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ABSTRACT
Many goodness-of-fit tests have been developed to assess the different assumptions
of a (possibly heteroscedastic) regression model. Most of them are “directional”
in that they detect departures from a given assumption of the model. Other tests
are “global” (or “omnibus”) in that they assess whether a model fits a dataset
on all its assumptions. We focus on the task of choosing the structural part of
the regression function because it contains easily interpretable information about
the studied relationship. We consider 2 nonparametric “directional” tests and one
nonparametric “global” test, all based on generalizations of the Cramér-von Mises
statistic. To perform these goodness-of-fit tests, we develop the R package cvmgof
providing an easy-to-use tool for practitioners, available from the Comprehensive R
Archive Network (CRAN). The use of the library is illustrated through a tutorial
on real data. A simulation study is carried out in order to show how the package
can be exploited to compare the 3 implemented tests.

KEYWORDS
Goodness-of-fit test; Cramér-von Mises statistic; nonparametric regression; model
check; bandwidth; wild bootstrap; regression function

1. Introduction

Let consider (X,Y ) ∈ R2 and a regression model to predict the value of Y from that
of X,

Y = m(X) + σ(X)ε, (1)

where m(·) is the regression function (also referred to as the link function), σ2(·) the
variance function and ε the random error term. In addition to assumptions about
the functional form of the regression function and the variance function, this model
requires that the random error term is additive, independent of X, and often assumed
to follow the Gaussian distribution N(0, 1).

Methods to assess how well a model fits a set of observations fall under the banner
of goodness-of-fit tests (see D’Agostino and Stephens [6] for a review of goodness-of fit
techniques). In this paper, we focus on nonparametric goodness-of-fit tests that have
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been developed to assess the different assumptions in models as (1). Most of them
are “directional” in that they detect departures from mainly one given assumption of
the model. For example, Alcalá et al. [2] and Van Keilegom et al. [26] have proposed
tests to assess the assumption about the functional form of m(·); Dette [9] and Liero
[20] have proposed tests to assess the homoscedasticity assumption, i.e., σ(·) ≡ σ;
Heuchenne and Van Keilegom [16] have developed a goodness-of-fit test for the form
of the distribution of the error ε. However, when several directional tests are applied
to the same model, each test requires the correctness of other assumptions. The as-
sessment of the overall validity of the model may become a difficult problem to be
solved. In particular, the practitioner faces the well-known multiple testing problem.

Other tests are “global” in that they assess whether a model fits a dataset on all its
assumptions. For example, Andrews [4] has developed a global test based on a non-
parametric estimator of the joint cumulative distribution function whereas Ducharme
and Ferrigno [10] have proposed a test based on a nonparametric estimator of the
conditional cumulative distribution function. Another global test developed by Zheng
[28] is based on a nonparametric estimator of the conditional density. If the global test
is not significant, one can consider using the model in practice. However, when the
null hypothesis is rejected, it does not specify exactly where the difference is occurred
and it can not be easy to determine which aspects of the null hypothesis are wrong.

In this paper, we focus on the task of choosing the structural part m(·) in models as
(1). It gets most attention because it contains easily interpretable information about
the relationship between X and Y . To validate the form of the regression function,
we restrict ourselves to 3 tests based on a generalization of the Cramér-von Mises
statistics [27]: the first 2 tests are the directional tests developed by Alcalá et al. [2]
and Van Keilegom et al. [26] while the 3rd one is the global test proposed by Ducharme
and Ferrigno [10].

To perform goodness-of-fit tests, several R packages have been developed provid-
ing an easy-to-use tool for many users. Package goftest [12] implements Cramér-von
Mises and Anderson-Darling tests of goodness-of-fit for continuous univariate distri-
butions with known parameters. Package fgof [17] implements classical empirical
distribution function goodness-of-fit tests for one sample data with 2 bootstrap meth-
ods: multiplier bootstrap and parametric bootstrap. Another recent package is goft

[14] which performs several goodness-of-fit tests for probability distributions with un-
known parameters that are used in statistical modelling, such as the multivariate and
univariate Gaussian distributions.

This paper is devoted to the presentation of the R package cvmgof, available from
the Comprehensive R Archive Network (CRAN), which is – to the best of our knowl-
edge – the first to implement the 3 aforementioned goodness-of-fit tests based on a
generalization of the Cramér-von Mises statistic [2,10,26]. The library uses wild boot-
strap [8] (particularly adapted to heteroscedastic regression models as (1)) to compute
the critical test value, as well as an optimal choice of the bandwidth under the null
hypothesis. cvmgof has been developed to be easy-to-use and perform each of the tests
in one line of code with default parameters, while the output provides both the value
of the test statistic, the decision of the test, the p-value, and the estimated optimal
bandwidth (if applicable). The practitioner can also easily compare the test proce-
dures with different kernel functions, bootstrap distributions, numbers of bootstrap
replicates, or bandwidths.

