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Consensus-based formation control of nonholonomic robots
without velocity measurements

Tonatiuh Hernández Antonio Lorı́a Emmanuel Nuño Elena Panteley

Abstract— We present a novel smooth time-varying con-
troller for the formation control of nonholonomic robots. The
controller is of proportional-plus-derivative type, but it does
not require velocity measurements; the latter are replaced by
approximate differentiation. To overcome the difficulty imposed
by the nonholonomy, the controller relies on a δ-persistently-
exciting term which, roughly speaking, excites all the sys-
tems’ modes while the position errors are away from zero.
Assuming that the interconnection static graph is undirected
and connected, it is showed that the nonholonomic robots
converge to a given formation pattern around a rendez-vous
point and their orientations tend to a common angle. To the
best of our knowledge, this is the first smooth controller for
formation consensus control of nonholonomic systems, via a
output feedback.

Index Terms— Formation Control, Nonholonomic Robots,
Output Feedback

I. INTRODUCTION

The basic synchronization behavior in networks of dy-
namical agents is consensus, in which case the states of
all the agents converge to a common agreement value [1],
[2]. From the application point of view, consensus should
be achieved by only sharing (part of) the agent’s state with
their corresponding neighbors using a given interconnection
topology [3].

The complexity of consensus control problems stems,
primarily, from network properties as the nature of the inter-
connections, the topology, etc. However, to no lesser extent,
such complexity also resides in the agent dynamics that
compose the network [4], [5], [6]. An example of a strongly
nonlinear agent is a nonholonomic mobile robot. Indeed,
the nonholonomic restriction prevents the applicability of
smooth autonomous controllers to solve consensus problems
[7]. However, due to the different applications of consensus
of mobile robots, it is physically appealing to design a decen-
tralized controller for a swarm of mobile robots to converge
to a predetermined formation pattern whose location in the
plane is determined by an a priori unknown center and with
a common non pre-determined orientation. In doing so, they
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achieve a formation. The goal involves stabilizing each of the
nonholonomic robot, in position and orientation, to a point.

Different decentralized solutions for consensus problems
in networks of nonholonomic robots are proposed in the
literature, e.g., [8], [9], [10], [11]. Most of the works
proposing smooth time-varying controllers for nonholonomic
vehicles, however, employ a simplified first-order model that
considers exclusively the kinematics and, with the exception
of [12], all of those that also consider the dynamics require
velocity measurements; see for example [13], [14]. For
leader-follower tracking formation control in the recent work
[12] a velocity super-twisting observer, which ensures that
the estimated velocities converge in finite-time to the real
values, together with a discontinuous sliding-mode controller
to achieve a formation control objective is used. However,
super-twisting-based differentiators rely on the conservative
assumption that the acceleration is bounded and discontinu-
ous controllers may present undesirable chattering.

In this paper we propose a novel smooth time-varying
controller that globally asymptotically stabilizes the network
of nonholonomic robots at a given formation pattern and with
a common orientation. To the best of our knowledge, this
is the first article where a smooth controller for consensus
of nonholonomic robots, via an output-feedback controller
is proposed. The formation-consensus goal is achieved for
swarms of robots communicating through reliable channels
and interconnected in an undirected, connected graph.

The proposed dynamic controller is fairly simple. It is
of the proportional-plus-derivative type, except that velocity
measurements are replaced by an approximate-differentiation
filter. Due to its passivity properties, such controller has
been proved to stabilize the system, globally, in set-point
control tasks [15], in tracking control [16], and even
under the presence of measurement delays [17]. Now,
while for Euler-Lagrange systems with holonomic con-
straints, a simple autonomous proportional-derivative-plus-
approximate-differentiation controller suffices, to achieve
stabilization for nonholonomic robots the controller must
also rely on the injection of appropriate excitation. This is
provided in the form of so-called δ-persistency of excitation,
a property that is necessary and sufficient for the uniform
asymptotic stability of nonlinear time-varying systems [18].
In the control of nonholonomic systems δ-persistently exci-
tation has been used, starting with [19], in several succeeding
articles, see e.g., [20].

