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Introduction

In the Traveling Salesperson Problem (TSP) we are given an integer n ≥ 3 as the number of vertices and a non-negative cost vector c defined on the edges of the complete graph K n = (V n = {1, . . . , n}, E n = {1,...,n}

2

). We wish to find the minimum cost Hamilton cycle in the graph K n with respect to costs c. This problem is NP-hard and it is even NP-hard to approximate within any constant factor [START_REF] Williamson | The Design of Approximation Algorithms[END_REF]. A natural assumption is that the cost vector c is metric: c ij + c jk ≥ c ik for i, j, k ∈ V n . This special case of TSP is called metric TSP. Metric TSP is NP-hard [START_REF] Garey | Computers and Intractability; A Guide to the Theory of NP-Completeness[END_REF]. In fact, metric TSP is APX-hard and NP-hard to approximate with a ratio better than 220/219 [START_REF] Papadimitriou | On the approximability of the traveling salesman problem[END_REF]. Since we never deal with non-metric TSP in this paper, we henceforth refer to metric TSP by TSP.

The following linear programming relaxation for the TSP is known as the subtour elimination relaxation. min{cx :

j∈Vn\{i} x ij = 2 for i ∈ V n , i∈U,j / ∈U x ij ≥ 2 for ∅ ⊂ U ⊂ V n , x ∈ [0, 1] En }.
We let SEP(K n ) denote the feasible region of this linear programming relaxation. Since vector c is metric, any spanning, connected Eulerian multi-subgraph of K n (henceforth a tour of K n ) can be used to find a Hamilton cycle of K n of no greater cost. 1 We define TSP(K n ) to be the convex hull of incidence vectors of tours of K n . The integrality gap of the subtour elimination relaxation for the TSP is2 g(TSP) = max n≥3,c∈R n ≥0 min x∈TSP(Kn) cx min x∈SEP(Kn) cx .

(1.1)

By the characterization of the integrality gap by Goemans [START_REF] Michel | Worst-case comparison of valid inequalities for the TSP[END_REF] (see also [START_REF] Carr | On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems[END_REF]), g(TSP)

can also be defined as

g(TSP) = min{α : α • x ∈ TSP(K n ) : n ≥ 3, x ∈ SEP(K n )}. (1.2)
It is well-known that g(TSP) ≥ 4 3 . Based on the definition of g(TSP) in (1.2), we can interpret this lower bound as follows: for any > 0, there is a point x such that x ∈ SEP(K n ) and ( 43 -)x / ∈ TSP(K n ). As for upper bounds, a polyhedral analysis of the classical algorithm of Christofides proves g(TSP) ≤ 3 2 , as well as providing a 3 2 -approximation algorithm for the TSP [START_REF] Christofides | Worst-case analysis of a new heuristic for the travelling salesman problem[END_REF][START_REF] Wolsey | Heuristic analysis, linear programming and branch and bound[END_REF].

Theorem 1.1 (Polyhedral proof of Christofides algorithm [START_REF] Christofides | Worst-case analysis of a new heuristic for the travelling salesman problem[END_REF][START_REF] Wolsey | Heuristic analysis, linear programming and branch and bound[END_REF]). If x ∈ SEP(K n ),

then 3 2 x ∈ TSP(K n ).
After more than four decades, there is no result that shows for all x ∈ SEP(K n ), the vector ( 3 2 -)x ∈ TSP(K n ) for some constant > 0. Motivated by the lower bound of 4 3 on g(TSP), the following has been conjectured and is wide open.

Conjecture 1 (The four-thirds conjecture). If x ∈ SEP(K n ), then 4 3 x ∈ TSP(K n ).

Despite the lack of progress towards resolution of Conjecture 1, there has been great success in providing new bounds on g(TSP) for special cases in the past decade [START_REF] Oveis Gharan | A randomized rounding approach to the traveling salesman problem[END_REF][START_REF] Mömke | Removing and adding edges for the traveling salesman problem[END_REF][START_REF] Sebő | Shorter tours by nicer ears: 7/5-approximation for the graph-TSP, 3/2 for the path version, and 4/3 for two-edge-connected subgraphs[END_REF].

Next we present two equivalent formulations of Conjecture 1 that are relevant for our results.

Fundamental Classes for TSP

One approach to the four-thirds conjecture is to consider fundamental classes for TSP. Fundamental classes of points were introduced by Carr and Ravi [START_REF] Carr | A new bound for the 2-edge connected subgraph problem[END_REF] and further developed by Boyd and Carr [START_REF] Boyd | Finding low cost TSP and 2-matching solutions using certain half-integer subtour vertices[END_REF] and Carr and Vempala [START_REF] Carr | On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems[END_REF]. A set of vectors X is a fundamental class for TSP if (i) for every x ∈ X we have x ∈ SEP(K n ) and (ii) proving α • x ∈ TSP(K n ) for all

x ∈ X implies g(TSP) ≤ α.

Cyclic Points

For x ∈ SEP(K n ), we define G x = (V n , E x ) to be the subgraph of K n whose edge set corresponds to the support of x (i.e., E x = {e : x e > 0}). 3 The set of cyclic points form a fundamental class for TSP with a very simple structure.

Definition 1. A point x is called a θ-cyclic point for some 0 < θ ≤ 1 2 if:

• Vector x is in SEP(K n ) ∩ {0, θ, 1 -θ, 1} En .
• The support graph of x, G x = (V n , E x ), is subcubic.

• For each v ∈ V n there is at least one edge e ∈ δ(v) with x e = 1.

Observe that for a θ-cyclic point x we have: (i) the set of 1-edges in G x , W x = {e : x e = 1}, forms vertex-disjoint paths of G x , (ii) the fractional edges in G x , H x = {e : x e < 1}, form vertex-disjoint cycles of G x . It is easy to see that if θ < 1 2 all the cycles in H x have even length since x ∈ SEP(K n ). Conjecture 1 can be restated as follows.

Conjecture 2. Let x ∈ R En be a θ-cyclic point. We have 4 3 x ∈ TSP(K n ).

Similarly, Theorem 1.1 can also be restated as follows.

Theorem 1.2. Let x ∈ R En be a θ-cyclic point. We have 3 2 x ∈ TSP(K n ).

The main result of this paper is to show that we can save on the 1-edges of θ-cyclic points.

Theorem 1.3. Let x ∈ R En be a θ-cyclic point. Define vector y as follows: y e = 3 2 -θ 10 for e ∈ W x , y e = 3 2 x e for e ∈ H x and y e = 0 for e / ∈ E x . Then y ∈ TSP(K n ).

In fact a bound on g(TSP) restricted to 1 2 -cyclic points would also provide a bound on g(TSP) when restricted to all half-integral points of the subtour elimination relaxation [START_REF] Carr | On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems[END_REF], a special case that has received some attention [CR98, BS19, KKO20], and was highlighted in a recent conjecture of Schalekamp, Williamson and van Zuylen stating that the maximum on g(TSP)

is achieved for half-integral points of the subtour elimination polytope [START_REF] Schalekamp | 2-matchings, the traveling salesman problem, and the subtour LP: A proof of the Boyd-Carr conjecture[END_REF]. For 1 2 -cyclic points Theorem 1.3 implies the following.

Corollary 1.4. Let x be a 1 2 -cyclic point. Define vector y as follows:

y e = 3 2 -1 20 for e ∈ W x , y e = 3
4 for e ∈ H x and y e = 0 for e / ∈ E x . Then y ∈ TSP(K n ).

Theorem 1.3 gives an improved bound for recently studied special case of uniform points, which form another fundamental class for TSP.

1.1.2 Uniform Points A point x ∈ SEP(K n ) is a 2 k -uniform point if x e is a multiple of 2 k for some k ∈ Z ≥3 . It is clear that g(TSP) ≤ α if and only if for all k ∈ Z ≥3 and all 2 k -uniform points x we have α•x ∈ TSP(K n ). Therefore, 2
k -uniform points form a fundamental class for TSP. We can restate the four-thirds conjecture as follows.

Conjecture 3. For any integer k ≥ 3 and 2 k -uniform point x ∈ R En we have 4 3 x ∈ TSP(K n ).

Sebő et al. considered a weakening of Conjecture 3 in the case when k = 3 [START_REF] Sebő | Problems about uniform covers, with tours and detours[END_REF]. For a 2 3 -uniform point x ∈ R En , we have 3 2 x ∈ TSP(K n ) by Theorem 1.1. Thus, they asked if there is constant > 0 such that the vector

( 3 2 -) • x ∈ TSP(K n ).
Of course, the four-thirds conjecture itself implies that the value of is at least 1 6 .

Conjecture 4. If x ∈ R En is a 2 3 -uniform point, then 4 3 x ∈ TSP(K n ).
One application of Theorem 1.3 is to show that the value of is at least 1 12 , which brings us "halfway" towards resolving Conjecture 4.

Theorem 1.5. Let x ∈ R En be a 2 3 -regular point. Then 17 12 x ∈ TSP(K n ). If G x is Hamiltonian, then 87 68 x ∈ TSP(K n ).

The following observation was first made by Carr and Vempala [START_REF] Carr | On the Held-Karp relaxation for the asymmetric and symmetric traveling salesman problems[END_REF].

Proposition 1.6. Let k ∈ Z ≥3 . We have α • x ∈ TSP(K n ) for all 2 k -uniform points x if an only if for all k-edge-connected k-regular multigraphs G = (V, E), the point α • ( 2 k • χ E
) can be written as a convex combination of tours of G.

Now consider approximating TSP on 2

4 -uniform points: if for any 4-edge-connected 4-regular graph G the vector α

• ( 1 2 • χ E(G)
) dominates a convex combination of incidence vectors of tours of G, then g(TSP) restricted to half integral instances in at most α.

