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We present a novel smooth time-varying controller for the formation control of nonholonomic robots. The controller is of proportional-plus-derivative type, but it does not require velocity measurements; the latter are replaced by approximate differentiation. To overcome the difficulty imposed by the nonholonomy, the controller relies on a δ-persistentlyexciting term which, roughly speaking, excites all the systems' modes while the position errors are away from zero. Assuming that the interconnection static graph is undirected and connected, it is showed that the nonholonomic robots converge to a given formation pattern around a rendez-vous point and their orientations tend to a common angle. To the best of our knowledge, this is the first smooth controller for formation consensus control of nonholonomic systems, via a output feedback.

I. INTRODUCTION

The basic synchronization behavior in networks of dynamical agents is consensus, in which case the states of all the agents converge to a common agreement value [START_REF] Jadbabaie | Coordination of groups of mobile autonomous using nearest neighbor rules[END_REF], [START_REF] Olfati-Saber | Consensus problems in networks of agents with switching topology and time-delays[END_REF]. From the application point of view, consensus should be achieved by only sharing (part of) the agent's state with their corresponding neighbors using a given interconnection topology [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF].

The complexity of consensus control problems stems, primarily, from network properties as the nature of the interconnections, the topology, etc. However, to no lesser extent, such complexity also resides in the agent dynamics that compose the network [START_REF] Cao | Distributed Coordination of Multi-agent Networks: Emergent Problems, Models, and Issues[END_REF], [START_REF] Wang | Consensus of networked mechanical systems with communication delays: A unified framework[END_REF], [START_REF] Hatanaka | Passivity-Based Control and Estimation in Networked Robotics[END_REF]. An example of a strongly nonlinear agent is a nonholonomic mobile robot. Indeed, the nonholonomic restriction prevents the applicability of smooth autonomous controllers to solve consensus problems [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF]. However, due to the different applications of consensus of mobile robots, it is physically appealing to design a decentralized controller for a swarm of mobile robots to converge to a predetermined formation pattern whose location in the plane is determined by an a priori unknown center and with a common non pre-determined orientation. In doing so, they Tonatiuh Hernández and Emmanuel Nuño are with the Department of Computer Science at the University of Guadalajara. Guadalajara, Mexico (e-mail: tonatiuh.hernandez@academicos.udg.mx). Antonio Loría and Elena Panteley are with the CNRS, at Laboratoire des signaux et systèmes, L2S-CentraleSupélec, Gif-sur-Yvette, France; (e-mail: {antonio.loria}{elena.panteley}@centralesupelec.fr).

This work has been partially supported by the Mexican CONACyT Basic Scientific Research grant CB-282807, This article is supported by Government of Russian Federation (grant 074-U01), by the French National Research Agency (ANR) via the project "HANDY" -contract number: ANR-18-CE40-0010, and by CEFIPRA under the grant number 6001-A. achieve a formation. The goal involves stabilizing each of the nonholonomic robot, in position and orientation, to a point. Different decentralized solutions for consensus problems in networks of nonholonomic robots are proposed in the literature, e.g., [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF], [START_REF] Yang | Smooth time-varying formation control of multiple nonholonomic agents[END_REF], [START_REF] Ajorlou | Distributed consensus control of unicycle agents in the presence of external disturbances[END_REF], [START_REF] Dong | Consensus of multiple nonholonomic systems[END_REF]. Most of the works proposing smooth time-varying controllers for nonholonomic vehicles, however, employ a simplified first-order model that considers exclusively the kinematics and, with the exception of [START_REF] Cheng | Robust finitetime consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback[END_REF], all of those that also consider the dynamics require velocity measurements; see for example [START_REF] Nuño | Leaderless consensus-based formation control of multiple nonholonomic mobile robots with interconnecting delays[END_REF], [START_REF] Maghenem | Consensus of multi-agent systems with nonholonomic restrictions via Lyapunov's direct method[END_REF]. For leader-follower tracking formation control in the recent work [START_REF] Cheng | Robust finitetime consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback[END_REF] a velocity super-twisting observer, which ensures that the estimated velocities converge in finite-time to the real values, together with a discontinuous sliding-mode controller to achieve a formation control objective is used. However, super-twisting-based differentiators rely on the conservative assumption that the acceleration is bounded and discontinuous controllers may present undesirable chattering.

