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RESEARCH NOTE

Staphylococcus aureus pigmentation 
is not controlled by Hfq
Wenfeng Liu , Pierre Boudry, Chantal Bohn  and Philippe Bouloc* 

Abstract 

Objective: The golden color of Staphylococcus aureus is due to the synthesis of carotenoid pigments. In Gram-neg-
ative bacteria, Hfq is a global posttranscriptional regulator, but its function in S. aureus remains obscure. The absence 
of Hfq in S. aureus was reported to correlate with production of carotenoid pigment leading to the conclusion that 
Hfq was a negative regulator of the yellow color. However, we reported the construction of hfq mutants in several S. 
aureus strains and never noticed any color change; we therefore revisited the question of Hfq implication in S. aureus 
pigmentation.

Results: The absence or accumulation of Hfq does not affect S. aureus pigmentation.
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Introduction
Staphylococcus aureus is a major pathogen responsible 
for numerous diseases from minor skin infection to sep-
ticemia, affecting humans and other animals. Its name 
“aureus” comes from the golden color of strains that 
express carotenoid pigments [1]. These pigments con-
tribute to oxidative stress and neutrophil resistance, and 
virulence [2]. The carotenoid biosynthetic operon (crt-
MNOPQ) leading to the synthesis of staphyloxanthin 
is regulated by σB [3, 4], an alternative σ factor that also 
controls a large number of general stress genes. σB activ-
ity depends on RsbU, its positive regulator [5, 6]. Numer-
ous strains, including the S. aureus model NCTC8325, 
have rsbU mutations that prevent σB activity and crt 
operon expression, such that colonies are white. In addi-
tion, mutations in 37 genes were shown to result in the 
loss of a yellow pigmentation [5, 7].

Hfq is an RNA chaperone needed for activity of numer-
ous regulatory RNAs in Gram-negative bacteria [8]. 
However, its role in Gram-positive bacteria, with the 

exception of Clostridium difficile [9], remains enigmatic 
[10]. Hfq functionality from different species is often 
tested by interspecies complementation tests. However, 
expression of hfq genes from Gram-positive bacteria S. 
aureus and Bacillus subtilis in Salmonella could not com-
pensate the absence of endogenous hfq, indicating a func-
tional difference between Gram positive and negative 
Hfq [11, 12].

We previously compared phenotypes of S. aureus hfq 
mutants with their isogenic parental strains and observed 
no detectable difference associated with the absence of 
Hfq in the tested conditions [13]. However, our results 
were partly challenged by a publication reporting that 
carotenoid pigment production was increased in hfq-
negative strains [14]. Here we use nine different S. aureus 
strains to show that Hfq absence or overexpression has 
no effect on pigment expression.

Main text
Methods
Bacterial strains, plasmids and growth conditions
Bacterial strains, plasmids and primers used in this 
study are listed in Table  1. Allelic replacements of 
hfq+ by Δhfq::cat were either performed by φ11-phage 
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mediated transduction using RN4220 hfq::cat as a 
donor strain or by homologous recombination using 
pMADΔhfq::cat [13, 15]. The Δhfq::cat deletion in 
SAPHB5 was verified by Southern blot and subse-
quent Δhfq::cat transductants were verified by PCR as 
described [13].

Engineered plasmids were constructed as described 
[16]. Conditional hfq expression was obtained by clon-
ing hfq under the xyl/tetO promoter in pRMC2 [17] 
and pRMC2FLAG (Table  1). pRMC2Hfq allowing hfq 
conditional expression was obtained as follows: pRMC2 
and PCR-amplified hfq (using primers 39/49 on HG003 

Table 1 Staphylococcus aureus strains, plasmids and primer used for this study

Strain name Key features Reference or construction

RN4220 Transformable by DNA from E. coli [25]

SAPhB5 RN4220 Δhfq::cat [13]

NCTC8325 Clinical isolate [26]

SAPhB224 NCTC8325 Δhfq::cat NCTC8325 + φ11(SAPhB5)

NCTC8325-4 NCTC8325 Δφ11 Δφ12 Δφ13 [27]

