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Strict Lyapunov functions for consensus under directed connected graphs

Elena Panteley Antonio Lorı́a Srikant Sukumar

Abstract— It is known that for consensus of systems inter-
connected under a general directed graph topology a necessary
and sufficient condition for consensus is that there exist at
least one rooted spanning tree. In this paper we present an
original statement of linear algebra that serves to characterise
the spanning-tree condition for directed graphs in terms of
a Lyapunov equation involving the graph’s Laplacian. Our
results apply to the case of systems described by simple first
and second order integrators. As a result, we provide strict
Lyapunov functions that ensure, via direct constructive proof,
global exponential stability of the consensus manifold.

Index Terms— Consensus, Lyapunov functions, synchronisa-
tion, linear systems, multiagent systems.

I. INTRODUCTION

Consensus has been extensively studied for linear mul-

tiagent systems and in particular, for first-order integrators

under various perspectives involving tools of stability and

algebraic graph theories —see e.g., [1]–[4]. Algebraic graph

theory was first used in [2] to analyse consensus of first-

order integrators interconnected in undirected (as well as

balanced) graphs and in [3], where the authors proved for

directed graphs that consensus can be achieved if and only

if the graph of interconnections contains a rooted spanning

tree. In a similar spirit, by the eigenvalue analysis method

consensus is analysed by characterising the distribution of

the eigenvalues of the corresponding state matrices —see

e.g. [3] for the single integrators case and [5]–[8] for double-

integrators. These results are extended to the case of more

complex linear second-order dynamics dynamics, e.g., in

[9], [10]. In [7] a linear change of coordinates is used to

transform the networked systems dynamics into a reduced-

order system and the consensus problem is recasted into one

of stability analysis. In [11] Rumiantsev’s stability theory

with respect to part of the variables is used.

The most notorious stability-based methods are those

that appeal to the construction of Lyapunov functions. At

the exception of some simpler cases, this is in general a

challenging task since, most often, the consensus problem

is recasted into one of stability of a manifold, as opposed

to the more common stability-of-the-equilibrium theory. For
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instance, for an undirected graph the Laplacian matrix is

symmetric, so a simple quadratic Lyapunov function may be

used —idem for balanced graphs [2].

Lyapunov-function design for directed, strongly con-

nected, graphs is more complex. It is based on the concepts

of M-matrices and their irreducibility property, as well as

Perron-Frobenius Theorem [12]. In particular, properties of

strongly connected graphs guarantee that the left eigenvector

of the corresponding Laplacian matrix, associated to the zero

eigenvector has all positive elements. Using this property,

a quadratic Lyapunov function, V (x) := x⊤Px may be

constructed in which P is diagonal and is composed of the

elements of the left eigenvector. Such Lyapunov functions

were introduced in [13], see also [14]–[16] and [17] for a

review on Lyapunov-based analysis of consensus for single

integrators interconnected under strongly connected graphs.

In the general case of directed graphs with a rooted span-

ning tree, unlike for strongly connected graphs, the left eigen-

value of the Laplacian matrix can have zero elements, so the

previous construction method cannot be used in this case.

This makes the study of consensus on such graphs much

more involved. To the best of our knowledge, Lyapunov

functions for directed graphs with a rooted spanning tree

have been proposed only in [18] and [19]. In [18, Proposition

1] a Lyapunov function that measures the distance to the

consensus set is constructed and it is established that it is

non-increasing along the trajectories of the system; then, La

Salle’s invariance principle is invoked to assert consensus. In

[19, Lemma 1] a quadratic Lyapunov function depending on

the the synchronisation errors is designed; akin to the one

proposed in [18] the Lyapunov function proposed in [19,

Lemma 1] measures the distance to the consensus set, but

in synchronisation-errors space. Furthermore, this Lyapunov

function is strict (has negative definite derivative).

