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Removal of oyster pathogens from seawater 

Industrial scale production of the Pacific oyster (Crassotrea gigas) in 
aquaculture is important globally, meeting consumer demand for food, 
supporting the economies of coastal communities and providing 
ecosystem services. Global production reported in 2018 was about 
650,000 tonnes per annum valued at US$1.37b (FAO, 2020). As is the 
case in all farming systems, C. gigas production can be severely impacted 
by infectious diseases. This was apparent historically as reflected in 
early literature (Mori, 1979; Soletchnik et al., 2007), but since 2008 
scientific endeavour to understand, control and prevent infectious dis-
eases in C. gigas has been motivated by the emergence and international 
spread of the highly virulent microvariant genotypes of Ostreid herpes-
virus 1 (OsHV-1) (Martenot et al., 2011; Mineur et al., 2015; Segarra 
et al., 2010; Whittington et al., 2018). OsHV-1 is particularly pathogenic 
in young oysters (Hick et al., 2018; Petton et al., 2015), with life history 
stages in hatcheries and nurseries being the most susceptible. Mortality 
rates in young oysters are commonly >80% (Paul-Pont et al., 2014). The 
response by industry has been remarkably consistent internationally, 
including enterprise diversification and consolidation, programs to 
select C. gigas for genetic resistance to the disease and modifications to 
husbandry (Degremont et al., 2015; Fuhrmann et al., 2019). Therefore, 
the recent publication in Environment International on removal of 
pathogens including OsHV-1 from seawater by ultrafiltration (Cordier 
et al., 2020), is of interest because of its potential industrial application 
in hatcheries where there are millions of susceptible larvae and juve-
niles. However, prior observations on the epidemiology of OsHV-1, its 
inactivation and filterability and on laboratory techniques to detect it 
have informed such research on water treatments to protect aquaculture 
facilities. 

In 2012, it was observed that the pattern of mortality in C. gigas on 
Australian oyster farms was inconsistent with uniform distribution of 
OsHV-1 in the water column and it was proposed that the virus was 
attached to particles in the plankton community - used here in the 
general sense to describe the mobile, pleomorphic aggregation of mostly 
tiny animals, plants and other particles upon which oysters feed (Paul- 
Pont et al., 2013) and which also includes abiotic particles. In a labo-
ratory infection model, C. gigas exposed to OsHV-1 via cohabitation (i.e. 
OsHV-1 released from infected oysters into the seawater) experienced 
greater mortality if they were fed microalgae compared to not being fed 
(Evans et al., 2015). Indeed, the marine herpesvirus acute viral necrosis 
virus (AVNV), which was eventually shown to be a variant of OsHV-1 
(DNA sequence homology 97%; amino acid sequence homology 
94–100%) (Ren et al., 2013), had already been shown to associate with 
microalgae and to be infectious to scallops through feeding (Zhang et al., 
2010). In the experimental designs in the above studies, besides expo-
sure to the virus through ingestion of vector particles, there could be a 
nutritional influence on disease outcome in fed compared to non-fed 
animals. Investigating nutritional physiological factors, Pernet et al. 

(2014) showed that diatoms in the diet of C. gigas contributed to ener-
getic reserves which decreased the risk of mortality (Pernet et al., 2014) 
and later that high food levels and growth were associated with a higher 
risk of mortality, while energy reserves were associated with a lower risk 
(Pernet et al., 2019). The influence of growth on mortality was sup-
ported by some studies (Azema et al., 2017; Cotter et al., 2010) but not 
others (Burge et al., 2006; Hick et al., 2018; Whittington et al., 2019). 
Further research on the pathophysiology of OsHV-1 infection is required 
to better understand the interactions of exposure per se and nutritional 
factors, as both can be modified to benefit aquaculture production. 