In this paper we propose a novel smooth time-varying controller that globally asymptotically stabilizes the network of nonholonomic robots at a given formation pattern and with a common orientation. To the best of our knowledge, this is the first article where a smooth controller for consensus of nonholonomic robots, via an output-feedback controller is proposed. The formation-consensus goal is achieved for swarms of robots communicating through reliable channels and interconnected in an undirected, connected graph.

The proposed dynamic controller is fairly simple. It is of the proportional-plus-derivative type, except that velocity measurements are replaced by an approximate-differentiation filter. Due to its passivity properties, such controller has been proved to stabilize the system, globally, in set-point control tasks [START_REF] Kelly | A simple set-point robot controller by using only position measurements[END_REF], in tracking control [START_REF] Loría | Observers are unnecessary for output-feedback control of Lagrangian systems[END_REF], and even under the presence of measurement delays [START_REF] Nuño | Achieving consensus of Euler-Lagrange agents with interconnecting delays and without velocity measurements via passivity-based control[END_REF]. Now, while for Euler-Lagrange systems with holonomic constraints, a simple autonomous proportional-derivative-plusapproximate-differentiation controller suffices, to achieve stabilization for nonholonomic robots the controller must also rely on the injection of appropriate excitation. This is provided in the form of so-called δ-persistency of excitation, a property that is necessary and sufficient for the uniform asymptotic stability of nonlinear time-varying systems [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]. In the control of nonholonomic systems δ-persistently excitation has been used, starting with [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF], in several succeeding articles, see e.g., [START_REF] Lee | Tracking control of unicycle-modeled mobile robots using a saturation feedback controller[END_REF].

The rest of this paper is organized as follows. In next section we present the system's model and formulate the formation-consensus problem. In Section III we present our main result. In Section IV we illustrate our theoretical findings via a numerical example and in Section V we conclude with some remarks.

II. MODEL AND PROBLEM FORMULATION

Notation. R := (-∞, ∞), R ≥0 := [0, ∞) and R >0 := (0, ∞). |x| stands for the standard Euclidean norm of vector x. 1 k and 0 k represent column vectors of size k with all entries equal to one and to zero, respectively. ⊗ represents the standard Kronecker product. For any function f : R ≥0 → R n , the L ∞ -norm is defined as

f ∞ := sup t≥0 |f (t)|, L 2 -norm as f 2 := ( ∞ 0 |f (t)| 2 dt) 1/2 . The L ∞ and L 2 spaces are defined as {f : R ≥0 → R n | f ∞ < ∞} and {f : R ≥0 → R n | f 2 < ∞}, respectively. > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > > θ i 2 R 2 r
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Fig. 1. Schematic representation of a differential wheeled mobile robot

We consider a swarm of N nonholonomic vehicles, of the kind illustrated in Figure 1, which are modeled as differential-drive robots that move in the Cartesian xy-plane with three degrees of freedom, two translations and one rotation. For i ≤ N , the Cartesian coordinates determining the position of the i th robot on the plane are denoted z i := [x i y i ] ∈ R 2 and the orientation with respect to the horizontal axis is denoted by θ i ∈ R. Furthermore, we define δ i ∈ R 2 , δ i = [δ ix δ iy ] as the relative desired translation of the ith-robot with regards to the a priori undetermined centre z c := [x c y c ] of a given formation pattern. Thus, the corresponding position of the ith-robot translated to the centre of the desired formation is zi := z i -δ i . See Figure 2 for an illustration.

The kinematic model of these nonholonomic robots, under the common non-slippage assumption, is given by

żi = ϕ(θ i )v i , θi = ω i , (1) 
where ϕ(θ i ) := [cos(θ i ) sin(θ i )] and v i , ω i ∈ R are the linear and angular velocities of the center of mass of the ith-robot, respectively.

We assume that for each robot, the geometrical center and the center of mass are located at the same point z i := [x i , y i ] and thus its corresponding dynamic behavior is governed by

m i 0 0 I i vi ωi = 1 ri 1 1 2R i -2R i τ i (2) 
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Fig. 2. Example of formation pattern with common orientation

where m i is the mass; I i is the moment of inertia; R i is the distance between point z i and the wheels; r i the radius of the wheels; and τ i is the control input torque of the left and right wheels, i.e., τ i = [τ li , τ ri ] -see Fig. 1.