In this paper we contribute with a Lyapunov approach for

the study of the consensus problem for the systems over

general networks containing a directed spanning tree. In

order to highlight the main idea, we restrict our presentation

to one of the simplest cases, the continuous-time, leaderless

consensus problem for single and double integrator systems

with fixed communication topology and in absence of com-

munication delays. Extensions to more complex scenarios

will be reported elsewhere.

Our contributions can be summarised as follows. First, we

propose a linear transformation mapping the nodes coordi-

nates space into the error coordinates’, thereby recasting the

consensus problem into one of stability of a set. Second, we

derive a necessary and sufficient condition for consensus in



terms of a graph-dependent Lyapunov-like matrix equation.

Furthermore, applying the general result to the double-

integrator systems we get simple sufficient criteria in terms

of the controllers gains and the network Laplacian. Our

paper provides a basis for constructing Lyapunov functions

for consensus of systems in the general case of connected

graphs which have a rooted spanning tree. Hence, we lift

a stumbling block for the design of Lyapunov functions

for multi-agent systems; this facilitates both the control

design and the stability analysis for cooperative control of

networked systems.

The rest of the paper is organised as follows. In the next

section we recall some material on graph theory. In Section

III we present an original statement on matrix stability, which

is fundamental to our main results. The latter, in turn, are

presented in Section IV. Finally, we conclude with some

closing remarks in Section V.

II. PRELIMINARIES

We start by presenting few basic facts from algebraic graph

theory that will be used later in the paper. We denote by

G = (V, E) a directed graph composed of a set of nodes,

V = {1, . . . , N}, a set of edges E ⊂ V × V , and a non-

negative weighted adjacency matrix A = [aij ] ∈ RN×N .

An edge (i, j) ∈ E if and only if the jth agent receives

information from the ith agent. The adjacency matrix A is

such that an element aij > 0 if (i, j) ∈ E , otherwise aij = 0.

We say that a directed graph contains a rooted spanning

tree if there exists a node from which there exists a path

formed by graph edges that connects it to all the nodes of

the graph. A directed graph is strongly connected if there

exists a directed path from every node to every other node.

The (non-symmetric) Laplacian matrix L = [lij ] ∈
RN×N , associated to the adjacency matrix A and the graph G
is defined as lij = −aij for all i 6= j and lii =

∑N
i=1,j 6=i aij .

Let IN denote the N × N identity matrix, 1N ∈ RN

denote the vector of all ones, and 0N ∈ RN denote the

vector of all zeros. Then, we have L1N = 0. We define all

the eigenvalues of L as λi(L), i ∈ {1, . . . N} sometimes

dependence on L will be omitted when it is clear from the

context. Furthermore, we recall the following.

Lemma 1 [3] The Laplacian matrix L has a simple eigen-

value 0 and all the other eigenvalues have positive real parts

if and only if the directed network has a directed spanning

tree. �

III. ON THE GENERALISED LYAPUNOV EQUATION

In this section we present an original statement of linear

algebra. It has interest of its own since it generalises the

well-known Lyapunov-equation characterisation of a Hurwitz

matrix to matrices having one equal-to-zero eigenvalue. In

control systems theory, it has particular importance in the

context of consensus analysis of networked systems and it is

the founding block of our main results, which are presented

in the next section.

Let L ∈ R
N×N be a matrix having the following property.

Assumption 1 The matrix L ∈ R
N×N has exactly one

eigenvalue equal to zero and N−1 eigenvalues with positive

real parts. That is,

λ1(L) = 0, ℜe{λi(L)} > 0 ∀ i ∈ {2, . . . , N}.
�

We now present a Lyapunov characterisation of the property

previously described.

