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EFFICIENT AND ACCURATE ALGORITHM FOR THE FULL1

MODAL GREEN’S KERNEL OF THE SCALAR WAVE EQUATION2

IN HELIOSEISMOLOGY∗3

HÉLÈNE BARUCQ† , FLORIAN FAUCHER‡ , DAMIEN FOURNIER§ , LAURENT GIZON§ ,4

AND HA PHAM†5

Abstract.6
In this work, we provide an algorithm to compute efficiently and accurately the full outgoing7

modal Green’s kernel for the scalar wave equation in local helioseismology under spherical symmetry.8
Due to the high computational cost of a full Green’s function, current helioseismic studies only use9
its values at a single depth. However, a more realistic modelisation of the helioseismic products10
(cross-covariance and power spectrum) requires the full Green’s kernel. In the classical approach,11
the Dirac source is discretized and one simulation gives the Green’s function on a line. Here, we12
propose a two-step algorithm which, with two simulations, provides the full kernel on the domain.13
Moreover, our method is more accurate as the singularity of the solution due to the Dirac source is14
described exactly. In addition, it is coupled with the exact Dirichlet-to-Neumann boundary condition,15
providing optimal accuracy in approximating the outgoing Green’s kernel, which we demonstrate in16
our experiments. In addition, we show that high-frequency approximations of the nonlocal radiation17
boundary conditions can represent accurately the helioseismic products.18

Key words. modal Green’s kernel, helioseismology, radiation boundary conditions, helioseismic19
observables, Whittaker’s functions, hybridizable discontinuous Galerkin20

AMS subject classifications. 34B27, 33C15, 65N80, 85-04, 85-08, 35J10, 35L05, 35A0821

1. Introduction. In this work, we propose an efficient algorithm to compute22

accurately the full outgoing modal Green’s kernel for the scalar wave equation in local23

helioseismology under spherical symmetry. The outgoing Green’s kernel, denoted by24

G(x,y), is the key ingredient in obtaining simulated observables which are then used in25

data analysis in time-distance helioseismology, cf. section 5. At the angular frequency26

ω, G is a solution to, [5, 8],27

(1.1) −∇ ·
(

1

ρ(x)
∇G(x, y)

)
− σ2(x, ω)

ρ(x) c2(x)
G(x, y) = δ(x− y) ,28

where the background of the Sun is characterized by the density ρ and the sound speed29

c. Here, δ is the Dirac function and σ denotes the complex frequency that contains a30

model of attenuation. In other applications, (1.1) is also called the Bergmann’s equa-31

tion ([9]) for inhomogeneous acoustic media, cf. [24, Section II.A]. In helioseismology,32

it is obtained from the equation for the wave displacement ξ without background flow33

and rotation, cf., e.g., [23],34

(1.2) − 1

ρ
∇
(
ρc2∇ · ξ

)
− σ2ξ + gravity terms = s .35

By taking the divergence on both side of (1.2), considering the scalar quantity ρc2∇·ξ36

as unknown, and if we neglect gravity and the gradient of σ, we obtain the scalar37
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operator in (1.1), cf. [17, Section 2]. Due to the omission of the gravity (necessary38

for the reduction to a scalar problem), equation (1.1) does not take into account39

buoyancy, and cannot be used to model internal and surface gravity waves. However,40

it still allows for a good description of acoustic modes and simulates correctly the41

observed solar data, cf. [17].42

Similarly to [8, 7, 1], we work with the conjugated equation obtained by a Liouville43

change of unknowns, since the latter offers a natural setting to define the unique44

physical (also called “outgoing” or “radiation”) kernel G, solution to, [8],45

(1.3)

(
−∆ − σ2(x, ω)

c2(x)
+ q(x)

)
G(x, y) = δ(x− y) , with q := ρ1/2 ∆ ρ−1/2 .46

The Liouville transform is also discussed in [25, Eq. (2.9)]. In [24, 25], the difference is47

that the density and the sound speed are considered constant outside of the domain, so48

this is equivalent to a compact perturbation of the Helmholtz operator. In our case,49

we have a long-range perturbation and the density is assumed to be exponentially50

decaying outside of domain, following the solar Atmo model, [5]. From G, the physical51

Green’s kernel for the original problem (1.1) is defined by52

(1.4) G(x, y) := ρ1/2(x) ρ1/2(y)G(x, y) .53

Assuming that the physical parameters only depend on the Sun’s radius, one can de-54

compose G into the spherical harmonic basis, and compute instead the modal Green’s55

kernel G`(r, s) for each spherical mode `, with r = |x| the (scaled) radius and s the56

source position. It is a fundamental solution of, [8],57

(1.5)

(
− d2

dr2
− σ2(r)

c2(r)
+ q(r) +

`(`+ 1)

r2

)
G` = δ(r − s) .58

Current results in local helioseismology assume that the Sun has a “surface” that59

is well defined, and work with numerical simulations which are obtained from the solu-60

tion of the wave equation at the surface of the Sun only, i.e., G`(r, s = 1) using scaled61

variables. However, the Sun is a plasma and the observed oscillations represent an62

average over all depths weighted by the level of transparency (opacity). Therefore, the63

accurate computations of helioseismic products require the full Green’s function. In64

addition, it is also required to interpret the multi-height HMI (Helioseismic and Mag-65

netic Imager) data [26] and to image the solar interior using helioseismic holography,66

[29].67

Numerically, the current approach to evaluate the Green’s function is to directly68

discretize (1.5) using, e.g., a finite element or a finite difference method, cf. [17, 5, 11].69

Since each resolution only gives the value for a fixed source, it is expensive to obtain70

the “complete” Green’s kernel which requires an arbitrarily high number of sources.71

Additionally, unlike in applications such as seismology or inverse scattering in which72

one is mostly interested in the far-field or the backscattered data obtained away from73

the source, in helioseismology, values at the same height of the source are particularly74

important. The presence of the Dirac however reduces the numerical accuracy of the75

response in the region around the source. To overcome this problem, one usually76

refines the mesh around the source, leading to additional computational cost, cf.77

[11, 16, 5]. With solar background, it is particularly expensive, since this extra-78

refinement comes in addition to the one needed to capture the profile of the model79

parameters. In our work, our algorithm provides, with only two simulations, the80
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full Green’s function, for each spherical mode ` and frequency ω, without any extra-81

refinement.82

The procedure we propose is based on a formula for Green’s kernel in ODE the-83

ory and comprises of two steps. One first obtains solutions of two boundary value84

problems: one regular solution in a neighborhood of the origin and an outgoing one in85

an exterior neighborhood. They are then ‘assembled’ by a Heaviside function to give86

the global modal Green’s kernel. The importance here is that while these solutions87

are regular, the singularity of the Green’s kernel is captured exactly by the Heaviside88

function. In addition, working with regular solutions removes the need to refine the89

mesh around the source position. Namely, with only two problems, one instantly90

obtains the value of the modal Green’s kernel on a rectangular region away from the91

origin, and thus of the 3D Green’s kernel on a product of two punctured spheres.92

Other novelties of our work are in the numerical implementation and computation93

of the outgoing Green’s kernel, with the following three aspects.94

1. The algorithm is implemented with Hybridizable Discontinuous Galerkin (HDG)95

discretization, [13, 20, 6], which, with unknowns being the numerical trace (bound-96

ary values), reduces the computational effort compared to other scheme.97

2. We compute synthetic helioseismic products (power spectrum) using two atmo-98

spheric models: S+Atmo ([12, 5]) and S+Val-C ([28]), and compare several forma-99

tion heights. Here, our work is the first to use the exact Dirichlet-to-Neumann100

