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Abstract 
Background. Electrical brain stimulation is recognized as a promising therapeutic 
approach for treating brain disorders such as epilepsy. However, the use of this 
technique is still largely empirical, since stimulation parameters and targets are chosen 
using a trial-and-error approach. Therefore, there is a pressing need to design optimal, 
rationale-based multi-site brain stimulation protocols to control epileptiform activity. 
Approach. Here, we developed biologically-inspired models of brain activity receiving 
stimulation at two levels of description (single- and multi-population epileptogenic 
networks). First, we used bifurcation analysis to determine optimal parameters able to 
abort epileptiform patterns. Second, we present a graph-theory based method to 
classify network populations in an epileptogenic network based on their contribution to 
seizure generation and propagation. Main results. The best therapeutic effects (i.e., 
reduction of epileptiform discharges duration and occurence rate) were obtained by 
the specific targeting of populations with the highest eigenvector centrality values. The 
timing of stimulation was also found to be critical in seizure abortion impact. 
Significance. Overall, our results provide a proof-of-concept that using network 
neuroscience combined with physiology-based computational models of brain activity 
can provide an effective method for the rational design of brain stimulation protocols in 
epilepsy. 
Keywords: epilepsy, brain stimulation, computational modeling, dynamical systems, 
neural mass model. 

1 Introduction 
Epilepsy is one of the most prevalent neurological disorders, affecting more than 

seventy million people worldwide (approx. 1% of the world population) (Katchanov and 
Birbeck, 2012; Ngugi et al., 2011). It is characterized by recurrent seizures (Kwan and 
Brodie, 2000) that dramatically impair patients’ quality of life. Seizures are primarily 
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related to excessive and synchronized neural discharges in one or several brain 
structures (Badawy et al., 2012). The most immediate therapy for treating and 
controlling epilepsy is the use of drugs, or possibly a combination of drugs 
(Sankaraneni and Lachhwani, 2015). However, one third of epileptic patients do not 
respond to drug therapy (Kobau et al., 2008). Surgery can be an option for those 
patients, however, a large fraction of patients (60-70%) is not eligible due to an 
unfavorable benefit/risk ratio. Consequently, there is a pressing need for alternative 
therapies that could significantly decrease seizure frequency. Among candidate 
approaches, brain stimulation is receiving increasing attention by the research 
community. 

It has been indeed demonstrated decades ago (Upton and Cooper, 1976) that 
electrical brain stimulation can alter epileptiform activity, motivating research efforts to 
identify its mechanisms of action and optimize its therapeutic effects. Moreover, 
several fMRI, MEG and EEG studies have revealed the existence of brain regions 
having denser connections than others (Lee et al., 2018; Youssofzadeh et al., 2018) 
eliciting and encouraging investigation of multisite stimulation. Accordingly, 
experimental studies have recognized a link between an improvement in the 
effectiveness of brain stimulation in terminating epileptic seizures and the choice of 
stimulation populations where multi-site stimulation is applied (Sobayo and Mogul, 
2016). However, the clinical use of brain stimulation in the context of epilepsy is still 
limited and largely based on a trial-and-error approach (Hoang et al., 2017). Besides, 
the studies focusing on parameters (intensity, frequency, waveform, …) are still few, 
mostly empirical and based on qualitative assessments. This problem is due to the fact 
that the accurate characterization of the stimulation response at bedside cannot be 
achieved, since this would require extensive sessions which are not compatible with 
patients’ limited time and tolerance. An alternative approach is to perform animal in 
vivo and in vitro experiments to identify the most effective parameters, which may not 
be a practical approach since the entire stimulation parameter space is too large to be 
practical to explore. 

In this context, one possibility to identify optimal stimulation parameters, while 
avoiding such unrealistic extended testing sessions of stimulation parameters, consists 
in using neuro-inspired computational models. Over the past decades, such models 
have been developed to simulate brain activity at different spatiotemporal scales. 
Microscopic models (Hodgkin and Huxley, 1952) describe single neuron dynamics, 
while mesoscopic models, such as neural mass models (NMMs) (Jansen and Rit, 
1995; Wendling et al., 2002) or neural field models (Spiegler and Jirsa, 2013) describe 
the average activity of neuronal assemblies. In the field of epilepsy, computational 
models have gained acceptance and are now recognized as an efficient approach to 
get insights into the pathophysiological mechanisms underlying epileptiform activity 
(Wendling et al., 2016). Among these models, the choice of NMMs to model 
epileptiform activity is motivated by their ease of use (small number of parameters as 
compared to microscopic models), while retaining key neuroanatomical and 
neurophysiological properties. Furthermore, NMMs enable simulating signals at the 
same scale as electrophysiological signals typically recorded in clinics, from scalp 
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(EEG) or intracerebral (depth-EEG, SEEG, or ECoG) signals. One pioneering NMM 
model is the Jansen and Rit model (Jansen and Rit, 1995), initially developed to study 
visual evoked potentials, later adapted to generate epileptiform activities under 
appropriate values of excitation- and inhibition-related parameters (Wendling et al., 
2000). 

In this paper, we modeled functionally connected epileptogenic regions by 
coupling modified Jansen and Rit NMMs, enabling the study of network effects in 
response to stimulation-like perturbations. We used this approach to determine 
relevant regions driving and controlling epileptiform activity. In addition, we compared 
single-site with multi-site stimulation, and designed optimal strategies to restore 
desynchronized neuronal activities and abort global epileptiform activity at the network 
scale. The paper is organized as follows. Section 2 presents the modified Jansen and 
Rit NMM, the constructed network and the index used to quantify stimulation efficiency. 
Then, in Section 3 we analyze stimulation effects on a single region and determine 
optimal stimulation parameters using a mathematical approach derived from control 
theory and bifurcation analysis. We also investigate how subpopulations contribute to 
seizure termination and the resonance phenomena. These results are then used as 
the basis to study multi-site stimulation effects on a complete network involving seven 
regions. We study the impact of the spatial distribution of a potentially effective 
electrical stimulation on neuronal activity, and also show how stimulation targets could 
be chosen from patient electrophysiological signals. Results reveal the superiority of 
multi-site stimulation as compared to single-site stimulation, and indicate that 
stimulating regions with the largest number of outgoing connections, as estimated 
using a graph theory metric, is the most efficient. Finally, we examine the impact of the 
stimulation timing and strategies (closed- vs open-loop) on epileptiform activity control 
efficacy.  

