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Abstract: The circadian clock is a molecular timer of metabolism that affects the diurnal pattern of
stomatal conductance (gs), amongst other processes, in a broad array of plant species. The function of
circadian gs regulation remains unknown and here, we test whether circadian regulation helps to
optimize diurnal variations in stomatal conductance. We subjected bean (Phaseolus vulgaris) and cotton
(Gossypium hirsutum) canopies to fixed, continuous environmental conditions of photosynthetically
active radiation, temperature, and vapour pressure deficit (free-running conditions) over 48 h.
We modelled gs variations in free-running conditions to test for two possible optimizations of
stomatal behaviour under circadian regulation: (i) that stomata operate to maintain constant marginal
water use efficiency; or (ii) that stomata maximize C net gain minus the costs or risks of hydraulic
damage. We observed that both optimization models predicted gs poorly under free-running
conditions, indicating that circadian regulation does not directly lead to stomatal optimization.
We also demonstrate that failure to account for circadian variation in gs could potentially lead to
biased parameter estimates during calibrations of stomatal models. More broadly, our results add to
the emerging field of plant circadian ecology, where circadian controls may partially explain leaf-level
patterns observed in the field.

Keywords: adaptations; bean; cotton; ecological strategies; gas exchange; leaf

1. Introduction

Circadian rhythms regulate the temporal pattern of the transcription of ~30% of the plant
genome [1]. Diurnal variation in photosynthesis and stomatal conductance, among other processes
such as growth [2] and respiration [3], is affected by circadian regulation. Current estimates indicate
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that, averaged across species, circadian regulation drives 15–25% of the daytime oscillation in
carbon assimilation (A) [4], at least under some environmental conditions. Resonance between
circadian rhythms in gas exchange and environmental cues has been documented to increase plant
growth [5–9] because circadian regulation underlies the temporal partitioning and synchronization
of different processes associated with carbon metabolism. Relationships between the circadian
clock and photosynthesis are bidirectional such that circadian regulation affects photosynthesis,
but photosynthesis also affects the core structure of the circadian clock [10].

Circadian regulation affects stomatal behaviour and the proportion of the diurnal oscillation in
stomatal conductance (gs) that is currently attributed to the clock, amounting to 30–35% of the total
daytime variation [4,11], is larger than the previously clock-attributed variation in photosynthesis.
Stomatal conductance, thus, appears to be under a stronger circadian regulation than photosynthesis,
but the function of circadian regulation of stomatal behaviour has not yet been adequately assessed
(but see [12]).

Stomatal opening is necessary for the diffusion of CO2 from the atmosphere into the mesophyll,
but this comes at a water cost. A long-term standing evolutionary model on stomatal function proposes
that stomata operate optimally to balance the ratio between C assimilation (A) and transpiration (E),
that is, to maximise water use efficiency (WUE). In short, the hypothesis of optimal stomatal behaviour
proposes that stomata maintain a constant marginal water cost (λ = δE/δA; in mol CO2 mol−1 H2O),
at least over short time scales, at the point where A balances the cost of water lost through E [13].

Recent studies propose alternative optimization strategies. For instance, Wolf et al. [14]
hypothesized that leaves maximize A minus hydraulic risks that are a function of tissue water
potential (A−Θ(ψ)), such as xylem impairment, which would incur significant fitness or carbon
costs. The traditional WUE hypothesis proposes that plants follow a conservative strategy to save
water, whereas Wolf et al. [14] propose that plants prioritize carbon maximization over water savings
(CM hypothesis), which is consistent with plant competition for water in the soil.

Circadian biologists have addressed how the clock regulates water use efficiency [15] and they
often mention circadian regulation as important for attaining optimal stomatal conductance [16].
However, we are unaware of any direct tests for stomatal optimality incorporating circadian regulation.
Circadian regulation of A has been documented to be uncoupled and independent from circadian
regulation of gs [17,18], but linkages between these two processes are a prerequisite for optimal WUE.
Therefore, if circadian rhythms regulate A and gs independently from each other, this suggests that
circadian regulation alone would not lead to optimal stomatal regulation or, at least, not directly.