Lemma 2 Consider a matrix L ∈ R
N×N satisfying As-

sumption 1. Then, for any Q = Q⊤ > 0 and α > 0, there

exists a matrix P (α) ∈ RN×N , P = P⊤ > 0 such that

PL+ L⊤P = Q− α
[

Pvrv
⊤
ℓ + vℓv

⊤
r P

]

, (1)

where vℓ and vr ∈ R are, respectively, the left and right

eigenvectors of the matrix L corresponding to the eigenvalue

that is equal to zero. �

Remark 1 Notice that class of matrices satisfying Assump-

tion 1 is larger than that of Laplacian matrices since no

assumptions on the sign of the off-diagonal elements of the

matrix L are imposed. In particular, if L corresponds to a

Laplacian matrix then vr = 1N , but this is generally not the

case. •

Remark 2 Notice also that since L is real, its eigenvectors

(particularly vℓ and vr) can always be chosen real —see [20,

Section 3.2]. •

Proof of Lemma 2. The proof is constructive, but before

we proceed to construct the matrix P , we first consider cer-

tain properties of L, in particular, its Jordan decomposition,

which has the form

L = UΛU−1, (2)

where U ∈ R
N×N and Λ ∈ R

N×N . Since under Assumption

1, L has one equal-to-zero eigenvalue,

Λ:=

[

0 ·
· Λ1

]

, Λ1 ∈ R
N−1×N−1,

and the matrix Λ1 is block diagonal, i.e.,

Λ1:=







Λ11 · · ·
...

. . .

Λ1m






,

where for each i ≤ m, Λ1i is the Jordan block corresponding

to the ith eigenvalue of L, with positive real part and of

multiplicity qi. Hence, Λ1i ∈ R
qi×qi , ℜe{λi} > 0, and

Λ1i :=







ℜe{λi}
. . .

(∗)
(∗) ℜe{λi}






.



We recall that the matrices U and U−1 in (2) are composed

of the right and left eigenvectors of the matrix L respectively.

Therefore, denoting by U1, U
†
1
∈ R

N×N−1 the last N − 1
columns of U and U−1, we can write these matrices as

U =
[

vr U1

]

, and U−1 =

[

v⊤ℓ

U†
1

]

. (3)

On the other hand, for further development, we remark that

L = λ1(L)vrv
⊤
l + U1Λ1U

†
1
= U1Λ1U

†
1

(4)

since λ1(L) = 0.

Now, for any α > 0, define

R(α) := αvrv
⊤
ℓ + U1Λ1U

†
1
. (5)

Note that R(0) = L and, like the Laplacian in (2), the matrix

R(α) satisfies

R(α) = UΛRU
−1,

where

ΛR:=

[

α ·
· Λ1

]

.

From this decomposition and the properties of the matrix

Λ1 it is clear that ℜe{λi(R)} > 0 for all i ≤ N . That is,

−R(α) is Hurwitz. Therefore, for any Q = Q⊤ > 0 and

α > 0 there exists P = P⊤ > 0 such that

−PR(α)−R(α)⊤P = −Q

⇔ −P
[

αvrv
⊤
ℓ + L

]

−
[

αvrv
⊤
ℓ + L

]⊤
P = −Q

⇔ PL+ L⊤P = Q− α
[

Pvrv
⊤
ℓ + vℓv

⊤
r P

]

.

�

IV. CONSENSUS IN DIRECTED-GRAPH NETWORKS

A. First-order systems

Let us consider a network of first-order systems forming

a directed graph, that is, let1

ẋi = ui, xi ∈ R, i ≤ N (6a)

ui = −
N
∑

j=1

aij(xi − xj), aij ≥ 0. (6b)

Assume that there does not exist self-cycles, that is, that

aii = 0 for all i ≤ N . Then, as it is customary to rewrite

the closed-loop system in compact form, let us introduce the

Laplacian matrix,

L :=















∑N
j=2

a1j −a12 · · · −a1N
−a21 −a2N

...
. . .

...

−aN1 · · · ∑N−1

j=1
aNj















. (7)

1For simplicity in the notation we assume that xi ∈ R, but the same
statements hold for multivariable systems.

Then, defining x := [x1 · · · xN ]⊤, the system (6) may be

written as

ẋ = −Lx, x ∈ R
N . (8)

For (the trajectories of) this system, consensus is typically

defined in terms of attractivity of the manifold

Sx := {xi = xj , ∀ i 6= j} (9)

and, as it is well known, it is reached if and only if the graph

contains a rooted spanning tree. The following statement

provides a characterisation reminiscent of the Lyapunov

equation of this connectivity condition.