The rest of this paper is organized as follows. In next
section we present the system’s model and formulate the



formation-consensus problem. In Section III we present our
main result. In Section IV we illustrate our theoretical
findings via a numerical example and in Section V we
conclude with some remarks.

II. MODEL AND PROBLEM FORMULATION

Notation. R := (−∞,∞), R≥0 := [0,∞) and R>0 :=
(0,∞). |x| stands for the standard Euclidean norm of vector
x. 1k and 0k represent column vectors of size k with all
entries equal to one and to zero, respectively. ⊗ represents
the standard Kronecker product. For any function f : R≥0 →
Rn, the L∞-norm is defined as ‖f‖∞ := sup

t≥0
|f(t)|, L2-norm

as ‖f‖2 := (
∫∞
0
|f(t)|2dt)1/2. The L∞ and L2 spaces are

defined as {f : R≥0 → Rn| ‖f‖∞ < ∞} and {f : R≥0 →
Rn| ‖f‖2 <∞}, respectively.
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Fig. 1. Schematic representation of a differential wheeled mobile robot

We consider a swarm of N nonholonomic vehicles, of
the kind illustrated in Figure 1, which are modeled as
differential-drive robots that move in the Cartesian xy−plane
with three degrees of freedom, two translations and one
rotation. For each i ≤ N , the Cartesian coordinates deter-
mining the position of the i th robot on the plane are denoted
zi := [xi yi]

> ∈ R2 and the orientation with respect to the
horizontal axis is denoted by θi ∈ R. Furthermore, we define
δi ∈ R2, δi = [δix δiy]> as the relative desired translation
of the ith-robot with regards to the a priori undetermined
centre zc := [xc yc]

> of a given formation pattern. Thus,
the corresponding position of the ith-robot translated to the
centre of the desired formation is z̄i := zi − δi. See Figure
2 for an illustration.

The kinematic model of these nonholonomic robots, under
the common non-slippage assumption, is given by

żi =ϕ(θi)vi,

θ̇i =ωi,
(1)

where ϕ(θi) := [cos(θi) sin(θi)]
> and vi, ωi ∈ R are the

linear and angular velocities of the center of mass of the
ith-robot, respectively.

We assume that for each robot, the geometrical center
and the center of mass are located at the same point zi :=
[xi, yi]

> and thus its corresponding dynamic behavior is
governed by[

mi 0
0 Ii

] [
v̇i
ω̇i

]
= 1

ri

[
1 1

2Ri −2Ri

]
τ i (2)
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Fig. 2. Example of formation pattern with common orientation

where mi is the mass; Ii is the moment of inertia; Ri is the
distance between point zi and the wheels; ri the radius of
the wheels; and τ i is the control input torque of the left and
right wheels, i.e., τ i = [τli, τri]

> —see Fig. 1.
The interconnection of the agents is modeled as a undi-

rected weighted graph via the Laplacian matrix L := [lij ] ∈
RN×N , whose elements are defined as

`ij =

{ ∑
k∈Ni

aik i = k

−aik i 6= k
(3)

where Ni is the set of agents transmitting information to the
i-th robot. Each interconnection weight aij is associated to
the edge (i, j). Since the interconnection graph is undirected
aij = aji and hence the Laplacian matrix is symmetric.
If the pair of nodes (i, j) is connected then aij > 0
otherwise aij = 0. The Laplacian matrix has zero row sums
and, consequently, zero is an eigenvalue associated with the
eigenvector 1N := [1 · · · 1]>. Furthermore, if in addition
the graph is connected, L is symmetric with only one zero
eigenvalue and the rest of its spectrum is strictly positive.
Thus, L is symmetric positive semidefinite.