For graph G = (V, E), a cut U ⊂ V is proper if |U | ≥ 2 and |V \ U | ≥ 2.
If we assume that the 4-regular 4-edge-connected graph G does not contain proper 4-edge cuts, then the following theorem is relevant.

Theorem 1.7. Let G = (V, E) be a 4-edge-connected 4-regular graph G with even number of vertices and no proper 4-edge cuts. Then the vector

( 3 2 -1 42 ) • ( 1 2 • χ E(G)
) dominates a convex combination of incidence vectors of tours of G.

Theorem 1.7 could serve as the base case if we could glue over proper 4-edge cuts of G.

However, the gluing arguments we present for θ-cyclic points can not easily be extended to this case due to the increased complexity of the distribution of patterns over 4-edge cuts.

Previous Work on Fundamental Points

Fundamental points were introduced in a series of papers for the TSP [START_REF] Carr | A new bound for the 2-edge connected subgraph problem[END_REF] and for the minimum 

cost 2-edge-connected multigraph problem (2ECM) [CR98, BC11, CV04]. Let 2ECM(K n ) be the convex hull of incidence vectors of 2-edge-connected multigraphs of K n . Clearly, TSP(K n ) ⊆ 2ECM(K n ). Consider a 1 2 -cyclic point x ∈ R En . If H x is a collection of 3-cycles, then
-cyclic point x ∈ R En , we have ( 3 2 -)x ∈ TSP(K n ) for some constant > 0 [KKO20].
The interest in 1 2cyclic points stems in part from the aforementioned conjecture that the maximum value of g(TSP)

is achieved for instances of the TSP where the optimal solution to min{cx : 

x ∈ SEP(K n )} is 1 2 -cyclic [SWvZ13]. In

Gluing Convex Combinations Over 3-edge Cuts

A key part of our proof of Theorem 1.3 is gluing solutions over certain 3-edge cuts, thereby reducing to instances without such cuts, which are easier to solve. This approach of gluing solutions over 3-edge cuts, and thereby reducing to a problem on graphs without proper 3edge cuts was first introduced by Cornuéjols, Naddef and Pulleyblank [START_REF] Gerard | The traveling salesman problem in graphs with 3-edge cutsets[END_REF]. For a graph G = (V, E), let U ⊂ V and denote by G U the graph obtained by contracting U (i.e., identifying all vertices in U to a single vertex and removing the resulting loops). Cornuéjols et al. defined a class of 3-edge-connected graphs A as fully reducible if

• If G ∈ A has a proper 3-edge cut U , then both G U and G U are in A.

• The minimum cost Hamilton cycle of G can be found in polynomial time for the graphs in A that do not have a proper 3-edge cut.

Cornuéjols showed that TSP can be solved in polynomial time for fully reducible graphs [START_REF] Gerard | The traveling salesman problem in graphs with 3-edge cutsets[END_REF].

An example of such a fully reducible class are the Halin graphs [START_REF] Gerard | Halin graphs and the travelling salesman problem[END_REF].

For many fully reducible classes A, they showed that for G ∈ A, if G does not have a proper 3-edge cut, then the convex hull of incidence vectors of Hamilton cycles of G coincides with a system of linear inequalities with polynomial separation [START_REF] Gerard | The traveling salesman problem in graphs with 3-edge cutsets[END_REF]. For example, they show if G = (V, E) does not contain any disjoint cycles, then

P G = {x ∈ [0, 1] E : x(δ(v)) = 2 for v ∈ V }
is the convex hull of incidence vectors of Hamilton cycles of G. Let us describe this result in more detail. Suppose for any graph G with no proper 3-edge cuts that does not contain any disjoint cycles, we have TSP(G) = P G . Now consider a graph G = (V, E) with no disjoint cycles that has a 3-edge cut U . In the graph G U , we say the vertex corresponding to the contracted set U is a pseudovertex. Suppose that the graphs G U and G U contain no proper 3-edge cuts and suppose we can write y restricted to the edge set of each graph as a convex combination of Hamilton cycles of the respective graph. Let us consider the patterns around the pseudovertices; if the edges adjacent to the pseudovertices are {a, b, c} then each vertex can be adjacent to two edges in a Hamilton cycle and therefore, there are only three possible patterns around a vertex: {{a, b}, {a, c}, {b, c}}. Moreover, since each pattern appears the same percentage of time (in the respective convex combinations) for each pseudovertex, tours with corresponding patterns can be glued over the 3-edge cut. In this case, the gluing procedure is quite straightforward. This reduction has also proven quite useful for the minimum cost 2-edge-connected subgraph problem (2EC) [START_REF] Carr | A new bound for the 2-edge connected subgraph problem[END_REF][START_REF] Boyd | Toward a 6/5 bound for the minimum cost 2-edge connected spanning subgraph[END_REF][START_REF] Legault | Towards new bounds for the 2-edge connected spanning subgraph problem[END_REF].

In contrast, it appears such a reduction is not known for TSP tours. Indeed, gluing proofs cannot be easily extended to tours for several reasons: (1) As just shown, they are often used for gluing subgraphs (no doubled edges). In TSP, we must allow edges to be doubled, so there are too many possible patterns around a vertex. For example, if we allow each possible pattern corresponding to an even degree, there are 13 possible patterns. (2) Gluing tours over a 3-edge cut might result in disconnected Eulerian multigraphs. Finally, (3) many of the algorithms based on gluing are not proven to run in polynomial time [START_REF] Carr | A new bound for the 2-edge connected subgraph problem[END_REF][START_REF] Boyd | Toward a 6/5 bound for the minimum cost 2-edge connected spanning subgraph[END_REF][START_REF] Legault | Towards new bounds for the 2-edge connected spanning subgraph problem[END_REF].

Our Approach

The main technical contribution of this paper is to show that for a carefully chosen set of tours, we can design a gluing procedure over critical cuts, which, roughly speaking are proper 3-edge cuts that are tight: the x-values of the three edges crossing the cut sum to 2. As we will see, a tour generated via a polyhedral version of Christofides algorithm on a θ-cyclic point can have eight (rather than 13) possible patterns around a vertex. While this is still alot, we identify certain conditions for the convex combination, under which controlling the frequency of a single one of these patterns allows us to control the frequency of the other seven. Moreover, we show the frequency of one of the patterns (around an arbitrary vertex v) depends on the fraction of times in the convex combination of connectors that vertex v is a leaf. Thus, we can fix a critical cut U ⊂ V n in G x and find a convex combination of tours for G U

x . Then we can find a set of tours for G U

x such that the distribution of patterns around the pseudovertex corresponding to U matches that of the pseudovertex corresponding to U in G U

x , which enables us to glue over critical cuts.

Applying this gluing procedure, we can reduce an instance of TSP on a θ-cyclic point to base-case instances, which contain no critical cuts. On a high level, our proof of Theorem 1.3 for such instances is based on Christofides algorithm: We show that a θ-cyclic point x can be written as a convex combination of connected, spanning subgraphs of G x with no doubled edges (henceforth a connector of G x ) with certain properties and then we show that the vector z, where

z e = xe
2 for e ∈ H x and z e = 1 2 -θ 10 for e ∈ W x , can be written as a convex combination of subgraphs, each of which can be used for parity correction of a connector (henceforth a parity corrector). Tight cuts are generally difficult to handle using an approach based on Christofides algorithm, since ( 1 2 -)x is insufficient for parity correction of a tight cut if it is crossed by an odd number of edges in the connector. However, in our base-case instances, there are only two types of tight 3-edge cuts. The first type of cut is a degenerate tight cut. These cuts are easy to handle and we defer their formal definition to Section 2.1. The second type of cut is a vertex cut, which we show are also easy to handle. In particular, the parity of vertex cuts can be addressed with a key tool used by Boyd and Sebő [START_REF] Boyd | The salesman's improved tours for fundamental classes[END_REF] called rainbow v-trees (see Theorem 2.5). Using this in combination with a decomposition of the 1-edges into few induced matchings, which have some additional required properties, we can prove Theorem 1.3 for the base case.

Organization

In Section 2, we introduce notation and some definitions relevant to cut structure in cyclic points.

We also review some well-known polyhedral tools. In Section 3, we present our main ideas and tools for gluing tours over critical cuts of G x , thereby reducing to TSP on base cases that only contain certain types of tight cuts. We then show in Section 4 that we are able to handle these remaining tight cuts via an approach similar-on a high-level-to Christofides algorithm. For our gluing approach to work, we need to choose the connectors to have certain properties and to save on the 1-edges, we need to show that a vector with less than half on each 1-edge belongs to the O-join polytope. Both of these key technical ingredients can be found in Section 4. Sections 3 and 4 contain a complete proof of Theorem 1.3. In Section 5, we present an application of Theorem 1.3 to approximating TSP on 2 3 -uniform points. We also give an algorithm for TSP on 2 Notation and Tools

Let G = (V, E) be a graph. For a subset U ⊂ V of vertices, let δ G (U ) = {uv ∈ E : u ∈ U, v / ∈ U }. (We use δ(U ) = δ G (U ) when the graph G is clear from the context.) Let E[U ] = {uv ∈ E : u ∈ U, v ∈ U }.
A multi-subset (henceforth multiset for brevity) of edges of E is a set that can contain multiple copies of edges in E. A multi-subgraph (henceforth multigraph for brevity) of G is the graph on vertex set V whose edge set is a multiset of E (i.e., a multigraph can contain multiple copies of an edge). We sometimes consider a multigraph F of G to be a multiset of edges of G.

The incidence vector of multigraph F of G, denoted by χ F is a vector in R E where χ F e is the multiplicity of e in F . Let F and F be two multigraphs of G, then F + F is the multigraph that contains χ F e + χ F e copies of edge e for e ∈ E. If e is an edge in F , then F -e is the multigraph with incidence vector χ F -e = χ F -χ {e} . For a vector x ∈ R E and a multigraph F of G, we denote e∈F x e • χ F e by x(F ). We use δ F (U ) to refer to the multiset of edges in F that have exactly one endpoint in U . The degree of a vertex v ∈ V in F is the number of edges in F that are incident on v.

