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Abstract
In several domains it is crucial to store and manipulate data
whose origin needs to be completely traceable to guaran-
tee the consistency, trustworthiness and reliability on the
data itself typically for ethical and legal reasons. It is also
important to guarantee that such properties are also carried
further when such data is composed and processed into new
data. In this article we present the main requirements and
theorethical problems that arise by the design of a system
supporting data with such capabilities. We present an archi-
tecture for implementing a system as well as a prototype
developed in Pharo.
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1 Introduction
The first objective of this paper is to introduce the need for
new object-oriented and distributed database management
with automatic and guaranteed support for the following
three properties or operations on the data system:

1. Traceability of origins.
2. Automatic verification of integrity.
3. Revocation of data when it becomes invalid, or it be-

comes private.
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We start in Section 2 by describing three different use
case scenarios motivating the need for this system: keeping
track of medical clinical trial data; keeping soft real time
track and monitoring of medical data coming from sensors
such as the heart beat of a person; and the accounting and
book-keeping process in a company. After describing these
use case scenarios, we present a problem statement and a
research hypothesis in Section 3 with the objective of identi-
fying the general principles and requirements that need to
be on the foundational object-oriented system to facilitate
the construction of a solution. In Section 4 we compile a list
of fundamental requirements, and in Section 5 we present a
list with fundamental problems, risks, along with possible
strategies of mitigation. Finally we present our design and
implementation for our smart data system in Section 6.

2 Motivational scenarios
Clinical trial data. Any new medicine or medical proce-
dure needs to be subject to extensive clinical trials to evaluate
its safeness and efficacy before it can be applied to the general
public. This clinical trial process typically involves several
phases, several populations, and several years of extended
controlled experiments. All of these controlled experiment
processes generate massive amounts of data whose trace-
ability has to be tightly controlled to ensure the reliability
of gathered data. Tampering with the gathered data should
not be possible. Further posterior analysis, peer reviewal
and auditing on the gathered data may reveal a flaw during
certain experiment instances which may require the revoca-
tion of the affected data. This revocation process may have a
cascade effect on complete or partial revocation on the data.
In addition raw data may be used to generate derived data
and it is important to know when a derived data is impacting
by the revocation of primary form of data.

Vital sign monitoring system. The diagnostics and treat-
ment of several medical disorders such as hyper-tension,
hypo-tension, cardiac arrhythmia, and insulin dependent
diabetes may require the constant monitoring of a patient.
This monitoring is carried with an electronic sensor during
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long periods of time such as weeks, months and in some
cases even during the whole life of the patient. The ubiq-
uity of some sensors such as a heart rate sensor present in
a watch being weared by an individual makes constant and
daily monitoring feasible for non-diagnostic or treatment
purposes. With the case of hear rate monitoring, a simple
scenario involving three different actors is the following:

1. The heart rate of a patient is being monitored by a
sensor.

2. The family of the patients want to know on whether
he or her is alive, dead, or dying.

3. The doctor that treats its patient needs to check a log
and a chart of the patient heart rate data once per-
week.

In Section 7 we present a prototype and simulation for
this distributed scenario using our smart data storage and
processing system prototype.

Company accounting system. Many companies need to
keep a complete accounting system on every commercial
movement that they perform. The need for keeping an ac-
counting system comes from two different, but related prob-
lem: keeping track of the everyday operations of the com-
pany, and complying with legally required book-keeping
obligations for taxing purposes. In the first case the company
has some flexibility on deciding which additional accounting
records to keep and some specific reports that it might gen-
erate typically for taking commercial and strategic decisions
on the company business. For the case of the taxing purposes,
the company needs to keep track of at least every cash move-
ment flow, by keeping track on each one of its incomes and
outcomes, keep copies of bills, receipts and invoices for each
acquisition and sale. Then the company, depending on its
jurisdiction, it needs to aggregate this data to generate peri-
odically different accounting books in a specific way with a
format that is mandated by the law.

3 Problem statement and hypothesis
Problem Statement. From the previous use case scenarios,
we derive the following general problem statement:

How do we model, design and construct a data storage and
processing system that supports automatic traceability of ori-
gins, integrity verification, and revocability of invalid and or
private data in a distributed and decentralized environment?

The Need for Distribution In the vital sign monitoring
scenario the need for distribution and decentralization is
an evident requirement due to the fact that the sensors are
physical distinct machines to the one that is used by the
medic and the family members of the patient. In the other
cases, the need for distribution and decentralization is not
that evident, but it stems from the way that large organiza-
tions operate in a distributed geographical scale. For example,
large pharmaceutical companies may conduct their clinical

trials in different countries simultaneously. In the case of the
accounting system a large multi-national may have the need
to aggregate and audit the balances of their different local
subsidiaries, in order to keep a global balance for advertising
their total value so that the company can trade its shares in
the stock market. For these reasons, the need for distribu-
tion and decentralization can only be ignored in the case the
whole system needs to be executed in a single machine, and
there is also not going to be any need to scale in the future.
Otherwise, the system is gonna require a full redesign and
rewriting to add support for distribution when is needed.
On the other hand, a system designed for distribution can
always be executed in a single physical node in case it is
required to reduce hardware cost.

Proposal. To facilitate the solution of this problem we pro-
pose the construction of a framework in Pharo [2] around
the concept of Smart Data for describing and storing object
oriented data models with the following capabilities:

1. Automatic support for traceability of origins.
2. Guaranteed structural data consistency via immutabil-

ity enforced in transaction boundaries for specific his-
torical data snapshot.

3. Automatic data replication and distribution is always
possible, and easy for scenarios with a fixed and known
data distribution topology.