The article is organized as follows. Section 2 is devoted to the presentation of pre-
liminary concepts: the Cramér-von Mises statistic, wild bootstrap method and local
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polynomial estimation. The 3 goodness-of-fit tests as well as bandwidth selection are
discussed in Section 3. A tutorial on the R package cvmgof is given in Section 4. In
Section 5, a simulation study is carried out to show how the package can be used to
quantitatively compare the 3 test methods, with different parameters, in terms of sta-
tistical significance and power function. Section 6 is dedicated to concluding remarks.

2. Preliminaries

2.1. Cramér-von Mises test statistic

In the 3 tests of goodness-of-fit studied in this paper, the test statistic is a distance
between a nonparametric estimator of the tested function and its form under the null
hypothesis. There are many distance measures applicable to distribution functions.
Like in [15,25], we restrict ourselves to a L2-distance called Cramér-von Mises dis-
tance [5,27]. Consider a dataset (Yi)1≤i≤n of real-valued independent and identically
distributed (i.i.d.) variables with cumulative distribution function (c.d.f.) F (·). One
aims to test the form of the c.d.f.,

H0: F (·) = F0(·) vs H1: F (·) 6= F0(·).

In this context, a nonparametric estimator of F (·) is the empirical c.d.f. defined, for
any y ∈ R, by

F̂n(y) =
1

n

n∑
i=1

1{Yi≤y}.

The Cramér-von Mises test statistic related to test under consideration is given by

Tn = n

∫ (
F̂n(y)− F0(y)

)2
w(y)F0(dy),

where w(·) is a weight function satisfying regularity assumptions. It should be noted
that if one chooses w(·) = (F0(·)(1− F0(·)))−1, we obtain the so-called Anderson-
Darling statistic [3]. The 3 goodness-of-fit tests investigated in the present article are
based on Cramér-von Mises statistics with selected weight functions equal to one.

The statistical testing procedure with significance α (one often takes α = 0.05 or
α = 0.01) consists in comparing the value of the test statistic Tn to the (1 − α)-
quantile of its distribution under H0: if Tn is larger than the (1 − α)-quantile, H0

can be considered unlikely and H0 is rejected. Otherwise, H0 can be accepted since
the test fails in proving its unlikelihood. This requires to identify the distribution of
the test statistic under H0, which is often done through the approximation by the
asymptotic regime n→∞. Nevertheless, the asymptotic distribution of Tn under H0

often involves unknown parameters that need to be estimated to apply the procedure.
For these reasons, a solution often considered in the literature is to compare the value
of the test statistic with its empirical distribution obtained from a bootstrap sample,
which does not require to estimate the distribution of Tn under H0.
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2.2. Wild bootstrap

In this subsection, we briefly present a wild bootstrap method for implementing a test
on the regression function. Wild bootstrap has been shown to be particularly adapted
to heteroscedastic models as (1). We refer the interested reader to [7].

Let (Xi, Yi)1≤i≤n be a set of independent data satisfying model (1). From this
dataset, we assume that we have a strategy to compute a nonparametric estimate
m̂n(·) of the regression function m(·) as well as a statistic Tn for testing the form of
m(·),

H0: m(·) = m0(·) vs H1: m(·) 6= m0(·). (2)

We introduce the notation εi = σ(Xi)εi. The regression error εi can be estimated by

ε̂i = Yi − m̂n(Xi),

Roughly speaking, the idea of wild bootstrap is to build new variables of interest Y b
i

by modifying the additive error εi. More precisely, let (Ui)1≤i≤n be a sequence of i.i.d.
variables with mean 0 and variance 1. For instance Ui may be distributed according
to the Gaussian distribution, the Rademacher distribution [21], or the law proposed
by Mammen in [22],

P

(
Ui = −

√
5− 1

2

)
=

√
5 + 1

2
√

5
and P

(
Ui =

√
5 + 1

2

)
= 1−

√
5 + 1

2
√

5
.

From (Ui)1≤i≤n, we obtain a new dataset (X,Y b) = (Xi, Y
b
i )1≤i≤n as

Y b
i = m̂n(Xi) + Ui ε̂i.

It should be remarked that neither the mean nor the variance of the regression error
have been changed.

We replicate this procedure B times and obtain B datasets (X,Y b)1≤b≤B. From each
bootstrap dataset (X,Y b), we compute the nonparametric estimate m̂b

n(·) of m(·) as
well as the statistic T bn to test m(·) = m̂n(·), which measures the distance between
m̂n(·) and m̂b

n. We now compare Tn to the distribution of the bootstrap statistic T bn.
The test is rejected if the test statistic Tn is greater than the (1 − α)-quantile of the
empirical distribution of the T bn’s.

2.3. Local polynomial estimation

This subsection is dedicated to a short presentation of local polynomial estimation
methods. An overview on these techniques for regression and variance functions can
be found in [11].