(DtN) coefficient for the radiation condition.101

3. We investigate the efficiency of approximate radiation boundary conditions (RBC)102

on synthetic helioseismic products using the complete solar background. Until now,103

these comparisons were only carried out in terms of solutions in the atmosphere104

(e.g., [8]). With the exact DtN coefficient as reference, our investigation provides an105

efficient choice of approximate RBC (ZS-HF-1a, see section 5), which is independent106

of the mode `. This is particularly useful for discretization schemes in 3D since,107

being independent of `, it does not contain tangential differential operators.108

The article is organized as follows. In section 2, we formulate the problem with109

the appropriate boundary conditions, and state, in Proposition 2.4, the main result110

to construct the Green’s function. We provide in section 3 the computational steps111

and validate our implementation comparing with analytical solutions to illustrate the112

efficiency of our approach. The helioseismic products are defined in section 4 and113

computed in section 5, illustrating the necessity of using the full Green’s kernel.114

2. Formulation of the solar Green’s functions. In this section, we provide115

the dimensionless modal equation with the appropriate boundary conditions, and116

give the two-step strategy for the efficient computation of the Green’s kernel via117

Proposition 2.4.118

2.1. Problem with dimensionless coefficients. We consider the 3D coordi-119

nate system with the center of the Sun placed at the origin, and denote by x̌ the120

position in this system. Our first task is to derive the adimensional version of the121

problem: with R� denoting the radius of the Sun, (R� ' 695.5× 106 m), we introduce122

the scaled coordinates,123

(2.1) x =
x̌

R�
, such that ∇x = R�∇x̌ .124

We introduce the scaled radius r = R/R�, which is dimensionless, where R = |x̌|.125

The associated density function ρ, the dimensionless inverse scale height α and126
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the scaled velocity c are defined by127

(2.2) r 7→ ρ(r) = ρ(R� r) , α(r) := −∂rρ(r)

ρ(r)
, c :=

c

R�
.128

Since ∂r = R�∂R, we have that α = α/R�. Here, c is expressed in s−1, so that the129

quantity σ/c is dimensionless.130

The main equation for the original problem is given by (1.1) and we have, for a131

generic right-hand side f̌,132

(2.3) −∇ ·
(

1

ρ
∇ ǔ

)
− σ2

ρ c2
ǔ = f̌ , with σ2(x, ω) = ω2 + 2 iω γ

(
x, ω

)
.133

We recall that ω > 0 is the angular frequency, and γ the attenuation. We first write134

the field ǔ and the right-hand side f̌ in terms of the scaled radius:135

(2.4) u(x) := ǔ(R� x) , f(x) := f̌(R� x).136

They satisfy the equation, using (2.1) and multiplying by R2
�,137

(2.5) −∇ ·
(

1

ρ
∇ u

)
− σ2

ρ c2
u = R2

� f .138

The conjugated problem introduces the change of unknown, [8, 1],139

(2.6) u(x) = ρ(x)−1/2 u(x) .140

The dimensionless potential q for the conjugated problem is141

(2.7) q(x) := ρ(x)1/2 ∆x ρ(x)−1/2 .142

The conjugated equation with dimensionless coefficients writes as143

(2.8) −∆xu −
σ2

c2
u + qu = g , with g = ρ1/2R2

� f .144

2.2. Solar modal Green’s function. Similarly to [8], we work with the con-145

jugated problem, given by (2.8) in three dimensions after adimensionalization. Then,146

using spherical symmetry, we decompose the solution into one-dimensional modal ones147

defined on [0, rmax], with rmax > 1. Note that in the adimensionalized version, the148

position r = 1 corresponds with the Sun’s “surface” (at R�). In terms of bound-149

ary conditions, a Neumann-like one holds at 0, cf. subsection 2.3, while a radiation150

boundary condition is imposed at rmax, [5, 8].151

We have denoted by G the Green’s function of the original problem (cf. (1.1)),152

and that of the conjugated problem by G, which satisfies,153

(2.9)

(
−∆x −

σ2(r)

c2(r)
+ q(r)

)
G(x, s) = δ(x− s) ,154

with155

(2.10) q(r) =
α2(r)

4
+

α′(r)
2

+
α(r)

r
.156
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Remark 2.1. In helioseismolgy, one usually writes the zero-th order term as157

(2.11)
σ2

c2
− q =

σ2 − ω2
c

c2
,158

where ωc is called the local cut-off frequency :159

(2.12) ω2
c (r) := c2(r)q(r) = c2(r)

(
α2(r)

4
+

α′(r)
2

+
α(r)

r

)
.160

This is the same expression as in [16, Eq. (11) and Figure 3], where it is shown161

that, despite the simplification of the wave equation (ignoring buoyancy), the cut-off162

frequency is consistent with solar applications, in particular its value at the beginning163

of the atmosphere is around 5.2 mHz. The sign of ω2 − ω2
c determines the local164

behaviour of the solution and waves with frequencies ω > ωc propagate into the165

atmosphere, cf. [16]. 4166

As mentionned in the introduction, the Green’s functions are related by167

(2.13) G(x,y) = ρ1/2(x) ρ1/2(y)G(x,y) .168

For more details on the transformation, we refer to [8, 1] and [7, Appendix A].169

Assumption 2.2. The sound speed c and attenuation coefficient γ are bounded170

functions, which are constant outside of a compact set with c∞ and γ∞ denoting their171

respective values on the exterior domain. In another word, we have,172

(2.14) Supp (c− c∞) is compact and Supp (γ − γ∞) is compact .173

Assumption 2.3. We assume that the background density ρ is such that α =174

−ρ′/ρ satisfies, for constants α∞ > 0 and ε > 0,175

α(r) ∈ C1(R+) ∩ L∞(R+) , lim
r→∞

α = α∞ ,(2.15a)176

and α′(r) = O(1 + r)−(1+ε) , r →∞ .(2.15b)177178

Let us note that these assumptions are not particularly restrictive and, in par-179

ticular, the solar velocity and density models S+Atmo ([12]) or S+Val-C ([28]) satisfy180

them. Under Assumption 2.3, the potential q has a finite limiting value denoted by181

q∞, such that182

(2.16) lim
r→∞

q = q∞ =
α2
∞
4
,183

and, as r tends to 0,184

(2.17) lim
r→0

r2

(
− σ2(r)

c2(r)
+ q(r)

)
= 0.185

Under Assumptions 2.2 and 2.3, we can apply the result of [2, Theorem 6.2]186

to obtain the physical Green’s kernel. To state the proposition, we introduce the187

potential Q` such that,188

(2.18)
Q`(r)

r2
= −σ

2(r)

c2(r)
+q(r)+

`(`+ 1)

r2
= −σ

2(r)

c2(r)
+
α2(r)

4
+
α′(r)

2
+
α(r)

r
+
`(`+ 1)

r2
,189
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and the operator L`,190

(2.19) L` := − d2

dr2
+
Q`(r)

r2
= − d2

dr2
− σ2(r)

c2(r)
+ q(r) +

`(`+ 1)

r2
.191

Furthermore, we denote by Ym
` the m-th spherical harmonic of order `, by P` the192

Legendre polynomial of degree `, H is the Heaviside function and the Wronskian is193

denotedW(s) :=W{ψ(s), ψ̃(s)}. Following [8, 7], with
√
· using the argument branch194

[0, 2π), we also introduce the conjugate wavenumber k defined by195

(2.20) k =

√
σ2

c2∞
− α2

∞
4
.196

Proposition 2.4 (Green’s kernel expansion). Under Assumptions 2.2 and 2.3,197

the outgoing Green’s function can be written as an expansion in spherical harmonic198

basis with, using for the complex conjugation,199

(2.21)

G(x, y) =
1

|x||y|

∞∑
`=0

∑̀
m=−`

Gm` (|x|, |y|)Ym
` (ŷ)Ym

` (x̂), x,y not on the z-axis

=
1

4π |x| |y|

∞∑
`=0

(2` + 1)G`(|x| , |y|) P` (x̂ · ŷ) .