Nonetheless, there is some evidence from theoretical modelling that circadian rhythms could aid
in reaching optimality. Circadian regulation serves to “anticipate” predictable environmental cues,
in such a way that stomata can adjust prior to experiencing the environmental condition (“stomatal
priming”, [5]). As such, the clock has been hypothesized to aid in attaining optimality through stomatal
priming because direct responses to regular diurnal fluctuations alone would inevitably lead to a
lagged response [19]. In other words, since stomata show a lagged response to the environment [20]
and although it is not expected that optimality operates at every instant, circadian regulation could
help in achieving optimality by diminishing the lags [19].

In describing the WUE hypothesis, Cowan [21] states that “if diurnal variation in natural physical
environment were regular and predictable, then optimization would require only that there be an
appropriate circadian rhythm in stomatal aperture”. Given that variation in the physical environment
is not entirely regular and predictable, here, we seek to understand whether the function of circadian
regulation in stomatal behaviour contributes to optimal stomatal behaviour. More specifically,
we wanted to test whether circadian regulation would lead to optimal stomatal behaviour, as predicted
by the WUE hypothesis or, alternatively, whether stomatal optimization via circadian regulation would
be more consistent with the CM hypothesis. A secondary objective was to understand the implications
of our findings for stomatal modelling. More specifically, we sought to understand the effects of
circadian regulation on the slope of a commonly used Ball–Berry type of stomatal model [22].
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Assessing the effects of circadian regulation on daytime A and gs under natural conditions
is difficult because the influence of environmental drivers generally mask circadian regulation.
Circadian regulation is most strongly expressed under a free-running “constant environment”:
when temperature, radiation, vapour pressure deficit, and other environmental drivers are held
experimentally constant over 24 h or longer. Therefore, we addressed our questions by examining
temporal variation in gas exchange and stomatal behaviour in an herb (bean, Phaseolus vulgaris) and in
a shrub (cotton, Gossypium hirsutum) under 48 h of constant environmental conditions.

2. Materials and Methods

2.1. Experimental Set-Up

The experiment was performed at the Macrocosms platform of the Montpellier European Ecotron,
Centre National de la Recherche Scientifique (CNRS, France). We used 6 controlled-environment units
of the macrocosms platform (three planted with bean and three with cotton), where the main abiotic
(air temperature, humidity, and CO2 concentration) drivers were automatically controlled. Intact soil
was extracted using large cylindrical lysimeters (2 m2, circular with a diameter of 1.6 m and a depth of
2 m, weighing 7 to 8 tonnes) from the flood plain of the Saale River near Jena, Germany. The lysimeters
were brought to Montpellier Ecotron and used in a previous experiment on grassland biodiversity [23].
Following that experiment, the soil was ploughed down to 40 cm following standard agricultural
practice and fertilized with 25/25/35 NPK (MgO, SO3, and other oligoelements were associated in this
fertilizer: Engrais bleu universel, BINOR, Fleury-les-Aubrais, FR).

The soil was regularly watered to ca. field capacity by drip irrigation, although irrigation
was stopped during each measurement campaign (few days) to avoid interference with water flux
measurements. No differences in leaf water potential were observed (p ≤ 0.05; paired t-test, n = 3)
between the beginning and end of these measurement campaigns, indicating no apparent effect of a
potentially declining soil moisture on leaf hydration.

Environmental conditions within the macrocosms (excluding the experimental periods) were set
to mimic outdoor conditions but did include a minor (10%) light reduction by the macrocosm dome
cover (sheet of Fluorinated Ethylene Propylene). During experimental periods, light was controlled
by placing a completely opaque fitted cover on each dome to block external light inputs (PVC coated
polyester sheet Ferrari 502, assembled by IASO, Lleida, Spain), and by using a set of 5 dimmable plasma
lamps (GAN 300 LEP with the Luxim STA 41.02 bulb, with a sun-like light spectrum); these lamps
were hung 30 cm above the plant canopy and provided a photosynthetically active radiation (PAR) at a
canopy level of 500 µmol m−2 s−1(Li-190, LI-COR Biosciences, Lincoln, NE, USA). PAR was chosen
to be 500 µmol m−2 s−1 because previous research proposed that stomatal behaviour should follow
optimal theory when photosynthesis is light- (and not CO2) limited [22].