Microalgae are an important component of the plankton, present 
within a size range that will sediment in still water, and like other 
plankton components can be pelleted under a centrifugal force. Labo-
ratory experiments confirmed that the rate of detection by real time PCR 
of OsHV-1 in natural seawater is enhanced by centrifuging samples at 
1000g for 20 min and then testing the resulting pellet. Under these 
centrifugation conditions it was estimated that the particles with which 
OsHV-1 associated were in the order of 7–12 µm in diameter (Evans 
et al., 2014). However, the range of particle types to which a virus could 
attach in seawater is large. Indeed, as viruses are charged particles they 
can be adsorbed on the surface of inorganic and organic particles 
including sediments, sand, clay, plankton and bacteria (Kapuscinski and 
Mitchell, 1980; Liu et al., 2020; Mojica and Brussaard, 2014). While 
some viruses adsorb to bacteria (Bitton, 1975), bacteria in turn may 
adsorb to other components including abiotic particles, such as clay and 
other solid surfaces (Fletcher and Floodgate, 1973; Marshall, 1975). The 
adsorption of viruses to particles changes according to temperature and 
factors that modulate the ionic environment such as salinity and pH, and 
is affected by organic matter size, shape and concentration (Kapuscinski 
and Mitchell, 1980; Mojica and Brussaard, 2014). OsHV-1 has been 
detected on microplastics collected in an active oyster farm in France 
during summer mortalities and investigations are on-going to clarify the 
role of plastic particles in transmitting the disease through water (un-
published data). Due to viral adsorption, removing inorganic and 
organic particles from seawater by filtration or sedimentation can 
contribute to virus removal. 

Evans et al. (2014) performed research on OsHV-1 using cellulose 
acetate and polyethersulfone membrane filtration (pore sizes 0.22–5 
µm) and small volumes of seawater in an attempt to confirm the particle 
attachment hypothesis. While OsHV-1 was detectable both on the filter 
membranes and in the filtrates, the patterns of viral depletion in the 
filtrates were inconsistent; experimental variables such as the type of 
membrane, the seawater sampling method and the potential flocculation 
of virus during sample handling required further investigation. Subse-
quently, these researchers pumped large volumes (35–38 L per min for 
24 h) of seawater that was naturally contaminated with OsHV-1 through 
cartridges containing pleated paper or polyester fabric filter membranes, 
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prior to sampling the membranes and retentates (Evans et al., 2017). 
Viral loads ranging between 1.37 × 101 and 2.86 × 102 OsHV-1 DNA 
copies per cm2 were detected on 5 µm pore membranes and OsHV-1 
DNA was also detected in retentates and in the seawater, showing that 
OsHV-1 had been retained and had accumulated on the filter membrane. 
In the same study, OsHV-1 DNA was not detected in the retentates of 
100 µm or 55 µm stacked polypropylene disc filters, indicating that the 
particles with which OsHV-1 was associated had passed through. 
Overall, these results suggest that OsHV-1 associates with particles 
greater than 5 µm and less than 55 µm in diameter. Non-enveloped 
OsHV-1 virions are 0.116 µm in diameter (Davison et al., 2005; Le 
Deuff and Renault, 1999). They appear to associate with a range of 
substances. Vincent-Hubert et al. (2017) demonstrated adsorption of 
OsHV-1 to zetapor, gauze, nylon, low-density polyethylene (LDPE) and 
polyvinylidene difluoride (PVDF) membranes. While the epidemiolog-
ical, experimental disease transmission and physico-laboratory evidence 
makes it highly likely that OsHV-1 attaches to particles in seawater, the 
virus may also exist in tissue debris released from a diseased host as 
aggregates of viral particles and as free viral particles (Evans et al., 2016, 
2014). This would be the case just after its release from infected oyster 
cells and prior to its attachment to particles, which enables the trans-
mission cycle to continue (see Fig. 8 in Whittington et al. (2018)). 