200

Here, Gm` (r, s) = G` is independent of m and is the unique distributional solution to201

(2.22) L`G` = δ(r − s) ,202

satisfying the boundary condition,203

(2.23) lim
r→0

r−(`+1)G`(r) = 1 ,204

at r = 0, and the asymptotic relation at infinity,205

(2.24) G` = eiϕ(r,k)
(
1 + o(1)

)
as r →∞ .206

In (2.24), the phase function is defined for some r0 > 0 as,207

(2.25) ϕ(r) :=

∫ r

r0

√
k2 − α

s
ds = kr − α

2k
log r + k−2o(1) .208

Furthermore, if ψ̃` and ψ` are two homogeneous solutions to L`w = 0 on (0, s) and209

(s,∞) respectively, with ψ̃` satisfying the boundary condition (2.23) at r = 0, and ψ`210

the condition (2.24) as r →∞, we have211

(2.26) G`(r, s) =
−H(s− r)ψ(r) ψ̃(s) − H(r − s) ψ̃(r)ψ(s)

W(s)
.212

Remark 2.5. The kernel for the original equation is213

G(x, y) =
1

4π |x| |y|

∞∑
`=0

(2` + 1)G`(|x| , |y|) P`(x̂ · ŷ) ,(2.27)214

where G`(|x| , |y|) = ρ1/2(|x|)ρ1/2(|y|)G`(|x| , |y|).(2.28)215216
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2.3. Boundary conditions.217

2.3.1. Boundary condition at zero. Using the Frobenius theory, e.g. [14,218

Theorem 4 p.165], the indicial equation at r = 0 for (2.19) is,219

(2.29) − λ2 + λ + lim
r→0

r2

(
−σ

2(r)

c2(r)
+ q(r)

)
+ `(`+ 1) = 0 .220

Under (2.17), this simplifies to221

(2.30) λ2 − λ − `(`+ 1) = 0 ⇒ λ = −` or λ = `+ 1 .222

The regular solution at r = 0 is given by the exponent λ = ` + 1, which explains223

the boundary condition (2.23). Under (2.17), for operator (2.19) (or generally other224

regular singular ODE with indicial roots of opposite signs), (2.23) can be replaced by225

the boundary condition226

(2.31) lim
r→0

r
d

dr

(
G`(r)

r

)
= 0 ,227

which also selects the regular solution at r = 0. This can be seen as follows.228

A generic solution in the neighborhood of zero is a linear combination of a function229

that decays in r`+1 and one that blows up in r−`; in particular, cf. [14, Theorem 4230

p.165],231

(2.32) w(r) = a
(
r−` h(r) + c` (log r) r`+1 g(r)

)
+ b r`+1 g(r) , r > 0 ,232

for some linear combination of constants a, b. Here, c` is a fixed constant (depending233

on `) and functions g(r) and h(r) are C1 up to r = 0 with234

(2.33) g(0) 6= 0, h(0) 6= 0 .235

The presence of the log term is due to the integral difference of the two indicial236

exponents, i.e. (`+ 1)− (−`) ∈ N. We have237

(2.34)
r
(w
r

)′
= a

(
(−`− 1)r−`−1h(r) + c r`g(r) + ` c (log r)r`g(r)

)
+ b ` r`g(r)

+ a
(
r−`h′(r) + c(log r)r`+1g′(r)

)
+ b r`+1 g′(r) .

238

239

(2.35)

=⇒ lim
r→0

r

(
w(r)

r

)′
= lim

r→0
a
(
(−`− 1)r−`−1h(r) + r−`h′(r)

)
, ` > 0 ;

lim
r→0

r

(
w(r)

r

)′
= a

(
c g(0) + h′(0) − lim

r→0

h(r)

r

)
, ` = 0 .

240

It follows immediately that, for w of the form (2.32) and for all ` ∈ N,241

(2.36)

lim
r→0

r

(
w(r)

r

)′
< ∞ =⇒ a = 0 ;

and a = 0 ⇐⇒ lim
r→0

r

(
w(r)

r

)′
= 0 .

242
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Remark 2.6. One can also consider a condition such that limr→0 r
2(w/r)′ = 0,243

which also selects the regular family, i.e. forces a = 0. The reasoning for ` > 0 is the244

same as above, due to the extra factor in r. For ` = 0, we have245

(2.37)
r2
(w
r

)′
= a (−h(r) + crg(r)) + a

(
rh′(r) + c(log r)r2g′(r)

)
+ br2g′(r) ;

=⇒ lim
r→0

r2
(w
r

)′
= −ah(0) .

246

In using h(0) 6= 0, cf. (2.33), we also obtain, for ` = 0,247

lim
r→0

r2
(w
r

)′
= 0 =⇒ a = 0 .248

In addition to being `-independent, the condition (2.31) is more natural and is249

simpler to implement in a discretization scheme, in the sense that it will lead to a250

Dirichlet-type boundary condition.251

2.3.2. Outgoing boundary condition. For the numerical discretization on a252

finite domain, we need to replace the outgoing condition (2.24) by one on an ar-253

tificial boundary. In particular in the case of the solar atmosphere with ρ and c254

extended according to the Atmo model on (rmax,∞) (i.e., c becomes constant and255

ρ exponentially decaying in the atmosphere), we have an explicit expression for the256

Dirichlet-to-Neumann (DtN) coefficient, cf. [8, Section 4.1],257

(2.38) Z`DtN(r) := −2 i k
W′− iα

2k ,`+1/2
(−2ikr)

W− iα
2k ,`+

1
2

(−2ikr)
,258

where W is the Whittaker’s special function, cf. [8, 7], and k is defined by (2.20) (Whit-259

taker’s functions are also discussed in [24] when considering exponential variation in260

density). The outgoing condition (2.24) is then replaced by261

(2.39) ∂nG` = Z`DtNG` .262

Remark 2.7. Under more general assumptions of extensions, one does not have an263

explicit description of the DtN. However, if the extension still maintains the structure264

of the potential, as described in Assumptions 2.2 and 2.3,and since we work mode by265

mode, we can use the nonlocal radiation boundary condition and its high-frequency266

approximations, cf. subsection 5.3. 4267

3. Numerical calculation of the Green’s function. For the computation268

of the modal Green’s function that solves (2.22), we consider the generic problem269

associated with a right-hand side g. By using the unknown u = G/r and omitting the270

index ` for clarity, we thus consider, on the interval [0, rmax], the numerical calculation271

of the solution to272

(3.1)

−
(
r2 u′(r)

)′
+ Q(r)u(r) = r g(r) , r ∈ (0, rmax) ;

lim
r→0

(
r u′(r)

)
= 0 ; u′(rmax) =

(
− 1
rmax

+ Z•(rmax)
)
u(rmax) .

273

We recall, from (2.18),274

(3.2)
Q(r)

r2
= −σ

2(r)

c2(r)
+

α2(r)

4
+

α′(r)
2

+
α(r)

r
+
`(`+ 1)

r2
.275
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If the coefficient Z`DtN (2.38) is used in the impedance condition at rmax, then we have276

the exact outgoing solution (modulo the numerical discretization error). We will also277

investigate the effectiveness of approximate RBC coefficients, listed in (5.3) and (5.4).278

3.1. First-order formulation for HDG discretization. In Proposition 2.4,279

the Green’s function is constructed using the formula (2.26), which relies on the Wron-280

skian, hence on the derivative of the solution to (3.1). This motivates the numerical281

implementation of the first-order formulation for the problem (3.1), where we intro-282

duce the new variables w and v such that,283

(3.3) w := r u , v := r u′ , first-order variables.284

With this choice of variables, the problem (3.1) is written as285

(3.4)


− r
(
r v(r)

)′
+ Q(r)w(r) = r2 g(r) , r ∈ (0, rmax) ;

r w′(r) − w(r) = r v(r) , r ∈ (0, rmax) ;

lim
r→0

v(r) = 0 , v(rmax) =
(
− 1

rmax
+ Z•(rmax)

)
w(rmax) .

