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Decentralized partial-consensus control of nonholonomic vehicles over networks with interconnection delays

. We establish uniform global asymptotic stability for the closed-loop system.

I. INTRODUCTION

In decentralized, or distributed, solutions to consensus problems, the control input for each node depends only on local information provided from a given set of nodes in the network called neighbors. The structure of information exchange between the neighbors is specified using a communication graph [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF]. The most important challenges when proposing decentralized solutions for consensus problems rises, first, when considering a constrained communication between the neighbors. The later includes unidirectional flow of information [START_REF] Ren | Distributed multi-vehicle coordinated control via local information exchange[END_REF], [START_REF] Nuño | Synchronization of networks of nonidentical Euler-Lagrange systems with uncertain parameters and communication delays[END_REF], unreliable communication with respect to time [START_REF] Ren | Consensus seeking in multiagent systems under dynamically changing interaction topologies[END_REF], [START_REF] Martin | Continuous-time consensus under persistent connectivity and slow divergence of reciprocal interaction weights[END_REF], and delayed communication [START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF], [START_REF] Nuño | Consensus in networks of nonidentical Euler-Lagrange systems using P+d controllers[END_REF], to name only few. The second important challenge is related to the individual dynamics of the nodes. That is, the node's dynamics can be linear [START_REF] Li | Consensus of multi-agent systems with general linear and lipschitz nonlinear dynamics using distributed adaptive protocols[END_REF], nonlinear [START_REF] Hui | Finite-time semistability and consensus for nonlinear dynamical networks[END_REF], identical for all the network or heterogeneous [START_REF] Panteley | Synchronization and dynamic consensus of heterogeneous networked systems[END_REF], [START_REF] Wieland | An internal model principle for consensus in heterogeneous linear multi-agent systems[END_REF].

An example of strongly nonlinear network is that of nonholonomic mobile robots. Indeed, the nonholonomic restriction, in this case, prevents the applicability of smooth autonomous controllers to solve consensus problems [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF]. As a consequence, different decentralized solutions for consensus problems in networks of nonholonomic mobile robots are proposed in the literature. In [START_REF] Dimarogonas | On the rendezvous problem for multiple nonholonomic agents[END_REF], full consensus, that is, in terms of both position and orientation is solved using discontinuous and time-invariant controllers. In [START_REF] Yang | Smooth time-varying formation control of multiple nonholonomic agents[END_REF] and [START_REF] Peng | Distributed consensusbased formation control for multiple nonholonomic mobile robots with a specified reference trajectory[END_REF], the consensus problem is solved using smooth timevarying control laws that lead the agents to a given formation using only their orientation. The result in [START_REF] Peng | Distributed consensusbased formation control for multiple nonholonomic mobile robots with a specified reference trajectory[END_REF], is extended in [START_REF] Nuño | Leaderless consensus-based formation control of multiple nonholonomic mobile robots with interconnecting delays[END_REF] in the presence of smooth time-varying communication delays while considering a complete dynamical model of the vehicles. The same problem is addressed in [START_REF] Dong | Consensus of multiple nonholonomic systems[END_REF] using timevarying controllers while assuming a constant time delay affecting the flow of information between the agents. In [START_REF] Ajorlou | Distributed consensus control of unicycle agents in the presence of external disturbances[END_REF] the same problem is solved in the presence of bounded disturbances with unknown dynamics in all the input channels. Most of the works proposing smooth time-varying controllers for nonholonomic vehicles, however, employ a simplified first order model that considers exclusively the kinematics and, to the best of our knowledge, none of them guarantee uniform convergence of the consensus errors, let alone uniform asymptotic stability of the consensus set.

In this paper we present a partial-consensus controller for a network of nonholonomic mobile robots and we establish uniform global asymptotic stability for the closedloop system. In particular, it is established that the positions converge towards a specified geometric pattern around an a priori unknown center, while the orientations of each vehicle converge to a specified reference. It is assumed that the vehicles communicate over a network having a connected and undirected topology graph. In addition, it is assumed that the transfer of information between agents is affected by time-varying delays which are only bounded and not necessarily differentiable. Such time delays appear naturally, e.g., when the systems communicate over wireless networks or the Internet [START_REF] Abdessameud | Synchronization of Lagrangian systems with irregular communication delays[END_REF].