Cuts in Cyclic Points

Let x be a θ-cyclic point with support graph G x = (V n , E x ). The graph G x contains three types of tight cuts, by which we mean a cut

U ⊂ V n such that x(δ(U )) = 2. A vertex cut is a cut U = {u}. Notice that for all u ∈ V n , x(δ(u)) = 2. The second type of cut is a critical cut. Definition 2. A proper cut U ⊂ V n in G x is called a critical cut if |δ(U )| = 3 and δ(U ) contains
exactly one edge e with x e = 1. Moreover, for each pair of edges in δ(U ), their endpoints in U (and in V \ U ) are distinct.

We refer to the third type of cut as a degenerate tight cut.

Definition 3. A proper cut U ⊂ V n in G x is called a degenerate tight cut if |δ(U )| = 3, |U | > 3 and |V \ U | > 3 and the two fractional edges in δ(U ) share an endpoint in either U or V \ U .
For a degenerate tight cut U , let δ(U ) = {e, f, g}, such that f and g are the fractional edges that share an endpoint v. Let e v be the unique 1-edge incident on v. Observe that {e, e v } forms a 2-edge cut in G x .

Let x be a θ-cyclic point and U ⊂ V n be a cut in G x . Also, let U = V n \ U . We can obtain θ-cyclic point x U by contracting set U in G x to a single vertex. (Respectively, we can obtain a θ-cyclic point x U by contracting set U in G x to a single vertex.) We let v U denote the vertex

corresponding to set U in G U x (respectively, v U corresponds to U in G U x ).
Observation 2.1. Let U ⊆ V n be a minimal critical cut in G x (i.e., for S ⊂ U , the cut defined by S is not critical in G x ). Then, G U x does not contain any critical cuts.

Proof. Suppose for contradiction that there is S ⊂ V (G U x ) that is a critical cut of G U x . We can assume that v U / ∈ S. Moreover, S U . This is a contradiction to minimality of U since S constitutes a critical cut in G x as well.

Observation 2.2. Suppose that G x has k critical cuts. Let U be a critical cut of G x . The number of critical cuts in G U x is at most k -1.

Proof. Clearly, U is not a critical cut of G U x . We show that there is correspondence between the critical cuts of G U

x and G x . This implies that G U x can have at most k -

1 critical cuts. If S is a critical cut of G U
x we can assume without loss of generality that v U / ∈ S. Hence, S is also a critical cut of G x .

Polyhedral Basics

Let G = (V, E) and let x be a vector in R E . Consider a collection of multigraphs F of G. We say λ = {λ F } F ∈F are convex multipliers for F if F ∈F λ F = 1 and λ F ≥ 0 for F ∈ F. We say {λ, F} is a convex combination for x if λ = {λ F } F ∈F are the convex multipliers for F and x = F ∈F λ F . We say x can be written as convex combination of multigraphs in F if can find such F and λ in polynomial time in the size of x. Here by the size of x we refer to |E| (i.e., the number of edges in the support of x).

The v-Tree Polytope and Rainbow v-Trees

Let G = (V, E) be a graph. For a vertex v ∈ V , a v-tree is a subgraph F of G such that 

|F ∩ δ(v)| = 2 and F \ δ(v)
v-Tree(G) ={x ∈ [0, 1] E : x(δ(v)) = 2, x(E[U ]) ≤ |U | -1 for all ∅ ⊂ U ⊆ V \ {v}, x(E) = |V |}. (2.1) Observation 2.3. We have SEP(K n ) ⊆ v-Tree(K n ) for all v ∈ K n . Observation 2.4. Let x ∈ SEP(K n ) be such G x is 3-edge-connected
∈ SEP(K n ) ⊆ v-Tree(K n ). Proof. Take ∅ ⊂ U ⊂ V n . If U = {v} for some v ∈ V n , then x(δ(U ) = 2 as C ∩ δ(v) = 2. If |δ(U )| ≥ 4, then clearly x(δ(U )) ≥ 2. Otherwise, |δ(U )| = 3.
Since at most two edges in δ(U ) belong to C, there is at least one edge e ∈ δ(U ) with x e = 1. Hence, x(δ(U )) ≥ 2. Therefore,

x ∈ SEP(K n ). We have x ∈ v-Tree(K n ) by Observation 2.3.
It can be deduced from the discussion above that a vector x in the subtour elimination relaxation can be written as a convex combination of v-trees for any vertex v in G x . In fact, the v-trees in this convex combination can satisfy some additional properties.

Definition 4. Let G = (V, E) and v be a vertex of G. Let P be a collection of disjoint subsets of E. A P-rainbow v-tree, namely T , is a v-tree of G such that |T ∩ P | = 1 for P ∈ P.

The following theorem can be proved via the matroid intersection theorem [START_REF] Edmonds | Submodular Functions, Matroids, and Certain Polyhedra[END_REF] and Observation 2.3.

Theorem 2.5 ([BL95],[BS19]

). Let x ∈ SEP(K n ) and P be a collection of disjoint subsets of E x such that x(P ) = 1 for P ∈ P. Then x can be written as a convex combination of P-rainbow v-trees of K n for any v ∈ V n .

Grötchel and Padberg [START_REF] Grötschel | Polyhedral theory[END_REF] observed that v-trees of a connected graph G = (V, E) satisfy the basis axioms of a matroid. For x ∈ SEP(K n ) we have x ∈ v-Tree(K n ) by Observation 2.3. Also, P defines a partition matroid where each base intersect each part of P exactly once.

Therefore, vector x is in the convex hull of incidence vector of common basis of the partition matroid defined by P and the matroid whose basis are the v-trees of K n . 

The O-join

O-Join

(G) = {z ∈ [0, 1] E : z(δ(U ) \ A) -z(A) ≥ 1 -|A| (2.2) for U ⊆ V, A ⊆ δ(U ), |U ∩ O| + |A| odd}. Observation 2.6. If x ∈ SEP(K n ), then x 2 ∈ O-Join(K n ) for any O ⊆ V n with |O| odd. Proof. Let z = x 2 . For U ⊆ V n , we have z(δ(U )) ≥ 1. Moreover, for e ∈ E n , we have z e ≤ 1 2 since x e ≤ 1. Therefore, for A ⊆ δ(U ) we have z(A) ≤ |A| 2 . This implies z(δ(U )) -2z(A) ≥ 1 -|A|.
The following observation shows that a convex combination of O-joins in a graph has the property that for each vertex u ∈ O, exactly one edge incident to u belongs to an O-join that we obtain from 2.2. Theorem 1.1 (Polyhedral proof of Christofides algorithm [START_REF] Christofides | Worst-case analysis of a new heuristic for the travelling salesman problem[END_REF][START_REF] Wolsey | Heuristic analysis, linear programming and branch and bound[END_REF]). If x ∈ SEP(K n ),

then 3 2 x ∈ TSP(K n ). Proof. Let x ∈ SEP(K n ), then by Observation 2.3, x ∈ v-Tree(K n ) for some v ∈ V n .
Hence, we can find v-trees T and convex multipliers λ for T such that x ≤ T ∈T λ T χ T . For each T ∈ T , let O T be the set of odd degree vertices of T . Notice that x 2 ∈ O T -Join(K n ) for all T ∈ T . This implies that x 2 can be written as a convex combination of O T -joins J T of K n with convex multipliers θ = {θ J } J∈J T . Notice that for T ∈ T and J ∈ J T , multigraph

T + J is a tour of K n . Hence, T ∈T λ T J∈J T θ J χ T +J ∈ TSP(K n ). Therefore, 3 2 x ∈ TSP(K n ) polyhedron.
3 Matching Patterns: Gluing Tours Over Critical Cuts

Let x be a θ-cyclic point and G x = (V n , E x ) be the support of x. In this section, we present an approach for gluing tours over critical cuts of G x . One property of the tours we construct, which is crucial to enable this gluing procedure, is that every tour contains at least one copy of each 1-edge. This allows us to assume that x belongs to a subclass of θ-cyclic points in which (i) G x is cubic, (ii) W x , the 1-edges of G x , form a perfect matching, and (iii) H x , the fractional edges of G x , form a 2-factor. We can make this assumption, because we can contract a path of 1-edges to a single 1-edge; the tour of the new cubic graph yields a tour for the original subcubic graph.

We work under this assumption throughout this section and in Section 4.

For a vertex u ∈ V , denote by e u the unique 1-edge in G x that is incident on u. Let δ(u) = {e u , f u , g u } where f u and g u are the two fractional edges incident on u and x fu = θ and

x gu = 1 -θ.
In each tour of G x , a multiset of edges from δ(u) belongs to the tour. We call this multiset the pattern around u. Denote by P u the set of possible patterns around a vertex u in a tour of G x that contain at least one copy of the 1-edge e u and in which u has degree either two or four (see Figure 3.1).

P u = {{2e u }, {e u , f u }, {e u , g u }, {2e u , 2f u }, {2e u , 2g u }, {2e u , f u , g u }, {e u , 2f u , g u }, {e u , f u , 2g u }}.
In every tour we construct, the pattern around each vertex u ∈ V will be some pattern from P u .

There are other multisets of δ(u) that can be valid patterns around u in a tour. For example, the pattern {f u , g u } could be the pattern around u in some tour. However, in our construction this pattern will never be the pattern around u as we always include at least one copy of e u in a tour. Formally, we write δ F (u) = p if the pattern around u in the tour F is p ∈ P u .

u e u f u g u {2e u } u e u f u g u {e u , f u } u e u f u g u {e u , g u } u e u f u g u {2e u , 2g u } u e u f u g u {2e u , 2f u } u e u f u g u {2e u , f u , g u } u e u f u g u {e u , f u , 2g u } u e u f u g u {e u , 2f u , g u } Figure 3.1:
The different patterns in P u . The red solid edges are in the tour and black dashed edges are not used in the handpicked tour.