III. CONSENSUS-BASED FORMATION CONTROL

Consider a swarm of N differential wheeled robots mod-
eled as (1) and (2) under that each robot possesses position
and orientation sensors to obtain zi and θi, but the respective
forward and angular velocities vi and ωi are not available
from direct measurements. Under these condition, the goal is
to design a decentralized controller such that, given a desired
formation pattern, all robots asymptotically agree on their
relative Cartesian positions and orientation, independently of
the initial conditions, i.e., there exists zc ∈ R2 and θc ∈ R



such that

lim
t→∞


z̄i(t)
θi(t)
vi(t)
ωi(t)

 =


zc
θc
0
0

 , ∀i ≤ N (4)

—see Figure 2.
This problem may be solved using a decentralized con-

troller involving a consensus correction term, which is de-
fined in function of the Cartesian position error and orienta-
tion error of each agent with respect to its neighbors. These
are given by

ei =
∑
j∈Ni

aij (z̄i − z̄j) , (5a)

eθi =
∑
j∈Ni

aij (θi − θj) . (5b)

Now, to compact the notation, we collect the positions and
orientations in the vectors z̄ :=

[
z̄>1 · · · z̄>N

]>
and θ :=

[θ1 · · · θN ]
>. Similarly, the position and orientation errors

are collected in the vectors e =
[
e>1 · · · e>N

]>
and eθ =

[eθ1 · · · eθN ]
>

= Lθ, respectively. For further development,
we also stress that

e = (L⊗ I2)z̄, I2 :=

[
1 0
0 1

]
Since 1N is the associated eigenvector of the single zero

eigenvalue of the Laplacian matrix, the control objective is
achieved provided that

lim
t→∞


ei(t)
eθi(t)
vi(t)
ωi(t)

 =


0
0
0
0

 , ∀i ≤ N

—cf. Eq. (4).
The first step in the control design involves the following

inner control-loop[
τri
τli

]
= ri

2

[
mi Ii/2Ri
mi −Ii/2Ri

] [
uvi
uωi

]
, (6)

which yields
v̇i =uvi

ω̇i =uωi.

Then, we introduce the new control inputs, uvi and uωi,
given by

uvi := −dviϕ>(θi)ϑvi − pviϕ>(θi)ei, (7a)
uωi := −dωiϑωi − pωieθi + αi (t, θi, ei) , (7b)

where ϕ(θi) := [cos(θi), sin(θi)]
>, dvi, pvi, dωi, and pωi are

positive scalar control gains, and the variables ϑvi and ϑωi
are defined as the outputs of the dynamical systems

q̇vi = −avi (qvi + z̄i) , avi > 0 (8a)
ϑvi = qvi + z̄i, (8b)

and

q̇ωi = −aωi (qωi + θi) , aωi > 0 (9a)
ϑωi = qωi + θi, (9b)

respectively.
The function αi is designed to be a δ-persistently exciting

function [18]. Let

αi(t, θi, ei) := kαifi(t)ϕ
⊥>(θi)ei, (10)

where kαi > 0, ϕ⊥(θi) = [− sin(θi) cos(θi)]
> is the

annihilator of ϕ(θi), i.e., ϕ>(θi)ϕ
⊥(θi) = ϕ⊥>(θi)ϕ(θi) =

0. The function fi : R≥0 → R is constructed to be twice
continuously differentiable, and such that fi, ḟi, f̈i ∈ L∞,
lim
t→∞

fi(t) 6= 0, and lim
t→∞

ḟi(t) 6= 0. This smooth time-
varying function is included in the controller in order to
overcome the obstacle that poses the robots’ nonholonomy
to asymptotic stabilization [21], [7].

The controller (7) is reminiscent of proportional-derivative
based controllers that rely on velocity measurements [13].
In the current scenario, however, since only position and
orientation are available for measurement, the controllers rely
on approximate differentiation of the Cartesian positions z̄i
and orientation θi. These filter dynamics follow the seminal
idea reported in [15].