The duration of infectivity of viruses including OsHV-1 in seawater is 
limited and temperature dependent (Kapuscinski and Mitchell, 1980; 
Martenot et al., 2015). Using a bioassay with highly susceptible C. gigas 
spat, Hick et al. (2016) showed that OsHV-1 was inactivated in seawater 
after 2 days at 20 ◦C. It was also susceptible to inactivation by ultraviolet 
radiation and a range of chemicals (Hick et al., 2016; Schikorski et al., 
2011). This information, together with knowledge that the virus is 
attached to particles, informs processes for water treatment to protect 
aquaculture. 

The options for treatment of seawater include aging (time), sedi-
mentation, filtration and disinfection. The first three of these approaches 
was tested in temporally replicated, controlled experiments in upwellers 
in a purpose built nursery in an estuary in which OsHV-1 was endemic 
(Whittington et al., 2015). Seawater that was naturally contaminated 
with OsHV-1 was rendered safe for rearing highly susceptible C. gigas 
spat (2 mm shell length) simply by holding the seawater for 2 days to 
allow sedimentation of particles and inactivation of the virus over time. 
Filtration of the seawater through 5 µm (nominal pore size) paper car-
tridges was also effective as a stand-alone measure. Filters with 30 µm or 
55 µm (nominal sizes) pores were not effective, as mortality due to 
OsHV-1 occurred in spat kept in water downstream of such filters. These 
findings on water holding and filtration have been adopted and suc-
cessfully applied in hatcheries and nurseries at commercial industrial 
scale to produce C. gigas spat in both Australia and New Zealand. 

The recent finding that ultrafiltration (hollow fibre, poly-
ethersulphone, nominal pore size 0.02 µm) of OsHV-1 contaminated 
seawater prevents mortality of C. gigas (Cordier et al., 2020) is consistent 
with the earlier research and provides another option for water treat-
ment. Like conventional filtration (5 µm) and sedimentation/aging of 
seawater, ultrafiltration did not completely remove OsHV-1 from 
seawater but was sufficient to reduce infectious doses below the path-
ogenic threshold for immersion exposure of C. gigas (Cordier et al., 2020; 
Evans et al., 2017; Whittington et al., 2015). As PCR was used in all these 
studies as a proxy for viral detection, another explanation is that the 
signal detected in filtrates was inactive virus, viral fragments or free 
viral DNA. 

There is an important question about the cost effectiveness and 
practicality of the evidence-based options for rendering seawater safe 
for production of C. gigas and other shellfish. A wide range of pathogens 
needs to be considered and evidence may be limited or contradictory. 
For some pathogens such as bacteria, the many sources of contamination 
beyond seawater must be identified and some treatments such as con-
ventional filtration may be ineffective (Sainz-Hernández and Maeda- 
Martínez, 2005). To obtain adequate biosecurity for viral pathogens 

such as OsHV-1, and to minimize the need for antimicrobial treatments 
in hatcheries that can lead to antibiotic resistance (Dubert et al., 2016), 
treatment of incoming seawater and effluent is often warranted. But 
under what circumstances and in what combinations/sequence would 
(i) aging/sedimentation of seawater, (ii) conventional pre-filtration of 
seawater (sand filter), (iii) fine filtration (1 or 5 µm), (iv) ultrafiltration 
(0.2 µm), (v) ultraviolet radiation and (vi) chemical disinfection (ozone, 
chlorine, other) be recommended? These processes are applicable for 
closed (recirculating) and semi-open hatchery/nursery production sys-
tems that use relatively low volumes of seawater and that house early 
life history stages of C. gigas. However, because of the large volumes of 
water required, they cannot be used in open production systems in 
which highly susceptible young oysters and rapidly growing juveniles 
are placed after leaving the nursery. Consequently tens of millions of 
individual oysters remain vulnerable on estuarine farms (Paul-Pont 
et al., 2014). A further consideration for hatcheries and nurseries is the 
negative impact on oyster nutrition and growth when the food present in 
natural seawater is removed by an industrial water treatment (Whit-
tington et al., 2015). Can this be overcome economically? 
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