark. a Testing the association of jDR factors with survival; b Testing the association of jDR factors with
clinical annotations; c Graphical explanation of the selectivity score: measuring the one-to-one mapping between factors and clinical/biological
annotations; d Testing association of jDR factors with biological processes and pathways.

Fig. 5 Identification of factors predictive of survival in ovarian, breast, and melanoma cancer samples by the jDR methods. For each method the
Bonferroni-corrected p-values associating each of the 10 factors to survival (Cox regression-based survival analysis) are reported. The dot lines correspond
to a corrected p-value threshold of 0.05. The results corresponding to the other seven cancer types are presented in Supplementary Fig. 1A.
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(corrected p-value= 10−4), sarcoma (10−5), and melanoma
(10−5); JIVE performed the best in AML (10−3) and liver cancer
(10−4); and RGCCA performed the best in Breast cancer (10−3).
Furthermore, RGCCA, MCIA, and JIVE showed the most
promising results for the cancer types having overall less
survival-associated factors (Sarcoma, Liver, Kidney, and Breast,
Fig. 5 and Supplementary Fig. 2). It is to note that these jDR
methods are also the best performing when compared to DR
applied to transcriptome alone (Supplementary Fig. 3).

Afterward, we assessed the association of the jDR factors with
clinical annotations (see Fig. 4b for the methodology, Fig. 6 and
Supplementary Fig. 4 for the results). We selected four clinical
annotations: “age of patients,” “days to new tumor,” “gender”,
and “neo-adjuvant therapy administration” (Methods). To test
the significance of the associations of the factors identified by the
jDR methods with these clinical annotations, we used
Kruskal–Wallis tests for multi-class annotations (“age of patients”
and “days to new tumor”), and Wilcoxon rank-sum for
binary annotations (“gender” and “neo-adjuvant therapy admin-
istration”). In addition, we intended to evaluate the methods not
only by their capacity to associate factors with clinical

annotations, but also by their ability to achieve these associations
with a one-to-one mapping between a factor and a clinical
annotation, i.e., their selectivity (Fig. 4c). Indeed, a jDR method
detecting one factor associated with multiple clinical annotations
cannot distinguish the annotations from each other. To the
contrary, a jDR method detecting multiple factors associated with
only one clinical annotation does not maximally explore the
spectrum of all possible annotations. We defined a selectivity
score having a maximum value of 1 when each factor is associated
with one and only one clinical annotation, and a minimum of 0
when all factors are associated with all clinical annotations
(Methods). The average selectivity value of all methods across all
cancer types is 0.49. The top methods in each cancer type are
defined as those having a maximum number of factors associated
with clinical annotations, together with a selectivity value above
the average. RGCCA, MCIA, and MOFA are overall the best-
performing algorithms, since they rank among the top three
methods in 6/10, 5/10, and 5/10 cancer types, respectively. In
contrast, intNMF, scikit-fusion, and tICA are less effective
(among the top three methods in only two out of ten cancer
types).

Fig. 6 Identification of factors associated with clinical annotations, and metagenes associated with biological annotations in ovarian, breast, and
melanoma samples, by the jDR methods. For clinical annotations, the plot represents, for each method, the number of clinical annotations enriched in at
least one factor together with the selectivity of the associations between the factors and the clinical annotations (Method). For the three annotation
sources (MsigDB Hallmarks, REACTOME and Gene Ontology), the number of metagenes identified by the different jDR methods enriched in at least a
biological annotation are plotted against the selectivity of the associations between the metagene and the annotation. See Supplementary Fig. 3 for the
results corresponding to the other seven cancer types.
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Finally, we assessed the jDR methods performances in
associating factors with biological processes and pathways (see
Fig. 4d for the methodology, Fig. 6 and Supplementary Fig. 4 for
the results). To achieve this goal, we needed to take into account
genes (i.e., weight matrices) and not samples (i.e., factor matrices).
We computed the number of metagenes (corresponding to the
columns of the transcriptomics weight matrix) enriched in at least
one biological annotation from Reactome, Gene Ontology (GO),
and cancer Hallmarks annotation databases (Methods). An optimal
jDR method should maximize the number of metagenes enriched in
at least one biological annotation, while optimizing also the
selectivity (defined as above for clinical annotations and in the
Methods). The average selectivity of all methods across the ten
cancers is 0.3 for Reactome, 0.35 for GO, and 0.26 for cancer
Hallmarks. The top methods in each cancer type are defined as
those having a maximum number of metagenes associated with
biological annotations, together with selectivity values above the
average. Scikit-fusion, tICA, and RGCCA are overall the best-
performing algorithms for Reactome annotations (ranking among
the top three methods in 4/10, 3/10, 3/10 cancer types, respectively).
tICA, iCluster and MCIA provided the best performances in cancer
Hallmarks annotations (ranked among the top three methods in
4/10, 3/10, 3/10 cancers, respectively) and MCIA, intNMF and
iCluster performed the best in GO annotations (ranked among the
top three methods in 4/10, 3/10, 3/10 cancers, respectively). Overall,
among all jDR methods, tICA and MCIA resulted in the most
promising results for two out of three annotation databases
considered in this study, and displayed the best average
performances across the three annotations databases (Fig. 6).