Monocultures of bean and cotton were planted in each macrocosm, along 5 rows with 30 cm
distance between the rows, on 10 July 2013, one month before the start of the measurements, and were
thinned to densities of 10.5 and 9 individuals m−2, respectively (about 30 cm interplant distance on the
row). Cotton (STAM-A16 variety by the Institut National des Recherches Agricoles du Bénin/Centre
de coopération internationale en recherche agronomique pour le développement, INRAB/CIRAD) is
a perennial woody shrub with an indeterminate growth habit. This cotton variety grows to 1.5–2 m
tall and has a pyramidal shape and short branches. Bean (recombinant inbred line RIL-115 bred
by INRA (Institut National de la Recherche Agronomique) Eco & Sol) is an annual herbaceous
species. RIL-115 is a fast growing, indeterminate dwarf variety, 0.3–0.5 m tall; it was inoculated with
Rhizobium tropici CIAT 899, also provided by INRA. During the experiment, bean and cotton generally
remained at the inflorescence emergence developmental growth stage codes 51–59 in BBCH scale,
the standard phenological scale within the crop industry [24,25]. More detailed information on Ecotron
measurements can be found elsewhere [26].
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During each experimental period, plants were entrained for five days under environmental
conditions that mimicked the pattern observed in an average August sunny day in Montpellier in
terms of air temperature (Tair, 28/19 ◦C, diurnal max/min) and vapor pressure deficit (VPD), and at
PAR of 500 µmol m−2 s−1, as discussed above. After 5 days of entrainment, we maintained constant
environmental conditions starting at solar noon and for the next 48 h.

2.2. Measurements

Gas exchange measurements were conducted during 48 h of constant environmental conditions.
We measured CO2 and water vapor exchanges every 2 min by using 2–3 portable photosynthesis
systems (LI-6400XT, Li-cor Inc, Lincoln, USA) per species and day [21]. Plants were one month
old, about 30 cm tall, and we selected fully expanded leaves from the upper portion of the canopy.
Each instrument was continuously deployed on a leaf for 24 h, and the Auto-Log function was used.
Measurements were conducted over 48 h with an effective n = 3 per species (1–2 leaves were measured
per macrocosm, in a total of 3 macrocosms).

2.3. Analyses

Data collected during the 48 h free-running period were pooled together into a single 24 h
period for analyses to increase statistical power. We modelled temporal patterns in gas exchange
using Generalized Additive Models (GAM). GAMs provided a flexible tool that is very well suited to
analyse temporal patterns because it does not include predefined functional structures. To test for
statistical significance in the temporal pattern, we computed the first derivative of the best-fit trend
line following [27].

We tested for optimization of gs under circadian regulation following the approach developed
by Anderegg et al. [28]. That is, we fit the gs data for each species to find the set of parameters
(λ; for WUE and Θ′ for CM, where Θ′ = a ψL + b and ‘a’ and ‘b’ are fitted parameters) that best
explains the observed variation in gs. In the model in Anderegg et al. [28], hydraulic transport
is simulated via the supply–demand approach in Sperry and Love [29] with a single whole-plant
resistor characterized by the stem hydraulic vulnerability curve; photosynthesis is simulated via the
standard Farquhar et al. [30] photosynthesis model; and the two are linked via either the WUE or CM
optimization equations. This model takes in the environmental drivers of the hydraulic (pre-dawn
water potential) and photosynthesis (atmospheric CO2, PAR, leaf temperature, and VPD) and predicts
gs. Following Anderegg et al. [28], a Markov Chain Monte Carlo approach is used for finding the
values of λ or Θ′ that best predict the observed gs values.

Finally, we addressed the modelling implications of our findings by using our data to calibrate the
stomatal model from Medlyn et al. [22]. This model is based on the WUE hypothesis and, importantly,
it includes one parameter (g1) that is directly related to the marginal water use efficiency. Therefore,
consistent with the WUE hypothesis, we expected g1 to remain constant during our experiment.

3. Results

We observed a self-sustained oscillation in Anet, gs, and Anet/gs that showed a ~24 h period
(Figures 1 and 2). That is, there was a significant variation in Anet and gs in the absence of variation in
environmental drivers during the free-running period, and this variation showed a ~24 h periodicity.
Anet varied from 10.7 (at 21.00 h, solar time) to 15.5 µmol m−2 s−1 (at 11.00 h) in bean and from 9.6
(at 21.00 h) to 17.0 µmol m−2 s−1 (at 13.00 h) in cotton. gs varied from 0.14 (at 22.00 h) to 0.33 mol m−2 s−1