2 Materials and Methods 

2.1 Modeling epileptogenic networks of coupled neuronal populations 
accounting for stimulation 
 
The Jansen and Rit model describes the activity of a neuronal population 

composed of two subsets of neurons: excitatory glutamatergic cells (i.e. pyramidal 
cells) and inhibitory GABAergic interneurons. Each subset is described by two 
functions; the first one is the “pulse-to-wave” function, ℎ"(𝑡) or ℎ&(𝑡), converting the 
density of presynaptic action potentials into an average excitatory (EPSP) or inhibitory 
(IPSP) post synaptic potential. This function acts as a linear second-order low-pass 
filter and includes physiological time constants. The second one is the “wave-to-pulse” 
function, converting incoming post synaptic potentials into a population firing rate. This 
static function was proposed by Freeman (Freeman, 1975): 
 

 𝑆𝑖𝑔(𝑣) =
𝑣,-.
2 01 + 𝑡𝑎𝑛ℎ	

𝑟
2 (𝑣 − 𝑣8)	9 =

𝑣,-.
1 + 𝑒;(<=><)	 (1) 
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where 𝑣,-. is the maximum firing rate, 𝑣8 the value of the average membrane potential 
acting as a firing threshold, and 𝑟 the slope of the sigmoid at 𝑣8. In the model, 
interactions between pyramidal cells and interneurons are represented by four 
connectivity constants, 𝐶@ to 𝐶A representing the average number of synaptic contacts. 
The model is summarized below in Figure 1a) and 1b). 

Here, we modified the original Jansen and Rit model by adding a stimulation term 
denoted in the following by “Stim” as an additional input to sigmoid functions 
(Suffczynski et al., 2008). Here, the assumption is that the electric field generated by 
electrical stimulation has a direct de- or hyper-polarization linear effect onto the mean 
membrane potential of neuron subsets (Radman et al., 2009). This model extension 
leads to the following set of differential equations: 

 

�̇�8(𝑡) = 𝑦D(𝑡) 
�̇�D(𝑡) = 𝐴𝑎𝑆𝑖𝑔(𝑘"𝑆𝑡𝑖𝑚(𝑡) + 𝑦@(𝑡) − 𝑦H(𝑡)) − 2𝑎𝑦D(𝑡) − 𝑎H𝑦8(𝑡)	
�̇�@(𝑡) = 𝑦A(𝑡)	
�̇�A(𝑡) = 𝐴𝑎{𝑝(𝑡) + 𝐶H𝑆𝑖𝑔(𝑘"𝑆𝑡𝑖𝑚(𝑡) + 𝐶@𝑦8(𝑡))} − 2𝑎𝑦A(𝑡) − 𝑎H𝑦@(𝑡)	
�̇�H(𝑡) = 𝑦L(𝑡)	
�̇�L(𝑡) = 𝐵𝑏𝐶A𝑆𝑖𝑔(𝑘&𝑆𝑡𝑖𝑚(𝑡) + 𝐶D𝑦8(𝑡)) − 2𝑏𝑦L(𝑡) − 𝑏H𝑦H(𝑡)	

(2) 

where A and B denote the amplitude of average EPSPs and IPSPs, respectively; 
where a and b (expressed in 𝑠>@) represent physiological time constants. The local 
field potential (LFP) reflecting the population activity is expressed by the term 𝑦@(𝑡) −
𝑦H(𝑡),	representing the summation of excitatory postsynaptic excitatory and inhibitory 
potentials onto pyramidal cells. In order to study the impact of selectively targeting 
neuronal subpopulations, for example excitatory (e) pyramidal cells and inhibitory (i) 
interneurons, the stimulation magnitude is multiplied by two coefficients 𝑘" and 𝑘& 
respectively, chosen as follows: (𝑘", 𝑘&) ∈ {(1, 1), (1, 0), (0, 1)}	(𝑓𝑖𝑔𝑢𝑟𝑒	1𝑏). The values 
and physiological meaning of model parameters are provided in Table 1.  

 

Parameter Description Value 

𝐴, 𝐵	 Averages of excitatory and inhibitory 
synaptic gains, respectively. 

𝐴 = 3.85	𝑚𝑉 
𝐵 = 15	𝑚𝑉	

𝑎, 𝑏	 Average time constants of postsynaptic 
potentials. 𝑎 = 100	𝑠 >@  

𝑏 = 30	𝑠 >@	

𝐶@, 𝐶H, 𝐶D, 𝐶A	 Average number of synaptic contacts of 
excitatory and inhibitory connections. 

𝐶 @ = 𝐽 
𝐶 H = 0.8 × 𝐽 
𝐶 D = 0.25 × 𝐽 
𝐶 A = 0.25 × 𝐽 

where 𝐽 = 135 
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𝑣8, 𝑣,-., 𝑟	 Threshold, maximum output, and slope of 
the sigmoid function	𝑆𝑖𝑔(𝑣). 

𝑣8 = 6	𝑚𝑉 
𝑣,-. = 5	𝑠 >@ 
𝑟 = 0.56	𝑚𝑉>@	

Table 1. Physiological meaning and values of the parameter values of a single  Jansen 
and Rit model. 

Network architecture. As presented in Figure 1c, the network consisted in seven 
populations denoted by 𝑁𝑀&, 𝑖 ∈ {1, … ,7}. Each region was modelled using the modified 
Jansen and Rit NMM presented below (Figure 1d). The parameter values were equal 
to those in Table 1 except the inhibitory synaptic gain that was changed to 16.7 mV to 
ensure and maintain the generation of interictal discharges. Interictal discharges are 
recognized as biomarkers of epileptic seizures (Roehri et al., 2018). These interictal 
oscillations mirror specific, dynamic changes in neuronal excitability causing 
ictogenesis. Therefore, they play a precipitating role in seizure occurrence and are also 
used to localize epilepsy focus (Lévesque et al., 2018). White Gaussian noise was 
added to the firing rate of incoming excitatory input onto pyramidal cells  in each NMM, 
with a mean 𝑚 and a standard deviation 𝜎 equal to 90 Hz and 1.2, respectively. We 
used the Euler-Maruyama method to solve the set of equations (Maruyama, 1955). 
The network was fully connected, in that each NMM received afferents from all other 
NMMs; action potentials of pyramidal cells of all 𝑁𝑀b, 𝑗 ∈ {1, . . . , 7}, 𝑗 ≠ 𝑖 were added at 
the level of pyramidal cells of 𝑁𝑀& (Figure 1d). These afferents were modulated 
through a NMM-dependent connectivity constants 𝐶&,b, 𝑖, 𝑗 ∈ {1, . . . , 7}and a propagation 
delay arbitrarily chosen as 30 ms. The connectivity matrix was a hollow matrix with 
dimensionless components chosen uniformly within the interval [0, 1.7]. Those 
randomly chosen values were kept fixed for all simulations.  

Stimulation. Stimulation waveform is another key parameter in determining the impact 
of neuromodulation on brain tissue. We used a square bi-phasic waveform to mimic 
the charge-balanced biphasic pulse stimulation commonly used in practice (figure 1-
c). Compared to monophasic pulse stimulation or direct current stimulation, bi-phasic 
stimulation limits irreversible damage caused by charge accumulation in the tissue. 
The stimulation of network populations was altered via population-dependent coupling 
coefficients 𝑘& ∈ {0, 1}	, ∀	𝑖 ∈ {1, . . . , 7}, as presented in Figure 2c. 