In contrast to related literature, the vehicle's model that we consider includes both the vehicle's kinematics and dynamics. Our controller is smooth time-varying, of the δ-Persistently-Exciting class - [START_REF] Loria | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF], [START_REF] Loria | UGAS of skew-symmetric time-varying systems: application to stabilization of chained form systems[END_REF], [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF], and extends the one proposed in [START_REF] Maghenem | Consensus of multi-agent systems with nonholonomic restrictions via Lyapunov's direct method[END_REF] to the case where time-varying communication delays are present. Another significant contribution of this paper is to establish uniform global asymptotic stability.

The rest of the paper is organized as follows. In the next section we describe the networked systems' model and we formulate the problem at hand. Our main result is presented in Section III and some simulation results are provided in Section IV. Concluding remarks are presented in Section V.

II. PROBLEM FORMULATION

Let us consider a swarm of N autonomous vehicles modeled as force-controlled unicycles, that is,

ẋi = v i cos(θ i ) (1a) ẏi = v i sin(θ i ) (1b) θi = ω i , i ≤ N (1c) vi = u vi (2a) ωi = u ωi , (2b) 
where x i and y i denote the Cartesian coordinates of a fixed point on the vehicle relative to a fixed frame, θ i denotes its orientation with respect to the X-axis, and v i and ω i denote the forward and angular velocities, respectively, and (u vi , u ωi ) correspond to the control inputs. That is, it is considered that the vehicles are force-controlled. This model corresponds, in particular, to differential-drive robots, in which case, there exists a direct relation between the wheels' input torques and (u vi , u ωi ). Other force-controlled models include dynamics equations in Lagrangian form [START_REF] Do | A global output-feedback controller for simultaneous tracking and stabilization of unicycle-type mobile robots[END_REF], but since the latter is usually fully-actuated, it may be assumed that a preliminary feedback linearizing controller is applied to obtain [START_REF] Ren | Distributed consensus in multivehicle cooperative control[END_REF]. Indeed, for the ith robot, it is assumed that u vi and u ωi may be defined as functions of own state variables and time, as well as on the coordinates of its neighbors. It is furthermore assumed that the interconnections with the latter form a connected, undirected, and static graph whose connectivity is defined by the Laplacian matrix

L := [ℓ ij ] ∈ R N ×N , where ℓ ij = j∈Ni a ij i = j -a ij i = j (3) 
and a ij ≥ 0; a ij > 0 if the ith and jth vehicles communicate with each other and a ij = 0 otherwise. Since the graph is undirected, a ij = a ji , so L is symmetric and, by construction, L1 N = 0, where 1 N ∈ R N . Also, L has a single zero-eigenvalue and the rest of the spectrum of L is positive. Thus, rank(L) = N -1.

For such a network of N vehicles we address the following consensus-formation control problem. Let (x c , y c ) ∈ R 2 denote the Cartesian coordinates of an a prioiri unknown center in the plane and, for each robot, let (δ xi , δ yi ) be given. Then, we define partial consensus as the goal of rendering the set

S pc := i≤N v i = 0, ω i = 0, θ i = θ di , [x i -δ xi ] = x c , [y i -δ yi ] = y c
uniformly globally asymptotically stable.

Partial consensus, as defined above, comprises the property that the robots stabilize in formation around an unknown Cartesian point. That is the property that

lim t→∞ x i (t) := x c + δ xi , lim t→∞ y i (t) := y c + δ yi , (4) lim t→∞ θ i (t) := θ di , ∀ i ≤ N (5)
which means, only, non-uniform convergence. We solve the partial consensus problem as one of stabilization. To that end, we first introduce a dynamical model of the interconnected vehicles that is more suitable for control. Consider the error coordinates

z i := x i -δ xi y i -δ yi , z := z ⊤ 1 • • • z ⊤ N ⊤ (6) 
and, to compact the notation, let us introduce as well the vec-

tors θ = [θ 1 • • • θ N ] ⊤ ∈ R N ; v = [v 1 • • • v N ] ⊤ ∈ R N ; ω = [ω 1 • • • ω N ] ⊤ ∈ R N , Φ(θ) = blockdiag[φ(θ i )] ∈ R 2N ×N , with φ(θ i ) = [cos(θ i ) sin(θ i )] ⊤ ,

and the control inputs

u v = [u v1 • • • u vN ] ⊤ ∈ R N and u ω = [u ω1 • • • u ωN ] ⊤ ∈ R N .
In terms of these variables the dynamics of the overall openloop system is

ż = Φ(θ)v (7a) v = u v (7b) θ = ω (7c) ω = u ω . ( 7d 
)
The first two equations determine the translational dynamics while the second pair defines the angular motion, so partial consensus is reached if the equilibrium point