Definition 5. A tour F of G x = (V n , E x ) is a handpicked tour of G x if for all u ∈ V n , the pattern around u in F belongs to P u (i.e., if δ F (u) ∈ P u for all u ∈ V n ).
If F is a set of tours and φ = {φ F } F ∈F is a set of convex multipliers, then we use φ(p) = F ∈F :δ F (u)=p φ F to denote the pattern frequency of p ∈ P u in the convex combination {φ, F }.

Notice that φ(p) ∈ [0, 1]. Moreover, if F is a set of handpicked tour of G x , then for all u ∈ V n ,
we have p∈Pu φ(p) = 1. For each u ∈ V n , we define the pattern profile of vertex u in the convex combination {φ, F } to be the eight values {φ(p)} for all p ∈ P u .

Another key parameter of a convex combination is the frequency of doubled edges. For the convex combination {φ, F }, define φ 2 (e) = F ∈F :χ F e =2 φ F for all e ∈ E x . The pattern profile of a vertex u turns out to be directly related to the occurence of doubled edges from δ(u). This dependence is formalized in the next observation, which states that for a convex combination of handpicked tours, if the parameters φ 2 (e) are fixed for e ∈ δ(u), then the pattern profile for each vertex u depends only on the pattern frequency of the pattern {2e u }.

Observation 3.1. Let y and q be vectors in R Ex ≥0 . Suppose y can be written as a convex combination of tours of G x denoted by {φ, F } such that for all e ∈ E x , we have φ 2 (e) = q e . Then for each vertex u ∈ V n and for each pattern p ∈ P u , the frequency of pattern p, φ(p), in this convex combination is uniquely determined by the frequency of pattern {2e u }. Since the above system of eight equations has eight variables (i.e., the variables are φ(p) for p ∈ P u ), it has a unique solution. Therefore, φ(p) is a function of ζ u for all p ∈ P u .

We apply Observation 3.1 to control the pattern profile of a pseudovertex u by constructing tours in which the pattern frequency of {2e u } can be set arbitrarily. This enables us to prove Theorem 1.3 with an inductive (gluing) approach. For such an approach to work, we need to prove a stronger statement. Let α be a constant in (0, 1] that we will fix later.

Proposition 3.2. Define y ∈ R Ex ≥0 as follows: y e = 3 2 -αθ 2 for e ∈ W x and y e = 3 2 x e for e ∈ H x . Then y can be written as a convex combination of handpicked tours of G x denoted by {φ, F } such that (i) φ 2 (e) = 1 2 -αθ 2 , for e ∈ W x , and

(ii) φ 2 (e) = x 2 e 2
for all e ∈ H x .

Observe that Proposition 3.2 implies Theorem 1.3. As mentioned previously, it is in fact stronger; we construct tours for the base cases (θ-cyclic points whose support graphs have no critical cuts) and the additional properties in Proposition 3.2 enable us to "glue" these tours together over the critical cuts of G x . Hence, our induction is on the number of critical cuts in G x .

Observation 3.3 gives sufficient conditions under which we can glue tours of G U x and G U x together over the critical cut to obtain tours for G x that preserve key properties.

Observation 3.3. Let U ⊂ V n be a critical cut of G x . Suppose x U can be written as a convex combination of handpicked tours of G U x denoted by {φ U , F U } with the following properties. (And suppose the same holds for x U , G U

x {φ U , F U }, respectively.) (i) The pattern profiles of vertices v U and v U are the same in their respective convex combinations.

(ii) For every tour F ∈ F U , F \ δ(v U ) induces a connected multigraph on U .

Then x can be written as a combination of handpicked tour of G x denoted by {φ, F } such that

(a) φ 2 (e) = φ U 2 (e) for e ∈ E(G U x ), (b) φ 2 (e) = φ U 2 (e) for e ∈ E(G U x ), and 
(c) |F | ≤ |F U | + |F U |.
Proof. First, we prove the following simple claim.

Claim 1. Consider a graph G = (V, E) and nonempty U ⊂ V such that U is a 3-edge-cut in Proof. It is clear that F induces an Eulerian spanning multigraph on G, but we need to ensure that F is connected. For example, the tour induced on F U \ δ(v U ) might not be connected.

G = (V, E). Let F U be a tour in G U and let F U be a tour in G U such that χ F U e = χ
However, since the subgraph of F U induced on the vertex set U is connected, the tour F is connected: each vertex in U is connected to some vertex in U . ♦

We observe that if the pattern profiles of v U and v U with respect to the convex combinations {φ U , F U } and {φ U , F U }, respectively, are the same, then we can always find two tours F U ∈ F and F U ∈ F U such that the pattern around v U in F U is the same as the pattern around v U in F U . We can apply Claim 1 to obtain a new tour F , to which we assign convex multiplier

φ F = min{φ U F U , φ U F U
} and add to set F . Then we subtract φ F from each of these convex multipliers, remove tours with convex multipliers zero from F U and F U , and repeat. Observe the total number of tours in F is at most

|F U | + |F U |.
We need to show that each tour F ∈ F is handpicked. This follows from the fact that the pattern around each vertex in U in F is the same as the pattern around it in F U . Moreover,

each edge e ∈ E x ∩ δ(U ) is doubled in a tour F of G x iff it is doubled in both F U and in F U .
For e ∈ E(G U x ) \ δ(U ), edge e is doubled iff it is doubled in F U . Analogously, each vertex in U has the same pattern in F as it has in F U , and each edge e ∈ E(G U x ) \ δ(U ) is doubled iff it is doubled in F U . Thus, properties (a) and (b) hold for the convex combination {φ, F }.

In the base case (where graphs G x = (V n , E x ) have no critical cuts), each tour in the convex combination that we construct consists of a connector plus a parity correction (as we will describe in Section 4). For each u ∈ V n , the previously introduced (and yet to be fixed) parameter α is a lower bound on the fraction of connectors in this convex combination in which u has degree two.

Let the parameter η u denote the (exact) fraction of connectors in which vertex u has degree one.

(Note that η u can be different for every vertex.) In our construction of a convex combination of tours {φ, F } for the base case, it will be the case that the frequency of pattern {2e u } will be equal to ηu 2 . Thus, controlling the value of η u allows us to control φ({2e u }). A key technical tool is that when we construct a convex combination of tours {φ, F } for graph G x with no critical cuts (i.e., a base case graph), we can always ensure that for one arbitrarily chosen vertex v, the value of η v (and hence φ({2e v })) can be chosen arbitrarily. This allows us to ensure that the pattern frequency of {2e v U }) equals the pattern frequency of {2e v U }) in the given convex combination for G U x (i.e., Condition (i) in Observation 3.3) when G U x is a base case.

Lemma 3.4. Suppose G x contains no critical cuts. Fix any vertex v ∈ V and fix constant ζ with

0 ≤ ζ ≤ (1-α)θ 2
. Define y ∈ R Ex ≥0 as follows: y e = 3 2 -αθ 2 for e ∈ W x and y e = 3 2 x e for e ∈ H x . Then y can be written as a convex combination of handpicked tours of G x denoted by {φ, F } with the following properties.

(i) φ 2 (e) = 1 2 -αθ 2 , for e ∈ W x , (ii) φ 2 (e) = x 2 e 2 for all e ∈ H x , (iii) φ({2e v }) = ζ, and (iv) F \ δ F (v) induces a connected multigraph on V \ v for each F ∈ F .
Notice that Lemma 3.4 implies Proposition 3.2 for θ-cyclic points whose support graphs have no critical cuts. We prove Lemma 3.4 in the next section. In the remainder of this section, we show how Lemma 3.4 implies Proposition 3.2.

Proof of Proposition 3.2. Suppose G x contains t critical cuts. We prove the statement by induction on t. In fact we show that the running time of our algorithm is polynomial in n and t. To this end, we show that the convex combination in our construction contains at most btn d trees,

where b and d are constants. Notice that t itself is a polynomial bounded by n.

If t = 0, then G x does not contain a critical cut, then apply Lemma 3.4. Otherwise, find the minimal critical cut U of G x . By Observations 2.1 and 2.2, graph G U x does not contain any critical cuts and G U

x contains at most t -1 critical cuts. Define y U as follows: y U e = 3 2 -αθ 2 for e ∈ W x U and y U e = x U 2 for e ∈ H x U . We apply the induction hypothesis on G U

x to write y U as convex combination of handpicked tours of

G U x denoted by {φ U , F U } such that (i) φ U 2 (e) = 1 2 -αθ 2 for e ∈ W x U , and (ii) φ 2 (e) = (x U e ) 2 2
for all 4 Finding Tours in the Base Case: Proof of Lemma 3.4

e ∈ H x U . By induction |F U | ≤ b(t -1)(|U | + 1) d . Let ζ * = φ U ({e v U }). Define y U e = 3 2 -αθ 2 for e ∈ W x
In this section we present the proof of Lemma 3.4. We fix G x = (V n , E x ) to be the support graph of a θ-cyclic point x. In the base case, G x contains no critical cuts. (The lemmas in this section will be applied to this base case, but some hold even when G x is not a base case.) Moreover, we remind the reader that we assume the support of G x is cubic. (See discussion in the beginning of Section 3.)

A key tool we will use is that the 1-edges of G x can be partitioned into five induced matchings

in G x . A set M ⊂ W x is an induced matching of G x if M is a vertex induced subgraph of G x
and M is a matching. For each induced matching M , we find a set of connectors T of G x where for each 1-edge e in M , both endpoints of e have degree two in every T ∈ T . Thus, when G x has no critical cuts, a 1-edge e in M does not belong to any odd cuts in T that are tight cuts in G x .