 

 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

6 

 
Figure 1. a) Structure and b) Block diagram of the modified Jansen and Rit NMM 
accounting for stimulation. c) Diagram of the complete network allowing for 
single-site and multi-site stimulation, and d) block diagram of each node with its 
input and output. a) Population of pyramidal cells (green triangle) interacts with an 
inhibitory population of interneurons (orange rectangle). Solid-lines arrows represent 
excitatory connections, while dashed-lines represent inhibitory ones. b) 𝑦&	(𝑡)	, 𝑖	 ∈
{0, 1, 2} correspond to the output of pyramidal cells, excitatory and inhibitory 
interneurons, respectively. 𝑝(𝑡) is a white Gaussian noise representing excitatory 
inputs from neighboring areas. The “Stim” symbol represents a modification with 
respect as compared to the original Jansen and Rit model, where electrical stimulation 
is applied in the model depending on coefficients 𝑘"and 𝑘&. c and d) The network is 
composed of 7 fully connected NMMs. Each node receives stimulation (bi-phasic 
waveform) with population-dependent coupling coefficients 𝑘&, 𝑖 ∈ {1, . . . , 7}, in addition 
to  afferents from other NMMs. The afferents received by a given NMM j from a given 
NMM i with 𝑖 ∈ {1, . . . , 7}and 𝑖 ≠ 𝑗 are converted into a postsynaptic potential before 
being added as an input to pyramidal cells. The 𝐶&,b, 𝑖, 𝑗 ∈ {1, . . . , 7} coefficients 
represent connectivity constants between network populations.  
 
 
 2.2 Quantification of stimulation efficiency 
 

In order to quantify the efficiency of stimulation for suppressing epileptic 
discharges, we devised a new index based on their occurrence. It is referred to as the 
amount of epileptic discharges index (AEDI) and defined as follows: 
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 	𝐴𝐸𝐷𝐼 = 	i𝑁&𝛥&A
&

	 (3) 

where 𝑁& represents the number of occurrences of an interval of a duration 𝛥&during 
which epileptic activity is observed. The duration exponent emphasizes the duration of 
interictal discharges. This index quantifies the number and duration of time intervals 
exhibiting epileptic discharges. Every stimulation protocol leading to the reduction of 
AEDI versus the AEDI computed without stimulation (control condition) is considered 
to have a therapeutic effect. The issue is to identify stimulation parameters (amplitude, 
frequency, populations to stimulate) which maximize this reduction (i.e. minimize 
AEDI). In practice, therapeutic effect is marked by an increase/decrease of short/long 
𝛥& on the histogram.  

Thus, once a stimulation was delivered, we summend the absolute values of 
the signals of all 7 populations composing the network. The obtained signal was then 
processed to discriminate the intervals exhibiting epileptic activity from those with 
background activity. For this purpose, we started by applying a linear filter twice, once 
forward and once backwards, using the already implemented filtfilt function in Python’s 
Scipy library. By using this filter, we limited fluctuations and obtained a smoother signal. 
Then, we defined a signal amplitude-dependent threshold for differentiation. The 
intervals exhibiting background activity were ignored, while others were quantified with 
respect to their duration (example in Figure 3c and 3d). Histograms showing their 
occurrence with respect to their duration were generated and AEDI values were 
computed. 

 

2.3 Optimal stimulation: how many populations and which ones? 
 

We studied the efficiency of stimulation as a function of the number of 
populations stimulated for 1000 neuronal networks, each composed of 7 fully 
connected NMMs. These constructed networks had the same parameter values 
(synaptic gains, time constants, synaptic contacts), and what differed between those 
networks were the connectivity coefficients (𝑘k	, 𝑛 ∈ {1, . . . , 7}) and the excitatory noise 
entering each neuronal population which were randomly generated. The noise 
describing the influence of neighboring NMMs was a white Gaussian noise of mean 
and standard deviation equal to (90, 1.2), while the connectivity coefficients were 
randomly chosen. For each network, we stimulated following all the possible 
stimulation combinations of variables (𝑘@, . . . , 𝑘l). The stimulation could be applied 
following 127 different ways. This number represents all the possible combinations that 
could be obtained for the set {(𝑘@, . . . , 𝑘l), ∀𝑘k ∈ {0, 1}, 𝑛 ∈ {1, . . . , 7}} minus the case 
were all the coupling (𝑘@, . . . , 𝑘l) = (0, . . . , 0), where no stimulation is applied. A total of 
127000 simulations were performed and the corresponding AEDI values were 
computed.   

To classify network populations according to their impact on the whole network 
activity, we used a graph theory measure known as eigenvector centrality (EVC), which 
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was used to score the influence of each node. Computed on functional connectivity 
matrices, a high EVC value means that a considered node is connected to have 
preferential connections to other populations in the network and drives their activity. In 
practice, we made use of LFPs. To determine connectivity matrices, we computed the 
degree of coupling between network populations, while considering the directionality 
of coupling. Connectivity matrices were computed from the nonlinear correlation 
coefficient ℎH	 (Lopes da Silva et al., 1989; Pijn and Lopes da Silva, 1993) which is 
given by: 

 ℎH = 	
∑ 0𝑦& − 𝑦9

H
n
&o@ − ∑ p𝑦& − 𝑓(𝑥&)r

Hn
&o@

∑ 0𝑦& − 𝑦9
H

n
&o@

	 (4) 

Where 𝑦&, 𝑥&, ∀𝑖 ∈ [1,𝑁] represent samples of two LFP signals generated by two 
populations 𝑥, 𝑦. 𝑓 is a piecewise function passing from midpoints (𝑥, 𝑦) after 
presenting the amplitude signal 𝑦 with respect to that of signal 𝑥 and dividing the x-axis 
into equal sized bins. These linear line segments form a linear approximation of the 
nonlinear regression curve. The correlation value varies between 0 (no association 
between signals) and 1 (one signal is fully predictable based on the other). 

Finally, results were compared to ground-truth connectivity matrices explicitly known 
for each network model. 

 3 Results 
 3.1 Impact of stimulation parameters in a single NMM  
 
We tuned the synaptic gains (Table 1) of the NMM to generate interictal 

discharges, as shown in Figure 2a. We then evaluated the impact of sinusoidal 
stimulation parameters (amplitude, frequency) on the neuronal population activity. 
Results are summarized in the bifurcation diagram of Figure 2, which shows the 
changes of dynamics under the stimulation perturbation.  
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Figure 2. Analysis of effects of stimulation on a single NMM (single population). 

a) Simulated interictal discharges under no stimulation condition. b) Sinusoidal 
stimulation (amplitude 3 mV, frequency ranging from 0 to 150 Hz) applied to all 
neuronal subpopulations. For the sake of readability, results are shown for stimulation 
frequencies within the [0, 40] Hz range. c) Sinusoidal stimulation (amplitude 3 mV, 
frequency ranging from 0 to 150 Hz) applied only to inhibitory interneurons. b,c) In both 
cases system dynamics depend on stimulation parameters as depicted by LFP 
amplitudes (blue and green curves) and frequencies (red curves). Stable and unstable 
limit cycles are represented by solid green and dashed blue lines, while their 
frequencies are represented by solid and dashed red lines, respectively. Abbreviations; 
LP: fixed point, PD: period doubling, TR: Torus attractor. d) LFP signal observed for 
optimal stimulation parameters (amplitude 3 mV, frequency 90 Hz). To generate 
sporadic discharges, average excitatory (A) and inhibitory (B) synaptic gains were fixed 
at 3.85 mV and 15 mV, respectively.  