The interconnection of the agents is modeled as a undirected weighted graph via the Laplacian matrix

L := [l ij ] ∈ R N ×N , whose elements are defined as ij = k∈Ni a ik i = k -a ik i = k (3)
where N i is the set of agents transmitting information to the i-th robot. Each interconnection weight a ij is associated to the edge (i, j). Since the interconnection graph is undirected a ij = a ji and hence the Laplacian matrix is symmetric.

If the pair of nodes (i, j) is connected then a ij > 0 otherwise a ij = 0. The Laplacian matrix has zero row sums and, consequently, zero is an eigenvalue associated with the eigenvector

1 N := [1 • • • 1]
. Furthermore, if in addition the graph is connected, L is symmetric with only one zero eigenvalue and the rest of its spectrum is strictly positive. Thus, L is symmetric positive semidefinite.

III. CONSENSUS-BASED FORMATION CONTROL

Consider a swarm of N differential wheeled robots modeled as (1) and (2) under that each robot possesses position and orientation sensors to obtain z i and θ i , but the respective forward and angular velocities v i and ω i are not available from direct measurements. Under these condition, the goal is to design a decentralized controller such that, given a desired formation pattern, all robots asymptotically agree on their relative Cartesian positions and orientation, independently of the initial conditions, i.e., there exists

z c ∈ R 2 and θ c ∈ R such that lim t→∞     zi (t) θ i (t) v i (t) ω i (t)     =     z c θ c 0 0     , ∀i ≤ N (4)
-see Figure 2. This problem may be solved using a decentralized controller involving a consensus correction term, which is defined in function of the Cartesian position error and orientation error of each agent with respect to its neighbors. These are given by

e i = j∈Ni a ij (z i -zj ) , (5a) 
e θi = j∈Ni a ij (θ i -θ j ) . (5b) 
Now, to compact the notation, we collect the positions and orientations in the vectors Since 1 N is the associated eigenvector of the single zero eigenvalue of the Laplacian matrix, the control objective is achieved provided that

z := z 1 • • • z N and θ := [θ 1 • • • θ N ] .
lim t→∞     e i (t) e θi (t) v i (t) ω i (t)     =     0 0 0 0     , ∀i ≤ N -cf. Eq. (4).
The first step in the control design involves the following inner control-loop

τ ri τ li = ri 2 m i I i /2R i m i -I i /2R i u vi u ωi , (6) 
which yields vi =u vi ωi =u ωi .

Then, we introduce the new control inputs, u vi and u ωi , given by

u vi := -d vi ϕ (θ i )ϑ vi -p vi ϕ (θ i )e i , (7a) 
u ωi := -d ωi ϑ ωi -p ωi e θi + α i (t, θ i , e i ) , (7b) 
where ϕ(θ i ) := [cos(θ i ), sin(θ i )] , d vi , p vi , d ωi , and p ωi are positive scalar control gains, and the variables ϑ vi and ϑ ωi are defined as the outputs of the dynamical systems qvi = -a vi (q vi + zi ) , a vi > 0 (8a)

ϑ vi = q vi + zi , (8b) 
and qωi = -a ωi (q ωi + θ i ) , a ωi > 0 (9a)

ϑ ωi = q ωi + θ i , (9b) respectively. 
The function α i is designed to be a δ-persistently exciting function [START_REF] Panteley | Relaxed persistency of excitation for uniform asymptotic stability[END_REF]. Let

α i (t, θ i , e i ) := k αi f i (t)ϕ ⊥ (θ i )e i , (10) 
where

k αi > 0, ϕ ⊥ (θ i ) = [-sin(θ i ) cos(θ i )] is the annihilator of ϕ(θ i ), i.e., ϕ (θ i )ϕ ⊥ (θ i ) = ϕ ⊥ (θ i )ϕ(θ i ) = 0.
The function f i : R ≥0 → R is constructed to be twice continuously differentiable, and such that f i , ḟi , fi ∈ L ∞ , lim t→∞ f i (t) = 0, and lim t→∞ ḟi (t) = 0. This smooth timevarying function is included in the controller in order to overcome the obstacle that poses the robots' nonholonomy to asymptotic stabilization [START_REF] Brockett | Asymptotic stability and feedback stabilization[END_REF], [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF].