(at 11.00 h) in bean and from 0.06 (at 22.00 h) to 0.42 mol m−2 s−1 (at 13.00 h) in cotton. Furthermore,
if we only consider the oscillation during the subjective day (the time under constant conditions
when it would have normally been daytime during entrainment), we still observe a significant and
time-dependent variation in Anet, gs, and Anet/gs, although of smaller magnitude than during the
whole 24 h cycle (Figures 1 and 2).
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Figure 1. Circadian oscillation in gas exchange. The dots (with small SE bars hidden) indicate hourly
averages of (a) assimilation (Anet), (b) stomatal conductance (gs), (c) the ratio between the two (Anet/gs),
and (d) a parameter proportional to the marginal water cost of carbon gain (g1). Measurements were
conducted under constant environmental conditions (see Figure 2). The white and black rectangles
at the base indicate the subjective day (when it would have been daytime during entrainment) and
subjective night, respectively, under constant conditions. Lines (and shaded error intervals) indicate
the prediction (and SE) of Generalized Additive Model (GAM) fitting separately for each species
(some lines may overlap), and portions which are not yellow indicate significant temporal variation.

The pattern in Anet/gs was such that water use efficiency increased in the first subjective afternoon
(hours 12–18 in Figure 1c) under constant conditions from 52.9 to 90.2 in bean and from 41.0 to 90.4
in cotton. Anet/gs remained constant (between 91 and 88) during the first hours of the night in bean,
but it continued to increase (until 164.8) in cotton. Anet/gs decreased in both species from the subjective
midnight until the following subjective noon (Figure 1c).

We observed that gs was poorly predicted by the WUE and the CM hypotheses (Figure 3). For the
case of bean, gs oscillated between 0.15 and 0.63 mol m−2 s−1. However, predictions from the WUE
hypothesis varied between 0.23 and 0.30 mol m−2 s−1 and predictions from the CM hypothesis varied
between 0.22 and 0.33 mol m−2 s−1. Similarly, gs in cotton oscillated between 0.03 and 0.51 mol m−2 s−1,
whereas predicted gs ranged between 0.19 and 0.22 mol m−2 s−1 for the WUE hypothesis and between
0.17 and 0.23 mol m−2 s−1 for the CM hypothesis.

Finally, we observed a significant temporal variation of the parameter g1 from the Medlyn et al. [22]
model: between 2.64 and 4.61 in bean and between 0.53 and 5.53 in cotton (Figure 1c).
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Figure 2. Environmental conditions during gas exchange measurements. The dots (with small SE
bars hidden) indicate hourly averages of (a) vapor pressure deficit (VPD), (b) air temperature (Tair),
(c) CO2 concentration, and (d) photosynthetically active radiation (PAR). Conditions in the leaf cuvette
mirrored those in the macrocosms. The white and black rectangles at the base indicate the subjective
day (when it would have been daytime during entrainment) and subjective night, respectively, under
constant conditions. Some values may be hidden.

Plants 2020, 9, x FOR PEER REVIEW 6 of 10 

 

 
Figure 2. Environmental conditions during gas exchange measurements. The dots (with small SE 
bars hidden) indicate hourly averages of (a) vapor pressure deficit (VPD), (b) air temperature (Tair), 
(c) CO2 concentration, and (d) photosynthetically active radiation (PAR). Conditions in the leaf 
cuvette mirrored those in the macrocosms. The white and black rectangles at the base indicate the 
subjective day (when it would have been daytime during entrainment) and subjective night, 
respectively, under constant conditions. Some values may be hidden. 

 
Figure 3. Results of model fitting. Observed vs. predicted values of gs for bean (a,b) and cotton (c,d) 
under the hypotheses that stomata operate to optimize water use efficiency (a,c) or to maximize 
carbon assimilation (b,d). 