We first focus on the problem of estimating the regression function m(·) by this type
of methods, notably used in [2,26]. It will be useful to remark thatm(x) = E(Y |X = x).
Ifm(·) is smooth enough, the (p+1)-order Taylor expansion ofm(z) in a neighbourhood
of a fixed point x can be expressed as:

m(z) ≈ m(x) + (z − x)m(1)(x) + . . .+ (z − x)p
m(p)(x)

p!
,

4



with m(ν)(x) the νth derivative function of m(·) evaluated in x. It should be noted
that m(z) minimizes in r(z) the expression E((Y − r(z))2 |X = z). Consequently, one
can estimate m(x) through the following least squares problem,

β̂ = arg min
β∈Rp+1

n∑
i=1

[
Yi −

p∑
ν=0

βν(Xi − x)ν

]2

K

(
Xi − x
h

)
, (3)

where K(·) is a kernel function, and h > 0 is a bandwidth that controls the size of the
local neighbourhood. The solution of this optimization problem is explicit and given
by

β̂ = (XᵀWX)−1XᵀWY,

where X is the n× (p+1)-matrix defined by Xi,j = (Xi−x)j , W is the n×n diagonal

matrix defined by Wi,i = K
(
Xi−x
h

)
, and Y is the n column vector of the Yi’s.

Component β̂ν of β̂ is an estimate of
m(ν)(x)

ν!
. In particular, β̂0 is an estimate of

m(x). Thus, m̂n(x) can be defined as

m̂n(x) = β̂0 =

n∑
i=1

Wn,p

(
Xi − x
h

)
Yi,

with

Wn,p(t) = (1, 0, . . . , 0)(XᵀWX)−1(1, ht, . . . , (ht)p)ᵀK(t).

It can be remarked that setting p = 0 in the above gives back Nadaraya-Watson
estimator (also called constant adjustment) notably used in [26],

m̂n(x) =

∑n
i=1K

(
Xi−x
h

)
Yi∑n

i=1K
(
Xi−x
h

) . (4)

With p = 1, we obtain the local linear estimator of m(x) used in [2],

m̂n(x) =
rn,2(x)fn,0(x)− rn,1(x)fn,1(x)

rn,0(x)rn,2(x)− r2
n,1(x)

, (5)

with, for j ∈ {0, 1, 2},

rn,j(x) =

n∑
i=1

(Xi − x)jK

(
Xi − x
h

)
,

fn,j(x) =

n∑
i=1

(Xi − x)jK

(
Xi − x
h

)
Yi.

Local polynomial methods have been adapted to the conditional distribution func-
tion F (y|x) = E(1{Y6y}|X = x) in [10]. For y ∈ R and some z such as F (y|z) is a
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regular enough function, the (p + 1)-order Taylor expansion of F (y|z) in the neigh-
bourhood of a fixed point x can be expressed as

F (y|z) ≈ F (y|x) + (z − x)F (1)(y|x) + . . .+ (z − x)p
F (p)(y|x)

p!
,

with F (ν)(y|x) the νth derivative function of F (y|z) with respect to z, evaluated in x.
Note also that F (y|z) minimizes in r(y|z) the expression E

(
(1{Y≤y} − r(y|z))2|Z = z

)
.

This leads to the same least squares problem as in local polynomial regression estima-
tion where Yi is replaced by 1{Yi≤y}. Following the same reasoning, we obtain

F̂n(y|x) =

n∑
i=1

Wn,p

(
Xi − x
h

)
1{Yi≤y}. (6)

With p = 1, we obtain the local linear estimator of F (y|x) used in [10].

3. Cramér-von Mises goodness-of-fit tests for regression models

3.1. Alcalá et al. test

The goodness-of-fit test developed by Alcalá et al. in [2] verifies the form (2) of the
regression function m(·) in the model (1). The test statistic is defined as

Tn = n
√
h

∫
(m̂n(x)−m0(x))2 dx,

where m̂n(·) is the local linear estimator of the regression function given in (5).

A theoretical study of the asymptotic behaviour of Tn under H0 is presented in
[2, Theorem 2.1]. In our investigation, we will apply the test via the wild bootstrap
procedure presented in Subsection 2.2, which does not present any difficulty.

3.2. Van Keilegom et al. test

The goodness-of-fit test investigated by Van Keilegom et al. in [26] verifies the form
(2) of the regression function m(·) in the model (1). The keystone is that the null
hypothesis holds if and only if the random variables ε = (Y − m(X))/σ(X) and
ε0 = (Y −m0(X))/σ(X) have the same distribution. The test consists in estimating
and comparing these 2 distributions. We define the nonparametric residuals by

ε̂i =
Yi − m̂n(Xi)

σ̂n(Xi)

where m̂n(·) is the Nadaraya-Watson estimator of the regression function (4) and

σ̂2
n(·) =

∑n
i=1K

(
x−Xi

h

)
Y 2
i∑n

i=1K
(
x−Xi

h

) − m̂2
n(·) (7)
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is the Naradaya-Watson estimator of the variance function σ2(·). This leads to the
following estimate of the c.d.f. of ε,

F̂ε(y) =
1

n

n∑
i=1

1{ε̂i≤y}.

On the other hand, the distribution of ε0 can be estimated through

F̂ε0(y) =
1

n

n∑
i=1

1{ε̂0,i≤y},

where the ε̂0,i = (Yi−m0(Xi))/σ̂
2
n(Xi)’s are the estimated residuals under H0. In this

framework, the test statistic is given by

Tn = n

∫ (
F̂ε(y)− F̂ε0(y)

)2
dF̂ε0(y).