286

Here, the radiation condition in terms of (w, v) is obtained by multiplying both sides287

of u′ = (− 1
rmax

+ Z•)u by rmax, and replacing u and u′ by w and v. Note that288

by solving the first-order problem, both w and v (i.e., u and u′) are obtained with289

the same accuracy while if we were to implement the second-order problem (3.1), the290

derivative of u (needed for the Wronskian in (2.26)) would be retrieved with one order291

less accuracy than u.292

For the implementation, we use the Hybridizable Discontinuous Galerkin (HDG,293

[4, 13, 20]) discretization method which, we believe, is the most appropriate. In other294

discretization methods such as finite elements or finite differences, the discretization295

leads to a linear system whose size is the number of degrees of freedom for all unknowns296

(here, w and v). On the other hand, with the HDG method, the global linear system297

is only composed of the degrees of freedom of the numerical trace for one variable298

(w), that is, those that are on the faces of the cells that constitute the discretized299

domain. Then, the volume solutions (for w and v) are constructed locally via small300

(hence numerically cheap) linear systems.301

The HDG method is specifically designed for first-order problems as it allows302

to maintain a small linear system compared to other discretizations, as observed by,303

e.g., [13, 22, 10, 15]. The implementation follows two levels with first the global304

system for the numerical trace and then local systems for the volume solution. For305

our problem (3.4), these are detailed in our extended report, [6, Section 6].306

3.2. Computation of the Green’s function: Approach 1. The first, and307

most natural, approach for the computation of the Green’s function G` is to solve308

numerically (2.22), that is, with a Dirac distribution as a right-hand side. Using the309

HDG first-order system, it amounts to Algorithm 3.1.310

Algorithm 3.1 Computational steps for the evaluation of the Green’s function using
Approach 1 that discretizes directly the problem with a Dirac right-hand side.

for each source position s do
Generate a mesh which is refined around the source position.
Find (v, w) that solves (3.4) using g(r) := δ(r − s).
Save the Green’s function at the position s: G`(r, s) := w(r).

end for
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Here, for each resolution of the problem (3.4), i.e., for a fixed value of s0 ∈311

(0, rmax), one obtains the value of the Green’s kernel G`(r, s0) only on the vertical312

segment [0, rmax] × s0, and its symmetric reflection across the diagonal r = s0, see313

Figure 1(a). This means that to precisely evaluate the Green’s function (i.e., using314

several sources), one needs to solve many problems. One can take advantage of the315

multiple right-hand sides features of direct solver such as Mumps ([3]) to calculate at316

the same time several solutions and obtain the value of G` on several vertical line317

segments (and hence their symmetric reflexion). This, however, requires the use of318

the same domain discretization for all of the right-hand sides, which is not appropriate319

with the discretization of a Dirac function, as we illustrate in subsection 3.4.320

3.3. Computation of the Green’s function: Approach 2. In the second321

approach, we make use of the formula (2.26) for the evaluation of the Green’s function.322

Consider 0 < ra < rb ≤ rmax, we construct the two solutions, ψ on [0, rb], and ψ̃ on323

[ra, rmax], with each solving a boundary value problem, and we assemble the Green’s324

function using (2.26). We detail the computational steps in Algorithm 3.2.325

Algorithm 3.2 Computational steps for the evaluation of the Green’s function using
Approach 2 that uses Proposition 2.4. The complete Green’s function is obtained
from the solution of two boundary value problems.

Step 1a. Find (v, w) that solves

(3.5)


− r (r v)′ + Qw = 0 , on (0, rb) ;

r w′ − w = r v , on (0, rb) ;

v (0) = 0 , w(rb) = 1 .

Set ψ := w and ψ′ := v + w/r .

Step 1b. Find (v, w) that solves

(3.6)


− r (r v)′ + Qw = 0 , on (ra, rmax) ;

r w′ − w = r v , on (ra, rmax) ;

w (ra) = 1 , v(rmax) =
(
− 1
rmax

+ Z•
)
w(rmax) .

Set ψ̃ := w and ψ̃′ := v + w/r .

Step 2. Using W(s) = ψ(s)ψ̃′(s)− ψ′(s)ψ̃(s), assemble the Green’s function,

(3.7) G`(r, s) =
−H(s− r)ψ(r) ψ̃(s) − H(r − s) ψ̃(r)ψ(s)

W(s)
.

Using this approach, from the solution of two boundary value problems, the326

Green’s function G`(r, s) is obtained on the domain [ra, rb] × [ra, rb], as we illustrate327

in Figure 1. Approach 2 offers the following advantages compared to Approach 1.328

– The Green’s function is obtained for all pairs (r, s) with r, s ∈ [ra, rb] from the329

solutions of two problems, while with Approach 1, one problem only gives the330

Green’s function at a fixed s.331

– The functions ψ and ψ̃ are regular on their corresponding domain of computation.332

They correspond to boundary value problems and they do not have a singular333
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0 s0 rmax
0

s0

rmax

r

s

(a) Approach 1: the solution of one problem
for a Dirac in s0 only givesG`(r, s = s0) and
G`(r = s0, s).

0ra rb
0
ra

rb
rmax

rmax

r

s

(b) Approach 2: from the solutions of two
boundary value problems, G`(r, s) is ob-
tained for any position between ra and rb.

Fig. 1. Domain of definition (orange) of the modal Green’s kernel for Approach 1 and 2,
respectively given by Algorithms 3.1 and 3.2.

source. Because of this, one does not need to refine the mesh around the singularities334

of the source as in Approach 1, cf. subsection 3.4 and Remark 5.1.335

Remark 3.1. The outgoing solution ψ̃ is a continuous solution on [ε,∞) for ar-336

bitrarily small ε > 0, however it contains a singularity term that behaves like a337

constant× r−` as r → 0 for ` > 0. Therefore, the Dirichlet condition (3.6) cannot be338

extended to ra = 0 for ` > 0. This means ra is positive but can be arbitrarily small,339

cf. (3.13) for its numerical value in the experiment. 4340

3.4. Numerical validation with the analytical solutions. To validate our341

numerical code based upon the HDG discretization (see [6, Section 6]), we compare342

the numerical and the analytical solutions, obtained by considering the first-order343

problem (3.4) with,344

(3.8)
constant c and α for Q in (3.2) (i.e., α′ = 0),

a right-hand side g = δ(r − s), and the exact DtoN condition Z`DtN.
345

3.4.1. Analytical solution. Under (3.8), the exact solution wref to (3.4) is346

given by (the details of which are given in our extended report [6, Section 7])347

(3.9) wref(r, s) =
−H(s− r)ψ(r) ψ̃(s) − H(r − s) ψ̃(r) ψ(s)

W{ψ(s) , ψ̃(s)}
,348

where ψ and ψ̃ are given in terms of the Whittaker’s function W and of the regular349

Whittaker’s (or Buchholtz) function M,350

(3.10) ψ = M iα
2k ,`+1/2(2ikr) , ψ̃ = W− iα

2k ,`+1/2(−2ikr) .351

We note that ψ and ψ̃ can be chosen as constant multiples of the solutions of the352

boundary value problems. The Wronskian of ψ and ψ̃ defined in (3.10) is given353

explicitly by ([6, Section 7]),354

(3.11) W{ψ(s) , ψ̃(s)} = 2i k
Γ(2`+ 2)