In the next section we discuss the actual requirements for
our smart data processing and storage system by defining
these requirements.

4 Smart data storage system requirements
4.1 Traceability of origins
Definition of Traceability. We define traceability of ori-
gins as the ability of knowing where each piece of data in
a data base comes from. A more concrete definition means
that for each datum 𝐷 that is present in a database in a spe-
cific period of time we should be able to answer at least the
following questions:

• Who wrote the datum 𝐷?
• When the datum 𝐷 was written?
• With which and whose permissions was the datum 𝐷

written?

Origin as Metadata. The first important observation of
these questions is that they are all about requesting a specific
metadata about the datum 𝐷 . The presence of this metadata
in this context is orthogonal to the actual data, so a desirable
property is to keep the specification of this metadata com-
pletely separate from the specification of the actual domain
specific data model.

Transactions. The second important observation is that all
of these questions has the verb write. For our purposes, we
are going to define a transaction as a contained and isolated
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process where a sequence of reads and writes is performed
on the data stored in a database. To simplify our design
we are also going to mandate that data accesses happen
during the context of a transaction. A transaction might
end on a commit where the data is actually written into the
data store, or it might end in a rollback where the new data
is completely discarded. During a transaction commit, the
newly written data has to be serialized and transmitted into
the final persistent data store, which may be a single disk
drive, or even a replicated cluster. The important aspect here
is that transactions introduce synchronization points where
a specific version of the data is read and written.

Transaction as the Origin. Since any piece of data can
only be written during the context of a transaction, then it
becomes evident that all of the data written in the system
has a single transaction as its source of origin. This implies
that the problem of traceability of origin can be solved by
just tagging transaction themselves with additional metadata
that is part of the transaction life cycle. In other words, the
previous questions about the data origin can be re-phrased
in the following ways:

• Who initiated the transaction 𝑇 that wrote the datum
𝐷?

• When was the transaction 𝑇 that wrote the datum 𝐷

committed?
• With which and whose permissions were used to ini-
tiate and commit the transaction 𝑇 wrote the datum
𝐷?

TransactionContext SpecificData. Since adding thismeta-
data to the transaction itself is completely orthogonal to the
actual data domain, then we propose that the problem of
traceability of origin can be solved by using transaction con-
text specific data. We propose this mechanism as an elegant
and more robust alternative than to actually model the con-
cept of origins in the data model itself.

4.2 Integrity verification
The capability of performing integrity verification implies
that we have a predicate function 𝐼 that receives at least
a subset of the whole data set, and answers true or false
on whether the subset of the data set complies with some
requirements on data integrity. For our purposes, we decided
to define our predicate 𝐼 as the simultaneous compliance of
the following three related predicates: structural consistency
on the data (𝑆); domain defined constraints (𝐷𝑐 ), and bit-level
data correctness (𝐵𝑐 ). In algebraic form, this is summarized
in the following way:

𝐼 (𝐷) = 𝑆 (𝐷) ∧ 𝐷𝑐 (𝐷) ∧ 𝐵𝑐 (𝐷)
We also define each of these different components of the

integrity verification predicate as the simultaneous compli-
ance of multiple boolean predicates. We define these three

predicates as grouping of different aspects on the concept of
data integrity.

Structural Consistency. We define structural consistency
as the correctness on the organization of the stored data. The
main factor required for enforcing this is type checking cor-
rectness. For example, this implies that it should be impossible
to write a date in a place where a home address is required. In
addition to type checking, we also define the requirements
on the data topology as being part of its structural consis-
tency requirement. For example, it should not be possible
to have a cyclic graph of objects in a location where a tree
is required. Simple cases of these requirement on the topol-
ogy might be encoded as type checking requirements, but
non-trivial cases might need additional predicates and graph
traversal algorithm for testing.

DomainDefinedConstraints. In the𝐷𝑐 predicatewe group
all of the boolean predicates that specify additional domain
specific constraints that are mandated by the application.
These predicates are completely user defined and they en-
code the invariants and the contracts that their data model
always has to comply. For example, in double-entry account-
ability each book keeping entry that represents an income
from one account must have a corresponding outcome entry
from another account.

Bit-level Correctness. Data has to eventually be serialized
and transmitted via some link to its final persistence stor-
age medium. This transmission and storage process may be
imperfect and suffer of data losses. We define as bit-level
correctness to the data integrity aspects that arise during this
serialization, encoding and storage process. The standard
mechanism to detect and repair this problem consists on
the usage of checksum, and error detection and corrections
codes. Stronger mathematical guarantees on this aspect can
be provided through the usage of cryptographic hashes. The
introduction of cryptography on this level also provides the
opportunity of using a digital signatures algorithms (DSA)
or a message authentication code (MAC) to also guarantee
the authenticity of the data. The capability of adding cryp-
tographic validation at this level also allows one to add an
additional layer to detect and prevent data tampering by
unauthorized parties.

4.3 Revocation
We define data revocation as the process of turning previ-
ously valid data into invalid data, and automatically reacting
on the dependent data by repairing it or also marking it as
invalid data. We identify two main reasons for revocating
data: data that was previously valid is not valid anymore be-
cause new sources of information arrived and contradicted
the previous validation of data; and the need for destructing
or hiding information that is not needed anymore and has
become private.
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Revocation as Data Invalidation. After data is committed
into a data store, new information may be added that may
invalidate at least partially the modified data during a previ-
ous transaction. For example, in the case of the clinical trial,
it may be determined after an auditing process that some
instances of a controlled experiment for a drug are invalid
due to a mistake committed during the execution of those
specific experiment. Once the flawed experiments are de-
tected, it becomes necessary to re-generate the reports that
depend on this experimental data by excluding the data from
those experiments, and in some extreme cases it may even
invalidate an actual approval for a drug. As another example,
in the case of a company accounting system, sometimes sold
products are refunded, so that specific sale becomes invalid.