The behaviour of the test statistic is studied from a theoretical point of view in
[26, Corollary 3.2 (null hypothesis) and Theorem 3.2 (alternative hypothesis)]. The
application of wild bootstrap is straightforward (see Subsection 2.2). We refer the
reader to [26, 4. Simulations and data analysis] for a different bootstrap approach
based on the residual distribution.

3.3. Ducharme and Ferrigno test

The goodness-of-fit test developed in [10] tests the form of the conditional c.d.f. under
model (1),

H0 : F (·|·) = F0(·|·) vs H1 : F (·|·) 6= F0(·|·).

The conditional c.d.f. involves both the link m and variance σ2 functions. In other
words, the test concerns the whole model (1) and not only the form of the link function.
For this reason, the test is said global or omnibus. The test statistic under consideration
is

Tn = n
√
h

∫ ∫ (
F̂n(y|x)− F0(y|x)

)2
F0(dy|x)dx

where F̂n(y|x) is the local linear estimator of the conditional c.d.f. given by (6) with
p = 1. In practice, Tn can be calculated as Tn = n

√
h
∫
tn(x)dx, with

tn(x) =
1

3
+

n−1∑
i=1

F̂ 2
n(Y(i)|x)

(
F0(Y(i+1)|x)− F0(Y(i)|x)

)
−

n−1∑
i=1

F̂n(Y(i)|x)
(
F 2

0 (Y(i+1)|x)− F 2
0 (Y(i)|x)

)
+

(
F 2

0 (Y(n)|x)− F0(Y(n)|x)
)
,
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where Y(i) denotes the ith order statistic.

One of the main differences with the 2 other tests under consideration in this paper
is that the definition of the test statistic does not require an estimate of the regression
function but an estimate of the conditional c.d.f.

The behaviour of the test statistic is studied from a theoretical point of view in
[10, Theorem 3.1 (null hypothesis) and Theorem 4.1 (alternative hypothesis)]. The
application of wild bootstrap is straightforward (see Subsection 2.2). To be consistent,
we propose to implement the wild bootstrap using the estimate of the regression
function naturally obtained from the one of the conditional c.d.f. at stake in this test,

m̂n(x) =

∫
y dF̂n(y|x)

= Y(n)F̂n
(
Y(n)|x

)
− Y(1)F̂n

(
Y(1)|x

)
−
n−1∑
i=1

(
Y(i+1) − Y(i)

)
F̂n
(
Y(i)|x

)
. (8)

3.4. Choice of the bandwidth parameter

The bandwidth h is a crucial parameter in nonparametric estimation since it deter-
mines the degree of smoothing of the estimator and therefore in particular its com-
plexity. This choice is critical, as under or over smoothing can reduce precision. An
important literature has been devoted to the choice of the bandwidth in this context
[1,11,13,18,19].

Theoretical optimal bandwidth can be obtained in nonparametric estimation of the
regression function by minimizing the asymptotic weighted mean squared error [11] and
in nonparametric estimation of the conditional distribution function by minimizing the
asymptotic weighted integrated mean squared error [13]. These quantities, however,
depend on unknown parameters that can be estimated in practice by cross-validation
[19] or plug-in methods [18].

In the context of goodness-of-fit tests based on nonparametric estimation of the
error distribution [1], the bandwidth parameter is chosen such that the empirical risk
of the nonparametric test is closest to the significance level. This approach is of great
interest because it is based on the accuracy of the test (in terms of risk) and not on the
quality of the estimation of the link function (that only represents an intermediate step
in the whole test procedure). Nevertheless, this results in a heavy computational cost.
In this work, we propose to take into account the fact that the practitioner aims to
compare the link function of the data to a given specific form, i.e., make use of the null
hypothesis as in [1], but with a lower computational cost. The bandwidth parameter
is selected such that the nonparametric estimation of the regression function (within
the test under consideration) is the nearest to the tested regression function under the
null hypothesis,

h? = arg min
h

‖m̂0
n −m0‖22,

where m̂0
n has been computed from a virtual dataset of size n of the form (Xi, Y

0
i )

using the same Xi’s as in the dataset under consideration and where the Y 0
i ’s were

simulated under H0. m̂0
n is obviously the nonparametric estimator of the link function

considered in the test at stake, i.e., (5) for Alcala et al. test and (4) for Van Keilegom et
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al. test. The situation is a bit different for Ducharme and Ferrigno test, since the test
statistic does not use a nonparametric estimator of the link function. In this case, we
use the nonparametric estimator of the link function (8) deduced from the local linear
estimator of the conditional cumulative distribution function investigated within this
test.

It should be remarked that, when h tends to infinity in (3), the argument of the

minimum β̂ does not depend on x, which implies that the estimate of the link function
is polynomial with degree p. Consequently, when the link function under H0 is a poly-
nomial of the same degree p, the method presented above tends to select a bandwidth
as large as possible. In other words, this bandwidth selection algorithm should not be
used with linear null hypothesis for Alcala et al. and Ducharme and Ferrigno tests.