Γ(1 + `+ iα
2k )

(−1)`+1 ,355

where Γ is the (complex-valued) Gamma function.356
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3.4.2. Numerical experiments. We choose constant parameters that are rep-357

resentative of the solar atmosphere. They are extracted from the Atmo model and are358

scaled such that,359

(3.12) c = 6.86× 109/R� = 9.87× 10−6 s−1 ; α = 6663.62 .360

The (scaled) radius varies from 0 to 1.05 and we consider a fixed source at s = 1.361

The comparison between the two approaches and the analytical solution is pictured362

in Figure 2, for a frequency of 6 mHz, with and without attenuation. Due to the fast363

oscillations of the solutions, we zoom in an interval around the source location. In364

Approach 2, we take the parameters365

(3.13) ra = 10−25 , rb = rmax = 1.05 ,366

which give the interval of computation for ψ and ψ̃, see (3.5) and (3.6).367

0.98 1 1.02
−0.5

0

0.5

1
·10−3

r

R
e
a
l

p
a
rt

Analytic

Approach 1

Approach 2

0.9999 1

--- Approach 1 with a cell of

size 10−6 at the source

(a) Real part at 6 mHz for ` = 0 without attenuation (γ = 0) and zoom near the source
position (r = 1).

0.98 1 1.02

0

0.5

1

·10−3

r

R
e
a
l

p
a
rt

Analytic

Approach 1

Approach 2

0.98 1 1.02

−2

0

2

·10−4

r

Im
a
g
in

a
ry

p
a
rt

(b) Real and imaginary parts at 6 mHz for ` = 0 with attenuation γ/(2π) = 10−4 Hz.

Fig. 2. Comparison of the solutions w to the first-order conjugated problem (3.4) under (3.8)
and (3.12) at 6 mHz for mode ` = 0 without and with attenuation for a source located at s = 1. The
discretization uses a homogeneous mesh with elements of size 10−4 and polynomials of order 6.

We observe that, away from the source location, the two approaches cannot be368

distinguished visually from the analytical solution. However, in the Approach 1,369

which discretizes the Dirac source function on the right-hand side, the singularity370

remains, leading to drastic inaccuracy, not only at the exact source location, but in371

the whole cell where it is contained, as highlighted in Figure 2(a), and here we need to372

divide the size of the cell by 100 to obtain an accurate solution. While the singularity373

is only in the real part when there is no attenuation (γ = 0), the inaccuracy also374

appears in the imaginary part in the general case γ 6= 0. This observation highlights375

a major difficulty of the naive discretization approach: the discretization of the source376

needs to be carefully addressed. This is even more important as, in helioseismology,377

one is mostly interested by the value of the solution at the source location (namely,378

G`(1, 1)). In order to overcome the issue, one needs to refine around the source379
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position, as advocated in [11, 16, 5]. This can however be cumbersome when several380

sources must be taken into account, as the mesh should be updated for every source,381

or be over-refined everywhere. On the other hand, Approach 2 provides the accurate382

solution at the source position, without any need for refinement. Note also that, while383

ra must be different of 0 in Approach 2, here, an arbitrarily small value (10−25) works384

well.385

In Table 1, we give the relative errors between the approaches for different fre-386

quencies and modes387

(3.14) Ew =
‖wref − w•‖L2

‖wref‖L2

,388

where w• is the computed solution using Approach 1 or 2. The error is computed389

on the whole interval (from 0 to rmax). It confirms the accuracy of the numerical390

solutions, with a relative error smaller than 0.1%. However, Approach 1 suffers from391

the inaccuracy near the source position, that leads to high error if the cell is not392

sufficiently refined.393

Table 1
Relative error (3.14) between the analytical solution and the computations using Approach 1

or 2. The original mesh uses cells of size 10−4. The refined mesh is obtained by reducing the size
of the cell (of the original mesh) that contains the source by 100. The error is multiplied by 100 to
give the result in percent.

3 mHz Approach 1

(original mesh)

Approach 1

(refined mesh)

Approach 2

(original mesh)

` = 0 , γ = 0 3.2× 101% 2.4× 10−2% 6.9× 10−3%
` = 100, γ = 0 3.1× 101% 1.8× 10−2% 6.6× 10−3%
` = 0 , γ = 10−4 2.1× 102% 1.8× 10−4% 5.5× 10−5%
` = 100, γ = 10−4 2.1× 102% 1.8× 10−4% 5.5× 10−5%

10 mHz Approach 1

(original mesh)

Approach 1

(refined mesh)

Approach 2

(original mesh)

` = 0 , γ = 0 1.1× 101% 2.1× 10−2% 9.9× 10−3%
` = 100, γ = 0 1.1× 101% 9.4× 10−3% 9.4× 10−3%
` = 0 , γ = 10−4 5.8× 101% 6.3× 10−3% 8.3× 10−3%
` = 100, γ = 10−4 5.9× 101% 6.3× 10−3% 8.3× 10−3%

4. Observables and data analysis in local helioseismology.394

4.1. Measured Observations and helioseismic products. In helioseismol-395

ogy, the measured data are time series representing line-of-sight Doppler velocities396

Φobs(r̂, tj) at spatial points r̂ on the CCD (charge-coupled device) camera and at397

times tj . Here, a spatial point is represented either by a two-dimensional vector r̂, or398

by its polar and azimuthal spherical angles (θ, φ). These observables can come from399

interferometers on-board of satellites such as the Michelson Doppler Imager (MDI) or400

the Helioseismic and Magnetic Imager (HMI), or from ground-based telescopes such as401

the Global Oscillation Network Group (GONG). Upon performing a discrete Fourier402

transform, the time-series data can be turned into frequency observations Φobs(r̂, ω).403

In practice, the signals can be filtered depending on the purpose of investigation, but404

we do not consider filtering in this paper.405

Since the solar oscillations are driven by turbulent convection, the signals are406

realizations of random processes and analyzed by statistical methods. As the sources407
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have zero mean, the expectation value of the observable E[Φ(r̂, ω)] = 0, which means408

that the data cannot be directly interpreted on the observed signal. Instead, time-409

distance helioseismology is based on the temporal cross-covariance C(r̂1, r̂2, t), between410

any two points, for a given Φ,411

(4.1) C(r̂1, r̂2, t) =
1

T

∫ T/2

−T/2
Φ(r̂1, s) Φ(r̂2, t+ s) ds ,412

where T is the observation time. In the frequency domain, the definition of the cross-413

covariance is given by a multiplication,414

(4.2) C(r̂1, r̂2, ω) = Φ(r̂1, ω) Φ(r̂2, ω).415

The main quantities of interest in helioseismology are given below.416

1. The power spectrum P represents the strength of the signal as a function of har-417

monic degrees and frequency. It is obtained from the harmonic spherical decom-418

position of the signal419

(4.3) P`,m(ω) = E
[
|Φml (ω)|2

]
, with Φm` (ω) =

∫ 2π

0

∫ π

0

Φ(r̂, ω) Ym
` (r̂) dr̂.420

2. The expectation value of the cross-covariance is used to represent the time-distance421

diagram, which visualizes how waves propagating through the solar interior are422

observed at the surface as a function of time and distance. It is given by423

(4.4) C(r̂1, r̂2, t) := E[C(r̂1, r̂2, t)] , C(r̂1, r̂2, ω) := E[C(r̂1, r̂2, ω)] .424

4.2. Synthetic signals. The synthetic signals are created from solutions φ of425

the scalar wave equation (2.5) with a stochastic source s on the right-hand side, i.e.426