Revocation as Data Destruction. Data may need to be de-
structed or its access may be needed to make private due
to many possible reasons. One important motivation for
destroying data is the need to preserve the privacy of in-
dividuals and respect laws on data protection and privacy
such as the GDPR. These laws also allow the individual the
right for having their private data removed from electronic
services. This means that they may be even necessary by
a mandate by law to completely destroy the private data
from the storage system. In some cases it might be enough
to replace the private data by completely anonimized data,
however proper automatic anonimization of data is a dif-
ficult problem because it is also necessary to provide the
guarantee of making it impossible to de-anonimize the data
by correlating multiple data sources.

Cascade Effect. Revocated data may exist in a dependency
to additional data which may also need to be revocated. In
the case of revocated data due to invalidation, it might be
enough to mark the data that depends on it as invalidated
and generate a new version of it to re-validate the data. This
may produce a cascade sequence effect of invalidation and re-
validation. If the set of affected data forms a directed acyclic
graph (DAG), then the problem of re-validating this data is a
just a matter of performing a topological sort on the directed
graph, and then execute the single sequence of invalidation
and revalidations. If the affected data instead has cycles, it
may not even be possible to completely validate it, and this
process may even have a catastrophic effect. For example, a
directed cyclic graph with two vertices 𝑉 = {𝑎, 𝑏}, and two
edges 𝐸 = {(𝑎, 𝑏), (𝑏, 𝑎)}. In this graph the invalidation and
re-validation of 𝑎 may trigger the invalidation of 𝐵, whose
revalidation may trigger a new invalidation of 𝐴. In the
general case, the invalidation and revalidation process may
never reach a steady state where it completes. This means
that in the cyclic case it is required to find a strategy that
either:

• Ensures that a revalidation steady state is always reached.

• Detect this oscillatory process, forces them into a new
state, or destroys them.

• Perform re-validation in a lazy process. This mitigates
the nasty meta stability issues by bounding computa-
tions during revalidation into single slice of a bread-
first search style graph traversal.

As for the case of revocated objects due to destruction,
if the cascade effect of revocation involves the destruction
of objects that depends on it, it becomes evident that the
consequences might be completely catastrophic. If on the
other hand it only involves a process of invalidating and
re-validating the affected data.
In our current prototype we have not yet implemented

any kind of support for the data revocation capability yet,
and we still have to decide on how to properly model and
express these two different cases of data revocation.

4.4 Concurrency, Distribution and Decentralization
Concurrency and distribution are nowadays two central re-
quirements on any real world data storage and processing
system that needs scale to large numbers of connections
and simultaneous transactions. This implies that our smart
data storage and processing system has to be designed at
the architectonic level to support concurrent transactions,
and to at least facilitate the possibility of replicating and
propagating data.
Another desirable property is the ability to decentralize

the management structures and authorities that are involved
in the operation of a distributed system. This desire to sup-
port decentralization comes from two sides: real work re-
quirements on how data is produced, stored and shared by
different real world organizations; the need of having ro-
bustness against failures, and even against some malicious
attacks on a data infrastructure by one owner.

5 Fundamental Problems, Risks and
Mitigations

5.1 Concurrency and Distribution Issues
Since the support for concurrency and distribution is an
important and desirable property, this means that our sys-
tem has to be designed to avoid, and if possible, to make
impossible the main threats of concurrent and distributed
system that might bring the whole system down. These cru-
cial well known threats that need to be at least mitigated are
the followings:

• Deadlocks: mutual locks that are never released.
• Livelocks: mutual actors that are waiting for each
other.

• Race conditions: conflicting read-modify-writes on
shared state.
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Deadlock. Deadlocks are caused by two different processes
that are taking two different locks in a different order. Dead-
locks are solved by holding these locks always on the same or-
der. The presence of explicit transactions helps on mitigating
this issue since transactions induce an ordering constraints
on the operations, which also provides an opportunity for
taking the locks in the proper order.

Livelock. Livelocks typically happens on the presence of
two synchronous processes that are waiting for each other,
so they never end waiting and doing an actual useful work.
One solution to this problem is on having actors that only
communicate via asynchronous communication. This also
introduces the problem that some concurrent and distributed
processes need to be designed and implemented in terms
of state machines. In our smart data storage and processing
system we are still not modeling and supporting properly
actors, so for now we are not attacking this problem yet.

Race Condition. Race conditions are the product of con-
flicting read-modify-write (RMW) operations on a shared
state by two or more simultaneous processes. The traditional
way for preventing race conditions consists on introducing
locks. Another way of preventing race conditions consists
on not sharing data that is simultaneously being written at
the same time at all. One way of enforcing this property is by
making all data immutable, which is the main property that
is guaranteed by pure functional programming languages.
The problem of this approach is that it prevents conducting
traditional object-oriented programming which is plagued
of mutation everywhere. In the next subsection we discuss a
hybrid approach where we enforce immutability on certain
points in our data model to simplify our data storage model,
and to also retain the convenience of mutable object state
oriented programming for data manipulation.

5.2 Mixing Mutability and Immutability
An Apparent Contradiction. Since several concurrency is-
sues are solved by having immutable data, then it becomes
desirable to enforce it as a property on the stored, transmit-
ted and replicated data. However, since we are implementing
and using Pharo, a purely object-oriented programming lan-
guage that is not designed to deal and ensure immutability
at every moment unlike a purely functional language such
as Erlang [9], then the need to enforce immutability at the
language level looks like an unnecessarily restrictive con-
straint.