4. The cvmgof package

The purpose of this section is to present a tutorial on cvmgof, an R package devel-
oped to perform the 3 Cramér-von Mises goodness-of-fit tests for regression mod-
els of the form (1) presented in Section 3, namely Alcala et al. test [2] (abbrevi-
ated in acgm, color code: red), Van Keilegom et al. test [26] (vkgmss, color code:
green), and Ducharme and Ferrigno test [10] (df, color code: blue). The library is
available from the Comprehensive R Archive Network (CRAN) following this link:
https://CRAN.R-project.org/package=cvmgof. Once it has been downloaded and
installed, the library can be loaded in the R session with:

library(cvmgof)

In order to illustrate the functionalities of the package, we consider the Boston

dataset provided in the MASS package, that collects 506 data of dimension 14 related
to housing values in the suburbs of Boston, MA, USA. References can be found in
the documentation of the library. In this tutorial, we arbitrarily restrict ourselves to
the link between 2 of the 14 variables: MEDV, i.e., the median value of owner-occupied
homes in $1000’s, and LSTAT, i.e., the lower status of the population. The 2 variables
of the dataset under consideration can be obtained as:

library(MASS)
X = Boston$medv
Y = Boston$lstat

We estimate the link function that connects the variables X and Y using polynomial
local estimators considered in this paper. First, we use the estimator at stake in Alcala
et al. test:

xgrid = seq(5,50,by=0.1)
lf_acgm = acgm.linkfunction.estim(xgrid, X, Y, bandwidth=7.5)

The link function is estimated along the x-axis through the regular grid defined by
xgrid. The bandwidth value is arbitrarily set to 7.5 by the user. The default kernel is
Epanechnikov. Similarly, one can estimate the link function using methods developed
in Van Keilegom et al. and Ducharme and Ferrigno tests with different bandwidths or
kernel functions:

lf_vkgmss = vkgmss.linkfunction.estim(xgrid, X, Y, 7.5,
kernel.function=kernel.function.quart)

lf_df = df.linkfunction.estim(xgrid, X, Y, 12.5)
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The following piece of code displays the dataset as well as the 3 estimates above:

plot(X,Y,pch=’+’,xlim=c(5,50),ylim=c(0,40),
col=’gray’,xlab=’MEDV’,ylab=’LSTAT’)

lines(xgrid,lf_acgm,lwd=3,col=’red’)
lines(xgrid,lf_vkgmss,lwd=3,col=’dark green’)
lines(xgrid,lf_df,lwd=3,col=’blue’)

We aim to test if the values Y are connected to X through a polynomial of order 2,
which parameters are estimated below:

reg = lm(Y~I(X)+I(X^2))
lf_poly2 = reg$coefficients[1]+reg$coefficients[2]*xgrid
+reg$coefficients[3]*xgrid^2

lines(xgrid,lf_poly2,lwd=3,lty=3)

Consequently, we shall test the form of the link function (2) with

m0(x) = 39.04764268− 1.71502726x+ 0.02068709x2. (9)

The last code line adds the estimated polynomial of order 2 to the plot (see Fig. 1). We
need to define the link function under H0 to perform Alcala et al. and Van Keilegom
et al. tests, which can be done as:

lf.H0 = function(x){
reg$coefficients[1]+reg$coefficients[2]*x+reg$coefficients[3]*x^2

}

Alcala et al. test with significance value 0.05 and optimal bandwidth is easily performed
in one line of code:

set.seed(pi)
test_acgm = acgm.test.bootstrap(X, Y, lf.H0, 0.05, bandwidth=’optimal’,
bootstrap=c(50,’Mammen’))

Even if the dataset is not random here, the bootstrap method adds some randomness in
the procedure, which is fixed here by arbitrarily setting the seed to π. Consequently, if
one runs several times the same code, one should obtain identical results. One can also
obtain the optimal bandwidth under H0 (with the method described in Subsection 3.4)
as well as the test statistic step by step:

set.seed(pi)
Y.H0 = lf.H0(X) + rnorm(length(X), mean=0, sd=sd(residuals(reg)))
hopt_acgm = acgm.bandwidth.selection.linkfunction(X, Y.H0, lf.H0)
acgm_stat = acgm.statistics(X, Y, lf.H0, hopt_acgm)

It should be noted that the generation of virtual data under H0 requires to estimate
the variance of the residuals (in a homoscedastic way here). Van Keilegom et al. test
can be applied in the same way:

set.seed(pi)
test_vkgmss = vkgmss.test.bootstrap(X, Y, lf.H0, 0.05, bandwidth=’optimal’,
bootstrap=c(25,’Rademacher’))

Here the bootstrap parameters have been set by the user: 25 wild bootstrap replicates
using the Rademacher distribution. Default value is 50 replicates with Mammen distri-
bution. Ducharme and Ferrigno test deals with the conditional cumulative distribution
function but the estimation of the optimal bandwidth is done from the related link
function as for the 2 other tests (see Subsection 3.4). Consequently, the link function
under H0 must be passed as an argument to obtain the optimal bandwidth under H0:

10
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Figure 1. LSTAT vs. MEDV in Boston dataset, local

polynomial estimates of the link function (acgm in red,
vkgmss in green, and df in blue), and link function

under H0 (black dashed line).

acgm vkgmss df

dec. accept accept accept
h? 8.98 4.01 8.23

p-val. 0.46 1 0.18
stat. 117339 0.08 620.75

Table 1. Results obtained from the 3 tests

acgm, vkgmss and df when testing (2) with m0

defined in (9).

hopt_df = df.bandwidth.selection.linkfunction(X, Y.H0, lf.H0)

The following script defines the conditional cumulative distribution function under H0

and runs the test with the optimal bandwidth obtained at the previous step:

cond_cdf.H0 = function(x,y){
out = matrix(0, nrow=length(x), ncol=length(y))
for (i in 1:length(x)){
out[i,] = pnorm(y-lf.H0(x[i]), 0, sd(residuals(reg)))

}
out

}
set.seed(pi)
test_df = df.test.bootstrap(X, Y, cond_cdf.H0, 0.05, hopt_df,
integration.step=0.1)

The integration step can be set by the user, here to 0.1, while the default value is 0.01.
Finally, the results obtained from the 3 tests are contained in the objects test acgm,
test vkgmss, and test df, and gathered in Tab. 1. They all conclude that H0 can be
accepted.

5. Numerical experiments

In this section, we show how the cvmgof package can be used to compare quantitatively
and qualitatively the behaviour of the 3 tests, from different models (homoscedastic in
Subsection 5.1, heteroscedastic in Subsection 5.2, and heteroscedastic with undisclosed
variance function in Subsection 5.3) with varying sample sizes, using different kernels
and resampling procedures of wild bootstrap.

5.1. Homoscedastic polynomial model

Regression model. In this first experiment, the model under consideration is defined as

Y = aX2 + 5X + ε,

11



where X is uniformly distributed on the interval [0, 1], ε ∼ N(0, 1), and X and ε are
independent. The null hypothesis consists in the parametric model a = 5, i.e.,

H0: m(x) = 5x2 + 5x.

The parameter a will be used to quantify the deviation from the null hypothesis and
will go from 1 to 10 in the numerical results below.

Experimentations. The objective of this simulation study is to test H0 through the
exhaustive list of combinations of parameters, i.e., from the 3 tests, from 3 kernel
functions (Epanechnikov, Gaussian and quartic kernels), and from the 3 wild bootstrap
procedures given in Subsection 2.2 (each with 50 bootstrap replicates). The bandwidth
is selected as a function of the data and of H0 as explained Subsection 3.4. In addition,
we aim to compare the results from 3 different sample sizes: n = 50, 100, and 200. For
each combination of factors, the experiments have been replicated 50 times.

Numerical results. The empirical results are organized as follows:

• Figs. 2, 3, and 4: power functions as a function of parameter a, estimated from 50
simulated samples. Each figure presents the results for the 3 tests, 3 sample sizes,
and 3 kernel functions, but for a unique wild bootstrap procedure (Mammen
wild bootstrap in Fig. 2, Rademacher wild bootstrap in Fig. 3, and Gaussian
wild bootstrap in Fig. 4).
• Figs. 5, 6, and 7: boxplots of optimal bandwidths as a function of parameter a,

each of them being estimated from 50 simulated samples. Each figure presents
the results for the 3 tests and 3 kernel functions, but for a unique sample size
(n = 50 in Fig. 5, n = 100 in Fig. 6, and n = 200 in Fig. 7).
• Figs. 8 and 9: 50 estimates of the link function from n = 200 data (under the

null hypothesis a = 5 in Fig. 8 and under the alternative hypothesis a = 8 in
Fig. 9) for the 3 tests and 3 kernel functions.

It should be noted that the results presented in Figs. 5, 6, 7, 8, and 9 do not involve
the notion of bootstrap.

Discussion on test accuracy from Figs. 2, 3, and 4.

• First of all, it can be remarked that, as expected, the larger the sample size, the
more accurate the estimated power functions. The results obtained from a sample
size equal to 50 are not satisfying regardless of the test, the kernel adjustment and
the wild bootstrap method used, while the 3 tests perform really well only from
a sample size equal to 200. In particular, the Ducharme and Ferrigno global test
requires a sample size of 200 to perform qualitatively as well as the 2 directional
tests.
• From this model, we can not observe any clear effect of the kernel function on

the test results.
• The Mammen and Gaussian distributions in wild bootstrap resampling lead, for

the 3 tests, to very good results when n = 200 compared to the Rademacher
wild bootstrap. More precisely, the empirical risk under H0 obtained using the
Rademacher wild bootstrap method is further from the theoretical risk of 5%
than from the 2 other distributions.
• With the Gaussian bootstrap method, the Van Keilegom et al. test yields less

accurate power functions than with the 2 other bootstrap distributions, and
than from the 2 other tests as well. As a consequence, it seems that Gaussian
resampling is not adapted to this test procedure.