(4.5) φ(r, ω) =

∫
G(r, s, ω) s(s, ω) ds.427

As the height (relative to the solar surface) variable plays a special role, we will often428

separate the vertical and horizontal variables and write r = (r, r̂). We also denote by429

M(s, s′, ω) the source covariance matrix430

(4.6) M(s, s′, ω) = E
[
s(s, ω) s(s′, ω)

]
.431

This is a distribution in R3×R3 depending on the parameter ω. Below, we write <,>432

to denote the distribution pairing.433

Assumption 4.1. We suppose that the observed signal is coming from the ob-434

servation height robs such that the synthetic signal Φ is given by the trace of φ at435

r = robs,436

(4.7) Φ(r̂, ω) = φ(robs, r̂, ω).437

Using Proposition 2.4 and Remark 2.5, it can be written in spherical harmonic ex-438

pansion and in terms of the modal Green’s function G`,439

(4.8) Φ(r̂, ω) =

∞∑
`=0

∑̀
m=−`

∫
R3

G`(robs, s;ω)

robs s
Ym
` (r̂)Ym

` (ŝ) s(s, ω) ds,440
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with its spherical harmonic projection,441

(4.9) Φm` (ω) =

∫
R3

G`(robs, s;ω)

robs s
Ym
` (ŝ) s(s, ω) ds.442

In the above expressions, s = (s, ŝ) and ds = s2 dsdŝ.443

4.3. Synthetic helioseismic products. Using the notation M in (4.6), we444

substitute expression (4.9) into the definition of the power spectrum (4.3), to obtain445

(4.10) Pm` (ω) =

〈
M(s, s′, ω) ,

G`(robs, s;ω)

robs s

G`(robs, s
′;ω)

robs s′
Ym
` (ŝ) Ym

` (ŝ′)

〉
.446

To simplify the computation of the helioseismic observables, we consider the fol-447

lowing assumption on the source, (cf. the Section 8 of our extended report [6]) for448

more details.449

Assumption 4.2. The source s is a random process with zero mean and covari-450

ance M,451

(4.11) M(r, r′, ω) = Π(ω) M(r) δ(r− r′) .452

This form implies that the sources are spatially uncorrelated. Here, Π is a function453

that is linked to the time correlation of the sources, and M(s) is a distribution in the454

variable s.455

By the notation (4.11), we mean a distribution whose action is defined as, for a smooth456

compactly supported function u(s; s′) = u(s, ŝ; s′, ŝ′) ∈ C∞c (R3 × R3),457

(4.12) 〈M(s, s′;ω) , u(s, s′) 〉 := Π(ω)

∫
S2

〈
M(s) , s4 u(s, ŝ ; s, ŝ)

〉
dŝ .458

459

Remark 4.3. Assumption 4.2 is routinely employed in helioseismology, even if a460

more accurate description is possible, for example by replacing the delta function in461

(4.11) by a Gaussian with a given correlation length [18]. This is not a limitation for462

our approach. Specifically, we could work with the general formula (4.10). See also463

further discussion at the end of the subsection. 4464

Under Assumption 4.2, using the orthonormality of the spherical harmonics, the ex-465

pression of the power spectrum (4.10) simplifies to466

(4.13) Pm` (ω) =
Π(ω)

r2
obs

〈M(s) , s2 |G`(robs, s;ω)|2 〉 .467

Convenient source. In order to simplify this expression, it is possible to find a468

convenient form of the function M such that the power spectrum directly relates to469

the Green’s function for a source and receiver located at the observation height.470

Assumption 4.4. M is given by the following distribution Meq,471

(4.14) 〈Meq(s) , u(s)〉 :=

∫ ∞
0

γ(s)

ρ(s) c2(s) s2
u(s) ds , u ∈ C∞c ((0,∞)) .472
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Under Assumption 4.4, the power spectrum has the simplified form,473

(4.15) P`eq(ω) =
Π(ω)

2ω r2
obs

Im
[
G`(robs, robs, ω)

]
.474

For derivation, see Appendix A. This relation between the power spectrum and the475

imaginary part of the Green’s function is classic in geophysics under the hypothesis of476

energy equipartition (the energy current is identical in all directions, see, e.g., [27]).477

It has been used in helioseismology in [17] and reproduces the main features of the478

observed power spectrum. Morevoer, under this hypothesis, travel-time sensitivity479

kernels were computed in order to infer the meridional flow in the Sun, [19].480

Single-depth assumptions. Another assumption used in helioseismology is that481

the sources are coming from a single depth denoted rsrc, [18]. In this case, we use the482

following assumption.483

Assumption 4.5. The radial dependency M, that we denote Msd is given by484

(4.16) Msd(s) = δ(s − rsrc).485

The expression of the power spectrum from (4.13) simplifies to,486

(4.17) P`sd(ω) =
Π(ω) r2

src

r2
obs

|G`(robs, rsrc, ω)|2.487

As in the case of energy equipartition, the power spectrum is related to the Green’s488

function at the observation height but the second point is now at the source location.489

As the power spectrum is independant of m, the expectation value of the cross-490

covariance corresponds to the Legendre transform of the power spectrum [6, Section 8]491

(4.18) C•(r̂1, r̂2, ω) =

Lmax∑
`=0

2`+ 1

4π
P`•(ω)P`(cos θr̂1·r̂2) with • = eq, sd.492

The synthetic time-distance diagram is obtained from the inverse Fourier transform493

of the synthetic C•(r̂1, r̂2, ω) with494

(4.19) C•(r̂1, r̂2, tj) = hω

Nt/2−1∑
k=−Nt/2

C•(r̂1, r̂2, ω) e−iω tj ; with • = eq, sd.495

In order to compute the power spectrum, one only needs the Green’s function for496

a source location at robs and a receiver at robs or rsrc depending on the assumption497

on the source. However, we made two major simplifications to obtain these formulae:498

1. the observation height robs is a single height that is the same everywhere on the499

CCD. A more realistic assumption would require to integrate over depth depending500

on the opacity of the solar surface.501

2. the sources are coming from a single depth rsrc (Assumption 4.5) or the energy502

is equipartitioned (Assumption 4.4). These are simplifying assumptions as the503

sources should come from a range of depths and the energy distribution in the Sun504

is complex.505
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Relaxing these two hypotheses, the full Green’s kernel is required in order to compute506

the power spectrum or the expectation value of the cross-covariance [6, Section 8].507

In particular, one would need to evaluate a quantity such as508

(4.20)

∫ ∫
f(r, s)G`(r, r′, ω)G`(s, r′, ω)drds,509

for a given function f , e.g., [6, Eq. (8.59)] in order to compute a power spectrum.510

Due to the fast oscillations of the Green’s function, evaluating this integral accu-511

rately requires several thousand sources and receivers per frequency and mode, see512

Remark 5.1.513

Even without relaxing the two previous hypotheses, the observation height is514

dependent on the instrument used for the observations and the source height is not515

known. It is thus interesting to have the full Green’s kernel in order to vary the two516

parameters robs and rsrc without any additional computational cost. Computing the517

expectation value of the cross-covariance requires summing over the harmonic degrees518

and thus computing the Green’s function for all `. If one wants to compute the time-519

distance diagram, many frequencies should be computed in order to make the inverse520

Fourier transform. An efficient algorithm to compute G`(r, s) is thus primordial in521

order to interpret helioseismic measurements.522

5. Numerical experiments of helioseismic observables. In this section, we523

perform numerical experiments using inhomogeneous medium parameters that follow524

the solar profiles, using our numerical setup with the HDG method, validated above1525