Under the action of the controller (7) the closed-loop
equations are given by the two interconnected systems,

Σvi :


˙̄zi = ϕ(θi)vi,
v̇i = −dviϕ>(θi)ϑvi − pviϕ>(θi)ei,

ϑ̇vi = −aviϑvi +ϕ(θi)vi,
(11)

and

Σωi :

 θ̇i = ωi,
ω̇i = −dωiϑωi − pωieθi + αi (t, θi, ei) ,

ϑ̇ωi = −aωiϑωi + ωi.

(12)

On one hand, since ϕ(·) is bounded, system Σvi may be
considered as if it is decoupled from Σωi. Hence forming
a cascaded system [22]. On the other hand, system Σωi
can be seen as a stable “filter” with a δ-persistently-exciting
input αi, i.e., αi is persistently exciting for all ei 6= 0 [19].
Such stabilization mechanism overcomes the effects of the
nonholonomy —cf. [19].

The excitation in αi is propagated throughout the system
Σvi via θi, thereby ensuring the convergence of ei to zero
and, consequently, of αi itself. That is, the excitation is
maintained while, and only while the errors ei are away from
the origin.

We are now ready to state the main result.
Theorem 1: Consider a swarm of N differential wheeled

robots modeled as (1) and (2) and suppose that velocities
vi and ωi are not available for measurement. Then, if
the interconnection graph is undirected and connected, the
controller given by (6)—(9) ensures that (4) holds for all
initial conditions. �



Proof: Consider the following function

V :=
1

2

N∑
i=1

 1

pvi
v2i +

dvi
pvi
|ϑvi|2 +

1

2

∑
j∈Ni

aij |z̄i − z̄j |2
 ,

which is positive definite and radially unbounded in the space
of (v,ϑv, e). Evaluating the total derivative, V̇ , along the
trajectories of Σvi in (11), we obtain

V̇ = −
N∑
i=1

dviavi
pvi

|ϑvi|2,

for which we used [4, Lemma 6.1] to obtain

1

2

N∑
i=1

∑
j∈Ni

aij( ˙̄zi− ˙̄zj)
>(z̄i−z̄j) =

N∑
i=1

∑
j∈Ni

aij ˙̄z
>
i (z̄i−z̄j).

Since V ≥ 0 and V̇ ≤ 0 then ϑvi ∈ L2 and z̄i −
z̄j , vi,ϑvi ∈ L∞, for any i ≤ N and j ∈ Ni. From (11), it
also holds that v̇i, ϑ̇vi ∈ L∞.

Consider now the function

W :=
1

2

N∑
i=1

 1

pωi
ω2
i +

dωi
pωi

ϑ2ωi +
1

2

∑
j∈Ni

aij |θi − θj |2


and evaluate its total derivative, Ẇ , along the trajectories of
Σω in (12) with αi = 0. We obtain

Ẇ = −
N∑
i=1

dωiaωi
pωi

ϑ2ωi ≤ 0,

which implies that ϑωi ∈ L2 ∩L∞, while ωi and |θi− θj | ∈
L∞. From (12), with αi = 0, we have that boundedness
of these signals implies that ω̇i and ϑ̇ωi are also bounded.
Therefore, after Babălat’s Lemma we have

lim
t→∞

ϑωi(t) = 0.

Next, invoking Lemma 1 in the Appendix, on the system
(16) as the last equation in (12), with state x = ϑωi and
input u = ωi we conclude that, also,

lim
t→∞

ωi(t) = 0.

Moreover,

lim
t→∞

∫ t

0

ω̇i(t) = lim
t→∞

ωi(t)− ωi(0) = −ωi(0),

and, since ω̈i = −dωiϑ̇ωi−pωi
∑
j∈Ni

aij (ωi − ωj), ω̈i ∈ L∞.

Hence, ω̇i is uniformly continuous and invoking Barbălat
Lemma we conclude that

lim
t→∞

ω̇i(t) = 0,

so, from (12) with αi ≡ 0, we obtain lim
t→∞

eθi(t) = 0. In
summary, provided that αi ≡ 0, we have (ωi, θi, ϑθi) →
(0, θc, 0).