The controller ( 7) is reminiscent of proportional-derivative based controllers that rely on velocity measurements [START_REF] Nuño | Leaderless consensus-based formation control of multiple nonholonomic mobile robots with interconnecting delays[END_REF]. In the current scenario, however, since only position and orientation are available for measurement, the controllers rely on approximate differentiation of the Cartesian positions zi and orientation θ i . These filter dynamics follow the seminal idea reported in [START_REF] Kelly | A simple set-point robot controller by using only position measurements[END_REF].

Under the action of the controller (7) the closed-loop equations are given by the two interconnected systems,

Σ vi :    żi = ϕ(θ i )v i , vi = -d vi ϕ (θ i )ϑ vi -p vi ϕ (θ i )e i , θvi = -a vi ϑ vi + ϕ(θ i )v i , (11) 
and

Σ ωi :    θi = ω i , ωi = -d ωi ϑ ωi -p ωi e θi + α i (t, θ i , e i ) , θωi = -a ωi ϑ ωi + ω i . (12) 
On one hand, since ϕ(•) is bounded, system Σ vi may be considered as if it is decoupled from Σ ωi . Hence forming a cascaded system [START_REF] Loría | From feedback to cascade-interconnected systems: Breaking the loop[END_REF]. On the other hand, system Σ ωi can be seen as a stable "filter" with a δ-persistently-exciting input α i , i.e., α i is persistently exciting for all e i = 0 [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF]. Such stabilization mechanism overcomes the effects of the nonholonomy -cf. [START_REF] Loría | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF].

The excitation in α i is propagated throughout the system Σ vi via θ i , thereby ensuring the convergence of e i to zero and, consequently, of α i itself. That is, the excitation is maintained while, and only while the errors e i are away from the origin.

We are now ready to state the main result. Theorem 1: Consider a swarm of N differential wheeled robots modeled as ( 1) and ( 2) and suppose that velocities v i and ω i are not available for measurement. Then, if the interconnection graph is undirected and connected, the controller given by ( 6)- [START_REF] Yang | Smooth time-varying formation control of multiple nonholonomic agents[END_REF] ensures that (4) holds for all initial conditions. Proof: Consider the following function

V := 1 2 N i=1   1 p vi v 2 i + d vi p vi |ϑ vi | 2 + 1 2 j∈Ni a ij |z i -zj | 2   ,
which is positive definite and radially unbounded in the space of (v, ϑ v , e). Evaluating the total derivative, V, along the trajectories of Σ vi in [START_REF] Dong | Consensus of multiple nonholonomic systems[END_REF], we obtain

V = - N i=1 d vi a vi p vi |ϑ vi | 2 ,
for which we used [4, Lemma 6.1] to obtain

1 2 N i=1 j∈Ni a ij ( żi -żj ) (z i -z j ) = N i=1 j∈Ni a ij ż i (z i -z j ).
Since V ≥ 0 and V ≤ 0 then ϑ vi ∈ L 2 and zizj , v i , ϑ vi ∈ L ∞ , for any i ≤ N and j ∈ N i . From [START_REF] Dong | Consensus of multiple nonholonomic systems[END_REF], it also holds that vi , θvi ∈ L ∞ .

Consider now the function

W := 1 2 N i=1   1 p ωi ω 2 i + d ωi p ωi ϑ 2 ωi + 1 2 j∈Ni a ij |θ i -θ j | 2  
and evaluate its total derivative, Ẇ, along the trajectories of Σ ω in [START_REF] Cheng | Robust finitetime consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback[END_REF] with α i = 0. We obtain [START_REF] Cheng | Robust finitetime consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback[END_REF], with α i = 0, we have that boundedness of these signals implies that ωi and θωi are also bounded. Therefore, after Babȃlat's Lemma we have