We use the Green’s functions computed with Approach 2 to obtain the synthetic helio-526

seismic quantities as defined in section 4. It allows us to compare with observational527

data, to evaluate the performance of the boundary conditions and to illustrate the528

importance of the full Green’s functions to generate synthetic data.529

5.1. Solar Green’s kernels for models S+Atmo and S+Val-C. The propa-530

gation of the scalar waves is governed by the medium wave speed c and the inverse531

density scale height α, together with its derivative α′. In the interior of the Sun, these532

are extracted from the model S of [12]. In the atmosphere, we consider two models:533

Atmo, where the velocity is smoothly extended to a constant and the density follows534

an exponential decay ([16, 17]); and the model Val-C of [28]. At the end of the model535

Val-C, we can further extend the model following the Atmo principles, to define the536

Val-C+Atmo model. The representations of the coefficients c and α are given in Fig-537

ure 3 for two solar profiles, S+Atmo and S+Val-C. The atmospheric profiles given by538

the model Val-C contains a drastic increase of both parameters c and α, while these539

quantities are constant in the Atmo model.540

The interval for the computations ends as soon as the wave speed is constant and541

the density exponentially decaying (i.e., α is constant), such that542

(5.1)
r ∈ [0, 1.0008] , interval for S+Atmo, up to 550km above the surface.

r ∈ [0, 1.00365] , interval for S+Val-C, up to 2.5Mm above the surface.
543

The attenuation is kept fixed to the value γ/2π = 20 µHz and the scaling function Π544

1Our code, hawen, is written in Fortran90, and combines mpi and OpenMp parallelism, it is available
at https://ffaucher.gitlab.io/hawen-website/. It is linked with the library Arb, [21] for the efficient
computation of the special functions (i.e., the Whittaker’s functions for the DtN coefficient).

https://ffaucher.gitlab.io/hawen-website/
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Fig. 3. Profiles of the solar parameters, the model S is used for the interior and is combined
with the atmospheric models Atmo or Val-C.

is given by [17, Eq. (85)],545

(5.2) Π(ω) =

(
1 +

(
|ω| − ω0

ω1

)2
)−1

, with
ω0

2π
= 3.3 mHz and

ω1

2π
= 0.6 mHz.546

We compare the modal Green’s kernels for the two solar models, S+Atmo and S+Val-C547

in Figure 4 with Z`DtN as boundary conditions (see subsection 5.3). Here, we use548

Approach 2 which gives access to the complete Green’s kernel G (of the conjugated549

problem) from two simulations. Then, G (for the original problem) is obtained after550

multiplying by the density, according to (2.13). We see that, for the two choices551

of models, the wavelength reduces when the waves are getting closer to the surface.552

Between the models S+Atmo and S+Val-C, there is a difference in amplitude and the553

patterns of the waves are also different. These are even more pronounced when we554

zoom near the surface (right of Figure 4), which is the area that is used to compute555

the following power spectrum.556

Remark 5.1 (Computational cost of Approach 1). While Approach 2 gives the557

Green’s function from two simulations, Approach 1 requires as many simulations as558

the number of sources, which must be at least a few thousand to later approximate the559

integral in (4.20). The multiple right-hand sides feature of direct solvers, such as Mumps560

[3], allows to mitigate the computational cost of having thousand of sources, however,561

as highlighted in Figure 2, one must also refine the mesh near the sources to obtain562

accurate solutions, consequently increasing the number of degrees of freedom. This563

need for an extra refinement was also emphasized in [17] in order to obtain accurate564

helioseismic observables. This is in particular crucial for Peq, (4.15) that relies on565

G`(r, r). We illustrate the two approaches in Figure 5, where we have 4000 sources and566

we need to use cells of size 10−7 near the sources to ensure the accuracy of Approach 1.567

In our experiments, we consequently observe an increase in the computational time568

by a factor from 15 (for 4000 sources) to 30 (for 10 000 sources) with Approach 1.569

Moreover, Approach 1 requires a large amount of memory to store the solutions for all570

sources while Approach 2 only requires the two simulations (this is not to be neglected571

when considering the number of frequencies and modes one needs to compute). 4572

5.2. Computational experiments of power spectrum. Using the computa-573

tional Approach 2, we obtain the full Green’s functions and instantly have access to574

the power spectrum of subsection 4.2, associated with any heights for the source and575

the receiver. In our computations, we use frequencies from 1 to 12 mHz and modes576
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Fig. 4. Imaginary part of the Solar modal Green’s functions at 7 mHz for mode ` = 100 for the
models S+Atmo (top) and S+Val-C (bottom). The solution to the original problem and the conjugated
one, respectively G` and G`, are related by (2.13).
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Fig. 5. Comparison of the Green’s function for model S+Atmo at frequency 7 mHz and mode
` = 100. While Approach 2 depends on two simulations, Approach 1 needs one simulation for each
of the 4000 sources. In Approach 1 with the refined mesh, the cell at the positions of the sources is
of size 10−7.

from ` = 0 to 1000, with a constant attenuation γ/(2π) = 20 µHz. Note that, con-577

trary to the existing literature, our computation uses the exact Dirichlet-to-Neumann578

map condition Z`DtN given in (2.38). In solar applications, the source depth rsrc corre-579

sponds to the location where the waves are excited and is generally considered to be580

a bit below the surface (usually a few hundreds kilometers). The observation height581

depends on the instrument and is usually located slighly above the surface (up to 500582

km). It might appear as a small interval as 1 Mm represents approximately 1× 10−3583

in the scaled axis, nonetheless, we shall see that it leads to drastic differences.584
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5.2.1. Influence of the source assumption and its height. We compare585

the power spectra of subsection 4.2: Peq under the hypotheses of energy equipartition586

and Psd for the single depth source. While the source position, rsrc, is allowed to587

vary for Psd, it is fixed at the observation height for Peq, cf. (4.15) and (4.17). In588

Figure 6, the receiver is fixed at the surface (robs = 1) and, for Psd, we provide the589

power spectrum for different source positions, indicated relative to the solar surface.590

The computations use the model S+Atmo, with the exact DtN for boundary condition.591

For visualization, the spectra are represented on a logarithmic scale.592
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Fig. 6. Power spectra Peq and Psd, (4.15) and (4.17), for a receiver positioned at the surface,
using the model S+Atmo with Z`

DtN for RBC. For Psd, the different formation source heights are
given relative to the solar surface R�.

To highlight the differences, we picture a line of the spectra, for a fixed mode593

` = 200, in Figures 7 and 8. We show the results for different source heights using the594

original or normalized spectra. We see that there is a strong difference in amplitudes595

depending on the formulation, in part due to the different scaling in (4.15) and (4.17).596

Comparing between the different source heights for Psd, we can visually note the597

differences in the shape of the ridges in Figure 6. This is further confirmed by the598

section at mode ` = 200 in Figures 7 and 8. At low frequencies, not all of the599

peaks appear, for instance the ones between 4 and 5 mHz in Figure 8. If the sources600

of excitation are too deep then some modes are not excited leading to the absence601

of ridge in the power spectrum. At high frequencies, the spectra are very different602

depending on the assumption on the source covariance: here, both the amplitude and603

the phase are affected, cf. Figure 8.604

5.2.2. Influence of the formation height. We represent the power spectra605

Psd (4.17) for two solar models with a constant source height in Figure 9. We vary606

the position of the receiver, robs, which corresponds to the observation height and can607

be different depending on the instrument. We show the normalized section at mode608