Serialization as a Conversion. Fortunately, data is always
manipulated in the context of a transaction. This means that
we only “perform mutation” in a transient object-oriented
representation of the data that is serialized for persistence
at the end of the transaction. For final transmission or stor-
age, the data has to be converted into a linear string of bits
through a process of serialization. If we decide to always

serialize the complete modified objects, then this serialized
version of the object is by definition immutable. However,
we lose this immutability property on the serialized data if
we simply replace the old serialized version of the object
with the new version. If instead of replacing the old version,
we decide to keep both versions, and to always append data
at the end of data store, then we have an immutable data
persistence system. This means that there are no data races
at the object persistence level because we are only storing
immutable data by appending it to existing one.

Transaction Delimited Immutability. In other words, we
use read operations during the context of a transaction for
deserializing a snapshot of the database and converting an
immutable version of an object into a mutable object that
is local to the transaction context. At the end of a commit-
ted transaction, we serialize the mutable objects into an
immutable representation, and we submit this representa-
tion into the data store. From the point of view of the final
data store, there are only immutable operations on it. But the
user sees an object-oriented interface that looks like holding
convenient mutable objects.

5.3 The CAP theorem
The Brewer’s CAP theorem [6, 15] is a well known result
and fundamental problem in distributed computing. This
theorem states that it is impossible to construct a distributed
system that guarantees all of the time the following three
properties:

• Consistency (C).
• Availability (A).
• Tolerance to network partitions (P).

The CAP theorem also states that it is possible to con-
struct distributed system that guarantees at most two of
these properties at the same time. Under this view, it is typi-
cally said that traditional relational database management
systems (RDBMS) are designed to guarantee consistency and
availability through ACID transactions.

In the case of distributed systems, all of them have to actu-
ally support the P component of theorem [9]. This means that
a distributed system might only be able to choose providing
an additional guarantee for either Consistency or Availabil-
ity [9]. Also, for different components of a distributed system
it might be desirable to make different choices between keep-
ing A or C [9]. For example, the accounting department of a
seismographic research institute needs to guarantee consis-
tency, but its seismic data reception, storage and aggregation
has to instead guarantee the availability.

5.4 ACID Transaction
ACID is the acronym with the main properties that have
to be fullfilled by transactions that are used in traditional
relational databases. These properties are the followings:

• Atomicity: the whole transaction cannot be divided.
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• Consistency: the database only ends on a valid state
at the end.

• Isolation: transactions runs as if there was only a single
transaction running at a time.

• Durability: once the transaction is finished and com-
mitted, its result is stored in a permanent storage
medium.

In terms of the CAP theorem, ACID transactions are used
for guaranteeing the Consistency attribute in the database.
For this reason, it is mandatory for our system to be able to
support this kind of transaction. By the previous definition
of transaction, the ACID properties in our system can only
be violated by running multiple concurrent transactions that
are either: conflicting by themselves, or the summation of
both transactions invalidates an integrity constraints on an
object depends on the modified objects by the transaction.
With our systemwe can support ACID semantics by having a
global synchronization mechanism that prevents conflicting
transactions, and by also triggering the automatic repairing
of invalidated data as a consequence of these transactions.

5.5 BASE Transaction
BASE is an alternative to the traditional ACID semantics
that instead of preserving the C property of the CAP theo-
rems preserves the Availability [13]. The objective of BASE
transactions is to preserve the Availability guarantee by sac-
rificing the Consistency property from the CAP triangle. The
definition of the BASE acronym is the following:

• Basically Available: the A part of the CAP theorem.
• Soft state: lack of consistency guarantees.
• Eventual consistency.

Eventual consistency means that after some time, the data
on these systems converges into a stable value, and reads
will always produce the same value [18]. One mechanism to
guarantee eventual consistency is by merging the updates
performed by two conflicting transactions [14][9]. However,
there are some requirements on how this merge operation
has to be defined to achieve eventual consistency [14]. It
has been shown that simple and trivial case that always
achieves eventual consistency is when the merge operation
is commutative [14].

In our current infrastructure, we still have not decided on
a proper way to model and provide support for these high-
availability distribution scenarios where BASE semantics
are required. However, the ability of being able to structure
data in terms of historical versioned immutable structured
provides a simple degradated conflict resolution mechanism.
This mechanism is to represent the latest version of the
conflicting objects as a set that contains the versions that
have a conflict. With this strategy no data is ever lost, but
the conflict has to be solved explicitly by a new transaction,
which could in the worst case be manually initiated merge
procedure by a human individual. This conflict resolution

mechanism is exactly the same mechanism that is used by
software versioning control systems such as Git to solve
conflicts.

5.6 Consensus reaching algorithm
Reaching consensus is a fundamental problem on any dis-
tributed system. The ability to reach consensus is crucial for
guaranteeing correctness on the data that is computed by a
distributed. Unfortunately, there are several known instances
where it has been proven the impossibility of reaching con-
sensus [4]. This implies that the design decisions that we
make for constructing our smart data storage and processing
system has to be aware of the existence of these impossibil-
ities. This also implies that measures have to be taken for
detecting and mitigating these situations where a consen-
sus cannot be reached. In the cases where consensus can be
reached, the implementation should provide mechanism to
reach it by using existent algorithm [3]. This problem can
only be ignored in the cases where there is zero data distri-
bution replication that is meant to improve fault tolerance.

6 Smart Data System Design
Layered Architecture. To facilitate the design, and to en-
force separation of concerns of the different aspects of our
problem, we decided to construct our smart data storage
and processing system in terms of three layered processes:
physical data representation, transaction context processing,
and domain specific modeling and processes.