Proposition 1 Let G be a directed graph of order N and

let L ∈ RN×N be its associated, non-symmetric, Laplacian

matrix. The following statements are equivalent:

1) the graph G contains a directed spanning tree;

2) for any matrix Q ∈ RN×N , Q = Q⊤ > 0, and any

real α > 0, there exists matrix P (α) ∈ RN×N , P =
P⊤ > 0 such that

PL+ L⊤P = Q− α
[

P1v⊤ℓ + vℓ1
⊤P

]

, (10)

where vℓ ∈ R is the left eigenvector of L
corresponding to the zero eigenvalue. �

Proof: 1) ⇒ 2): By assumption, the graph G contains a

directed spanning tree. Then, from Lemma 1 it follows that

L has a unique zero eigenvalue and all others have positive

real parts. That is, Assumption 1 holds. Thus, the second

statement follows directly invoking Lemma 2 with vr = 1N .

2) ⇒ 1): Since L is a Laplacian matrix it may have either

equal-to-zero eigenvalues or eigenvalues with positive real

part —see e.g. [21]. We prove the implication by reductio

ad absurdum. Assume that statement 2) holds, but the matrix

L has two equal-to-zero eigenvalues, so, in view of Lemma

1, statement 1) does not hold. As established in [22, Theorem

4 ], the null eigenvalue of L is always semisimple, i.e., its

algebraic and geometric multiplicities coincide. Therefore,

the matrix L has two distinct pairs of (right and left)

eigenvectors, (vl1,1) and (vl2, vr2), corresponding to the

equal-to-zero eigenvalues.

Now, the Jordan decomposition of the matrix L has the

form L = UΛU−1, where

Λ:=

[

02×2 ·
· Λ1

]

, Λ1 ∈ R
N−2×N−2

and, as in (3), the matrix U can be decomposed as

U =
[

1 vr2 U1

]

, U−1 =







v⊤l1
v⊤l1

U †
1







where U1, U
†
1

∈ R
N×N−2 correspond to the last N − 2

columns of U and U−1.



Next, let us consider the matrix R = L+α1v⊤ℓ . Using the

Jordan decomposition above, this matrix can be presented as

R:=





α 0 ·
0 0 ·
· · Λ1



 , Λ1 ∈ R
N−2×N−2.

Clearly R is not positive definite since one of its eigenvalues

is equal to zero. Therefore, there exists a matrix Q = Q⊤

for which there does not exist a matrix P = P⊤ such that

−PR − R⊤P = Q. This, in view of the definition of the

matrix R contradicts statement 2). �

Next, using Proposition 1 we show how to construct

a strict Lyapunov function for the problem of consensus

involving first-order systems interconnected under a directed

graph. Our Lyapunov function’s domain is the space of

synchronisation errors, that is, it is based on the fact that

consensus may also be defined in terms of attractivity of the

manifold

S := {e = 0} (11)

where

e := x− 1v⊤ℓ x, (12)

vℓ ∈ R
N and 1 ∈ R

N , 1 := [1 · · · 1]⊤, denote, respectively,

the left and right eigenvectors corresponding to the null

eigenvalue of L, λ1(L) = 0. Then, v⊤ℓ x may be regarded as

a weighted average of x and e = 0 if and only if xi = v⊤ℓ x
for all i ≤ N , which implies that x ∈ S . The advantage

of this characterisation of the consensus problem is that it

may be recasted as a problem of stability analysis of the

dynamical system —cf. [19],

ė = −Le. (13)

Thus, relying on Proposition 1 and Lemma 2, our next state-

ment provides a constructive proof (based on Lyapunov’s

direct method) of exponential stability of the manifold S ,

which implies (but is not equivalent to) consensus.