Figure 2-b,c illustrates all the dynamics that system (2) can generate while 
varying the frequency of a sinusoidal stimulation applied either on all neuronal 
subpopulations (Figure 2-b), or only to inhibitory interneurons (Figure 2-c). It is then 
possible to distinguish between stimulation frequencies for which the system generates 
high-amplitude oscillations, and those for which the system is attracted to a small, 
stable limit cycle that can be considered as a stable limit point. In addition, it highlights 
the sensitivity to neurostimulation parameters and reveals the effects of neuronal 
selectivity.  
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The bifurcation diagram presented in Figure 2-b can be divided into three regions. In 
the first region where 𝑓𝑟𝑒𝑞vw&, ∈ [0, 5.18[, the system is attracted by stable limit cycles 
and generates rhythmic activities of increasing frequencies and modulated amplitudes. 
In the second region where 𝑓𝑟𝑒𝑞vw&, ∈ [5.18, 10.83[Hz, the population activity is altered 
and unsteady. We detect closed trajectories of limit cycles with different amplitude 
ranges and numerous period doublings where oscillations of double the period of 
original ones are induced. Throughout this interval, the LFP is of an oscillatory activity 
involving a mix of frequencies and amplitudes. Third, for 𝑓𝑟𝑒𝑞vw&, ∈ [10.83,150]Hz, we 
detect a saddle-node bifurcation for periodic orbits coupled to a subcritical Neimark-
Sacker bifurcation for 𝑓𝑟𝑒𝑞vw&, = 10.83 Hz. Beyond these bifurcation points, a pair of 
limit cycles, stable and unstable (solid-green and dashed-blue lines), are created and 
the system is attracted by stable limit cycles of decreasing amplitudes. Increasing 
stimulation frequency (typically > 50 Hz) leads to periodic oscillations of frequency 
identical to the stimulation frequency, and of amplitude close to zero. 

The bifurcation diagram presented in Figure 2-c exhibits similar dynamics, since global 
activity is still altered until reaching a separation stimulation frequency from which the 
amplitude of the oscillating activity decreases. Interestingly, unstable cycles (dashed 
blue lines) disappear while stimulating only inhibitory interneurons. This highlights the 
differential effects of stimulation depending on specific neuronal subtypes that are 
targeted and impacted. We observe that the stimulation frequency required to abort 
epileptiform activity is lower when stimulating GABAergic interneurons when compared 
to all subpopulations.  

Those results provide a first indication of the potential parameters able to locally 
abort epileptiform activity, and replace it by an electrophysiological pattern closer to 
physiological activity (Figure 2d). In the next section, we take advantage of the 
knowledge at the single population level to attempt controlling epileptic activity in 
extended networks of neuronal populations.  

3.2 Network model: single-site versus multi-site stimulation 
 

From the single-site stimulation study, we retained the following stimulation 
parameters for multi-site stimulation: amplitude equal to 3 mV and a frequency equal 
to 90 Hz. In order to mimic stimulation protocols routinely performed in clinical 
epileptology, biphasic pulse stimulation was preferred to sinusoidal stimulation. Pulse 
stimulation (amp=3mV, 𝑓𝑟𝑒𝑞vw&,=90 Hz, pulse width=5 ms per phase) was delivered 
on pyramidal cells and interneurons subpopulations as soon as epileptic spiking 
activity was detected in one node of the network. Stimulation duration was set to 1s, 
and was delivered only during time intervals showing epileptic activity for more than 
1s. Spiking periods of shorter durations were not considered (no stimulation delivered). 

In simulated networks, populations were represented by NMMs in which parameters 
were set to generate interictal spikes. In the presence of connections, these epileptic 
spikes showed higher degree of synchronization as depicted in the example of Figure 
3a for a network of 7 populations.  

Epochs of epileptic activity and background activity are reflected in Figure 3b as 
summation 𝛴 of individual LFPs generated at each node and shown in Figure 3a. 
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Therefore, 𝛴 was used to determine multi-site stimulation onset times. As depicted in 
Figure 3b, stimulation times (red dots) could be correctly determined, i.e. as soon as 
at least one node of the network generated epileptiform activity.   

Figure 3c presents the impact of stimulation delivered at these stimulation times when 
one node was stimulated, while Figure 3d shows this impact when stimulation was 
applied simultaneously on all populations at the exact same times. Interestingly, multi-
site stimulation leads to shorter epochs of epileptic activity and longer epochs of 
background activity. 

 

 
Figure 3. a) Individual LFPs of each NMM belonging to the network in the 
absence of electrical stimulation, and b) their summation. c, d) LFP summation 
after applying a charge-balanced (biphasic) stimulation of amplitude, frequency 
and pulse width of 3 mV, 90 Hz and 5 ms, on NMM 1 in (c) and all NMMs in (d); 
respectively. The duration of the stimulus was set to 1s. Red circles indicate stimulus 
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onsets, while blue and green markers indicate respectively the beginning and end of 
epileptic activity. 
 
Using 𝛴, we first determined the number of populations to stimulate to obtain the 
highest therapeutic effect as denoted by minimal AEDI values. To proceed, we first 
evaluated the stimulation impact on the network using 𝛴 as a function of the number of 
NMMs stimulated. For this purpose, we simulated LFPs while applying all the 127 
possible combinations for the stimulation and compared AEDIs (number and choice of 
populations to stimulate). Then, we focused on how to identify the  optimal NMM to be 
stimulated from LFP signals. In our investigation, we used the nonlinear correlation 
coefficient ℎH, presented in the Methods section, to estimate connectivity links between 
network NMMs, and computed EVC values to determine the stimulation targets. 
Ground truth connectivity matrices were used to validate model-based predictions. 

 
Figure 4. a) Normalized AEDI as a function of the number of stimulated NMMs in 
the network. b) Histograms of epileptic discharges occurrence with respect to 
their duration. The same charge-balanced biphasic stimulation (amplitude 3 mV, 
frequency 90 Hz, pulse width 5 ms) was used for all simulations.  
 
Figure 4 confirms the effectiveness of multi-site stimulation as compared to single-site 
stimulation. Furthermore, it shows that stimulating a network subset is sufficient and 
efficient, in terms of AEDI, than stimulating the whole network (optimal situation - 
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minimal normalized AEDI when we stimulate four NMMs - see Figure 4a). For each 
network simulation, 127 stimulation possibilities were tested, and the minimal AEDI 
obtained while stimulating the same number of NMMs was retained, and an average 
value over all simulations was plotted. We identified the optimal number of NMMs to 
stimulate as equal to four. However, starting from 3 and up to 6 NMMs, the difference 
in AEDIs was minimal. 