4. Discussion 

●●
●
●●●●
●●●●●
●●●
●●●
●●

●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●
●●●
●●●●
●●●
●●
●●●●
●●
●●
●●●●
●●
●●●
●●
●●●

●●
●●
●
●●
●●●●●
●
●●●●
●
●
●●●●●●
●●●
●
●
●
●
●
●●
●●●

●●●●●●
●
●●

●

●

●

●

●

●

●●●

●
●●
●

●●●
●●●
●●●

●●●
●●
●●●●
●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●
●●●●
●●●●
●
●●
●●
●●
●●
●●
●
●

●

●
●
●●●
●●
●
●●
●●
●
●●●
●

●
●●●●●●
●●●
●●●
●●●
●●●●●

●
●●●●●●●●●
●●●●
●●●●●●●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●

●●●●●
●●●●●●
●●●●●●
●●●●
●●
●●●
●●●
●●●
●●●
●
●●●●
●●●
●●●
●●
●●
●●

●●
●●
●
●●
●
●●●●
●
●●
●●
●
●●
●●●
●
●
●
●
●
●
●
●

●●●●
●
●●
●●●●●
●●●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

Predicted g s (mol m−2 s−1)

O
bs

er
ve

d 
g

s (
m

ol
 m

−2
 s

−1
)

(a)

●●
●
●●●●
●●●●●
●●●
●●●
●●

●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●●
●●●
●●●●
●●●
●●
●●●●
●●
●●
●●●●
●●
●●●
●●
●●●

●●
●●
●
●●
●●●●●
●
●●●●
●
●
●●●●●●
●●●
●
●
●
●
●
●●
●●●

●●●●●●
●
●●

●

●

●

●

●

●

●●●

●
●●
●

●●●
●●●
●●●

●●●
●●
●●●●
●●●●●●●
●●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●
●●●●●●●●●●●●●

●●●
●●●●

●
●●
●●
●●
●●
●●
●
●

●

●
●
●●●
●●
●
●●
●●
●
●●●
●

●
●●●●●●
●●●
●●●
●●●
●●●●●

●
●●●●●●●●●

●●●●
●●●●●●
●●●●●●●●
●●●●●●●●●●●●●
●●●●●●
●●●●●●●●●●●●●●●●●

●●●
●●●●●●
●●●●●●
●●●●●●
●●●
●●●
●●●
●●●
●
●●●●
●●●
●●●
●●
●●
●●

●●
●●
●
●●
●
●●●●
●
●●
●●
●
●●
●●●
●
●
●
●
●
●
●
●

●●●●
●
●●
●●●●●
●●●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

Predicted g s (mol m−2 s−1)

O
bs

er
ve

d 
g

s (
m

ol
 m

−2
 s

−1
)

(b)

●
●
●●
●
●
●●
●●●

●●●
●●

●●
●
●●●

●●

●

●●

●

●●
●

●●
●
●●
●●●
●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●●●
●●●●
●●●
●●
●●
●●
●●
●
●

●●●
●●
●●
●●●
●●
●●
●●●
●●●●●
●●
●●●●●●●●●●●●●●●

●
●●●●
●●●
●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●
●●
●●
●●
●●

●●●●●●●●●
●●●●●●●●●●●
●●●●●●●●●
●●●●●
●●●●
●

●●●●●●●●
●●●●●
●●●
●●●●●●●
●●●●●
●●
●●●●●
●●
●●●●
●●●
●●●●●
●●●●
●●●
●●●●
●●●●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

Predicted g s (mol m−2 s−1)

O
bs

er
ve

d 
g

s (
m

ol
 m

−2
 s

−1
)

(c)
●
●
●●
●
●
●●
●●●

●●●
●●

●●
●
●●●

●●

●

●●

●

●●
●

●●
●
●●

●●●
●●●
●●
●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●●
●●●●●
●●●●
●●●
●●
●●
●●
●●
●
●

●●●
●●
●●
●●●
●●
●●
●●●
●●●●●

●●
●●●●●●●●●●●●●●●
●
●●●●
●●●
●●●●

●●●●●●●●●●●●●●●●●●●●
●●●●●

●●
●●
●●
●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●
●●●●
●●●

●●●●●●●●
●●●●●
●●●
●●●●●●●
●●●●●
●●
●●●●●
●●
●●●●
●●●
●●●●●
●●●●
●●●
●●●●
●●●●●

0.0 0.2 0.4 0.6

0.
0

0.
2

0.
4

0.
6

Predicted g s (mol m−2 s−1)

O
bs

er
ve

d 
g

s (
m

ol
 m

−2
 s

−1
)

(d)

Figure 3. Results of model fitting. Observed vs. predicted values of gs for bean (a,b) and cotton (c,d)
under the hypotheses that stomata operate to optimize water use efficiency (a,c) or to maximize carbon
assimilation (b,d).
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4. Discussion

We observed a significant and self-sustained 24 h oscillation in Anet and gs, of different magnitude
for each process, and that ultimately led to a diurnal oscillation in intrinsic water use efficiency (Anet/gs).
Moreover, we observed that the oscillation of gs could not be predicted by current optimization models,
suggesting that, contrary to conventional wisdom, circadian regulation does not directly lead to optimal
stomatal behaviour or, alternately, that circadian regulation may provide benefits (i.e., be evolutionarily
optimal) but current optimization models may not account for a key mechanism or cost to capture
this behaviour.