For each 1-edge e in M , we can therefore reduce usage of e in the parity correction from 1 2 to 1-θ 2 ; each 1-edge saves θ 2 exactly 1 5 of the times. This yields the saving of θ 10 on the 1-edges as stated in Lemma 3.4 with α = 1 5 . The induced matchings require some additional properties that we need for technical reasons as we will see later. Recall that for a vertex u in G x we denote by e u the unique 1-edge incident on u. Let N 2 (u) denote the two vertices that are the other endpoints of the fractional-edges incident on u. In other words, suppose δ(u) = {e u , f u , g u } and suppose that w 1 and w 2 are the other endpoints of f u and g u , respectively. Then N 2 (u) = {w 1 , w 2 }. The proof of Lemma 4.1 is deferred to Section 4.5.

Lemma 4.1. Suppose G x has no critical cuts. Let v be a vertex in V n and let N 2 (v) = {w 1 , w 2 }.

The set of 1-edges in G x , W x , can be partitioned into five induced matchings {M 1 , . . . , M 5 } such that for i ∈ [5], the following properties hold.

(i) |M i ∩ {e v , e w 1 , e w 2 }| ≤ 1. (ii) For U ⊆ V n such that |δ(U )| = 3, |δ(U ) ∩ M i | ≤ 1. (iii) For U ⊆ V n such that |δ(U )| = 2, |δ(U ) ∩ M i | is even.
For the rest of this section, let v be a fixed vertex in V n , N 2 (v) = {w 1 , w 2 } and let {M 1 , . . . , M h } denote the partition of W x into induced matchings with the additional properties enumerated in Lemma 4.1. These properties will be used to ensure that we can save on the edges in W x when augmenting connectors of G x (with parity correctors) into tours. While Lemma 4.1 implies that h = 5, we will use h throughout this section, since if Lemma 4.1 could be proved with, say, four matchings, it would allow a larger value of α = 1 h and hence directly yield a better bound in the statement of Lemma 3.4. The proof of Lemma 3.4 consists of two main parts. First we show there is a convex combination of connectors of G x that satisfy certain properties. Second, we show that for each connector, we can find parity correctors such that the union of a connector and a parity corrector is a tour.

Constructing Connectors

Now we will show how to construct connectors for G x . We will apply this when G x is a base case (i.e., G x has no critical cuts), but Definition 6 and Lemmas 4.2 and 4.3 apply even when this is not the case. Recall that v is fixed vertex in V n and that N 2 (v) = {w 1 , w 2 }. Definition 6. Suppose M ⊂ W x is a subset of 1-edges of G x . Let Λ be a constant such that 0 ≤ Λ ≤ θ. Suppose x can be written as a convex combination of connectors of G x denoted by {λ, T }. Then we say P (v, M, Λ) holds for {λ, T } if it has the following properties.

1.

T ∈T :|δ

T (v)|=1 λ T = T ∈T :|δ T (v)|=3 λ T = Λ and T ∈T :|δ T (v)|=2 λ T = 1 -2Λ. 2. For each edge st ∈ M , |δ T (s)| = |δ T (t)| = 2 for all T ∈ T . 3. T \ δ T (v) induces a connector on V \ {v}.
Let us explain why the properties described above are useful in our construction. The first property allows us to control the fraction of time vertex v has degree one in a connector in the convex combination {λ, T }, which in turn will allow us to control the fraction of time a tour has the pattern {2e v } around v. This flexibility is required to perform the gluing procedure; it allows us to manipulate the convex combination of connectors to have the desired pattern profile for the pseudovertex (which will be v). The second condition ensures that no 1-edge in M is part of a tight cut that is crossed an odd number of times in a connector T ∈ T . Lastly, the third property guarantees that we maintain connectivity of the tours after gluing them together over critical cuts.

We defer the proofs of the next two lemmas to Section 4.3.

Lemma 4.2. Suppose M ⊂ W x forms an induced matching in G x and edge e v ∈ M . Then x can be written as a convex combination of connectors of G x denoted by {λ, T } for which P (v, M, 0)

holds.

Lemma 4.3. Let Λ be any constant such that 0 ≤ Λ ≤ θ. Suppose M ⊂ W x forms an induced matching in G x , e v / ∈ M and |M ∩{e w 1 , e w 2 }| ≤ 1. Then x can be written as a convex combination of connectors of G x denoted by {λ, T } for which P (v, M, Λ) holds.

Recall that {M 1 , . . . , M h } is the partition of W x into induced matchings obtained via Lemma 4.1. Assume without loss of generality that e v ∈ M 1 . For i = 1, let T 1 be a set of connectors of G x and let {ϑ, T 1 } be a convex combination for x for which P (v, M 1 , 0) holds (by Lemma 4.2).

For i ∈ {2, . . . , h}, let T i be a set of connectors of G x and let {ϑ, T i } be a convex combination for x for which P (v, M i , Λ 1-α ) holds (by Lemma 4.3). Notice that Λ 1-α ≤ θ since Λ ≤ (1 -α)θ. We can write x as a convex combination of connectors from T , by weighting each set T i by α. In particular, we have x = α h i=1 T ∈T i ϑ T χ T . For each T ∈ T , let σ T = α • ϑ T . Then {σ, T } is a convex combination for x. Observe that since x e = 1 for e ∈ W x , we have W x ⊆ T for T ∈ T . From Definition 6 and Lemmas 4.2 and 4.3, we observe the following.

Claim 2. For each T ∈ T , T \ δ(v) induces a connected, spanning subgraph on V \ {v}.

Constructing Parity Correctors

For each T ∈ T , let O T be the set of odd degree vertices of T . In the second part of the proof we show that each connected subgraph T ∈ T has a "cheap" convex combination of O T -joins. This implies that x + z i can be written as a convex combination of tours of G x . We denote this set of tours by F i and we let F = {F ∈ F i : i ∈ {1, . . . , h}}. Now for F ∈ F we have F = T + J for some T ∈ T and J ∈ J T . Define φ F = σ T • ψ T J . The vector h i=1 α(x + z i ) can be written as {φ, F }. Proof. We need to show that y = h i=1 α(x + z i ). First, let e be a 1-edge of G x and M j be the induced matching that contains e. Then, x e = 1, z i e = 1 2 for i ∈ [h] \ {j} and z j e = 1-θ 2 . Hence,

h i=1 α(x e + z i e ) = h =1 α • 3 2 -α • θ 2 = 3 2 - αθ 2 .
For a fractional e of G x , we have z i e = xe 2 for i ∈ [h], so h i=1 α(x e + z i e ) = 3 2 x e . ♦ Now we prove some additional useful properties of the convex combination {φ, F } for θ-cyclic point x.

Claim 5. For convex combination {φ, F }, we have φ 2 (e) = 1 2 -αθ 2 for e ∈ W x and φ 2 (e) = (xe) 2 2 .

Proof. Notice that φ defines a probability distribution on F . We sample F from F with the probabilities defined by φ. where T f ∪ T g = T and T f ∩ T g = ∅. We can also assume that there are subsets T 1 f ⊆ T f and T 1 g ⊆ T g such that T ∈T 1 f λ T = Λ and T ∈T 1 g λ T = Λ, since Λ ≤ θ. Now we consider two cases 1. If e w 1 / ∈ M : For T ∈ T 1 f , replace T with T -f . For T ∈ T 1 g , replace T with T + f .

2. If e w 1 ∈ M : For T ∈ T 1 f , replace T with T + g. For T ∈ T 1 g , replace T with T -g.

For all T ∈ T \ (T 1 f ∪ T 1 g ), keep T as is. Observe that T ∈ T is still a connector of G x : for every T ∈ T f , T -f is a spanning tree of G x and for every T ∈ T g , T -g is spanning tree of G x .

Observe that in the first case, the degree of e w 2 is preserved for every T , and in the second case the degree of e w 1 is preserved for every T . We want to show that the new convex combination {λ, T } is the desired convex combination for x. Notice that in the first case,

T ∈T λ T χ T f = T ∈T 1 f λ T χ T f + T ∈T f \T 1 f λ T χ T f + T ∈T 1 g λ T χ T f + T ∈Tg\T 1 g λ T χ T f = 0 + (θ -Λ) + Λ + 0 = x f .
In the second case,

T ∈T λ T χ T g = T ∈T 1 f λ T χ T g + T ∈T f \T 1 f λ T χ T g + T ∈T 1 g λ T χ T g + T ∈Tg\T 1 g λ T χ T f = Λ + 0 + 0 + (1 -θ -Λ) = x g .
So x = T ∈T λ T χ T . Moreover, notice that for T ∈ T , T \ δ T (v) still induces a connector on V \ {v} since we did not remove any edge in T \ δ(v) from the v-tree T . Finally, for each vertex s with e s ∈ M , we have |δ T (s)| = 2 for all T ∈ T . To observe this, notice that the initial convex combination satisfies this property for vertex s (since the convex combination is obtained via Theorem 2.5). In the transformation of the convex combination we only change edges incident on w 1 and w 2 , so if s = w 1 , w 2 the property clearly still holds after the transformation.

If s ∈ {w 1 , w 2 }, then as noted previously, we do not remove or add an edge incident on s if e s ∈ M .

Proof of Lemma for Constructing Parity Correctors

We use O-joins as parity correctors for each T ∈ T . We now give the complete proof of Lemma 4.4.

Proof of Lemma 4.4. Our goal is to show that z belongs to O-Join(G x ). By definition, z ∈ [0, 1] Ex . Now we will show that z satisfies the constraint (2.2). First, we state three useful claims.

Claim 6. If z(δ(U )) ≥ 1 for U ⊂ V n , then z(δ(U ) \ A) -z(A) ≥ 1 -|A|. Proof. We have z(δ(U ) \ A) -z(A) = z(δ(U )) -2z(A). Since z e ≤ 1 2 for all e ∈ E x , we have z(δ(U )) -2z(A) ≥ 1 -|A|. ♦ Claim 7. If δ(U ) ∩ M = ∅, we have z(δ(U )) ≥ 1.
Proof. This follows from the fact that for every edge e / ∈ M , we have z e = xe 2 . ♦ Claim 8. For all U ⊂ V n , |δ(U ) ∩ W x | and |δ(U )| have same parity.