6.1 Physical Data Representation
Key-Value store for Physical Persistence. In the lowest
level we eventually need to persist the serialized bits of ob-
jects in a persistent data store. As a simple and standard
solution to this problem we decided to use a key-value store
[7] for our lowest level persistence layer. In abstract terms,
it means that we have a single large dictionary whose key
is an ID for retrieving a specific instance of a serialized ob-
ject. A key-value store offers the advantage of being easy
to implement in a transient and in-image memory only by
using a single Dictionary instance, and a single 𝑆𝑒𝑚𝑎𝑝ℎ𝑜𝑟𝑒

for mutual exclusion and ensuring atomic read and writes
of serialized object data. Having this abstraction also allows
one to use different backends, such as:

• Use an existent RDBMS such as MySQL [12] only for
final disk persistence. A relational database with a sin-
gle table of two columns is enough for this purpose.
This takes advantage of the existent database optimiza-
tions for storing data on disk in an efficient and safe
way.

• Use another document based, NoSQL [7] database such
as MongoDB [11]. These NoSQL databases are typi-
cally designed around this very same abstraction of a
key-value data store [7]. Since many of these existent
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databases already have support for data replication [7],
their usage might also help on this aspect, but we still
need to implement an additional layer of synchroniza-
tion if we want to enforce ACID constraints in some
transactions.

Document Based Data Encoding. A good definition for a
document database is the following one given by Han et al.:

“Document database and Key-value is very similar in struc-
ture, but the Value of document database is semantic, and is
stored in JSON or XML format.” [19]

This means that databases of this kind such as MongoDB
[11] can be used for storing data structured in terms of a
document object model (DOM). The JSON structure for text
based object serialization tends to be preferred over XML for
reasons of simplicity, and better performance due to shorter
documents [10]. JSON is a text format, but there are several
binary formats that are compatible with JSON, faster to parse,
and directly supported by databases such as BSON [16] and
MessagePack [5]. The existence of these compact and binary
alternatives that follow the exact same model of JSON means
that using this same model for structuring and serializing
objects is a safe design decision.
A JSON document is composed of a single dictionary ob-

ject. An object in JSON can have one of the following recur-
sively defined structure:

• An atomic literal value:
Numbers
Strings
Boolean values
Nil.

• An array of objects.
• A dictionary of objects. Keys are always strings, but
values can be any kind of object, including other dic-
tionaries and arrays.

The subset of JSON objects composed by atomic literal val-
ues and arrays can be concisely expressed in Pharo syntax in
terms literal arrays through the #(12(𝑡𝑟𝑢𝑒 𝑓 𝑎𝑙𝑠𝑒) syntax, and
in terms of array construction with the {1.2.{𝑡𝑟𝑢𝑒.𝑓 𝑎𝑙𝑠𝑒}}
syntax. Unfortunately, in Pharo we do not have a special
syntax for defining dictionaries. However, a simple and con-
cise way to specify a dictionary in Pharo is to use successive
pairs of keys and values. These arrays of key-value pairs
can be passed to the Dictionary newFromPairs: method for
constructing objects. For this reason, and to facilitate writing
unit tests of our object serialization process, we decided to
implement our serialization process in terms of these arrays,
but in our deserialization process we are in fact converting
them into dictionaries to relax the requirement of having
the same order on the encoded fields all of the time.

Another advantage of encoding the serialized data in terms
of these document formats, is that they also allow generating
a canonical encoded bitstream of the serialized data. This
canonical encoding is a deterministic definition on how to

encode the data to obtain always the same result. Having a
canonical encoding form is crucial for applying cryptograph-
ical algorithms for guaranteeing bit-level data integrity and
authentication.

The Problem of Nominative IDs. One important observa-
tion is that is not enough to just store directly serialized
objects into the data store. If we store a serialized graph of
inter-dependent objects directly by using the nominative ID
(i.e., the name) of each object in the graph as the keys in
the key-value store, then it becomes impossible to modify a
single object without having to simultaneously re-validate
and modify all of the objects that depend on it. In other
words, by associating directly the name of the objects with
its content we lost any possibility of having an immutable
and an append only store of serialized objects. We solve this
problem by using versioned object ID. We define a versioned
ID as an ordered pair composed of the nominative object
ID, and a version ID number. During serialization of object
graphs, we replace object references by a reference into a
specific version of the object. However, it its still desirable
being able to obtain the latest version of an object from just
its ID. It is also a desirable property to be able to navigate
the whole history of a stored object. We achieve such proper-
ties by keeping a single separate mutable mapping from an
object nominative ID into its last versioned ID. In addition
each serialized versioned object has a reference to its previ-
ous version. This means that different versions of an object
maintain a linked-list data structure that allows support for
arbitrary navigation on the history of an object.

Atomic Values, Entities and Roles. We define three differ-
ent kinds of objects that need to be manipulated and per-
sisted through our smart data storage and processing system:
atomic values, entities and roles.