` = 200 in Figure 10.609

We observe strong differences in both amplitude and phase depending on the610

positions of the observation height. While the two models, S+Atmo and S+Val-C611

corresponds well at low frequency, see Figure 10, the high-frequency profiles are totally612

different, with sharp or smooth peaks. In addition, we observe lines of reduced power613

with S+Val-C in the complete spectrum of Figure 9.614

5.3. Efficiency of the radiation boundary conditions (RBC). Contrary615

to previous work, we analyze the performance of the RBCs in the context of helioseis-616
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surface and the computations use model S+Atmo with Z`
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frequencies, which are visualized on different scales.
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mic products, and using the exact DtN as the reference solution. We have in mind617

discretization in dimensions higher than one, where it is necessary to select a RBC618

that does not depend on the mode `, i.e., one that does not contain a tangential619

differential operator. We first recall the nonlocal RBC from [5, 8],620

(5.3) Z`nonlocal(r) = i

(
σ2(r)

c2(r)
− q(r) − `(`+ 1)

r2

)1/2

.621

Different high-frequency approximations of Z`nonlocal have been given in [5, 8] and we622

investigate the performance of (in the notation of [8]):623

(5.4)

ZSAI-0 = i k

(
1 − α∞

rmax

1

k2

)1/2

, ZS-HF-0 = i k ,

ZS-HF-1a = i k − i

2 k

1

rmax
α∞ , ZA-RBC-1 :=

1

rmax
+ i k ;

Z`A-HF-1 = i
σ

c∞
+

c∞
2 iσ

(
`(`+ 1)

r2
max

+
α∞
rmax

+
α2
∞
4

)
.

624

The exponent ` indicates that the condition depends on the mode. Note that, while625

we provide comparisons for helioseismic quantities below, the performance of the626

conditions is evaluated analytically in our extended report, [6, Section 5].627
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5.3.1. Radiation boundary conditions for the power spectrum. We use628

the solar model S+Atmo, where the reference solution is given by the solution using the629

exact Dirichlet-to-Neumann map condition Z`DtN. We compute the power spectrum630

Peq of (4.15) for robs = 1, with different boundary conditions, and evaluate the631

performance with the relative error632

(5.5) ePZ•(ω, `) =

∥∥P`eq,Z•(ω) − P`
eq,Z`DtN

(ω)
∥∥∥∥P`

eq,Z`DtN

(ω)
∥∥ ,633
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where the index Z• indicates the choice of condition with Z`DtN giving the reference634

one. The relative errors are shown in Figure 11.635

0 250 500 750

4

8

11

`

fr
e
q
u
e
n
c
y

(m
H

z
)

(a) eP
Z`

nonlocal

0 250 500 750
`

(b) eP
Z`A-HF-1

0 250 500 750
`

(c) ePZA-RBC-1

10−7

10−4

10−1

0 250 500 750

4

8

11

`

fr
e
q
u
e
n
c
y

(m
H

z
)

(e) ePZS-HF-0

0 250 500 750
`

(f) ePZS-HF-1a

0 250 500 750
`

(g) ePZSAI-0

10−7

10−4

10−1

Fig. 11. Relative error (5.5) for the power spectrum associated with the model S+Atmo depending
on the choice of radiation boundary condition.

We see that the nonlocal boundary condition provides the most accurate results,636

and that the maximum error is on a line that corresponds to the cut-off frequency, in637

particular for high-degree modes. On the other hand, Z`A-HF-1 gives the worst results,638

while all other conditions give very similar errors, with a slight advantage towards639

ZSAI-0 and ZS-HF-1a. We further provide the means of the relative errors:640

mean
(
ePZ`nonlocal

)
= 1× 10−5 ,

mean
(
ePZS-HF-0

)
= 9.26× 10−3 ,

mean
(
ePZS-HF-1a

)
= 9.10× 10−3 ,

mean
(
ePZ`A-HF-1

)
= 4.53× 10−1 ,

mean
(
ePZA-RBC-1

)
= 9.28× 10−3 ,

mean
(
ePZSAI-0

)
= 9.10× 10−3 .

641

5.3.2. Radiation boundary conditions for time-distance diagram. We642

compute the time-distance diagram using the exact Z`DtN and compare with two high-643

frequency approximations of the nonlocal RBC coefficient: ZS-HF-1a and Z`A-HF-1. The644

first approximation is obtained with an expansion in k−1 while the latter in terms645

of σ−1, cf. [8]. In addition, Z`A-HF-1 depends on ` but not ZS-HF-1a, meaning that the646

latter is much more convenient to implement in 3D. Figure 12 shows the time-distance647

diagram for Csurf(θ, t) where θ = r̂1 · r̂2 is the angle between the two observation points648

r̂1 and r̂2. We first compute Csurf(θ, ω) using (4.18) with a frequency hω = 5 µHz and649

then apply the inverse Fourier transform using (4.19) with Nt = 215. We show the650

section at θ = 30◦ for the different RBC, together with the difference with respect to651

the reference (using Z`DtN) solution.652
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We see that in Figure 12(a), the time-distance diagram shows different skips653

corresponding to waves going directly from r̂1 to r̂2, or being reflected at the surface654

once or several times. We can visually observe the difference in the solutions between655

Z`DtN and Z`A-HF-1, which differ in phase and amplitude. The condition ZS-HF-1a gives656

the best result (that is, the closest to Z`DtN) and we have between 2 to 3 orders of657

magnitude difference in the accuracy. Thus, working with the wavenumber k leads to658

an improved performance compared to using σ/c∞.659

6. Conclusion. In this work, we have proposed a two-step algorithm to com-660

pute efficiently and accurately the full outgoing modal Green’s kernel for the scalar661

wave equation in local helioseismology under spherical symmetry. The full Green’s662

kernel enables the computations of more realistic synthetic observables with varying663

observation heights, leading to drastic differences. It gives a convenient framework to664

study the origin of sources of excitation in the Sun. With its low cost, the algorithm665

not only opens up new applications that are based on better synthetic representations666

of the observations (e.g., with integrated quantities), but also has direct implications667

in inverse problems for the determination of the solar interior. Finally, our compari-668

son of RBC also paves the way towards three-dimensional discretizations, by singling669

out the condition ZS-HF-1a for its independence of the harmonic mode, and its high670

accuracy in approximating the outgoing solution.671

Appendix A. Power spectrum under Assumptions 4.2 and 4.4.672

Here, we show that the power spectrum takes the form given in (4.15), under673

Assumptions 4.2 and 4.4. To find this relation, let us write674

(A.1) L` G`(r1, r) = δ(r1 − r) , L` G`(r2, r) = δ(r2 − r).675

We then multiply the first equation by G`(r2, r), the second one by G`(r1, r) and676
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integrate to obtain677

(A.2)

∫ ∞
0

(
L` G`(r1, r)G`(r2, r)−L`G`(r2, r) G`(r1, r)

)
dr = G`(r2, r1)−G`(r2, r1).678

Canceling out the identical terms leads to679

G`(r2, r1)−G`(r2, r1) = 4iω

∫ ∞
0

γ(r)

c2(r)
G`(r1, r)G`(r2, r)dr(A.3a)680

+

∫ ∞
0

(
− d2

dr2
G`(r1, r) G`(r2, r) +G`(r1, r)

d2

dr2
G`(r2, r)

)
dr.(A.3b)681

682

Integrating by part twice, the second line of the equation is equal to zero and thus683

(A.4) Im[G`(r2, r1)] = 2ω

∫ ∞
0

γ(r)

c2(r)
G`(r1, r)G`(r2, r)dr.684

Using (2.28) to come back to the Green’s function of the original problem, we obtain685

(A.5) Im[G`(r2, r1)] = 2ω

∫ ∞
0

γ(r)

ρ(r)c2(r)
G`(r1, r)G`(r2, r)dr.686

Identifying this expression with (4.10), we see that the choice of this distribution in687

(4.14) leads to the simplified expression for the power spectrum (4.15).688
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