Proof. This follows from the fact that |δ(U ) ∩ H x | is always even since H x is a 2-factor of G x . ♦

We consider the following cases. Case 1: Case 3i: Notice that x(δ(U )) ≥ 2. In this case, δ(U ) is either a critical cut, a vertex cut, or a degenerate tight cut. We assumed that G x has no critical cuts. So U is either a vertex cut or a degenerate tight cut. We prove in both cases that |U ∩ O| is even. Then we only

|δ(U ) ∩ W x | ≥ 3, Case 2: |δ(U ) ∩ W x | = 2, and Case 
3: |δ(U ) ∩ W x | = 1. Case 1: If |δ(U ) ∩ W x | ≥ 4, then z(δ(U )) ≥ 2 -2θ ≥ 1. Thus we may assume |δ(U ) ∩ W x | = 3. If |δ(U ) ≥ 4, then z(δ(U )) ≥ 3 2 -3 2 θ + θ 2 ≥ 1, since θ ≤ 1 2 . If |δ(U )| = 3,
need to consider |A| odd. If |A| = 1, then z(δ(U ) \ A) -z(A) ≥ θ 2 ≥ 0 = 1 -|A|. If |A| = 3, then z(δ(U ) \ A) -z(A) ≥ -1 + θ 2 ≥ -2 = 1 -|A|. If U = {u} for some u ∈ V n , then u / ∈ O by assumption. Otherwise, U is a degenerate tight cut. Let δ(U ) = {e u , f v , g v } where {f v , g v } = δ(v) ∩ H x for some v ∈ V n . Notice that δ(U \ {v}) = {e u , e v
} and e u ∈ M . This implies by assumption that e v ∈ M , which implies Claim 9 to both G 1 and G 2 . For G 1 , we find induced matchings {M 1 1 , . . . , M 1 5 } such that conditions (i) and (ii) hold. Similarly, for G 2 , we find induced matchings {M 2 1 , . . . , M 2 5 } such that (i) and (ii) hold.

that v / ∈ O. Since |(U \ {v}) ∩ O| is even, hence |U ∩ O| is even. Case 3ii: Since |δ(U )| ≥ 5, if there is an edge e ∈ δ(U ) ∩ H x with z e = 1-θ 2 , then z(δ(U )) ≥ 1 -θ + 3 • θ 2 = 1 + θ 2 . Therefore,
G 1 = G x [(V \ U ) ∪ {s 1 , s 2 , s 3 }] + {s 1 s 2 ,
Notice that for each edge e ∈ {e 1 , e 2 , e 3 }, there is exactly one induced matching in {M 1 1 , . . . , M 1 5 } and in {M 2 1 , . . . , M 2 5 } that contains e 1 . Without loss of generality, suppose M 1 i and M 2 i each contain edge e i for i ∈ [3]. Then let M i = M 1 i ∪ M 2 i for i ∈ [5] and notice that M i is an induced matching in G x . We conclude by induction on the number of bad cuts in G x , since both G 1 and G 2 have fewer bad 3-edge cuts than does G x . ♦ Claim 11. Suppose G x is 2-edge-connected. Then Lemma 4.1 holds.

Proof. We proceed by induction on the number of 2-edge cuts of G x . If G x does not contain any 2-edge cuts then G x is 3-edge-connected, so by Claim 10 the claim follows.

For the induction step, consider 2-edge cut δ(U ) = {e 1 , e 2 }. Since x is a half-cycle point, note that e 1 , e 2 ∈ W x . Let s 1 and s 2 be the endpoints of e 1 and e 2 that are in U and let t 1 and t 2 be the other endpoints. (Observe that neither s 1 s 2 nor t 1 t 2 is an edge in G x ; otherwise G x would contain a cut of x-value less than 2.) Consider graphs G 1 = G[U ]+s 1 s 2 and G 2 = G[V \U ]+t 1 t 2 . The set of 1-edges of G 1 is {W x ∩ E(G 1 )} ∪ {s 1 s 2 }, and the set of 1-edges of G 2 is {W x ∩ E(G 2 )} ∪ {t 1 t 2 }.

Without loss of generality, assume r ∈ S. Apply induction on G 1 to find induced matchings {M 1 1 , . . . , M 1 5 } where s 1 s 2 ∈ M 1 1 , and on G 2 to obtain induced matchings {M 2 1 , . . . , M 2 5 } where t 1 t 2 ∈ M 2 1 . Set M 1 = {M 1 1 ∪ M 2 1 ∪ {e 1 , e 2 }} \ {s 1 s 2 , t 1 t 2 } and set M i = M 1 i ∪ M 2 i for i ∈ {2, . . . , 5}. Then {M 1 , . . . , M 5 } partition W x into induced matchings and satisfy conditions (i), (ii) and (iii).

♦

The proof of Lemma 4.1 follows from Claim 11.

Open Problem 1. Let x ∈ R En be a θ-cyclic point. Define vector y as follows: y e = 4

3 for e ∈ W x , y e = 3 2 x e for e ∈ H x and y e = 0 for e / ∈ E x . Can we show y ∈ TSP(K n )?

In fact, the bound above is tight: for > 0, there exists a 1 2 -cyclic point x such that vector y defined as y e = 4 3 -for e ∈ W x , y e = 3 2 x e for e ∈ H x and y e = 0 for e / ∈ E x . Then This makes the problem above intriguing even when restricted to 1 2 -cyclic points. For a 1 2 -cyclic point x where H x is disjoint union of 3-cycles, Boyd and Carr [START_REF] Boyd | Finding low cost TSP and 2-matching solutions using certain half-integer subtour vertices[END_REF] achieved this bound. Notice that this class includes x in Figure 6.1. Interestingly, a construction very similar to that of Boyd and Sebő [START_REF] Boyd | The salesman's improved tours for fundamental classes[END_REF] implies that for a 1 2 -cyclic point x where H x is a union of vertex-disjoint 4-cycles, we can go beyond this factor. Theorem 6.1. Let x ∈ R En be a 1 2 -cyclic point where H x is a union of vertex-disjoint 4-cycles. Define vector y as follows: y e = 5 4 for e ∈ W x , y e = 3 2 x e for e ∈ H x and y e = 0 for e / ∈ E x . We have y ∈ TSP(K n ).

Proof Sketch. In this case, Boyd and Sebő [START_REF] Boyd | The salesman's improved tours for fundamental classes[END_REF] showed that G x has a Hamilton cycle H such that H ⊂ W x and H intersects each 4-cycle of H x at opposite edges.

They also show that x can be written as convex combination of connectors of G x denoted by {λ, T } such that for T ∈ T we have |T ∩ C| = 2 and |T ∩ (C ∩ H)| = 1 for each 4-cycle

C ∈ H x [BS19].
For a T ∈ T define O T be the odd degree vertices of T and define vector z T as follows:

z T e = 1 3 for e ∈ W x , z T e = 1 6 for e ∈ H x ∩ H and z T e = 1 2 for e ∈ H x \ H. For T ∈ T , we can show z T ∈ O T -Join(G x ) by following essentially the same arguments as Boyd and Sebő. This implies that χ T + z T ∈ TSP(K n ). Therefore, p = T ∈T λ T (χ T + z T ) ∈ TSP(K n ). In addition, we have χ H ∈ TSP(K n ). We conclude that y = 1 4 χ H + 3 4 p ∈ TSP(K n ).

Since the proof of Theorem 6.1 is essentially the same as that in [START_REF] Boyd | The salesman's improved tours for fundamental classes[END_REF], it does not seem to extend to θ-cyclic points in which the fractional edges form 4-cycles.

For 2 4 -uniform points it would be interesting to find improvements over Christofides for TSP using the gluing approach. Such an approach might yield improved factors to the one presented in [START_REF] Karlin | An improved approximation algorithm for TSP in the half integral case[END_REF]. For 2 k -uniform points with k ≥ 5 nothing is known for TSP or 2EC beyond Christofides 

  fact, in each of the classes above there is a family of instances that achieves the largest known lower bound on g(TSP) and the integrality gap of the subtour elimination relaxation for 2ECM [CR98, ABE06, BC11, BS19]. Now we review the results on uniform points. Let x ∈ R En be a 2 k -uniform point. Carr and Ravi showed if k = 4, then 4 3 x ∈ 2ECM(K n ) [CR98]. Boyd and Legault showed that if k = 3, then 6 5 x ∈ 2ECM(K n ) [BL15]. Legault later improved the factor 6 5 to 7 6 [Leg17]. Haddadan, Newman and Ravi proved that for k = 3, we have 27 19 x ∈ TSP(K n ) [HNR19]. Boyd and Sebő showed that if G x is additionally Hamiltonian, then 9 7 x ∈ TSP(K n ) [BS19]. Finally, the recent result of Karlin et al. also implies that if k = 4, then ( 3 2 -)x ∈ TSP(K n ) for some constant > 0 [KKO20].

  induces a spanning tree of V \ {v}. Denote by v-Tree(G) the convex hull of incidence vectors of v-trees of G. The v-Tree(G) is characterized by the following linear inequalities.

  and cubic. Let C be any 2-factor in G x . Define vector y to have y e = 1 2 for e ∈ C, y e = 1 for e ∈ E x \ {C} and y e = 0 otherwise. Then y

  Polytope Let G = (V, E) be a graph and O ⊆ V where |O| is even. An O-join of G is a subgraph J of G where a vertex v ∈ V has odd degree in J if and only if v ∈ O. Let O-Join(G) be the convex hull of incidence vectors of O-joins of G. Edmonds and Johnson [EJ73] showed the following description for the O-Join(G).

Observation 2. 7 .