Ẇ = - N i=1 d ωi a ωi p ωi ϑ 2 ωi ≤ 0, which implies that ϑ ωi ∈ L 2 ∩ L ∞ , while ω i and |θ i -θ j | ∈ L ∞ . From
lim t→∞ ϑ ωi (t) = 0.
Next, invoking Lemma 1 in the Appendix, on the system (16) as the last equation in [START_REF] Cheng | Robust finitetime consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback[END_REF], with state x = ϑ ωi and input u = ω i we conclude that, also,

lim t→∞ ω i (t) = 0.
Moreover,

lim t→∞ t 0 ωi (t) = lim t→∞ ω i (t) -ω i (0) = -ω i (0), and, since ωi = -d ωi θωi -p ωi j∈Ni a ij (ω i -ω j ), ωi ∈ L ∞ .
Hence, ωi is uniformly continuous and invoking Barbȃlat Lemma we conclude that lim t→∞ ωi (t) = 0, so, from [START_REF] Cheng | Robust finitetime consensus formation control for multiple nonholonomic wheeled mobile robots via output feedback[END_REF] with α i ≡ 0, we obtain lim t→∞ e θi (t) = 0. In summary, provided that α i ≡ 0, we have (ω i , θ i , ϑ θi ) → (0, θ c , 0).

If α i ≡ 0, note that since f i (t), e i and ϕ ⊥ (θ i ) are bounded, so is α i -see Eq. ( 10). This and the fact that Σ ω is a marginally stable linear time invariant system imply with input α i that ωi , ω i ∈ L ∞ , by Proposition 3 in [START_REF] Wang | Integral-cascade framework for consensus of networked Lagrangian systems[END_REF], so e θi ∈ L ∞ .

Next, we center our attention in the proof that e i converges to zero. So far we have established that v i , vi , ϑ vi , θvi , e i , ω i , ωi and e θi are bounded and that ϑ vi , ϑ ωi ∈ L 2 . Now, since d dt ϕ(θ i ) = ϕ ⊥ (θ i )ω i , boundedness of θvi , vi and ω i imply boundedness of θvi . Therefore, invoking Lemma 1 in the Appendix, with x = ϑ vi , which satisfies ϑ vi → 0, and u = ϕ(θ i )v i , we conclude that

lim t→∞ ϕ(θ i )v i (t) = 0, so lim t→∞ v i (t) = 0.
On the other hand,

lim t→∞ t 0 vi (t) = lim t→∞ v i (t) -v i (0) = -v i (0), and vi = -ϕ (θ i ) d vi θvi +p vi ėi -ω i ϕ ⊥ (θ i ) d vi ϑ vi +p vi e i (13) 
is bounded since so are all the signals on the righthand side of the previous equation. Thus, by Barbȃlat Lemma, lim t→∞ vi (t) = 0. This and [START_REF] Dong | Consensus of multiple nonholonomic systems[END_REF], in turn, imply that lim t→∞ θvi (t) = 0 and that lim t→∞ ϕ (θ i (t))e i (t) = 0.

Finally, we establish that ϕ ⊥ (θ i (t))e i (t) → 0. To that end, we first compute the derivative of vi ; we have

v (3) i = -ϕ (θ i ) d vi θvi + p vi ëi -2ω i ϕ ⊥ (θ i ) d vi θvi + p vi ėi + ω 2 i ϕ(θ i ) -ωi ϕ ⊥ (θ i ) d vi ϑ vi + p vi e i .
We note that v

(3) i is bounded since so are all the terms on the right-hand side of the previous equation. Thus, vi is uniformly continuous and lim t→∞ vi (t) = 0. Invoking systematically Barbȃlat Lemma one also obtains that v

(3) i , v (4) 
i and ϑ

(3) vi converge to zero. Furthermore, from [START_REF] Nuño | Leaderless consensus-based formation control of multiple nonholonomic mobile robots with interconnecting delays[END_REF] it follows that the term ω i ϕ ⊥ (θ i )e i converges to zero. Moreover, on one hand, ϕ (θ i )e i = 0 ⇔ e i = cϕ ⊥ (θ i ), for any c ∈ R, and, on the other hand, ϕ ⊥ (θ i )ϕ ⊥ (θ i ) = 1, then it also follows that ω i converges to zero. This in turn implies that ϑ ωi and that θωi converge to zero; this holds for α i ≡ 0.