Benchmarking joint Dimensionality Reduction approaches on
single-cell datasets. Similarly to bulk multiomics analyses, the
joint analysis of single-cell multiomics is expected to provide
tremendous power to untangle the cellular complexity. jDR
approaches are expected to compensate for the strong intrinsic
limitations of single-cell multiomics, such as small number of
sequencing reads, systematic noise due to the stochasticity of gene
expression at single-cell level, or dropouts29–31. However, the
nine jDR algorithms that we are considering (except MOFA) have
been designed and applied to bulk multiomics data. It is therefore
crucial to evaluate and benchmark the performances of these jDR
algorithms for single-cell multiomics integration.

To test the jDR approaches on single-cell omics, we fetched
scRNA-seq and scATAC-seq, simultaneously measuring gene
expression and chromatin accessibility on three cancer cell lines
(HTC, Hela and K562) for a total of 206 cells, and reported in the
study of Liu and colleagues32. As these cells have been obtained
from three different cancer cell lines, we expect that the first two
factors of the various jDR approaches would cluster single-cells
according to their cancer cell line of origin.

The first two factors of the nine jDR algorithms show overall
good performances to separate cells according to cell lines of
origin (Fig. 7a). To compare quantitatively these results, we
measured the C-index with values in the range [0,1], where 0
represents an optimal clustering (Methods). According to our
results, tICA and MSFA are best-performing jDR methods with a
C-index of 0, immediately followed by MCIA and intNMF (C-
indices 0.018 and 0.025, respectively), followed by RGCCA,
MOFA, and scikit-fusion (C-indices 0.077, 0.12, 0.19, respec-
tively), and finally, JIVE and iCluster (C-indices 0.23 and 0.25,
respectively). To further compare the performances of jDR
approaches with state-of-the-art single-cell multiomics integrative
tools, we further included in our analysis Seurat33 and LIGER34.
Importantly, Seurat does not output factors as the other methods.
We thus compared the methods based on their clustering abilities

following the same procedure as in the simulation benchmark
(Methods). Strikingly, although initially not designed for single-
cell data analysis, jDR methods perform equally well or better
than Seurat and LIGER (Fig. 7b). Overall, with MCIA, tICA and
MSFA were the best-performing algorithms.

Multiomics mix (momix) Jupyter notebook. To foster the
reproducibility of all the results and figures presented in
this benchmark study, we implemented the corresponding
code in a Jupyter notebook available at https://github.com/
ComputationalSystemsBiology/momix-notebook, together with a
Conda environment containing all the required libraries installed.
Written in R, this notebook is structured in three main parts cor-
responding to the three test cases here considered (simulated data,
bulk TCGA cancer data and single-cell data). Importantly, this
notebook can be easily modified to test the nine jDR algorithms on
user-provided datasets. The notebook can also be easily extended to
benchmark novel jDR algorithms on our three test cases. Full
documentation to achieve these goals is included in the notebook.

Discussion
We benchmarked in-depth nine jDR algorithms, representative of
multiomics integration approaches, in the context of cancer data
analysis. In contrast to previous comparisons11–14, our bench-
mark not only focuses on the evaluation of the clustering outputs,
but also evaluates the biological, clinical, and survival annotations
of the factors and metagenes. Existing comparisons also mainly
use simulated data, while we here further consider large datasets
of bulk cancer multiomics, as well as single-cell data.