{(z, θ, v, ω)} = {(1 N ⊗ z c , θ d , 0, 0)}, where 1 N = [1 • • • 1] ⊤ and z c := [x c y c ] ⊤ corresponds
to the (non-a priori defined) center of the formation pattern, is uniformly globally asymptotically stable. Now, the condition z = 1 N ⊗ z c may be characterized in terms of the relative position errors between each vehicle and its neighbors. For this purpose, we introduce the errors

e i = φ(θ i ) ⊤ j∈Ni a ij (z i -z j ), (8) 
s i = φ(θ i ) ⊥⊤ j∈Ni a ij (z i -z j ) (9) 
φ(θ i ) ⊥ = [sin(θ i ) -cos(θ i )] ⊤ or, in compact form, e =Φ(θ) ⊤ Lz, s = Φ(θ) ⊥⊤ Lz, (10) 
where

L := L ⊗ I 2 , Φ(θ) ⊥ = diag[φ(θ i ) ⊥ ] ∈ R 2N ×N , e := [e ⊤ 1 • • • e ⊤ N ] ⊤ , and s := [s ⊤ 1 • • • s ⊤ N ] ⊤ .
Note that since the matrix Φ(θ) Φ(θ) ⊥ is non singular and the communication graph is connected, we have

Lz = 0 ⇔ (e, s) = (0, 0) (11) 
or, equivalently, (e, s) = (0, 0) if and only if z = 1 N ⊗ z c . Therefore, the partial consensus objective is reached if and only if the equilibrium {(v, e, s, ω, θ)} = {(0, 0, 0, 0, θ d )} is rendered uniformly globally asymptotically stable. We establish this next, via a decentralized controller.

III. MAIN RESULTS

In [START_REF] Maghenem | Consensus of multi-agent systems with nonholonomic restrictions via Lyapunov's direct method[END_REF], the following δ-persistently-exciting controller was proposed to solve the partial-consensus problem in the absence of delays:

u v = -K dt v -K pt e, (12) 
u ω = -K dθ ω -K pθ θ -p(t)κ(s, e), (13) 
where K dt , K pt , K dθ , and K pθ are diagonal positive definite matrices,

θ := θ -θ d , for each i ≤ N , e := [e 1 , • • • e N ] ⊤ and s := [s 1 , • • • s N ] ⊤ are the measured errors, κ(s, e) = 1 2 [s 2 1 + e 2 1 , • • • , s 2 N + e 2 N ] ⊤ , ( 14 
)
and p is constructed as a function with persistently exciting first derivative that is, such that there exist T p and µ p > 0 such that

t+Tp t | ṗ(τ )|dτ ≥ µ p ∀ t ≥ 0. (15) 
Persistency of excitation is a well-known property mostly used in adaptive control and system identification; it is used to ensure that the parameter estimation errors converge to zero [START_REF] Ioannou | Robust adaptive control[END_REF]. Here, the control mechanism that overcomes the structural obstruction imposed by the nonholonomic nature of the unicycle is a property called δ-persistency of excitation [START_REF] Loria | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems[END_REF] and it is used in the control action to overcome the difficulties due to the nonholonomy -cf. [START_REF] Loria | A new persistency-of-excitation condition for UGAS of NLTV systems: Application to stabilization of nonholonomic systems[END_REF]. Thus, the term p(t)κ(s, e) is an essential component of the control law [START_REF] Lin | Necessary and sufficient graphical conditions for formation control of unicycles[END_REF], which works in a similar fashion as persistency of excitation does in adaptive control. More precisely, the control action relies on the term p(t)κ(s, e) being δ-persistently-exciting, that is, on the existence, for any δ > 0, of T δ and µ δ > 0 such that

e s ≥ δ =⇒ t+T δ t |κ(e, s)p(τ )|dτ ≥ µ δ ∀ t ≥ 0.
(16) In view of ( 14), the property ( 16) may be interpreted as p(t)κ(s, e) being persistently exciting "as long as" the error (e, s) is away from zero, that is, while consensus has not been reached. It is important to notice, however, that (e, s) in the integrand above are elements of R N ×R N ; the integral above is not evaluated along the system's trajectories.