Targeted network populations. For each simulation of the 1000 simulations performed 
to study the efficiency of stimulation with respect to the number of stimulated 
populations, we computed the nonlinear correlation between LFPs of the network. 
Then, EVC was used to score the influence of population on others. Higher scores 
point out populations possessing a higher number of outgoing connections. Results 
were compared to ground-truth connectivity matrices used to construct the networks. 
Interestingly, EVC values predicted correctly 2 out of 3 optimal stimulation targets 862 
times (89.2% of simulations), the exact same three NMMs 375 times (38.8%), and at 
least two NMMs 487 times (50.4%). 

Regarding the simulation presented in Figure 3a, the reconstructed connectivity matrix 
identified NMMs 1, 2 and 5 as those most involved in epileptiform activity propagation. 
Interestingly, the same NMMs were detected by the calculation of the eigenvector 
centrality suggesting that the level of induced network synchrony was a key factor in 
stimulation efficacy (Good et al., 2009). While testing all 35 (=7! / (3!×4!)) possible 
combinations for targeting 3 NMMs out of 7 NMMs, the minimal normalized AEDI was 
equal to 0.15. This AEDI value was lower than the one when all 7 NMMs were 
stimulated. Figure 4b presents the resulting histograms in the absence of stimulation 
and while stimulating NMM 1, the whole network, and the set {NMM1, NMM2, NMM5}, 
respectively. 

3.3 Stimulation strategy: open- versus closed-loop and impact of 
stimulation timing with respect to epileptic discharge onset 
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Figure 5. a,b) Boxes showing normalized AEDI values (proportion of epileptic 
activity) while stimulating randomly (OL) or at epileptic spike onsets (𝑪𝑳𝟏), or 
0.25 s before their onset (𝑪𝑳𝟐). c,d) the projection 𝒚𝟑-nullcline and trajectories of 
the Jansen-Rit NMM (eq.1) in the plane (𝒚𝟐, 𝒚𝟎), while synaptic gains were fixed 
to generate spiking activity, in the absence and presence of a charge-balanced 
biphasic pulse stimulation (amp=3 mV, freq=90 Hz) applied one second before 
spiking onset, respectively. In (b) both connectivity coefficients and noise are 
modified (Group of networks), unlike (a) where only the noise is modified (Single 
network). The boxes mean values from left to right are [(a: {0.92, 0.61, 0.63, 0.60}), (b: 
{0.94, 0.63, 0.66, 0.60})]. Continuous and dashed parts of the red curve represent 
stable and unstable branches of the 𝑦D-nullcline, respectively, where the blue points 
represent the folds of the curve. The green arrows represent the flow direction.  
 

In addition to emphasizing the effectiveness of multi-site stimulation, Figure 5 
enables the comparison between closed- and open-loop stimulation protocols,  and 
illustrates the impact of stimulation timing. Figures 5a) and 5b) present  the proportion 
of epileptic activity in the absence of stimulation (NoStim), after applying a stimulation 
regardless of oscillation onset (OL), at oscillation onset (𝐶𝐿@), and onset (𝐶𝐿H). This 
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proportion is defined as the ratio of the product of the number of interictal discharges 
and their duration divided by the signal’s duration.  

Using a charge-balanced biphasic stimulation of amplitude 3 mV and a 
frequency of 90 Hz upon all network NMMs, and for a total of 500 simulations in the 
case of one or group of networks (single or different individuals) (as the connectivity 
coefficients are fixed or not), we found that OL stimulation reduced the proportion of 
epileptic activity by 30 % and provided similar results as compared to  (𝐶𝐿@) 
stimulation. However, (𝐶𝐿H)was more efficient than the other two forms of 
neuromodulation with this difference being due to the timing of the stimulation with 
respect to the onset of epileptiform activity. In order to illustrate this difference, we 
projected the 𝑦D-nullcline and the system response to stimulation (black curves) on the 
(𝑦H, 𝑦8)-plane in panels c and d of Figure 5. The green arrows in panel 5c show the 
flow direction. By taking the right hand side of the Jansen and Rit NMM to 0, we obtain: 
 

 

𝑦D = 𝑦A = 𝑦L = 0	
𝑦8 = (𝐴/𝑎) × 𝑆𝑖𝑔(𝑦@ − 𝑦H)	
𝑦@ = (𝐴/𝑎) × {𝑝 + 𝐶H𝑆𝑖𝑔(𝐶@𝑦8)}	
𝑦H = (𝐵/𝑏) × 𝐶A𝑆𝑖𝑔(𝐶D𝑦8)	

 

The 𝑦D-nullcline is given by the following function depending on 𝑦8 and driven from the 
system above,  

 𝑦H	 = 𝑓𝑢𝑛𝑐(𝑦8) = (𝐴/𝑎) × {𝑝 + 𝐶H𝑆𝑖𝑔(𝐶@	𝑦8)} − 𝑆𝑖𝑔>@((𝑎/𝐴)𝑦8), 	𝑦8
∈]0,𝐴𝑒8/𝑎[	

(3) 

Notice that the function (3) yields a hysteresis curve, along which the large amplitude 
oscillations take place by jumping between the upper and lower branches and passing 
close to the fold points (Iasemidis et al., 2003; Prasad et al., 2005; Sackellares et al., 
2000). A closed-loop stimulation algorithm based on oscillations detection would be 
inefficient to prevent the system from oscillating, since such stimulation would be 
applied when the flow takes off after passing close to the left hand side fold point. In 
order to prevent large amplitude oscillations and maintain background activity, the 
stimulation should be applied before the system reaches the left hand side fold point 
(Figure 5d). Otherwise, once a spike was triggered, it was not possible to stop it until 
it approaches this point.  
  

3.4 Resonance phenomena  
 
We studied the effects of stimulation frequency while a single unconnected 

NMM was generating background activity. The average excitatory and inhibitory 
synaptic gains were fixed to 6 and 7 mV, respectively. All other model parameters were 
equal to the values presented in Table 1. 
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Figure 6. (Left panels) LFP amplitude and frequency as a function of stimulation 
frequency. (Right panels) Corresponding resonant and nonresonant time series. 
The same sinusoidal stimulation was added to the postsynaptic potential entering all 
model subpopulations, (𝑘", 𝑘&) = (1, 1). Stable and unstable limit cycles are 
represented by solid green and dashed blue lines, while their frequencies are 
represented by solid and dashed red lines, respectively. The stars and circles denote 
period-doublings (PD) and limit points (LP), respectively.  

Figure 6 shows LFP amplitude as a function of the stimulation frequency per 
stimulation amplitude. Depending on the stimulation amplitude, the system had a 
different resonance frequency for which high-amplitude oscillations appear. By 
increasing the stimulation amplitude, the model had a smaller resonance frequency 
where it generated oscillations of large amplitude. For a stimulation amplitude equal to 
0.5 mV (upper panel), the resonance frequency was 7 Hz. However, by increasing the 
stimulation amplitude to 5 mV (lower panel), the resonance frequency decreased to 
3.5 Hz and bifurcation points started to appear unlike upper and middle panels.  