Proposition 2 Consider the system (6) (equivalently system

(12)-(13) ). If the interconnection graph contains a rooted

spanning tree then, for any Q = Q⊤ > 0 there exists P =
P⊤ > 0 such that

V (e) = e⊤Pe and V̇ (e) = −e⊤Qe. (14)

Consequently, the manifold {e = 0} is globally exponentially

stable. �

Proof: Let Q = Q⊤ > 0 and α > 0 be arbitrarily fixed.

Since by assumption the graph contains a rooted spanning

tree, by Proposition 1, there exists P = P⊤ > 0 such that

(10) holds. Consider the function V : RN → R≥0, V (e) :=
e⊤Pe. Its total derivative along the trajectories of (13) yields,

using (1),

V̇ (e) = −e⊤Qe+ α e⊤
[

P1v⊤ℓ + vℓ1
⊤P

]

e. (15)

On the other hand, after (12), we have

P1v⊤ℓ e = P1v⊤ℓ
[

I − 1v⊤ℓ
]

x

= P
[

1v⊤ℓ − 1v⊤ℓ 1v
⊤
ℓ

]

x

and, in view of the fact that v⊤ℓ 1 = 1, the terms in the

brackets above cancel out. Therefore, P1v⊤ℓ e = 0 and, in

consequently, (15) is equivalent to

V̇ (e) = −e⊤Qe. (16)

The result follows invoking classical Lyapunov theory.

Proposition 2 guarantees the existence of a Lyapunov func-

tion, via which exponential consensus may be established. As

a matter of fact, such Lyapunov function may be constructed

by solving a simple Lyapunov equation. More precisely, we

have the following inverse statement.

Proposition 3 (converse) Given a Laplacian L ∈ R
N×N

corresponding to that of a graph containing a directed

spanning tree and given Q = Q⊤ and α > 0, define the

matrix P = P⊤ > 0 as the solution of
[

α1v⊤ℓ + L
]⊤

P + P
[

α1v⊤ℓ + L
]

= Q. (17)

Then, such P and Q satisfy (14). �

Proof: The proof follows directly using the fact that
[

α1v⊤ℓ + L
]

=: −R(α)

is Hurwitz and invoking the (well-known) statement that (for

any fixed α > 0 and) for any Q = Q⊤ > 0, the matrix

−R(α) is Hurwitz if and only if P = P⊤ > 0 is a solution

of
[

−R(α)
]⊤

P + P
[

−R(α)
]

= −Q. (18)

B. Second order systems

We consider now, a consensus protocol for second-order

systems which the state of each agent converges to a common

constant. Consider systems of the form

ẋi = yi xi, yi ∈ R (19a)

ẏi = ui, i ≤ N (19b)

in closed loop with the consensus control law

ui = −γ1

N
∑

j=1

aij(xi − xj)− γ2yi, aij ≥ 0 (20)

where γ1, γ2 > 0. Now, let y := [x⊤
1

· · · x⊤
N ]⊤, similarly for

u ∈ R
N . Then, in compact form, the dynamics of system

(19) in closed loop with

u = −γ1Lx− γ2y (21)

yields

ẋ = y (22a)

ẏ = −γ1Lx− γ2y. (22b)

Now, for the purpose of analysis, define the synchronisation

errors

ex := x− 1v⊤ℓ x ey := y − 1v⊤ℓ y, (23)



which satisfy the dynamical equations

ėx = ey (24a)

ėy = −γ1Lex − γ2ey . (24b)

Proposition 4 Consider the system (24) and let L be the

Laplacian of a graph containing a directed spanning tree.