If αi 6≡ 0, note that since fi(t), ei and ϕ⊥(θi) are
bounded, so is αi —see Eq. (10). This and the fact that

Σω is a marginally stable linear time invariant system imply
with input αi that ω̇i, ωi ∈ L∞, by Proposition 3 in [23], so
eθi ∈ L∞.

Next, we center our attention in the proof that ei
converges to zero. So far we have established that
vi, v̇i,ϑvi, ϑ̇vi, ei, ωi, ω̇i and eθi are bounded and that
ϑvi, ϑωi ∈ L2.

Now, since d
dtϕ(θi) = ϕ⊥(θi)ωi, boundedness of ϑ̇vi, v̇i

and ωi imply boundedness of ϑ̈vi. Therefore, invoking
Lemma 1 in the Appendix, with x = ϑvi, which satisfies
ϑvi → 0, and u = ϕ(θi)vi, we conclude that

lim
t→∞

ϕ(θi)vi(t) = 0,

so lim
t→∞

vi(t) = 0.

On the other hand,

lim
t→∞

∫ t

0

v̇i(t) = lim
t→∞

vi(t)− vi(0) = −vi(0),

and

v̈i = −ϕ>(θi)
[
dviϑ̇vi+pviėi

]
−ωiϕ⊥>(θi)

[
dviϑvi+pviei

]
(13)

is bounded since so are all the signals on the right-
hand side of the previous equation. Thus, by Barbălat
Lemma, lim

t→∞
v̇i(t) = 0. This and (11), in turn, imply that

lim
t→∞

ϑ̈vi(t) = 0 and that lim
t→∞

ϕ>(θi(t))ei(t) = 0.

Finally, we establish that ϕ⊥>(θi(t))ei(t) → 0. To that
end, we first compute the derivative of v̈i; we have

v
(3)
i =−ϕ>(θi)

[
dviϑ̈vi + pviëi

]
− 2ωiϕ

⊥>(θi)
[
dviϑ̇vi + pviėi

]
+
[
ω2
iϕ(θi)− ω̇iϕ⊥(θi)

]>[
dviϑvi + pviei

]
.

We note that v(3)i is bounded since so are all the terms
on the right-hand side of the previous equation. Thus, v̈i
is uniformly continuous and lim

t→∞
v̈i(t) = 0. Invoking sys-

tematically Barbălat Lemma one also obtains that v(3)i , v(4)i
and ϑ(3)

vi converge to zero.
Furthermore, from (13) it follows that the term

ωiϕ
⊥>(θi)ei converges to zero. Moreover, on one hand,

ϕ>(θi)ei = 0 ⇔ ei = cϕ⊥(θi), for any c ∈ R, and, on
the other hand, ϕ⊥>(θi)ϕ

⊥(θi) = 1, then it also follows
that ωi converges to zero. This in turn implies that ϑωi and
that ϑ̇ωi converge to zero; this holds for αi 6≡ 0.

Finally, we compute

ω̈i =− dωiϑ̇ωi − pωiėθi − kαiωifiϕ>(θi)ei

+ kαifiϕ
⊥>(θi)ėi + kαiḟiϕ

⊥>(θi)ei (14)



and we replace it in

v
(4)
i =−ϕ>(θi)

[
dviϑ

(3)
vi + pvie

(3)
i

]
− 3ωiϕ

⊥>(θi)
[
dviϑ̈vi + pviëi

]
+ 3
[
ω2
iϕ(θi)− ω̇iϕ⊥(θi)

]>[
dviϑ̇vi + pviėi

]
+
[
3ωiω̇iϕ(θi) + ω3

iϕ
⊥(θi)

]>[
dviϑvi + pviei

]
− ω̈iϕ⊥>(θi)

[
dviϑvi + pviei

]
. (15)

Note that, since vi, ωi, ϑωi, ϑ̇ωi, ϕ>(θi)ei, and vi converge
to zero all the terms on the right-hand side of (14), except for
ḟiϕ
⊥>(θi)ei, converge to zero. It follows that all terms on

the right-hand side of (15) except for pvikαiḟi|ϕ⊥>(θi)ei|2,
tend to zero. Since, also, v(4)i → 0 and limt→∞ ḟ(t) 6= 0,
necessarily |ϕ⊥>(θi)ei|2 → 0. Thus, αi vanishes and the
limits in (4) follow.