Finally, we compute

ωi = -d ωi θωi -p ωi ėθi -k αi ω i f i ϕ (θ i )e i + k αi f i ϕ ⊥ (θ i ) ėi + k αi ḟi ϕ ⊥ (θ i )e i ( 14 
)
and we replace it in

v (4) i = -ϕ (θ i ) d vi ϑ (3) vi + p vi e (3) i -3ω i ϕ ⊥ (θ i ) d vi θvi + p vi ëi + 3 ω 2 i ϕ(θ i ) -ωi ϕ ⊥ (θ i ) d vi θvi + p vi ėi + 3ω i ωi ϕ(θ i ) + ω 3 i ϕ ⊥ (θ i ) d vi ϑ vi + p vi e i -ωi ϕ ⊥ (θ i ) d vi ϑ vi + p vi e i . (15) 
Note that, since v i , ω i , ϑ ωi , θωi , ϕ (θ i )e i , and v i converge to zero all the terms on the right-hand side of ( 14), except for ḟi ϕ ⊥ (θ i )e i , converge to zero. It follows that all terms on the right-hand side of (15) except for p vi k αi ḟi |ϕ ⊥ (θ i )e i | 2 , tend to zero. Since, also, v

→ 0 and lim t→∞ ḟ (t) = 0, necessarily |ϕ ⊥ (θ i )e i | 2 → 0. Thus, α i vanishes and the limits in (4) follow.

IV. SIMULATIONS

In order to illustrate our theoretical findings we performed some numerical simulations in Simulink TM of Matlab TM . The simulation setup consists in six robots being required to meet at a rendez-vous point that is a priori unknown, but forming a pattern. In this case, an hexagon, that is defined by setting the offsets (δ xi , δ yi ) to the values showed in Table I; in the latter table, the initial conditions of each robot are also specified. x i (0) y i (0)

θ i (0) δx i δy i 1 2 5 0 2 0 2 7 5.5 -π/4 1 2 3 7 3.5 -pi/2 -1 2 4 3 2 π/4 -2 0 5 1 3.5 π/2 -1 -2 6 3 2 π/4 1 -2
It is assumed that the graph topology is given by the Laplacian

L :=         3 -1 0 -1 0 -1 -1 2 -1 0 0 0 0 -1 3 -1 0 -1 -1 0 -1 3 -1 0 0 0 0 -1 2 -1 -1 0 -1 0 -1 3        
and is illustrated in Fig. 3.

In Fig. 4 is appreciated the good performance of the closed-loop system; the robots converge to the desired hexagon-shaped formation. The final, coinciding, orientations of the robots are also depicted, represented by arrows. The time responses of the systems' trajectories are showed in Figs. 5 and6. In the former, we show the time evolution This paper reports a novel controller for the consensus formation control of nonholonomic robots that do not have velocity sensors. The stabilization technique relies, on one hand, on a dynamic controller that injects damping through an approximate-derivatives filter and back-propagates it throughout the plant. On the other hand, to deal with the nonholonomic restrictions, a δ-persistently-exciting term is properly designed. Assuming that the interconnection graph is static, undirected and connected, the proposed scheme ensures consensus both in position and orientation for arbitrary initial conditions. Present research efforts are focused on the design of output-feedback consensus controllers in the presence of measurement delay.

APPENDIX

The proofs rely on the following expectable statement for which we present a short proof, for the sake of completeness.

Lemma 1: Consider system

ẋ = -ax + u, y = x, (16) 
where a > 0 and x, u, y ∈ R n are the state, the input and the output, respectively. If y ∈ L ∞ ∩ L 2 and u, u ∈ L ∞ , then lim t→∞ u(t) = 0.

Proof: Clearly, from ( 16), one has that y, u ∈ L ∞ implies that ẋ ∈ L ∞ . This last and the fact x ∈ L ∞ ∩ L 2 ensures, by Barbȃlat Lemma, lim 

  Similarly, the position and orientation errors are collected in the vectors e = e 1 • • • e N and e θ = [e θ1 • • • e θN ] = Lθ, respectively. For further development, we also stress that e = (L ⊗ I 2 )z, I 2 :

Fig. 3 .

 3 Fig. 3. Graph representation
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 456 Fig. 4. Path followed by the robots on the plane

  dσ = lim t→∞ x(t) -x(0) = -x(0) and ẍ ∈ L ∞ because ẋ, u ∈ L ∞ .Therefore, invoking again Barbȃlat Lemma, [24, Lemma 8.2], we have that lim t→∞ ẋ(t) = 0. Hence, lim t→∞ u(t) = 0, as required.