SAPhB197 NCTC8325-4 Δhfq::cat NCTC8325-4 + φ11(SAPhB5)

RN6390 NCTC 8325-4 φ6390 [28]

SAPhB22 RN6390 Δhfq::cat [13]

HG001 NCTC8325 rsbU repaired [22]

SAPhB199 HG001 Δhfq::cat HG001 + φ11(SAPhB5)

HG002 NCTC8325 tcaR repaired [22]

SAPhB201 HG002 Δhfq::cat HG002 + φ11(SAPhB5)

HG003 NCTC8325 rsbU and tcaR repaired [22]

SAPhB203 HG003 Δhfq::cat HG003 + φ11(SAPhB5)

COL Methicillin resistant clinical isolate [29]

SAPhB16 COL Δhfq::cat [13]

Newman Clinical isolate [30]

SAPhB17 Newman Δhfq::cat [13]

SAPhB142 RN4220 pRMC2 RN4220 + pRMC2

SAPhB248 RN4220 pRMC2Hfq RN4220 + pRMC2Hfq

SAPhB251 RN4220 pRMC2HfqFLAG RN4220 + pRMC2HfqFLAG

SAPhB233 HG003 pRMC2 HG003 + pRMC2

SAPhB249 HG003 pRMC2Hfq HG003 + pRMC2Hfq

SAPhB257 HG003 pRMC2HfqFLAG HG003 + pRMC2HfqFLAG

Plasmid name Key features Reference/construction

pRMC2 Anhydrotetracycline (aTc) inducible promoter  Pxyl/tetO [17]

pRMC2Hfq hfq inducible expression See “Methods”

pRMC2FLAG pRMC2 derivative for translational gene fusions with 3xflag coding 
sequence

See “Methods”

pRMC2HfqFLAG hfq::3xflag inducible expression See “Methods”

Primer name Sequence Purpose

39 GGG GTA CCA TGA TTG CAA ACG AAA AC hfq amplification (with a KpnI site)

49 GGG GAA TTC TTA TTC TTC ACT TTC AGT AGA TGC hfq amplification (with an EcoRI site)

856 GGT ACC GTT AAC AGA TCT GAG pRMC2 amplification

918 GCT TAT TTT AAT TAT ACT CTA TCA ATG ATA GAG pRMC2 and pRMC2FLAG amplifications

858 TCA GAT CTG TTA ACG GTA CCG GAA TTA GCT TGC ATG GAA 3xflag amplification

919 GAT AGA GTA TAA TTA AAA TAA GCG AGC TCG ACT ACA AAG ACC A 3xflag amplification

865 GAC TAC AAA GAC CAT GAC GG pRMC2FLAG amplification

939 GAT AGA GTA TAA TTA AAA TAA GCG TAA AAG GAG TCC GAC AGA TGA hfq amplification for cloning in pRMC2FLAG

940 CCG TCA TGG TCT TTG TAG TCT TCT TCA CTT TCA GTA GAT GCT TG hfq amplification for cloning in pRMC2FLAG
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DNA) were KpnI-EcoRI digested and ligated together. 
pRMC2FLAG was engineered for conditional expres-
sion of 3xFLAG-tagged proteins as followed: pRMC2 and 
pSUB11 [18] were PCR-amplified using primers 856/918 
and 858/919, respectively. The two resulting products, 
i.e. pRMC2 and 3xflag coding sequence, were assembled 
using the Gibson method [19]. pRMC2HfqFLAG, allow-
ing conditional expression of Hfq::3xFLAG, was obtained 
as follows: pRMC2FLAG and hfq HG003 were PCR-
amplified using primers 918/865 and 939/940, respec-
tively. The two resulting products were assembled using 
the Gibson method.

Bacteria were grown in BHI medium (BD Difco, ref: 
237500) at 37  °C under vigorous agitation. BHI solid 
media were obtained by the addition of Bacto Agar 
15  g  l−1 (BD Difco, ref: 214010). For strains contain-
ing pRMC2 and derivatives, chloramphenicol (Sigma-
Aldrich, ref: C0378) 5  µg  ml−1 was added to media. 
Expression from pRMC2 and derivatives was achieved 
by anhydrotetracycline (aTc, Chemodex, ref: CDX-
A0197-M500) 250 ng ml−1 addition to growth media.