When performing clustering on simulated multiomics datasets,
intNMF, intrinsically designed as a clustering algorithm, dis-
played the most promising results. MCIA, MOFA, and RGCCA
showed the best performance among the set of methods not
intrinsically designed for clustering. In the cancer data bench-
mark, when we evaluated the associations of the factors with
survival or clinical annotations, MCIA, JIVE, MOFA, and
RGCCA were the most efficient methods. When assessing the
associations of the metagenes with biological annotations, MCIA
and tICA were the most efficient. Finally, in the last benchmark,
when clustering single-cell multiomics data, MSFA and tICA, as
well as MCIA and intNMF, outperformed other approaches.

As mentioned earlier, intNMF, representative of the Non-
negative Matrix Factorization (NMF) approaches, performs well
for the clustering tasks, i.e., for detecting substantial patterns of
variation across the omics datasets. This is observed for both
simulated bulk data clustering and single-cell data clustering.
Hence, intNMF should be prioritized by researchers focusing on
clustering samples. However, intNMF is not effective when
assessing the quality of individual factors and metagenes, as
observed in the bulk cancer sub-benchmark. Our results rather
suggest that for the study of factor-level information, such as
associations with clinical annotation or survival, MCIA, JIVE,
MOFA, and RGGCA are the best algorithms to use. When
focusing on the underlying biology of the metagenes, tICA and
MCIA should be prioritized. Indeed, we showed that these
approaches are efficient to detect pathways or processes, but they
could also be interesting to identify biomarkers or other mole-
cular mechanisms. Finally, our study highlights the versatility of
MCIA. Indeed, MCIA is the method with the most consistent and
effective behavior across all the different subbenchmarks. MCIA
can thereby be particularly useful for researchers interested in
applying jDR with multiple or more open biological questions.

In the future, it would be interesting to extend our benchmark to
evaluate jDR methods on discrete omics data. Indeed our current
benchmark focuses on continuous data (e.g., expression,
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methylation), whereas many omics and annotations can be for-
malized as discrete data (e.g., copy number, mutation, drug
response). Further extensions of our benchmark could also inves-
tigate the impact of different variables on the jDR methods, such as
the stability of the methods with respect to variations in the
structure of omics data (e.g., imbalance in variability or number of
features); or optimal performances according to different combi-
nations of omics data (e.g., are three omics more informative than
two?). In addition, to make a fairer comparison, we imposed the
same numbers of factors to all of jDR methods, but we could

alternatively use the optimal number of factors directly computed
by each method, as in the work of Tini and colleagues14. Finally,
multiomics data are frequently profiled from different sets of
patients/samples, leading to missing data, and further extensions of
the benchmark could take this point into account.

From a technical perspective, we observed that the methods
that seek for omics-specific factors often led to a better perfor-
mance than the methods designed for finding shared or mixed
factors. We hypothesize that jDRs with omics-specific factors
could successfully detect not only biological processes shared

Fig. 7 jDR clustering of single-cell multiomics according to the cancer cell line of origin. a Scatterplots of factor 1 and 2 (i.e., the first two columns of the
factor matrix) are reported for each jDR method. The colors denote the cancer cell line of origin: pink for K562, orange for Hela and blue for HCT. The C-
index (in the range [0–1]) reports the quality of the obtained clusters (0 being the best). b Boxplots of the Jaccard Index corresponding to the application of
jDR plus LIGER and Seurat for single-cell multiomics clustering. The corresponding Adjusted Rand Index (ARI) values are further reported near to the name
of the jDR methods along the x-axis. The number of cells here considered is 206 and the results are obtained over 1000 independent runs of k-means
clustering. Data are presented as mean values ± sd, whiskers denote max, and min values.
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across multiple omics, but also those processes that are com-
plementary in multiple sources of omics data. In addition, when
using algorithms producing omics-specific factors, we have only
evaluated the transcriptome-associated omics-specific factors
(Methods). However, the outputs of these methods can often
contain additional relevant information in other omics-specific
factors. As an example, in our benchmark, the jDR methods did
not retrieve factors significantly associated with survival in
ovarian cancer. However, a significant association is retrieved
with one miRNA-specific factor of RGCCA. We thus suggest
developers to prioritize omics-specific factors for further metho-
dological developments. Accordingly, the use of co-inertia (as
implemented in MCIA) appears more efficient to enforce rela-
tionships across omics than the use of correlation (as imple-
mented in RGCCA). In addition, there is room for development
of approaches managing missing data, as many of the best-
performing approaches can work only on omics profiled from the
same samples. This is also true for the consideration of discrete
data as, among the methods considered here, only MOFA and
scikit-fusion have been previously applied to such data. Finally,
most of the considered methods detect only linear signals. MOFA
is the only algorithm in our benchmark that can also detect
slightly nonlinear signals, as shown in ref. 15 for mouse
embryonic stem cells. As a result, future developments should be
directed towards methods that can capture the nonlinear signals
present in the data. Developers could take advantage of the
momix Jupyter notebook using it to compare novel methods with
established ones.