Atomic values. We define as an atomic value any ob-
jects whose individual internal components are not
separately versioned and traced for origins. These are
the indivisible units of data such as a number, a string,
a boolean, a date, or even some aggregate objects such
as street address. Versioning and origin traceability
of atomic values is conducted on the whole value it-
self. The only requirements on atomic values is being
able to serialize-deserialize them, and to evaluate their
integrity constraints.
Entities. Entities are objects which have complete his-
torical versioning and traceability of origins. Unlike
atomic values, the individual components of an en-
tity are also versioned and traced. For this reason, we
define the internal persisted state of an entity as a
composition of different atomic values. For reasons of
convenience, we define the different components of
an entity by using slots [17]. The usage of these slots
has the following purposes:
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• Replace the persisted variables by value holders that
intercept reads and writes. These are used for trac-
ing modified objects, and automatically tagging the
modified data with its new origin. By replacing the
slots with a value holder, each read and write into
it becomes a message send. The origin of the values
only change when the write message is received. On
the processing of a slot write message, the data orig-
inator in the value holder is compared with the data
originator of the current transaction context. If the
data originators do not match, then the originator
of the value holder is changed into the new one, and
the object version id is updated to be the current in
memory version. The interception of reads is used to
implement lazy deserialization of referenced objects,
which allows to avoid reading and deserializing the
whole object graph from the data store.

• Make explicit the database schema, and the types of
the stored object. Typing allows enforcing the type
checking integrity constraints.

• Provide automatic serialization and deserialization
of objects. Each slot knows its type, and each type
knows how to serialize and deserialize its data.

Roles. We define as a role as any object that can act as
a data originator1. Many domain specific roles are also
entities, and we call them role-entities. But they are
some special roles such as the super-user administrator
that is required for creating the initial roles in a data
store that we are not modeling as entities. For this
reason, we construct an object that we call concrete role
that represents the act of exercising a role.Wemandate
the presence of a concrete role for being able to actually
initiate a transaction, and we use these concrete roles
for actually tagging the origin of a transaction.

6.2 Transaction Processing
Transaction Life-Cycle. The life-cycle of a transaction is
composed of three parts: the beginning of the transaction,
a sequence of read-modify-write operations in the transac-
tion context, and the end of a commit or an abortion that
originates a rollback. Listing 1 shows an example of how a
transaction looks like in our system.
We represent the sequence of read-modify-write opera-

tions in as just a standard Pharo block. We also mandate the
requirement of having a specific concrete role for starting a
transaction. This concrete role represents the origin of the
transaction which allows enforcing traceability of origins.
The withRole:doTransactionWith: method takes care of

all of the transaction management required book-keeping.
The most important action of this method is to store the
1We might have just call them data originator, but we think that the term
role is more adequate since it can be seen as an analog to a real world
individual that is full-filing a specific social role. In a future version we may
replace the concrete role term with the data originator term.

dataStore withRole: hospitalService doTransactionWith:
[ :transaction |

patient := SMDPatient createWithID: 'Patient1'.
patient names: 'John';

surnames: 'Doe';
birthDate: (Date year: 2000 month: 1 day: 1);
address: '25 av marechal foch'.

transaction commit.
].

Listing 1. Example code of a transaction

active transaction context in a process local variable. This
active transaction context is used by the automatic data orig-
inator tagging machinery through the interception of value
writes as described in the previous section. This interception
of writes is also used for compiling a list of objects that need
to be serialized and written to the data store at the end of the
transaction (i.e., constructing the transaction log) Another
important usage of this transaction context is on the im-
plementation of automatic object reads and deserialization
on-demand through the interception of reads.
We implement the explicit transaction commit and abort

operations as the signaling of specific exceptions. The excep-
tions that are raised during a transaction block are all caught.
If the caught exception is an explicit commit signal, then the
modified objects during the transaction are serialized and
submitted for persistence into the data store. All of the other
cases generate a transaction rollback operation, which in the
current implementation version is implemented by simply
ignoring the modified objects.

6.3 Domain Specific Modeling
Once having these basic building blocks, the next step is
to actually model domain specific data and processes that
are actually required by a specific application. These objects
can be modeled by creating additional definitions of entities,
roles, and in some cases, even new atomic value types. In
our implementation, such definitions can be created by just
defining new subclasses. We present a concrete example of
this in Section 7.

7 Heart Rate Monitoring Demo
With our smart data storage and processing system we con-
structed for testing it a simplistic scenario. This scenario is
composed of three different actors:

1. A heart rate sensor that monitors a patient in real time.
2. The family member of the patient that want to know

on whether he is still alive.
3. A medic that needs to check once per week the heart

rate of the patient.
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Non-distributed Implementation. For reasons of simplic-
ity, we implemented this scenario in terms of three concur-
rent processes running inside a single image. In other words,
our current demo is not distributed, but it still has all of the
transaction, object serialization, and traceability of origin,
and automatic object history versioning support capabilities.
For this demowe are using a single transient in-memory data
store that is implemented through the combination of some
Pharo dictionaries and semaphores for mutual exclusion.

Data model. In this scenario, we have the following four
different role-entities:

1. The patient who is also an individual. See Listing 2.
2. The medic that treats the patient. The medic is an

individual. See Listing 3.
3. An individual who is a family member of the patient.

See Listing 4.
4. The heart rate sensor itself. See Listing 5.

SMDIndividual subclass: #SMDPatient
slots: {

#medics => SMDMedic set .
#heartRateSamples => SMDHeartRateSample set }

Listing 2. Definition for the patient entity

SMDIndividual subclass: #SMDMedic
slots: { #patients => SMDPatient set }

Listing 3. Definition for the medic entity

SMDRoleEntity subclass: #SMDIndividual
slots: {

#names => SMDStringType .
#surnames => SMDStringType }

Listing 4. Definition for the individual entity

SMDRoleEntity subclass: #SMDHeartRateSensor
slots: { #patient => SMDPatient }

Listing 5. Definition for the heart rate sensor entity

The main objective in this scenario is to collect a set of
heart-rate samples. This means that we also need to define
how a heart-rate sample looks like. Since each one of these
samples is an atomic object by itself, then it makes sense to
model it as an aggregate object with two fields: the timestamp
of when the sample is measured, and the number of beats
per minute measured at that time. Listing 6 shows the use of
the class SMDCompositeValue to define this composite value
object.