12
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lá

et
a
l.

te
st

in
re

d
,

V
a
n

K
ei

le
g
o
m

et
a
l.

te
st

in
g
re

en
,

a
n

d
D

u
ch

a
rm

e
a
n

d
F

er
ri

g
n

o
te

st
in

b
lu

e)
co

m
p

u
te

d
fr

o
m

5
0

si
m

u
la

te
d

sa
m

p
le

s.
R

a
d

em
a
ch

er
w

il
d

b
o
o
ts

tr
a
p

re
sa

m
p

li
n

g
h

a
s

b
ee

n
a
p

p
li
ed

.

14



n
ke

rn
el

E
p

an
ec

h
n

ik
ov

G
au

ss
ia

n
Q

u
a
rt

ic

50

2
4

6
8

10
0.00.20.40.60.81.0

P
ar

am
et

er
 a

Test rejects H0 (frequency)

2
4

6
8

10

0.00.20.40.60.81.0

P
ar

am
et

er
 a

Test rejects H0 (frequency)

2
4

6
8

10

0.00.20.40.60.81.0

P
ar

am
et

er
 a

Test rejects H0 (frequency)

10
0

2
4

6
8

10

0.00.20.40.60.81.0

P
ar

am
et

er
 a

Test rejects H0 (frequency)

2
4

6
8

10

0.00.20.40.60.81.0

P
ar

am
et

er
 a

Test rejects H0 (frequency)

2
4

6
8

10

0.00.20.40.60.81.0

P
ar

am
et

er
 a

Test rejects H0 (frequency)

20
0

2
4

6
8

10

0.00.20.40.60.81.0

P
ar

am
et

er
 a

Test rejects H0 (frequency)

2
4

6
8

10

0.00.20.40.60.81.0

P
ar

am
et

er
 a

Test rejects H0 (frequency)

2
4

6
8

10

0.00.20.40.60.81.0

P
ar

am
et

er
 a

Test rejects H0 (frequency)

F
ig
u
r
e
4
.

E
m

p
ir

ic
a
l

p
o
w

er
fu

n
ct

io
n

s
o
f

th
e

3
te

st
s

u
n

d
er

co
n

si
d

er
a
ti

o
n

(A
lc

a
lá

et
a
l.

te
st

in
re

d
,

V
a
n

K
ei

le
g
o
m

et
a
l.

te
st

in
g
re

en
,

a
n

d
D

u
ch

a
rm

e
a
n

d
F

er
ri

g
n

o
te

st
in

b
lu

e)
co

m
p

u
te

d
fr

o
m

5
0

si
m

u
la

te
d

sa
m

p
le

s.
G

a
u

ss
ia

n
w

il
d

b
o
o
ts

tr
a
p

re
sa

m
p

li
n

g
h

a
s

b
ee

n
a
p

p
li
ed

.

15



ke
rn

el
te

st
A

lc
al

á
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Discussion on bandwidth selection from Figs. 5, 6, and 7.

• We observe that, as predicted by the theory, the bandwidth parameter values
tend to become smaller as the sample size increases. In addition, the variability
seems to decrease as well. (It should be noted that, for the sake of readability of
boxplots, the y-scale is not the same in Fig. 5 and in Figs. 6 and 7.)
• We remark that the optimal value of the bandwidth depends on the test and on

the kernel function. For instance, for Van Keilegom et al. test, the bandwidths
as well as their variability are much smaller when using the Gaussian kernel
adjustment compared to the 2 other kernel functions.
• From samples of size n = 50, the bandwidth and its variability seem to depend

on the value of parameter a except for Ducharme and Ferrigno test. The effect
fades when working with samples of size n = 100 or 200

Discussion on link function estimates from Figs. 8 and 9. The optimal bandwidth
procedure makes the practitioner able to get very good estimates of the regression
function whether under the null hypothesis or under the alternative hypothesis chosen.
It should be noted that the adjustment curves have more irregularity for the Van
Keilegom et al. test. Indeed, the estimation in Alcalá et al. and Ducharme and Ferrigno
tests is made from the local linear method, in contrast to the Van Keilegom et al. test
for which the estimate is of Nadaraya-Watson type.

5.2. Heteroscedastic polynomial model

The model under question in this 2nd experiment is given by

Y = aX2 + 5X + (1 + 3X)ε,

where X is uniformly distributed on the interval [0, 1], ε ∼ N(0, 1), and ε and X are
independent. The link function is the same as the one of Subsection 5.1 but the model
is heteroscedastic with a standard deviation going from 1 (when X = 0) to 4 (when
X = 1). As above, the null hypothesis corresponds to a = 5, and the value of a will
be used to quantify the deviation from the null hypothesis (between 1 and 10).

For this empirical study, we focus on the comparison of the empirical power functions
of the 3 tests with the Epanechnikov kernel and the wild bootstrap procedure proposed
by Mammen with 50 replicates. The experiments have been replicated 50 times from
samples of size n = 100 and n = 200. The numerical results are presented in Fig. 10.

Ducharme and Ferrigno global test competes with the 2 other directional tests, in
particular with Van Keilegom et al. test from 200 data. Under the alternatives, the
probabilities of rejecting the null hypothesis obtained from Alcalá et al. directional test
are slightly better than those obtained by Ducharme and Ferrigno and Van Keilegom
et al. tests. However, Ducharme and Ferrigno test is better than the 2 other methods
in terms of risk under H0.