Methods
We consider P omics matrices Xi, i ¼ 1; :::; P of dimension n ×m, with ni features
(e.g., genes, miRNAs, CpGs) and m samples. A jDR jointly decomposes the P omics
matrices into the product of ni × k omics-specific weight/projection matrices (Ai)
and a k ×m factor matrix (F) and (Fig. 1). k is thus the number of factors of the
decomposition. Here and in the following, we will denote as factors the rows of the
factor matrix and as metagenes the columns of the weight/projection matrix cor-
responding to transcriptomic data.

Presentation of the nine jDR algorithms. We detail here the nine jDR methods
benchmarked in momix. We selected default parameters for each approach. Each
method can in principle optimize its number of factors to be detected, but for the
sake of comparison, we imposed the same number of factors on all approaches.
Please note that we followed the mathematical formulations and notations pro-
vided in each corresponding publication.

Integrative non-negative matrix factorization (intNMF). intNMF17 is one of the
numerous generalizations of NMF to multiomics data. The method decomposes
each omics matrix Xi into a product of non-negative matrices: the factor matrix W,
and an omics-specific matrix Hi:

Xi ¼ WHi; for i ¼ 1; :::; P with W and Hi positive matrices for i ¼ 1; :::; P:

ð1Þ
The algorithm minimizes the objective function

Q ¼ minWH

PP
i¼1 θ

i Xi �WHi
�
�

�
�

�
�

�
�:

Once the matrices W and Hi i ¼ 1; :::; P have been computed, samples are
assigned to clusters based on the W matrix; Each sample is associated with the
cluster in which it has the highest weight. The algorithm is implemented into the
CRAN R package intNMF (https://cran.r-project.org/web/packages/IntNMF/index.
html).

Joint and individual variation explained (JIVE). JIVE18 is an extension of PCA to
multiomics data. JIVE decomposes each omics matrix into three structures: a joint
factor matrix (J), a omics-specific factor matrix (A) and a residual noise (E):

Xi ¼ Jþ Ai þ Ei ¼ UiSþ Ai þ Ei; for i ¼ 1; :::; P ð2Þ

with Ei, Ai and Ui are ni ´ kð Þmatrices and S is a common score matrix explaining
variability across multiple data types.

The algorithm minimizes Ek k2, with Ei ¼ Xi � UiS� Ai and E ¼ ½E1::: EP �T .
JIVE is implemented into the R package r.jive (https://cran.r-project.org/web/

packages/r.jive/index.html).

Multiple co-inertia analysis (MCIA). MCIA19, is an extension of co-inertia analysis
(CIA) to more than two omics datasets. MCIA factorizes each omics into omics-
specific factors

Xi ¼ AiFi þ Ei; for i ¼ 1; :::; P; ð3Þ
by first applying a dimensionality reduction approach, such as PCA, to each omics
matrix Xi separately and then maximizing their co-inertia, i.e., the sum of the
squared covariance between scores of each factor:

argmaxq11 :::q1P

XP

k¼1

cov2 Xi
kq

i
k; X

iqi
� � ð4Þ

with var Xiqi
� � ¼ 1 and qicorrespond to the global PCA projections. MCIA is

implemented in the R package omicade4 (https://bioconductor.org/packages/
release/bioc/html/omicade4.html).