Protein extraction, Western blotting and staphyloxanthin 
spectral measurement
Overnight cultures were diluted 1000 times in fresh 
medium. After 3  h, aTc was added. 10  min and 30  min 
later, cells were harvested by centrifugation (16,000g for 
2  min), resuspended in 400  µl Tris HCl buffer (50  mM, 
pH 6.8) and lysed using a FastPrep (3 cycles of 45  s 
at 6.5  m  s−1). Cell debris was removed by centrifuga-
tion (16,000g for 10  min). Protein concentration was 
determined by Bradford assays [20]. For each sample, 
3  μg of protein extract was separated on a polyacryla-
mide gel (Blot™ 4–12% Bis–Tris Plus, Invitrogen, ref: 
NW04122BOX). After electrophoresis, proteins were 
transferred to a polyvinylidene fluoride membrane (iBlot 
2 PVDF Mini Stacks, Invitrogen ref: IB24002). For blot-
ting and washing, an iBind™ Flex Western System (ref: 
SLF2000S) was used according to supplier’s instructions. 
Membranes were probed with the primary polyclonal 
ANTI-FLAG antibody produced in rabbit (Sigma, ref: 
F-7425) at a 1/15,000 dilution. A rabbit secondary anti-
body conjugated to horseradish peroxidase (Advansta, 
ref: R-05072-500) was used at a 1/25,000 dilution. Biolu-
minescent signal was detected with the WesternBright™ 
ECL-spray (Advansta, ref: K-12040-D50) using a digital 
camera (ImageQuant™ 350, GE Healthcare).

The S. aureus pigments were extracted as described 
[21]. In brief, strains were grown in BHI under vigorous 
agitation for 24 h. Cells were harvested by centrifugation, 
the pellet was rinsed twice with sterile water and pig-
ments were extracted by methanol. Absorbance between 

330 and 550  nm was measured on a microplate reader 
(CLARIOstar BMG LABTECH).

Results
The absence of Hfq does not alter S. aureus pigmentation
In 2010, Liu et al. reported that “deletion of hfq gene in 
S. aureus 8325-4 can increase the surface carotenoid pig-
ments” [14]. Their work was performed using an allele 
called Δhfq-8325 in which the hfq coding sequence 
was replaced by a kanamycin cassette. The hfq chro-
mosomal deletion was constructed in strain RN4220 
and then transduced into NCTC8325-4, RN6390, COL 
and ATCC25923 by phage φ11. We constructed a simi-
lar hfq deletion in RN4220, except that the hfq coding 
sequence was replaced by a chloramphenicol resistant 
gene (Δhfq::cat); this allele was transduced into RN6390, 
COL and Newman by φ11-phage mediated transduction 
[13]. Note that RN4220, RN6390 and COL strains were 
used for both studies. As we did not notice a change of 
color when the Δhfq::cat allele was introduced into these 
strains, this information was not reported [13]. In view of 
the previous report, we focused this work on the possibil-
ity that Hfq could affect S. aureus pigment expression.

NCTC8325 isolated in 1960 from a sepsis patient is the 
progenitor of numerous strains including NCTC8325-4 
(cured of three prophages) which itself gave RN6390 
and RN4220 [22]. As these descendants were mutagen-
ized, they carry several mutations that may affect their 
phenotypes. NCTC8325 has a deletion of 11 bp in rsbU 
and a point mutation in tcaR. The derivatives HG001 
(rsbU restored), HG002 (tcaR restored), HG003 (rsbU 
and tcaR restored) were constructed to perform physi-
ological studies in a non-mutagenized background [22]. 
All these NCTC8325 derived strains, except HG001 and 
HG003 (which have a functional σB factor), give rise to 
white colonies (Fig.  1). In addition to those reported 
[13], we constructed Δhfq::cat derivatives in NCTC8325, 
NCTC8325-4, HG001, HG002 and HG003 (Table  1). In 
contrast to results reported in Liu et al., deletion of the 
hfq gene in all tested strain backgrounds had no effect on 
pigmentation (Fig. 1a). Note that COL, Newman are not 
NCTC8325 derivatives.