SMDCompositeValue subclass: #SMDHeartRateSample
slots: { #timestamp => SMDDateAndTimeType .

#beatsPerMinute => SMDFloatType }

Listing 6. Definition for a heart rate sample

Data Store Creation and Initialization. At the beginning
of this demo, it is required to define the set up of the data-
base by creating actual instances of these roles, and connect
them in the context of a transaction. For this demo, the code
required for creating the data store, and performing this
initialization is given in Listing 7.

store := SMDTransientDataStore new.

"Create the individuals"
patient := store

withRole: SMDSuperUserAdminRole
getOrCreateRole: SMDPatient withID: #Patient.

son := store
withRole: SMDSuperUserAdminRole
getOrCreateRole: SMDIndividual withID: #PatientSon.

medic := store
withRole: SMDSuperUserAdminRole
getOrCreateRole: SMDMedic withID: #Cardiologist.

"Create the sensor role"
store withRole: medic doTransactionWith: [ :trans |

heartBeatSensorRole := SMDHeartRateSensor
getOrCreateWithID: {patient fullId . #watch

}.
heartBeatSensorRole patient: patient.
patient medics add: medic.
medic patients add: patient.
trans commit.

].

Listing 7. Data store creation and population

Spawning the Actors. Once the data store is initialized, the
next step consists on actually spawning the different actors
that need to interact as shown in Listing 8.

Unfortunately, currently we have not yet defined a proper
framework for actors that have to interact with one of our
data stores. For this reason, we are currently using the term
actor as a completely ad-hoc definition for any distributed
process that performs transactions. We are calling them ac-
tors in analogy to the actors of a theater play. In Section 8
we discuss the limitations of this ad-hoc approach.

Sensor Implementation. The heart rate monitoring sensor
actor is the physical sensor that takes care of actually sam-
pling the patient heart beat. A simplistic implementation
for this sensing process could be to read a sample, and then
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"Create the sensor"
sensor := SMDHeartRateSensorProcess new

dataStore: dataStore;
role: heartBeatSensorRole;
yourself.

sensor start; openUI.

"Create the status UI"
SMDHeartRateStatusUI new

dataStore: dataStore; role: son; patient: patient;
openInWindow.

"Create the medic UI"
(SMDHeartRateMedicUI on: {dataStore . medic})

openWithSpec.

Listing 8. “Actor” spawning code

Figure 1. Screenshot of the heart rate monitoring demo.

immediately perform a transaction for transmitting the sam-
ples into the data store. The main problem of this simplistic
approach is performance because of two important sources
of overhead: the overhead of setting up a transaction, and the
overhead of establishing a network connection in the case
of network distribution. In addition to this problem, samples
may need to pass through electronic and digital filters to
actually recover the heart beat sensing data. For this reason,
it is desired to accumulate batches of samples during several

seconds, or even minutes and then perform a transaction to
submit the complete batch of samples. The objective of this
batching process is to reduce the frequency of transmission
from the order of milliseconds which might be even less than
the actual latency of the network, to an order of magnitude
that is greater to the normal latency of the network. One
important objective of this is to avoid flooding the excessive
TCP control packet, which might even have a catastrophic
effect on the data transmission infrastructure.

In this demo, instead of using an actual heart rate sensor,
we are fabricating a procedural signal through the combina-
tion of mathematical sine functions, and we are adding noise
through the usage of a random number generator. Each time
we have a large enough batch of samples to send, our sensor
process performs a transaction for storing the new samples
in the batch. See Listing 9 for the method that performs this
batch submission transaction.

submitDataBatch: batchToSend
dataStore

withRole: role
doTransactionWith: [ :trans |
| sensor patient |
sensor := role lastVersion.
patient := sensor patient value lastVersion.
patient heartRateSamples addAll:

(batchToSend collect: [ :each |
SMDHeartRateSample new

timestamp: each timestamp;
beatsPerMinute: each beatsPerMinute;
yourself]).

trans commit
].

Listing 9. Heart rate batch transmission transaction.

Liveness Monitor Implementation. The patient liveness
polling monitoring UI is implemented as a morph that per-
forms periodical polling on the data store with a period of
500𝑚𝑠 . This polling is implemented through the automatic
stepping facilities of Morphic by overriding the step method
(See Listing 10). Once a new status state is received, then this
UI morph is redrawn and a color the last bpm is displayed
on it. Since this transaction is only used for reading data,
it is never committed to ensure that the stored data is not
changed. When there is no explicit commit during the trans-
action, the transaction is aborted by default. The explicit
transaction abort in Listing 10 is used with the objective
of avoiding an error when sending the last message to the
empty collection of samples.

MedicHeartMonitoringDashboard. The UI for themedic
that needs to periodically check its patient is simply a win-
dow with a single button. The action associated to the button
in this window takes care of initiating the transaction for
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step
| newStatus samples |
newStatus := nil.
dataStore withRole: role doTransactionWith: [ :
transaction |
samples := patient lastVersion heartRateSamples.

samples ifEmpty: [ transaction abort ].
newStatus := samples last.

].

newStatus ~= currentStatus ifTrue: [
currentStatus := newStatus.
self changed.

].

Listing 10. Liveness state polling transaction.

querying the samples. In our current version, we are simply
reading the whole data set because we have not yet imple-
mented additional indices that are required for optimally
restricting the query into a specific range of dates. See List-
ing 11 for the query that is used for retrieving this data. For
the final plot of the data we are simply using Roassal 3 [1], a
data visualization framework.

fetchDataSet
| result |
result := #().
self dataStore

withRole: self medicRole
doTransactionWith: [ :trans |

| medic patient |
medic := self medicRole lastVersion.
medic patients ifEmpty: [ trans abort ].
patient := medic patients first lastVersion.
result := patient heartRateSamples value

collect: #yourself.
].
^ result

Listing 11. Heart rate data query by the medic.