For f = 6.9 Hz, a period doubling bifurcation was detected, and the respective limit 
cycle lost stability with half the frequency of the stable cycle. Then, another period 
doubling bifurcation point was detected for f = 3.58 Hz previoused by a limit point for f 
= 3.35 Hz. This PD point led to another change in stability and a doubling of the 
frequency of limit cycles. For f∈]3.35,8.3[ Hz, the system was attracted by stable and 
unstable attractors and the LFP frequency domain included other frequencies in 
addition to the stimulation frequency. 
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4 Discussion and concluding remarks 

Several computational, experimental and clinicals studies have been conducted 
to investigate neuromodulation effects and parameters to control epileptiform activity 
in epileptogenic networks. The prospective of multi-site stimulation in epilepsy is in part 
motivated by reported effects of multi-site stimulation in humans, for example in 
working memory enhancement (Alagapan et al., 2019). In this study, we developed a 
computational model of an epileptogenic neuronal network and studied the impact of 
multi-site stimulation on connected neuronal populations generating interictal 
discharges; an activity recognized as an electrophysiological marker of epileptogenic 
neuronal systems (Wendling et al., 2012).  Let us mention that, in our model, no 
mechanism was included to account for the potential lasting effects of the stimulation. 
Therefore, the effects quantified and presented in this study account for when the 
stimulation is applied, but no lasting effects are presented from the nature of the 
developed model that only describes acute effects of the stimulation. Our results 
confirmed the effectiveness of multi-site stimulation in reducing the frequency of 
epileptic discharges, and have shown that it is possible to guide the choice of 
stimulation targets based on a graph theory metric. The efficiency of multi-site 
stimulation is related to the circuit structure and connectivity: the afferents received by 
a neuronal region belonging to a network can indeed lead to the excitation of a 
neuronal subpopulation responsible for generating seizures (Burns et al., 2014; 
Martinet et al., 2017). We also presented a method for selecting and limiting the 
number of target populations. These chosen connectivity hubs are characterized by a 
high output functional connectivity, and stimulating those populations strongly impacts 
network dynamics, as opposed to other locations. This result is related to the studied 
neuronal network and may not always be the case when studying a different one. Past 
and most recent studies show that the epileptogenic focus was associated with a 
population with the maximum information inflow interictally, possibly to keep the focus 
under control (Krishnan et al., 2015; Narasimhan et al., 2020; Vlachos et al., 2017). 
Moreover, it is worth mentioning that multi-site stimulation of a few populations was 
identified as optimal, and outperformed stimulation of the entire network or of a single 
region.  

We have shown that closed-loop stimulation based on the detection of low-
frequency epileptiform activity is able to suppress interictal discharges. However, the 
difference as compared to  open-loop stimulation while the system is in an 
epileptogenic state was minimal. Despite this similar performance, a closed-loop 
paradigm should be preferred since stimulation is only delivered if and when needed, 
minimizing interaction with brain tissue. Noteworthy, both open-loop and closed-loop 
approaches have been shown to effectively reduce seizure frequency. Several studies 
emphasize the effectiveness of closed loop stimulation compared to open loop 
stimulation in aborting seizures (Salam et al., 2016; Skarpaas et al., 2019). However, 
there exist other studies claiming the opposite (Vassileva et al., 2018). Therefore, there 
is still no consensus on this question and further investigations are still needed to 
determine which approach is the best, or if a combination of both should be considered 
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depending on the objective. In this study, in addition to the frequent presence of 
epileptic activities in the generated signals, stimulation using an open-loop approach 
was delivered the same number of times as for closed loop stimulation and for a fixed 
duration. In clinical cases, open- and closed-loop stimulation are applied differently 
(Bigelow and Kouzani, 2019): open-loop stimulations deliver stimulations repetitively 
for a pre-set duration and may not necessarily be applied during an ictal period, while 
closed-loop stimulations are applied once seizure onset is detected. Therefore, in our 
specific case, the results from the “closed-loop” scheme of abatement of epileptic 
spikes we applied showed only a marginal advantage over the “open-loop” scheme we 
employed. 

Furthermore, our study provides new insights on the role that GABAergic 
inhibitory neurons play in the activity regulation of excitatory neurons (Ingram et al., 
2019; Komarov et al., 2019). We assume that the capability to selectively activate 
specific neuronal types will greatly enhance the efficiency of brain stimulation by 
reducing termination time and minimizing seizure spread. We propose that this 
prediction of the model could be tested experimentally using optogenetics, which 
enables the selective activation of specific neuronal populations. In addition, we 
identified a resonant frequency to avoid in brain stimulation protocols for epilepsy, 
since stimulation delivered at this frequency can enhance the generation of 
epileptiform patterns and favor the generation of high-amplitude oscillations, which is 
amplified by network effects. Therefore, in order to replace epileptiform activity by a 
more “physiological” activity, it would be appropriate to avoid using such resonant 
frequencies as stimulation frequencies.    

In terms of limitations, avenues for improvement would constitute adoption of 
more realistic models, such as the Wendling neural mass model (Wendling et al., 2002) 
comprising somatic-projecting interneurons of faster synaptic kinetics, and having the 
ability to generate more diverse activities (e.g., fast onset activity) and then taking into 
account additional outputs resulting from neuronal interactions. In the presence of 
these fast components, the circuit structure could be reconsidered by including 
feedforward inhibition to the feedforward excitation adopted here (Chen et al., 2017; 
Womelsdorf et al., 2014). Moreover, the impact of stimulation on an ongoing seizure 
instead of interictal spikes presented in this study could be investigated. Noteworthy, 
previous in-silico seizure-control investigations, assuming that the pathological 
feedback in brain circuitry is responsible for seizure generation, have been conducted 
and continuous closed-loop stimulation based on internal feedback were designed to 
desynchronize the epileptic activity (Chakravarthy et al., 2009b, 2009a, 2007; Tsakalis 
et al., 2006; Tsakalis and Iasemidis, 2006). Finally, the biophysics layer of the model 
describing the impact of the electrical stimulation onto neuronal types could be 
improved by using experimental data linking the amplitude of in situ electric fields with 
the corresponding depolarization at the level of neuron membranes (Bikson et al., 
2004).  
 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

19 

Acknowledgments 
This work is supported by the National Institutes of Health (NIH), R01 grant 

(R01NS092760-01A1).  