Let P be generated by Proposition 3 with Q = IN and an

arbitrary choice of µ > 0. Let γ1 and γ2 > 0 be such that

M =

[

εγ1 I − εγ2P − 2µγ1L
⊤

I − εγ2P − 2µγ1L µγ2I − 2εP

]

≥ 0

(25)

for some ε satisfying

ε ≤
√
2µ

|P | , (26)

where |P | is the induced norm of P . Then, the set
{

(ex, ey) = (0, 0)
}

is globally exponentially stable. �

Proof: Consider the Lyapunov function candidate

V (e) =
1

2
|ex|2 + εe⊤x Pey + µ|ey|2, (27)

which is positive definite, under condition (26). The total

time derivative of V along the trajectories of (24) yields

V̇ = e⊤x ey + εe⊤y Pey + εe⊤x P
[

− γ1Lex − γ2ey
]

−µ
[

γ1Lex + γ2ey
]⊤

ey − µe⊤y
[

γ1Lex + γ2ey
]

= e⊤x P
[

I − εγ2P − 2µγ1L
⊤
]

ey − e⊤y
[

2µγ2 − εP
]

ey

−1

2
εγ1e

⊤
x

[

PL+ L⊤P
]

ex.

Now, akin to the proof of Proposition 2, we use (1) with

Q = IN and the identity P1v⊤ℓ ex = 0 to obtain

e⊤x
[

PL+ L⊤P
]

ex = −|ex|2.
In turn, in view of (25), we obtain

V̇ (e) ≤ −1

2

[

εγ1|ex|2 + µγ2|ey|2
]

(28)

and the result follows invoking classical Lyapunov theory.

Corollary 1 Consider the system (24a), (24b) and let L be

the Laplacian of a graph containing a directed spanning tree.

The the set S is globally exponentially stable for the system

(24a), (24b) if

γ2 > 2
√

2λ̄P + γ3

1
λ̄2

L,

where λ̄P and λ̄L are constants such that |P | ≤ λ̄P and

|L| ≤ λ̄L. �

Proof: In the definition of matrix M let us choose

µ =
√

γ1

γ2

and ǫ = 1

γ2

, with this particular choice of constants

matrix M takes the form

M =





γ1

2γ2

I −2γ1
√

γ1

γ2

L⊤

−2γ1
√

γ1

γ2

L 1

2

√
γ1γ2I − 1

γ2

P



 . (29)

To compute the eigenvalues of this matrix we use the

Schur complement, in particular we use the following:

Fact. A [2× 2]-block symmetric matrix,
[

A B
B⊤ C

]

,

is positive definite if A is invertible and matrices A and

C −B⊤A−1B are positive definite. •
We apply this statement with A = γ1

2γ2

I , which is

invertible and positive definite. It is left to verify positive-

definitness of the matrix C−B⊤A−1B. Using (29) we obtain

C −B⊤A−1B =
1

2

√
γ1γ2I −

1

γ2
P − 8γ2

1
LL⊤

=: D.

The matrix D is positive definite if the quadratic form

x⊤Dx > 0 for all x 6= 0. We have

x⊤Dx =
1

2

(√
γ1γ2I −

2

γ2
P − 16γ2

1
LL⊤

)

x

≥ 1

2

(√
γ1γ2 − 2λ̄p/γ2 − 16λ2

Lγ
2

1

)

|x|2.

Since we assume that γ2 > 1, then

x⊤Dx ≥ 1

2

(√
γ1γ2 − 2λ̄p − 16λ2

Lγ
2

1

)

|x|2,

this inequality holds if
√
γ1γ2 ≥ 2λ̄p + 16λ2

Lγ
2

1
or equiva-

lently γ2 ≥ (2λ̄p + 16λ2

Lγ
2

1
)2/γ1

V. CONCLUSIONS

We have presented an original generalisation of the

Lyapunov-equation characterisation of the Hurwitz property

of a matrix. Our statement holds for matrices with one

eigenvalue equal to zero. One of the many applications

of this statement is the construction of strict Lyapunov

functions for multiagent linear first and second-order systems

interconnected under a directed graph containing a spanning

tree. We are confident that our main results establish a

solid basis for the study of consensus under directed graphs,

considering more complex scenarios as that studied here. For

instance, in the case of systems with delays, general linear

and nonlinear systems and, even, heterogeneous systems.

Such topics are subject of current and future research.
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