Regularized generalized canonical correlation analysis (RGCCA). RGCCA21 is one
of the most widely used generalizations of CCA to multiomics data. Similarly to
MCIA, RGCCA factorizes each omics into omics-specific factors:

Xi ¼ AiFi þ Ei; for i ¼ 1; :::; P: ð5Þ
RGCCA maximizes the correlation between the omics-specific factors by finding
projection vectors ui such that the projected data have maximal correlation:

argmaxi;jCorr Xiui; Xjuj
� �

for all possible couplesi; j ¼ 1; :::; P: ð6Þ
Solving this optimization problem requires inversion of the covariance matrix.
However, omics data usually have a higher number of features than samples, and
these matrices are therefore not invertible. RGCCA thus apply regularization to
CCA. RGCCA is implemented into the CRAN package RGCCA (https://cran.r-
project.org/web/packages/RGCCA/index.html).

iCluster. iCluster16 decomposes each omics into the product of a factor matrix that
is shared across all omics, and omics-specific weight matrices:

Xi ¼ AiFþ Ei; for i ¼ 1; :::; P: ð7Þ
iCluster solves this equation by first deriving a likelihood-based formulation of the
same equation and then applying Expectation-Maximization (EM). The method
assumes that both the error Ei and the factor matrix F are normally distributed.
Finally, clusters are obtained from the factor matrix by applying K-means. The
algorithm is implemented into the CRAN package iCluster (https://rdrr.io/bioc/
iClusterPlus/man/iCluster.html).

Multiomics factor analysis (MOFA). MOFA15 decomposes each omics into the
product of a factor matrix and omics-specific weight matrices:

Xi ¼ AiFþ Ei; for i ¼ 1; :::; P: ð8Þ
MOFA first formulates the equation above in a probabilistic Bayesian model,
placing prior distributions on all unobserved variables Ai; F and Ei . While the
factor matrix F is shared across all omics, the sparsity priors in the in Ai ensure that
both omics-specific and shared factors are retrieved. MOFA solves the probabilistic
Bayesian model by maximizing the Evidence Lower Bound (ELBO), which is equal
to the sum of the model evidence and the negative Kullback–Leibler divergence
between the true posterior and the variational distribution. Despite having a factor
matrix Fshared among all omics, the sparsity priors in the weights ensure that
MOFA will detect both omic-speciifc and shared factors. MOFA is an extension of
Factor Analysis to multiomics data, but it is also partially related to iCluster.
However, differently from iCluster, MOFA does not assume a normal distribution
for the errors but supports combinations of different omics-specific error dis-
tributions. The code to run MOFA is available at https://github.com/bioFAM/
MOFA. The MOFA package further implements an automatic downstream ana-
lysis pipeline for the interpretation of the obtained factor and weight matrices
through pathways, top-contributing features or percentage of variance-explained
interpretation.

Tensorial independent component analysis (tICA). A natural extension of DR
methods to multiomic data is based on the use of tensors, i.e., higher-order
matrices. Indeed, all the methods designed for single-omics can be naturally
extended to multiomics with tensors. However, this requires to work with omics
data sharing both the same samples and features. Here, to overcome this limitation
we ran the tensorial algorithm on the correlation-of-correlation matrix, i.e., the
matrix having on rows and columns the samples that are common to all the omics
data and having in position (i,j) the correlation of sample i with sample j.

We chose tensorial ICA (tICA)23 to represent the tensor-based methods in our
benchmark. Considering the multiomics data organized into a tensor X, the
equation solved by tICA is:

X ¼ S �P
i¼1 Ωi; ð9Þ

where S is a tensor, with the same dimension of X, and composed of S1:::SP
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random variables mutually statistically independent and satisfying E S1:::SP½ � ¼ 0
and Var½S1:::SP� ¼ I and ⊙ denotes the tensor contraction operator.

Thus, tICA searches for independent signals. Since biological processes are
generally non-Gaussian and often sparse, the assumption of tICA can improve the
deconvolution of complex mixtures and hence better identify biological functions
and pathways underlying the multiomics data. Given that multiple tensorial
versions of ICA exist, we considered the tensorial fourth-order blind identification
(tFOBI), whose implementation in R was reported by Teschendorff et al.23.