References 
Alagapan, S., Riddle, J., Huang, W.A., Hadar, E., Shin, H.W., Fröhlich, F., 2019. Network-

Targeted, Multi-site Direct Cortical Stimulation Enhances Working Memory by 
Modulating Phase Lag of Low-Frequency Oscillations. Cell Reports 29, 2590-
2598.e4. https://doi.org/10.1016/j.celrep.2019.10.072 

Badawy, R. a. B., Freestone, D.R., Lai, A., Cook, M.J., 2012. Epilepsy: Ever-changing states 
of cortical excitability. Neuroscience 222, 89–99. 
https://doi.org/10.1016/j.neuroscience.2012.07.015 

Bigelow, M.D., Kouzani, A.Z., 2019. Neural stimulation systems for the control of refractory 
epilepsy: a review. J Neuroeng Rehabil 16. https://doi.org/10.1186/s12984-019-0605-
x 

Bikson, M., Inoue, M., Akiyama, H., Deans, J.K., Fox, J.E., Miyakawa, H., Jefferys, J.G.R., 
2004. Effects of uniform extracellular DC electric fields on excitability in rat 
hippocampal slices in vitro. The Journal of Physiology 557, 175–190. 
https://doi.org/10.1113/jphysiol.2003.055772 

Burns, S.P., Santaniello, S., Yaffe, R.B., Jouny, C.C., Crone, N.E., Bergey, G.K., Anderson, 
W.S., Sarma, S.V., 2014. Network dynamics of the brain and influence of the epileptic 
seizure onset zone. Proc. Natl. Acad. Sci. U.S.A. 111, E5321-5330. 
https://doi.org/10.1073/pnas.1401752111 

Chakravarthy, N., Sabesan, S., Iasemidis, L., Tsakalis, K., 2007. Controlling synchronization 
in a neuron-level population model. Int J Neural Syst 17, 123–138. 
https://doi.org/10.1142/S0129065707000993 

Chakravarthy, N., Sabesan, S., Tsakalis, K., Iasemidis, L., 2009a. Controlling epileptic 
seizures in a neural mass model. J Comb Optim 17, 98–116. 
https://doi.org/10.1007/s10878-008-9182-9 

Chakravarthy, N., Tsakalis, K., Sabesan, S., Iasemidis, L., 2009b. Homeostasis of brain 
dynamics in epilepsy: a feedback control systems perspective of seizures. Ann 
Biomed Eng 37, 565–585. https://doi.org/10.1007/s10439-008-9625-6 

Chen, G., Zhang, Y., Li, X., Zhao, X., Ye, Q., Lin, Y., Tao, H.W., Rasch, M.J., Zhang, X., 
2017. Distinct Inhibitory Circuits Orchestrate Cortical beta and gamma Band 
Oscillations. Neuron 96, 1403-1418.e6. https://doi.org/10.1016/j.neuron.2017.11.033 

Freeman, W.J., 1975. Mass Action in the Nervous System: Examination of the 
Neurophysiological Basis of Adaptive Behavior Through the EEG. Academic Press. 

Good, L.B., Sabesan, S., Marsh, S.T., Tsakalis, K., Treiman, D., Iasemidis, L., 2009. Control 
of synchronization of brain dynamics leads to control of epileptic seizures in rodents. 
Int J Neural Syst 19, 173–196. https://doi.org/10.1142/S0129065709001951 

Hoang, K.B., Cassar, I.R., Grill, W.M., Turner, D.A., 2017. Biomarkers and Stimulation 
Algorithms for Adaptive Brain Stimulation. Front Neurosci 11. 
https://doi.org/10.3389/fnins.2017.00564 

Hodgkin, A.L., Huxley, A.F., 1952. A quantitative description of membrane current and its 
application to conduction and excitation in nerve. J Physiol 117, 500–544. 

Iasemidis, L., Prasad, A., Sackellares, J.C., Pardalos, P., Shiau, D., 2003. On the prediction 
of seizures, hysteresis and resetting of the epileptic brain: insights from models of 
coupled chaotic oscillators. Order and chaos 8 283–305. 

Ingram, T.G.J., King, J.L., Crowder, N.A., 2019. Divisive Inhibition Prevails During 
Simultaneous Optogenetic Activation of All Interneuron Subtypes in Mouse Primary 
Visual Cortex. Front Neural Circuits 13. https://doi.org/10.3389/fncir.2019.00040 

Jansen, B.H., Rit, V.G., 1995. Electroencephalogram and visual evoked potential generation 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

20 

in a mathematical model of coupled cortical columns. Biol. Cybern. 73, 357–366. 
https://doi.org/10.1007/BF00199471 

Katchanov, J., Birbeck, G.L., 2012. Epilepsy care guidelines for low- and middle- income 
countries: From WHO mental health GAP to national programs. BMC Med 10, 107. 
https://doi.org/10.1186/1741-7015-10-107 

Kobau, R., Zahran, H., Thurman, D.J., Zack, M.M., Henry, T.R., Schachter, S.C., Price, P.H., 
Centers for Disease Control and Prevention (CDC), 2008. Epilepsy surveillance 
among adults--19 States, Behavioral Risk Factor Surveillance System, 2005. MMWR 
Surveill Summ 57, 1–20. 

Komarov, M., Malerba, P., Golden, R., Nunez, P., Halgren, E., Bazhenov, M., 2019. 
Selective recruitment of cortical neurons by electrical stimulation. PLOS 
Computational Biology 15, e1007277. https://doi.org/10.1371/journal.pcbi.1007277 

Krishnan, B., Vlachos, I., Wang, Z.I., Mosher, J., Najm, I., Burgess, R., Iasemidis, L., 
Alexopoulos, A.V., 2015. Epileptic focus localization based on resting state interictal 
MEG recordings is feasible irrespective of the presence or absence of spikes. Clin 
Neurophysiol 126, 667–674. https://doi.org/10.1016/j.clinph.2014.07.014 

Kwan, P., Brodie, M.J., 2000. Early identification of refractory epilepsy. N. Engl. J. Med. 342, 
314–319. https://doi.org/10.1056/NEJM200002033420503 

Lee, K., Khoo, H.M., Lina, J.-M., Dubeau, F., Gotman, J., Grova, C., 2018. Disruption, 
emergence and lateralization of brain network hubs in mesial temporal lobe epilepsy. 
Neuroimage Clin 20, 71–84. https://doi.org/10.1016/j.nicl.2018.06.029 

Lévesque, M., Salami, P., Shiri, Z., Avoli, M., 2018. Interictal oscillations and focal epileptic 
disorders. European Journal of Neuroscience 48, 2915–2927. 
https://doi.org/10.1111/ejn.13628 

Lopes da Silva, F., Pijn, J.P., Boeijinga, P., 1989. Interdependence of EEG signals: linear vs. 
nonlinear associations and the significance of time delays and phase shifts. Brain 
Topogr 2, 9–18. https://doi.org/10.1007/BF01128839 

Martinet, L.-E., Fiddyment, G., Madsen, J.R., Eskandar, E.N., Truccolo, W., Eden, U.T., 
Cash, S.S., Kramer, M.A., 2017. Human seizures couple across spatial scales 
through travelling wave dynamics. Nature Communications 8, 14896. 
https://doi.org/10.1038/ncomms14896 

Maruyama, G., 1955. Continuous Markov processes and stochastic equations. Rend. Circ. 
Mat. Palermo 4, 48. https://doi.org/10.1007/BF02846028 

Narasimhan, S., Kundassery, K.B., Gupta, K., Johnson, G.W., Wills, K.E., Goodale, S.E., 
Haas, K., Rolston, J.D., Naftel, R.P., Morgan, V.L., Dawant, B.M., González, H.F.J., 
Englot, D.J., 2020. Seizure-onset regions demonstrate high inward directed 
connectivity during resting-state: An SEEG study in focal epilepsy. Epilepsia. 
https://doi.org/10.1111/epi.16686 