 7 Let G = (V, E) be a graph, and let O ⊆ V be a subset of vertices such that |O| is even. Let z ∈ O-Join(G), and z(δ(u)) ≤ 1 for all u ∈ V . Then z can be written as convex combination of O-joins of G denoted by {ψ, J } such that for u ∈ O we have |J ∩ δ(u)| = 1 for J ∈ J . Proof. By [EJ73] since z ∈ O-Join(G) it can be written as a convex combination of O-joins of G denoted by {ψ, J }. Let u be a vertex in O. We have z(δ(u)) ≤ 1. On the other hand, for every J ∈ J we have |J ∩ δ(u)| ≥ 1. Therefore, |J ∩ δ(u)| = 1. 2.2.3 Proof of Theorem 1.1: Polyhedral Analysis of Christofides Now, we are ready to prove Theorem 1.1.

Proof.

  Suppose φ({2e u }) = ζ u for some ζ u ∈ [0, 1]. Then for each u ∈ V n , the following identities hold with respect to the convex combination {φ, F }. p∈Pu:χ p e =2 φ(p) = q e for e ∈ {e u , f u , g u }, p∈Pu:χ p e =1 φ(p) = y e -2q e for e ∈ {e u , f u , g u }, p∈Pu φ(p) = 1, φ({2e u }) = ζ u .

F U e for e

 for ∈ δ(U ). Moreover, assume that F U \ δ(v U ) induces a connected multigraph on U . Then the multiset of edges F defined as χ F e = χ F U e for e ∈ E(G U ) and χ F e = χ F U e for e ∈ E(G U ) is a tour of G.

  U and y U e = x U e 2 for e ∈ H x U . Applying Lemma 3.4 to θ-cyclic point x U with ζ = ζ * we can write y U as convex combination of handpicked tours of G Ux denoted by {φ U ,F U } such that (i) φ U 2 (e) = 1 2 -αθ 2 for e ∈ W x U , (ii) φ U 2 (e) = (x U e ) 2 2for all e ∈ H x U , (iii) φ U ({2e v }) = ζ * , and (iv)F \ δ F (v U )induces a connected multigraph on U for each F ∈ F U . Moreover |F U | ≤ b(|U | + 1) d . Now we apply Observation 3.3 to write y as the desired convex combination. This convex combination contains at most |F U | + |F U | ≤ b(|U | + 1) d + b(t -1)(|U | + 1) d . Note that for d ≥ 2 this number is at most btn d , as |U | + |U | = n , |U | ≥ 3, and |U | ≥ 3.

  Lemma 4.4. Suppose G x has no critical cuts. Let M ⊂ W x be a subset of 1-edges of G x such that each 3-edge cut in G x contains at most one edge from M . Let O ⊆ V be a subset of vertices such that |O| is even and for all e = st ∈ M , neither s nor t is in O. Also suppose for any set U ⊆ V such that |δ(U )| = 2, both |U ∩ O| and |δ(U ) ∩ M | are even. Define vector z as follows: z e = 1 2 if e ∈ W x and e / ∈ M , z e = 1-θ 2 if e ∈ M , and z e = xe 2 if e ∈ H x . Then vector z ∈ O-Join(G x ). For each i ∈ [h], define z i e = 1-θ 2 if e ∈ M i and z i e = xe 2 otherwise. For each T ∈ T i , let O T ⊆ V be the set of odd-degree vertices of T . By construction, we have V (M i ) ∩ O T = ∅. By Lemma 4.4, we have z i ∈ O T -Join(G x ). So by Observation 2.7 we can write z i as a convex combination of O T -joins of G x denoted by {ψ T , J T } where |J ∩ δ(u)| = 1 for u ∈ O T and J ∈ J T .

Claim 3 .

 3 Every tour in F is handpicked.Proof. Let F ∈ F . By construction, F = T + J, where T ∈ T and J ∈ J T . Let u ∈ V n andδ(u) = {e u , f u , g u }. Notice that χ F eu ≥ 1, since e u ∈ T for all T ∈ T . Hence, we only need to show that |δ F (u)| < 6. Suppose for contradiction that |δ F (u)| ≥ 6. This implies that |δ T (u)| = 3 and |δ J (u)| = 3. However, if |δ T (u)| = 3, then u ∈ O T . From Observation 2.7, if u ∈ O T and z(δ(u)) ≤ 1, then |J ∩ δ(u)| = 1 which is a contradiction. ♦Claim 4. Suppose G x contains no critical cuts. Define vector y ∈ R Ex as y e = 3 2 -αθ 2 for e ∈ W x and y e = 3 2 x e for e ∈ H x . Then {φ, F } is a convex combination for y.

  Recall that φ 2 (e) = Pr[e is doubled in F ]. Moreover, recall that F = T +J where T ∈ T and J ∈ J T and T is associated with some matching M ∈ {M 1 , . . . , M h } (i.e., T ∈ T i for i ∈ [h]}). For e ∈ E x , we have Pr[e u is doubled in F ] = Pr[e u ∈ J and e u ∈ T ] = Pr[e u ∈ T ] • Pr[e u ∈ J].

  then by assumption we have |δ(U ) ∩ M | ≤ 1. Thus, z(δ(U )) ≥ 1. Thus, Claim 6 applies in each subcase.Case 2:In this case, if|δ(U )| ≥ 4, then z(δ(U )) ≥ (1 -θ) + θ ≥ 1.By Claim 8, the only remaining subcase to consider is when |δ(U )| = 2. By assumption, |U ∩ O| is even. Hence, |A| must be odd, which implies that |A| = 1. Let δ(U ) = {e , e }. Since |δ(U )| = 2, we have either |δ(U ) ∩ M | = 2 or |δ(U ) ∩ M | = 0. In both cases z e = z e . Hence, z(A) = z(δ(U ) \ A). Therefore, z(δ(U ) \ A) -z(A) = 0 = 1 -|A|. Case 3: If δ(U ) ∩ M = ∅, then by Claim 7 we have z(δ(U )) ≥ 1. Hence, we assume |δ(U ) ∩ M | = 1. By Claim 8, we only need to consider the following cases: Case 3i: |δ(U )| = 3, and Case 3ii: |δ(U )| ≥ 5.

Figure 6 . 1 :

 61 Figure 6.1: The support of x : In the figure above each of the three paths of solid edges contain1 + 1 vertices. We have x e = 1 for solid edge e, x e = 1 2 for dashed edge e, and x e = 0 for edge e not depicted.

32

  -approximation.

  Boyd and Carr showed 4 3 x ∈ TSP(K n ) [BC11] and Boyd and Legault showed 6 5 x ∈ 2ECM(K n ) [BL15]. Boyd and Sebő presented a polynomial time algorithm proving that if H x is a collection of 4-cycles,

	then 10 7 x ∈ TSP(K

n )

[START_REF] Boyd | The salesman's improved tours for fundamental classes[END_REF]

. For the same class, we gave an efficient algorithm proving 9 7 x ∈ 2ECM(K n )

[START_REF] Haddadan | Efficient constructions of convex combinations for 2-edge-connected subgraphs on fundamental classes[END_REF]

. Recently, Karlin, Klein and Oveis Gharan showed that for any 1 2

  W x . If |M i ∩ {e r , e w 1 , e w 2 }| ≤ 1 for i ∈ [4], then we are done. Otherwise, assume without loss of generality that {e w 1 , e w 2 } ∈ M 4 . Then let M 4 = M 4 \ {e w 1 }. The desired partition is {M 1 , M 2 , M 3 , M 4 , {e w 1 }}. Thus, condition (i) is satisfied. Now we prove condition (ii). First, consider a vertex u ∈ V and the cut δ(u) in G x . Clearly|δ(u) ∩ M i | ≤ |δ(u) ∩ W x | ≤ 1.For a triangular 3-cut, δ(U ) = {e 1 , e 2 , e 3 }, we cannot have |δ(U ) ∩ {e 1 , e 2 , e 3 }| ≥ 2, since δ(U ) ⊆ W x and no pair of edges from δ(U ) can belong to an induced matching. Since condition (iii) does not apply, this completes the proof of the claim. ♦ Claim 10. Suppose G x is 3-edge-connected. Then Lemma 4.1 holds.Proof. Now let us consider a bad cut. In particular, consider graph G x with 3-edge-cut δ(U ) = {e 1 , e 2 , e 3 }, and assume without loss of generality that r ∈ U . Let s 1 , s 2 and s 3 be the endpoints of e 1 , e 2 and e 3 that are in U , and t 1 , t 2 and t 3 be the other endpoints. Notice that s 1 , s 2 , s 3 (and analogously t 1 , t 2 , t 3 ) are distinct vertices since G x is 3-edge-connected. Construct graph

θ < 1 2 and for all edges e in δ(U ) ∩ H x , we have z e = θ 2 . partition

  s 1 s 3 , s 2 s 3 } and, symmetrically, graph G 2 = G x [U ∪ {t 1 , t 2 , t 3 }] + {t 1 t 2 , t 1 t 3 , t 2 t 3 }. If both G 1and G 2 have no bad 3-edge cuts, then we can apply

For a graph G = (Vn, E), we define a tour of G to be a tour of Kn that uses only edges in E. Notice that the incidence vector for such a tour lives in R E .

We use R p ≥0 to denote {x ∈ R p , xi ≥ 0 for i ∈ {1, . . . , p}, x = 0}.

We sometimes abuse notation and treat x as a vector in R Ex .

4 -uniform points under certain assumptions. Finally, in Section 6, we make some concluding remarks and present some problems for future research.

Replace every vertex v of degree more than

with a doubled cycle of length |δ(v)| and connect each vertex in the cycle to a neighbor of v in G .
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For e ∈ H x , this implies that φ 2 (e) = x e • xe 2 = (xe) 2 2 . Also

Pr[e u is doubled in F ] = Pr[e u ∈ J]

♦

Claims 2, 4 and 5 yield Lemma 3.4. It remains to prove Lemmas 4.2, 4.3 and 4.4.