IV. SIMULATIONS

In order to illustrate our theoretical findings we performed
some numerical simulations in SimulinkTM of MatlabTM. The
simulation setup consists in six robots being required to meet
at a rendez-vous point that is a priori unknown, but forming a
pattern. In this case, an hexagon, that is defined by setting the
offsets (δxi, δyi) to the values showed in Table I; in the latter
table, the initial conditions of each robot are also specified.

TABLE I
INITIAL CONDITIONS, RELATIVE DESIRED POSITIONS, AND DESIRED

ORIENTATIONS.

xi(0) yi(0) θi(0) δxi δyi

1 2 5 0 2 0

2 7 5.5 −π/4 1 2

3 7 3.5 −pi/2 -1 2

4 3 2 π/4 -2 0

5 1 3.5 π/2 -1 -2

6 3 2 π/4 1 -2

It is assumed that the graph topology is given by the
Laplacian

L :=


3 −1 0 −1 0 −1
−1 2 −1 0 0 0

0 −1 3 −1 0 −1
−1 0 −1 3 −1 0

0 0 0 −1 2 −1
−1 0 −1 0 −1 3


and is illustrated in Fig. 3.

In Fig. 4 is appreciated the good performance of the
closed-loop system; the robots converge to the desired
hexagon-shaped formation. The final, coinciding, orienta-
tions of the robots are also depicted, represented by arrows.
The time responses of the systems’ trajectories are showed
in Figs. 5 and 6. In the former, we show the time evolution

1 26

4 35

Fig. 3. Graph representation

of z̄i(t), which converges to the centre with coordinates
(xc, yc) = (−0.75, 8.2) and in Fig. 6 we show the evolution
of the angular orientations, which converge to the equilibrium
θc ≈ -1.35.
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Fig. 4. Path followed by the robots on the plane
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Fig. 5. Evolution of trajectories in Cartesian coordinates
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Fig. 6. Evolution of the orientation angles

V. CONCLUSIONS

This paper reports a novel controller for the consensus
formation control of nonholonomic robots that do not have
velocity sensors. The stabilization technique relies, on one
hand, on a dynamic controller that injects damping through
an approximate-derivatives filter and back-propagates it
throughout the plant. On the other hand, to deal with the
nonholonomic restrictions, a δ-persistently-exciting term is
properly designed. Assuming that the interconnection graph
is static, undirected and connected, the proposed scheme en-
sures consensus both in position and orientation for arbitrary
initial conditions. Present research efforts are focused on
the design of output-feedback consensus controllers in the
presence of measurement delay.

APPENDIX

The proofs rely on the following expectable statement for
which we present a short proof, for the sake of completeness.

Lemma 1: Consider system

ẋ =− ax + u,

y = x,
(16)

where a > 0 and x,u,y ∈ Rn are the state, the input and
the output, respectively. If y ∈ L∞ ∩ L2 and u, u̇ ∈ L∞,
then lim

t→∞
u(t) = 0. �

Proof: Clearly, from (16), one has that y,u ∈ L∞
implies that ẋ ∈ L∞. This last and the fact x ∈ L∞ ∩ L2

ensures, by Barbălat Lemma, lim
t→∞

x(t) = 0. Moreover,

lim
t→∞

∫ t

0

ẋ(σ)dσ = lim
t→∞

x(t)− x(0) = −x(0)

and ẍ ∈ L∞ because ẋ, u̇ ∈ L∞. Therefore, invoking again
Barbălat Lemma, [24, Lemma 8.2], we have that lim

t→∞
ẋ(t) =

0. Hence, lim
t→∞

u(t) = 0, as required.
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