8 Limitations
The lack of Actors. The main limitation in our prototype
for our data storage and processing model is the lack of a
way for defining Actors. We identify the need for at least
two different kind of actors:

1. Autonomous actors that decide when and how to in-
teract with the data storage model.

2. Data dependent actors, whose life cycle and operations
are triggered by a condition met due to data changed
in a transaction.

In our heart rate scenario we are only implementing actors
of the first kind in a completely ad-hoc way. Making a proper

API for streamlining the actor implementation of this kind
should not be complicated in Pharo. The interesting problem
is actually how to model actors of the second kind, and how
to implement and manage their lifecycle. It may even be
desirable to automatically spawn these actors on a separate
node to the one that handled the transaction that required
spawning this actor.

Permissions and Authorizations. In our current imple-
mentation, we are using concrete roles for modeling data
origins. The problem with this mechanism is that we still
need a proper way to define per-object access control con-
straints and related permissions. One option for doing this
is to associate additional predicates for asking about per-
mitted actions on objects for a concrete role. There is also
the problem on validating on whether a concrete role does
actually have the permissions for doing a certain operations.
We think that for this authorization validation problem that
association of a one-time use cryptographical token to a
concrete role might help.

9 Threats to Validity
Single Scenario Tested. The main threat of validity for our
approach of implementing this smart data storage and pro-
cessing infrastructure is that we have only tested it in a
single highly artificial and controlled test scenario. We still
have to validate our system with at least real world data, and
at least try to attempt to simulate usage scenarios that are
much closer to real world usage. Real world usage scenarios
involve network partitions that force changes on the topol-
ogy of distribution, nodes that fail and are resurrected for
multiple reasons in a completely random and uncontrolled
way.

Implementing Revocability. Another important problem
is that we still need to address the issue of data revocation,
and specially the issue of of having to destroy data for reasons
such as enforcing the privacy of individual. We also want to
be able to implement this support for data revocation and
removal in a way that does not destroy the advantages of
having an append-only storage of immutable data.

10 Related work
Git. Git is a content addressable distributed database that
is normally used through a version control system user in-
terface. The data storage model used by the Git database is
similar and a source of inspiration to our data storage model.
This distributed database aspect of Git is very well hidden
through this interface to be point that most users know Git
only as a distributed version control system. Internally, Git
is implemented as set of objects where a cryptographic hash
of any stored object can be used as a key for actually retriev-
ing the object. The usage of cryptographic hashes as keys
is what makes Git content addressable database. Directories
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in Git are represented as list with the hashes of the files and
subdirectories that are contained in it. A commit is simply
a tuple with hashes to the new root directory, the parent
commits, and the commit message. Branches and tags are
pointers to specific commits, which means that in practice
they are labels for the hashes of commits.

Blockchain. The blockchain is a completely distributed and
decentralized data base that was designed originally as a
mechanism for implementing the virtual currency of Bitcoin
[20]. The blockchain is built upon a decentralized tree of
cryptographic hashes that are replicated among all of the
nodes running on a blockchain [8]. All nodes execute all
transactions in a completely deterministic way, so that all
nodes can be verify the validity of the transactions. The
blockchain is also based around the concept of having an
append-only store of transactions, and this is also one of
our sources of inspiration on reusing this concept for our
system.

Mnesia. The Erlang purely functional and actor based pro-
gramming language comes by default with Mnesia. Mnesia
is a distributed relational database that can store any Erlang
object [9]. Transactions in Mnesia are represented as Erlang
functions, and queries are typically encoded as tuples that are
generated via a macro transformation of an Erlang function
that encodes a boolean predicate function. We took inspira-
tion on Mnesia for the idea of representing transactions as
blocks in our smart data prototype.

11 Conclusions and Future Work
In this paper we discussed the main requirements, theoreti-
cal problems, and an architecture that seems to solve many
of these problems for the construction of a smart data stor-
age and distribution system. We started by establishing the
requirements on having a system for storing and process-
ing data with complete traceability of origins, support for
integrity validation, and capability of revocating data. We
also mention that any real world implementation of these
systems have to be prepared and designed to support con-
currency and distributed computing, due to the very nature
of how this data is typically produced and consumed. For
these reasons we also discuss several important well-known
issues in the field of distributed computing, and distributed
data bases that at least need to be taken into account.
To mitigate the risks associated to implement this sys-

tem, and to also facilitate the support for the properties of
traceability of origin, and integrity verification, we decided
to construct a model where data that is transmitted during
transactions is completely immutable, and the database only
stores new data in append-only mode. To keep the conve-
nience of mutable state object oriented programming, we
keep ephemeral mutable copies of the deserialized objects
during the context of preparing and computing the bulk of

a new transaction. But we serialize these objects back into
immutable copies that are stored in append-only fashion at
the end of a transaction.
After the description of this data model we presented

a demo for our prototype implementation for this smart
data storage and processing system. This demo presents
promising results in terms of being able to express complex
data storage and processing infrastructure in a concise way
by using Pharo classes. In the future we will expand this very
same demo by first modeling actors in a proper way, having
much more complexity in terms of the data processing and
distribution topologies. We also think that is crucial to add
properly the concepts of actors, and actors that are triggered
by data model changes into our framework. We think that
by properly modeling actors, we might be able to remove
the explicit data storage polling that is used in our demo by
a much more efficient event subscription model.
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