Proofs of Lemmas 4.2 and for Constructing Connectors

In this section, we prove Lemmas 4.2 and 4.3, which are necessary in order to write a θ-cyclic point x as a convex combination of connectors with property P described in Definition 6.

Lemma 4.2. Suppose M ⊂ W x forms an induced matching in G x and edge e v ∈ M . Then x can be written as a convex combination of connectors of G x denoted by {λ, T } for which P (v, M,

Proof. For each st ∈ M , pair the half-edges incident on s and pair those incident on t to obtain disjoint subsets of edges P. Decompose x into a convex combination of P-rainbow v-trees T (i.e.,

x = T ∈T λ T χ T ) via Theorem 2.5. This is the desired convex combination since for all T ∈ T , Proof. As in the proof of Lemma 4.2, for each st ∈ M , pair the half-edges incident on s and pair those incident on t to obtain a collection of disjoint subsets of edges P. Apply Theorem 2.5 to obtain {λ, T } which is a convex combination for x, where T is a set of P-rainbow v-trees (i.e.,

x = T ∈T λ T χ T ). Notice that this convex combination clearly satisfies the second requirement in Definition 6. Now let δ(v) = {e v , f, g}, where w 1 and w 2 are the other endpoints of f and g, respectively.

Assume x f = θ and x g = 1 -θ. Since x = T ∈T λ T χ T and x ev = 1, we have e v ∈ T for T ∈ T . In addition, we have |δ T (v)| = 2 for all T ∈ T by the definition of v-trees. Hence,

Let C be the collection of cycles in H x . Since θ < 1 2 , every cycle in C is even length. Clearly, any cut crosses every cycle C ∈ C an even number of times. If all the edges in δ(U ) ∩ C have the same x value, then |U ∩ V (C)| is even. We have This concludes the case analysis and the proof.

Proof of Lemma 4.1: Partitioning 1-edges into Induced Matchings

The goal of this section is to prove the following lemma.

Lemma 4.1. Suppose G x has no critical cuts. Let v be a vertex in V n and let

The set of 1-edges in G x , W x , can be partitioned into five induced matchings {M 1 , . . . , M 5 } such that for i ∈ [5], the following properties hold.

We say δ(U ) is a triangular 3-cut if |U | = 3 or |V \ U | = 3, and |δ(U )| = 3. A bad 3-edge cut is a proper 3-edge cut that is not triangular. We construct the desired partition of W x into induced matchings by gluing over the bad cuts of G x and perform induction on the number of bad 3-edge cuts. We prove Lemma 4.1 using a two-phase induction. Claim 9 is the base case and Claims 10 and 11 are the first and second inductive steps.

Claim 9. Suppose G x is 3-edge-connected and contains no bad 3-edge cuts. Then Lemma 4.1 holds.

Proof. In G x , contract every edge in W x . We get a connected 4-regular graph H = (W x , H x ).

An independent set in H corresponds to a set of edges in W x that forms an induced matching in G x . We consider two cases. If H is the complete graph on five vertices, then partition the vertex set into five independent sets, which corresponds to five induced matchings in G x . Notice that the condition (i) from Lemma 4.1 is satisfied since each induced matching contains one edge.

If H is not the complete graph on five vertices, by Brook's Theorem (see Theorem 8.4 in [START_REF] Bondy | Graph Theory[END_REF]) we can partition the vertices of H into four independent sets where each independent set corresponds to an induced matching {M 1 , . . . , M 4 } in G x and these four induced matchings

Construction of Tours for Uniform Points

Recall the definition of 2 k -uniform point from Section 1.1.2. In this section we prove Theorem 1.5 regarding 2 3 -uniform points and then we prove Theorem 1.7 concerning 2 4 -uniform points.

TSP on 2 3 -Uniform Points

We start by the following lemma reducing TSP on 2 3 -uniform points to TSP on 1 2 -cyclic points.

Lemma 5.1. If for any 1 2 -cyclic point x the vector y defined as: y e = 3 2 -for e ∈ W x and y e = 3 4 -δ for e ∈ H x and y e = 0 for e / ∈ E x for constants , δ ≥ 0 belongs to TSP(K n ), then for any 2 3 -uniform point z we have

Proof. Let z be a 2 3 -uniform point, and let G z = (V n , E z ) be its support. Notice that z ∈ ∅-Join(G z ). Hence z can be written as a convex combination of ∅-joins of G z denoted by {λ, C }. 

Observe that for e ∈ E x ẑe = 1 3

Finally, for e ∈ E n \ E x , we have ẑe = 0.

A consequence of Theorem 1.3 is that for 2 3 -uniform point x ∈ R En , we have

Haddadan, Newman and Ravi [HNR19] used the following theorem in [START_REF] Boyd | Finding 2-factors closer to TSP tours in cubic graphs[END_REF] to obtain the first factor below 3 2 for approximating TSP on 2 3 -uniform point.

Theorem 5.2 ([BIT13]

). Let G = (V, E) be a bridgeless cubic graph. Then G has a 2-factor that covers all 3-edge cuts and 4-edge cuts of G.

We can combine the ideas in the proof of Theorem 1 of [START_REF] Haddadan | Shorter tours and longer detours: uniform covers and a bit beyond[END_REF] with Theorem 1.3 to prove the following.

Theorem 5.3. Let x be a 2 3 -uniform point and G x = (V n , E x ) its support graph. Then 17 12 x ∈ TSP(K n ). If G x is Hamiltonian, then 87 68 x ∈ TSP(K n ).

Proof. By Theorem 5.2, G x has a 2-factor C that covers all 3-edge cuts and 4-edge cuts of G x .

Define vector y 1 as follows: y 1 e = 1 for e ∈ C and y 1 e = 4 5 for e ∈ E x \ C and y 1 e = 0 for e ∈ E n \ E x .

Claim 12. We have y 1 ∈ TSP(K n ).

Proof. Notice graph G = G x /C is a 5-edge-connected graph. We can assume without loss of generality that G is also 5-regular 4 . For any vertex r of G we have 2 5 χ E(G ) ∈ r-Tree(G ). So the vector 2 5 χ E(G ) can be written as a convex combination of r-trees of G denoted by {λ, T }. For T ∈ T the multigraph F T = C + 2T is a tour of G x and therefore K n . Finally,

♦

On the other hand, we can define z where z e = 1 2 for e ∈ C and z e = 1 for e ∈ E x \ C for z e = 0 for e ∈ E n \ E x . Vector z is a 1 2 -cyclic point, hence we can apply Theorem 1.3 to obtain vector y 2 ∈ TSP(K n ) such that y 2 e = 3 4 for e ∈ C, y 2 e = 3 2 -1 20 for e ∈ E x \ C and y 2 e = 0 for e ∈ E n \ E x . Notice that 7 9 y 1 + 2 9 y 2 ∈ TSP(G) and is equal to

In this case 7 17 • χ C + 10 17 • y 2 ∈ TSP(K n ) and is equal to 87 68 x.

A Base Case for 2 4 -Uniform Points

Due to the fact that we can glue over critical cuts, we observed that TSP on a θ-cyclic point x is essentially equivalent to the problem with the assumption that G x contains no critical cuts.

Analogously, in the case of a 2 4 -uniform point x, Theorem 1.7 could serve as the base case if we were able to glue over the proper minimum cuts of G x . However, the difference here is that (1) the gluing arguments we presented for θ-cyclic points can not easily be extended to this case (due to the increased complexity of the distribution of patterns), and (2) we require an even number of vertices for our arguments.

Theorem 1.7. Let G = (V, E) be a 4-edge-connected 4-regular graph G with even number of vertices and no proper 4-edge cuts. Then the vector

) dominates a convex combination of incidence vectors of tours of G.

Proof. We prove the claim by showing that there is a distribution of tours that satisfies the properties. It is easy to see that the proof yields a convex combination of tours of G. Since G does not have a proper 4-edge cut and since it is Eulerian, a proper cut of G has at least 6 edges.

Define y e = 1 4 for all e ∈ E. Vector y is in the perfect matching polytope of G and can be written as a convex combination of perfect matchings of G. Choose a perfect matching M at random from the distribution defined be the convex multipliers of this convex combination.

Let r ∈ V . Define vector z as follows:

Applying Brook's theorem (similar to the proof of Lemma 4.1) we can find collection {M 1 , . . . , M 7 } of induced matchings of G that partition M . Choose i ∈ [7] uniformly at random.

For each e = st ∈ M i , include the three edges incident on s in one set and the three edges incident to t in another set. Notice all six edge are distinct since G has no proper 4-edge cuts. Apply Theorem 2.5 to decompose z into a convex combination of rainbow r-trees of G with respect to this partition. Take a random r-tree T from this convex combination using the distribution defined by the convex multipliers. Let O be the set of odd degree vertices of T . Note that for each e = st ∈ M i , s, t / ∈ O by construction. Define vector p to be such that p e = 1 2 for e ∈ M \ {M i } and p e = 1 6 otherwise. We have p ∈ O-Join(G). Therefore, we can write p as convex combination of O-joins of G. Choose one of the O-joins at random from the convex combination and label it J. Note that F = T + J is a tour of G. For an edge e ∈ M we have Thus, each edge e ∈ E is used to an extent ( 3 2 -1 42 ) • 1 2 . This concludes the proof.

Concluding Remarks

In this paper, we showed how to improve the multiplicative approximation factor of Christofides algorithm on the 1-edges of θ-cyclic points from 3 2 to 3 2 -θ 10 . Approaching Conjecture 1 from this angle, we propose the following open problem, which is implied by the four-thirds conjecture.

Open Problem 2. Let x ∈ R En be a 2 5 -uniform point. Can we find a constant > 0 such that ( 3 2 -)x ∈ TSP(K n )?