There are many processes that could explain an afternoon decline in Anet, including feedback
inhibition from starch accumulation, photorespiration as well as stomatal feedbacks, amongst
others [31–33]. Similarly, a multitude of processes could explain the afternoon decline in gs, including
hydraulic feedbacks and depletion of stem capacitors [32,34]. However, the only process that can
explain a self-sustained 24 h cycle is the circadian clock [35].

Current optimization schemes failed to capture the observed variation in gs because they assume
a major role for environmental conditions. Consequently, in the absence of significant environmental
variation, the models predicted nearly constant gs, which is in sharp contrast with our results. This does
not imply that the WUE or the CM hypotheses are necessarily wrong: those hypotheses were developed
to explain gs in a normally varying environment. However, we interpret poor model fit as an indication
that circadian regulation does not directly lead to optimal stomatal behaviour, at least not as defined
by the current optimization schemes.

We observed a stronger relative fluctuation in gs than in Anet, consistent with previous studies [4,11].
These temporal patterns could be interpreted as an indication that the clock fosters a maximization of A
at the time of maximal potential for assimilation (A peaked at the subjective noon) which, in turn, would
be aided by a maximal gs which decreases diffusional limitations. On the other hand, the stronger
decrease in gs, relative to that in Anet, during the subjective morning and afternoon, when conditions
would have become less favourable for assimilation in a naturally fluctuating environment, is consistent
with a conservative water use strategy. Therefore, this result is consistent with the hypothesis that
circadian-driven stomatal priming could contribute towards reaching optimality [19], although through
indirect effects. Further studies would need to address the potential for such indirect effects and to
aggregate circadian effects at daily timescales.

Circadian regulation of stomatal conductance may have some implications for modelling.
The stomatal model proposed by Medlyn et al. [22] would predict a unique and temporally constant
value of g1 for a given species. Using this approach, Lin et al. [36] examined global variation in g1

across 314 species and observed significant differences when grouping plants into different plant
functional types. That is, g1 varied from 1.6 to 7.2 for different plant functional types and subsequently,
Kala et al. [37] proposed using different values of g1 for different plant functional types to improve
land surface modelling. Within our 24 h dataset, g1 varied from 0.5 to 5.5 (between 2.3 and 5.5 during
the subjective day). That is, we observed in one species and for one day, a variation in g1 that is of
similar magnitude to that observed in a global synthesis. This result indicates that measurements to
calibrate stomatal models may need to take time of day into consideration to account for potential
artifacts from circadian regulation.

It is worth noting that the environmental conditions that plants experienced in this experiment
were not completely unrealistic for a field setting. While having light at night is obviously implausible,
it is not uncommon for plants in some environments to experience cloudy afternoons where PAR
remains around 500 µmol m−2 s−1 and where Tair and VPD do not show much environmental
variation [38]. Our observation that the highest variation in g1 occurred around that time is intriguing,
as it suggests some variation within field settings could occur as well. We, thus, encourage further
field studies of leaf level gas exchange at high temporal resolution to further understand a possible
temporal variation in g1.
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More broadly, our results indicate that the evolutionary significance underlying circadian
regulation of stomata is still unknown. We have demonstrated that circadian gs is not consistent
with predictions from the WUE or CM models, which offer different perspectives on the evolution
of stomatal behaviour. Hence, we need an alternative evolutionary framework that explains our
observations under circadian action. Considering that circadian regulation leads to a large diurnal
oscillation in gs (30–35%), we expect that response to be adaptive. We argue that future progress will
be made by integrating circadian stomatal regulation over daily and even seasonal scales. That is,
we need to jointly analyse nocturnal and diurnal circadian stomatal conductance and to additionally
consider links between stomata and photoperiod responses [39,40]. Overall, we also need to more
explicitly incorporate endogenous circadian rhythms into our understanding of gs variation in a
naturally varying environment.
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