It should be noted that the empirical power functions are, for the 3 tests less accurate
from the heteroscedastic model than from the homoscedastic model of the previous
section, in particular in the area of alternatives close to H0, i.e., a = 5±3. In addition,
we observe a slight inversion since the best test was Van Keilegom et al. with a suitable
choice of parameters.
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Figure 10. Empirical power functions of the 3 tests under consideration (Alcalá et al. test in red, Van
Keilegom et al. test in green, and Ducharme and Ferrigno test in blue solid line) computed from 50 simulated

samples of size 100 (left panel) and 200 (right panel). Epanechnikov kernel and Mammen wild bootstrap

resampling have been applied.

5.3. Heteroscedastic polynomial model with undisclosed variance

The model considered in this 3rd numerical experiment is given by

Y = a+ sin(X) +

{
0.2 ε if X < 5,
2 ε if X ≥ 5,

where X is uniformly distributed on the interval [0, 10], ε ∼ N(0, 1), and ε and X
are independent. This model is only piecewise-homoscedastic. The null hypothesis
corresponds to a null value of the intercept, i.e., a = 0. We aim to compare the 3 tests
under consideration in this paper but without assuming that the variance function
is disclosed to the practitioner. As a consequence, it is required to estimate it in a
nonparametric way before applying the Ducharme and Ferrigno test. We deliberately
choose a difficult case with a discontinuous variance function.

We estimate the variance as a smooth function of X through the estimated residuals
using the Nadaraya-Watson estimator (7) already presented in Subsection 3.2. This is
nevertheless relevant if the nonsmooth property of the variance is not known by the
user.

We use the Epanechnikov kernel and the wild bootstrap procedure proposed by
Mammen with 50 bootstrap samples, and perform the 3 tests as well as the Ducharme
and Ferrigno test with estimated variance function from 100 samples of sizes 100 and
200. The results in terms of empirical power functions are presented in Fig. 11.

Ducharme and Ferrigno test is better than the 2 other methods in terms of empirical
risk under H0, both with disclosed and estimated variance. On the other hand, the best
empirical power functions are the ones obtained from Alcalá et al. and Van Keilegom
et al. tests, while the 3rd test achieves less satisfying results around H0, in particular
as expected when the variance is estimated. Even if the global test can be applied
when the variance function is unknown by estimating it in a nonparametric way, this
illustrates that the results are significantly degraded. Taking into account that, in that
case, the practitioner does not want to test the form of the variance, the 2 directional
tests should be preferred.
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Figure 11. Empirical power functions of the 3 tests under consideration (Alcalá et al. test in red, Van
Keilegom et al. test in green, Ducharme and Ferrigno test in blue solid line, and Ducharme and Ferrigno test

with estimated variance function in blue dotted line) computed from 100 simulated samples of size 100 (left

panel) and 200 (right panel). Epanechnikov kernel and Mammen wild bootstrap resampling have been applied.

6. Concluding remarks

In this paper, we have focused on the task of choosing the structural part of the
regression function using 3 goodness-of-fit tests based on Cramér-von Mises statistic:
Alcalá et al., Van Keilegom et al., and Ducharme and Ferrigno tests. The latter is
global, meaning that it can assess whether a model fits a dataset on all its assumptions,
while the 2 other tests can only verify the functional form of the link function.

To perform these 3 tests, we have developed the R package cvmgof. A simulation
study has been carried out to compare the behaviour of the 3 procedures, from 3
different models, under the same conditions including the sample size, the kernel ad-
justment, the wild bootstrap procedure, and the selection method of the bandwidth.
We highlighted that not all the combinations of parameters are adapted to the 3 tests.
In other words, the parameters must be selected carefully, depending on the test cho-
sen and on the data, and cvmgof can help the practitioner to do this. In addition, the
global test is able to compete with 2 directional tests, especially to detect the null hy-
pothesis. Under the alternatives, and with a suitable set of parameters, Van Keilegom
et al. test is better than the 2 others from data generated under the homoscedas-
tic model, while Alcalá et al. test provides the best results under the heteroscedastic
model.

To complete this work, it would be interesting to assess the other assumptions of a
regression model such as the functional form of the variance or the additivity of the
random error term. It should be noted that this can already be done using Ducharme
and Ferrigno test implemented in cvmgof since it is a global test. However, it would be
relevant to compare the results obtained from Ducharme and Ferrigno test with the
ones obtained from other directional tests, e.g., [16,20], especially developed to assess
one of these specific assumptions.

The implementation of these directional tests would enrich cvmgof package and of-
fer a complete easy-to-use tool for validating regression models. Moreover, the assess-
ment of the overall validity of the model when using several directional tests could be
compared with that done when using only a global test. In particular, the well-known
problem of multiple testing could be discussed by comparing the results obtained from
multiple test procedures with those obtained when using a global test strategy.

Finally, another perspective of this work would be to develop a similar tool for other
statistical models widely used in practice such as generalized linear models [23,24].
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