Spectral profiles highlighting S. aureus carotenoid 
production were determined as described  [21] for three 
strains and their hfq derivatives after growth for 24 h in 
BHI. HG003 and HG003 Δhfq::cat gave equivalent pro-
files with three pics characteristic of carotenoid produc-
tion. In contrast, NCTC8325-4 and RN1 had spectra 
characteristic of no or very little carotenoid production. 
As expected from our visual observation (Fig.  1a), the 
spectra of Δhfq derivatives did not differ from those of 
their respective parental strains (Fig. 1b).
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Hfq overexpression does not alter S. aureus pigmentation
In the above-described strains, hfq is possibly poorly 
expressed, in which case hfq deletions would not lead to 
detectable phenotypes. We therefore tested the effects 
of an inducible Hfq expression system on pigment pro-
duction. If the absence of Hfq leads to yellow colonies 
as proposed [14], the presence of Hfq could lower pig-
ment production and lead to white colonies. To address 
this point, hfq was cloned under the control of the  Pxyl/

tetO promoter in multi-copy plasmid pRMC2 [17] lead-
ing to pRMC2Hfq. hfq expression in strains harboring 
pRMC2Hfq was induced upon aTc addition to media. To 
confirm that  Pxyl/tetO was effectively driving hfq expres-
sion, a pRMC2Hfq derivative was engineered harbor-
ing a 3xflag sequence inserted in frame at the end of the 
hfq open reading frame. The resulting plasmid, pRM-
C2HfqFLAG is a proxy for expression from pRMC2Hfq. 
HG003 was transformed with pRMC2, pRMC2Hfq 

and pRMC2HfqFLAG. The protein Hfq::3xFLAG was 
detected upon aTc induction by western blotting using 
FLAG antibodies (Fig.  2a). We inferred from this result 
that addition of aTc to strains harboring pRMC2Hfq lead 
to Hfq synthesis. The RN4220 white and HG003 yel-
low colors were not affected by the presence of either 
pRMC2, pRMC2Hfq or pRMC2HfqFLAG and remained 
identical upon aTc addition to growth medium (Fig. 2b).

Conclusion
Our results show that neither the absence, nor the accumu-
lation of Hfq affects pigmentation of S. aureus: Hfq does 
not appear to regulate staphyloxanthin synthesis. Our con-
clusions are supported by Tarrant PhD dissertation show-
ing an NCTC8325 hfq mutant that remained unpigmented 
[23]. Of note, Pseudomonas aeruginosa reportedly induces 
pigment production of a non-pigmented phenotypic vari-
ant of S. aureus, however, this effect was independent of hfq 
transcription [24]. In addition, color variation in USA300 
strain was screened in a genome-wide transposon mutant 
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library, and the hfq inactivation was not reported to affect 
S. aureus pigmentation [7].

While the hfq gene is absent in some Firmicutes (e.g. Lac-
tobacillales), it is conserved in all S. aureus, suggesting that 
it plays a crucial function, however not related to pigment 
expression. The quest to find the Staphylococcal Hfq func-
tion remains open.

Limitations
Our conclusion is in contradiction with Liu et  al. results 
concerning the effect of Hfq on S. aureus pigmentation [14]. 
We cannot rule out that our observation is limited to spe-
cific S. aureus strains. However, we used an NCTC8325-4 
hfq derivative similar the one used in the previous study. 
Furthermore, the present results are strengthened by the 
construction of hfq mutants in numerous S. aureus back-
grounds. The discrepancy between our and Liu et al. 2010 
[14] results, is a possible inadvertent selection of mutants 
with altered color patterns (as shown in [23]) in the former 
study.

Abbreviations
PCR: Polymerase chain reaction; BHI: Brain heart infusion; aTc: 
Anhydrotetracycline.
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