Multi-study factor analysis (MSFA). MSFA20 is a generalization of Factor Analysis
(FA), which models the omics matrices Xi as the sum of data-specific and shared
factors:

Xi ¼ ΦFi þ ΛiLi þ Ei; for i ¼ 1; :::; P: ð10Þ

where Ei has a multivariate normal distribution and the marginal distributions of
Fi, Li, and Xi are multivariate normal. MFSA is implemented in R and available at
https://github.com/rdevito/MSFA.

Data fusion (scikit-fusion). The data-fusion approach (scikit-fusion)22 is based on
two steps. First, two groups of matrices are constructed from the multiomics data:
relation (R) and constraint (C) matrices. The R matrix encodes relations inferred
between features of different omics (e.g., genes to proteins), while the matrix C
describes relations between features of the same omics (e.g., protein–protein
interactions). The matrix C thus corresponds to the side information considered by
scikit-fusion in the factorization. Then, tri-matrix factorization is used to simul-
taneously factorize the various relation matrices R under constraints C. Given that
the R and C matrices are block-matrices, with element Rij containing a relation
between the elements of the i-th omics and those of the j-th, the matrix-tri-
factorization is applied separately to each block:

Rij � GiSijGj; ð11Þ

with Gi shared across all the Rip for p ¼ 1:::P (matrices that relate the i-th object to
others).

Hence, scikit-fusion can naturally combine additional side information in the
factorization of the multiomics data, such as protein–protein interactions, Gene
Ontology annotations. It is implemented in Python and available at https://github.
com/marinkaz/scikit-fusion.

Factor selection for performance comparisons. The jDR approaches make dif-
ferent assumptions on the cross-omics constraints of the factors. The various jDR
can be thus classified in shared factors, omics-specific factors and mixed factors
approach. To use the factor matrices to compare the performances of the various
jDR methods, e.g., to cluster the samples based on the factors, we had to select
which factor matrix to use for each jDR. Shared factors jDR methods compute a
unique factor matrix, which is used in our benchmark. Omics-specific jDR
methods compute a factor matrix for each omics dataset. In these cases, we selected
the factor matrix associated with transcriptomic data for our benchmark. However,
jDRs with omics-specific factors maximize correlation or co-inertia between the
various omics-specific factor matrices. The values of the transcriptomic factor
matrix are then influenced by the other omics. Finally, for mixed factors jDRs
methods, we considered the joint factor matrix F. As a consequence, all jDR
methods with omics-specific and mixed factors contain more information in their
factorization than that considered here for sake of comparison.

Data simulation. The simulated multiomics datasets have been produced by the
InterSIM CRAN package24. InterSIM simulates multiple interrelated data types
with realistic intra- and inter-relationships based on the DNA methylation, mRNA
gene expression, and protein expression from TCGA ovarian cancer data. We
generated 100 simulated datasets, with a number of clusters set by the user. We
considered five, ten, and fifteen clusters in this study. The proportion of samples
belonging to each subtype is also set by the user, while we considered here two
conditions with equally sized clusters and variable random sizes, respectively.

Clustering of factor matrix. To identify the clusters of samples starting from the
jDR factor matrix, we applied k-means clustering to the factor matrix (kmeans
function in R). We chose k-means for clustering in agreement with the use of k-
means in iCluster and euclidean distance in intNMF for clustering. As k-means
clustering is stochastic, we performed clustering 1000 times and computed a
consensus consisting in the most frequent associations between samples and
clusters

Comparing jDR algorithm clusters to ground-truth clusters. The matching
between the ground-truth clustering and the clustering inferred by the various jDR
algorithms is measured with the Jaccard Index (JI) and Adjusted Rand Index (ARI).

JI is a similarity coefficient between two finite sets A and B, defined by the size
of the intersection of the sets, divided by the size of their union: JI(A,B)= A\B

A ∪ B . It
takes its values in [0;1].