Ngugi, A.K., Kariuki, S.M., Bottomley, C., Kleinschmidt, I., Sander, J.W., Newton, C.R., 2011. 
Incidence of epilepsy: a systematic review and meta-analysis. Neurology 77, 1005–
1012. https://doi.org/10.1212/WNL.0b013e31822cfc90 

Pijn, J.P., Lopes da Silva, F., 1993. Propagation of Electrical Activity: Nonlinear Associations 
and Time Delays between EEG Signals, in: Zschocke, S., Speckmann, E.-J. (Eds.), 
Basic Mechanisms of the EEG, Brain Dynamics. Birkhäuser, Boston, MA, pp. 41–61. 
https://doi.org/10.1007/978-1-4612-0341-4_4 

Prasad, A., Iasemidis, L.D., Sabesan, S., Tsakalis, K., 2005. Dynamical hysteresis and 
spatial synchronization in coupled non-identical chaotic oscillators. Pramana - J Phys 
64, 513–523. https://doi.org/10.1007/BF02706199 

Radman, T., Ramos, R.L., Brumberg, J.C., Bikson, M., 2009. Role of cortical cell type and 
morphology in subthreshold and suprathreshold uniform electric field stimulation in 
vitro. Brain Stimulation 2, 215-228.e3. https://doi.org/10.1016/j.brs.2009.03.007 

Roehri, N., Pizzo, F., Lagarde, S., Lambert, I., Nica, A., McGonigal, A., Giusiano, B., 
Bartolomei, F., Bénar, C.-G., 2018. High-frequency oscillations are not better 
biomarkers of epileptogenic tissues than spikes. Annals of Neurology 83, 84–97. 
https://doi.org/10.1002/ana.25124 

ACCEPTED MANUSCRIPT / CLEAN COPY



 

21 

Sackellares, J.C., Iasemidis, L.D., Shiau, D.-S., Gilmore, R.L., Roper, S.N., 2000. Epilepsy ? 
when chaos fails, in: Chaos in Brain? WORLD SCIENTIFIC, pp. 112–133. 
https://doi.org/10.1142/9789812793782_0010 

Salam, M.T., Perez Velazquez, J.L., Genov, R., 2016. Seizure Suppression Efficacy of 
Closed-Loop Versus Open-Loop Deep Brain Stimulation in a Rodent Model of 
Epilepsy. IEEE Trans Neural Syst Rehabil Eng 24, 710–719. 
https://doi.org/10.1109/TNSRE.2015.2498973 

Sankaraneni, R., Lachhwani, D., 2015. Antiepileptic drugs--a review. Pediatr Ann 44, e36-42. 
https://doi.org/10.3928/00904481-20150203-10 

Skarpaas, T.L., Jarosiewicz, B., Morrell, M.J., 2019. Brain-responsive neurostimulation for 
epilepsy (RNS® System). Epilepsy Res. 153, 68–70. 
https://doi.org/10.1016/j.eplepsyres.2019.02.003 

Sobayo, T., Mogul, D.J., 2016. Should stimulation parameters be individualized to stop 
seizures: Evidence in support of this approach. Epilepsia 57, 131–140. 
https://doi.org/10.1111/epi.13259 

Spiegler, A., Jirsa, V., 2013. Systematic approximations of neural fields through networks of 
neural masses in the virtual brain. Neuroimage 83, 704–725. 
https://doi.org/10.1016/j.neuroimage.2013.06.018 

Suffczynski, P., Kalitzin, S., da Silva, F.L., Parra, J., Velis, D., Wendling, F., 2008. Active 
paradigms of seizure anticipation: computer model evidence for necessity of 
stimulation. Phys Rev E Stat Nonlin Soft Matter Phys 78, 051917. 
https://doi.org/10.1103/PhysRevE.78.051917 

Tsakalis, K., Chakravarthy, N., Sabesan, Sh., Iasemidis, L.D., Pardalos, P.M., 2006. A 
feedback control systems view of epileptic seizures. Cybern Syst Anal 42, 483–495. 
https://doi.org/10.1007/s10559-006-0087-2 

Tsakalis, K., Iasemidis, L., 2006. Control aspects of a theoretical model for epileptic seizures. 
Int. J. Bifurcation Chaos 16, 2013–2027. https://doi.org/10.1142/S0218127406015866 

Upton, A.R., Cooper, I.S., 1976. Some neurophysiological effects of cerebellar stimulation in 
man. Can J Neurol Sci 3, 237–254. 

Vassileva, A., van Blooijs, D., Leijten, F., Huiskamp, G., 2018. Neocortical electrical 
stimulation for epilepsy: Closed-loop versus open-loop. Epilepsy Research 141, 95–
101. https://doi.org/10.1016/j.eplepsyres.2018.02.010 

Vlachos, I., Krishnan, B., Treiman, D.M., Tsakalis, K., Kugiumtzis, D., Iasemidis, L.D., 2017. 
The Concept of Effective Inflow: Application to Interictal Localization of the 
Epileptogenic Focus From iEEG. IEEE Trans Biomed Eng 64, 2241–2252. 
https://doi.org/10.1109/TBME.2016.2633200 

Wendling, F., Bartolomei, F., Bellanger, J.J., Chauvel, P., 2002. Epileptic fast activity can be 
explained by a model of impaired GABAergic dendritic inhibition. European Journal of 
Neuroscience 15, 1499–1508. https://doi.org/10.1046/j.1460-9568.2002.01985.x 

Wendling, F., Bartolomei, F., Mina, F., Huneau, C., Benquet, P., 2012. Interictal spikes, fast 
ripples and seizures in partial epilepsies – combining multi-level computational 
models with experimental data. European Journal of Neuroscience 36, 2164–2177. 
https://doi.org/10.1111/j.1460-9568.2012.08039.x 

Wendling, F., Bellanger, J.J., Bartolomei, F., Chauvel, P., 2000. Relevance of nonlinear 
lumped-parameter models in the analysis of depth-EEG epileptic signals. Biol Cybern 
83, 367–378. https://doi.org/10.1007/s004220000160 

Wendling, F., Benquet, P., Bartolomei, F., Jirsa, V., 2016. Computational models of 
epileptiform activity. Journal of Neuroscience Methods, Methods and Models in 
Epilepsy Research 260, 233–251. https://doi.org/10.1016/j.jneumeth.2015.03.027 

Womelsdorf, T., Valiante, T.A., Sahin, N.T., Miller, K.J., Tiesinga, P., 2014. Dynamic circuit 
motifs underlying rhythmic gain control, gating and integration. Nature Neuroscience 
17, 1031–1039. https://doi.org/10.1038/nn.3764 

Youssofzadeh, V., Agler, W., Tenney, J.R., Kadis, D.S., 2018. Whole-brain MEG 
connectivity-based analyses reveals critical hubs in childhood absence epilepsy. 
Epilepsy Res. 145, 102–109. https://doi.org/10.1016/j.eplepsyres.2018.06.001 

ACCEPTED MANUSCRIPT / CLEAN COPY