Given two partitions/clustering results z; z0ð Þ obtained on the same data of n
total elements, the Rand Index (RI) is defined as:

R z; z0ð Þ ¼ aþ b
n
2

;

where n
2 is the binomial coefficient measuring the number of unordered pairs in a

set of n elements, a refers to the number of times a pair of elements belongs to a
same cluster across the two partitions/clustering results z; z0ð Þ and b refers to the
number of times a pair of elements belongs to different clusters across the two
partitions/clustering results z; z0ð Þ.

The RI is always comprised between 0 and 1, with 1 corresponding to a perfect
matching between two partitions/clustering results. However, for random
partitions, the expected value of the RI is close to 1. To overcome this drawback,
the Adjusted Rand Index (ARI) has been proposed. The ARI is the normalized
difference between the RI and its expected value, according to the formula:

ARI ¼ RI � expected value RI
max RI � expected value RI

ð12Þ

Selection of the clinical annotations. The clinical annotations selected for
benchmark testing are “age of patients”, “days to new tumor”, “gender” and “neo-
adjuvant therapy administration”. This set of annotations is obtained after
excluding redundant annotations (e.g., “age_at_initial_pathologic_diagnosis” and
“years_of_initial_pathologic_diagnosis”), annotations having missing values for
more than half of the samples, and annotations having no biological relevance (e.g.,
“vial_number”, “patient_id”). Four clinical annotations are available for nine or ten
out of ten cancer types, while the others are only present for six or fewer cancer
types (with most of them being available only for one or two cancer
types).

Selectivity score. We define the selectivity as:

S ¼ Ncþ Nf

2L
ð13Þ

where Nc is the total number of clinical annotations associated with at least a
factor, Nf the total number of factors associated with at least a clinical annotation,
and L the total number of associations between clinical annotations and factors. S
has a maximum value of 1 when each factor is associated with one and only one
clinical/biological annotation, and a minimum of 0 in the opposite case. An
optimal method should thus maximize its number of factors associated with
clinical/biological annotations without having a too low selectivity.

Testing the biological enrichment of metagenes. To test if metagenes are
enriched in biological annotations, we used PrerankedGSEA, implemented in the
fgsea R package. In preranked GSEA, each metagene is considered as a ranking of
genes, and the significance of the association of a biological annotation with the
higher or lower part of the ranking is tested. We considered as biological anno-
tations Reactome pathways, Gene Ontology (GO), and cancer Hallmarks, all
obtained from MsigDB35.

Quality of single-cell clusters. To evaluate the quality of the 2D data distribution
obtained from single-cell multiomics data, we employed the C-index measure36 an
internal clustering evaluation index comparing the distance between intracluster
points and interclusters points. It takes its values in [0,1] and should be minimum
in an optimal clustering. Of note, to compute the C-index we do not need to
perform a clustering on the jDR factor matrix, but only to compute the distance
between cells known to belong to the same or different cell lines.

Instead, in the computation of the ARI, we had first to define a clustering based
on the jDR output, which was performed with k-means, and then compared to the
cell lines of origin.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The simulated data are produced using the R package InterSIM V2.2 and can be reproduced
using our jupyter notebook (https://github.com/ComputationalSystemsBiology/momix-
notebook)37. The cancer TCGA data were dowloaded from http://acgt.cs.tau.ac.il/
multi_omic_benchmark/download.html. The single-cell data are available in the data/ folder
of our github repository (https://github.com/ComputationalSystemsBiology/momix-
notebook)37. Annotations (i.e., Gene Ontology, Reactome and MSigDB Hallmarks) were
fetched from fgsea V1.16. The remaining data are available in the article, Supplementary
Information and Jupyter notebook37.

Code availability
All the analyses can be reproduced with the momix Jupyter notebook available at https://
github.com/ComputationalSystemsBiology/momix-notebook37. The same github link
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also contains the instructions to install the momix conda environment available on
Anaconda cloud (https://anaconda.org/lcantini/momix). With this conda environment,
the user will get all the required R and Python packages automatically installed, in the
same version that we used for this benchmark. The packages used are: R packages
(iCluster V2.1, intNMF V1.2, r.jive V2.1, omicade4 V1.3, MOFA V1, MSFA V1,
RGCCA2.1.2, InterSIM V2.2, fgsea V1.16). Python packages (scikit-fusion V1).

Received: 25 March 2020; Accepted: 2 December 2020;
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