In this paper, we employ the following certaintyequivalence controller that stabilizes the system in the presence of time-varying bounded measurement delay (boundedness of the variation of the delay is not needed): 

u v = -K dt v -K pt e d , (17) 
u ω = -K dθ ω -K pθ θ -p(t)κ(s d , e d ), (18) 
e di = φ(θ i ) ⊤ j∈Ni a ij (z i (t) -z j (t -T ij (t))), (19) 
s di = φ(θ i ) ⊥⊤ j∈Ni a ij (z i (t) -z j (t -T ij (t))). ( 20 
)
Proposition 1 (Main result) Consider the system (7) in closed loop with the controller ( 17)-( 18) with K dt , K pt , K dθ , and K pθ diagonal positive definite. Assume that there exists b p > 0 such that

max |p| ∞ , | ṗ| ∞ , |p| ∞ , |p (3) | ∞ ≤ b p (21)
where, |ϕ| ∞ := sup t≥0 |ϕ(t)| and, moreover, ṗ(t) is persistently exciting with excitation parameters (T p , µ p ). If, in addition, there exists T * > 0 such that T ij (t) ∈ [0, T * ] for all i, j ≤ N , t ≥ 0 and the matrices K dt and K pt satisfy

1 -1 + N 2 ā2 T * λ max (K pt K -1 dt ) ≥ 0, (22) 
where ā := max{a ij }, then {(e, s, v, θ, ω)} = {(0, 0, 0, 0, 0)} is uniformly globally asymptotically stable.

Sketch of proof. Firstly, we write the error-dynamics equations. For e and s, these are obtained by differentiating on both sides of the the two equations in [START_REF] Hui | Finite-time semistability and consensus for nonlinear dynamical networks[END_REF] and using (7a) and

Φ(θ) = -Φ(θ) ⊥ ω, Φ(θ) ⊥ = Φ(θ)ω, (23) 
where

ω := diag[ω i ] ∈ R N ×N , to obtain ė = -ωs + Φ(θ) ⊤ LΦ(θ)v (24) ṡ = ωe + Φ(θ) ⊥⊤ LΦ(θ)v. ( 25 
)
Then, by direct substitution of ( 17) and ( 18) in ( 7b) and (7d) respectively, we obtain

v = -K dt v -K pt e d ( 26 
) θ = ω (27a) ω = -K dθ ω -K pθ θ -p(t)κ(s d , e d ). (27b) 
For further development, it is useful to stress that, after ( 19) and ( 20), e d and s d may be expressed in function of e and s as

e d = e + Φ(θ) ⊤ A( żt ), (28a) 
s d = s + Φ(θ) ⊥⊤ A( żt ) (28b) 
where żt is short notation for żt (∆) := ż(t + ∆), with ∆ ∈ [-T * , 0] and

A( żt ) :=    A 1 ( żt ) . . . A N ( żt )    , A i ( żt ) = j∈Ni a ij t t-Tji(t) żj (τ )dτ. (29) 
Furthermore, κ(e d , s d ) in (27b) may be expressed as

κ(e d , s d ) = κ(e, s) + κ d (e, s, θ, żt ) (30) 
where

κ d = 1 2    A ⊤ 1 A 1 + 2e 1 φ ⊤ 1 A 1 + 2s 1 φ ⊥⊤ 1 A 1 . . . A ⊤ N A N + 2e N φ ⊤ N A N + 2s N φ ⊥⊤ N A N    . ( 31 
)
That is, in the absence of delays, i.e., with A ⊤ i ( żt ) = 0, we recover the error-dynamics equations from [START_REF] Maghenem | Consensus-based formation control of nonholonomic robots using a strict Lyapunov function[END_REF].

Next, for the purpose of analysis, let e θ := θ + q(t)κ(s, e), e ω := ω + q(t)κ(s, e)

where q : R ≥0 → R N ×N is a differentiable function defined dynamically as

q + K dθ q + K pθ q = p(t)I N (33) 
and, in turn, K dθ and K pθ are diagonal positive definite matrices. We stress that, after [START_REF] Wang | Simultaneous stabilization and tracking of nonholonomic mobile robots: A Lyapunov-based approach[END_REF] 

there exists b q > 0 such that max |q| ∞ , | q| ∞ , |q| ∞ , |q (3) | ∞ ≤ b q (34)
and, since q is solution to

q (3) + K dθ q + K pθ q = ṗ(t)I N
and ṗ is persistently exciting by assumption, so is q - [START_REF] Ioannou | Robust adaptive control[END_REF].

In the new equivalent coordinates (32), the closed-loop dynamics equations become

Ẋt =   -K dt -K pt 0 0 0 qκ -ēω 0 -qκ + ēω 0   X t +   0 Φ ⊤ L Φ ⊥⊤ L   Φv -   K pt Φ ⊤ 0 0   A( żt ) (35a) 
Ẋr = 0 I N -K pθ -K dθ X r + q q ēΦ ⊤ + sΦ ⊥⊤ LΦv - 0 p κ d (35b)
where

κ :=diag[s 2 i +e 2 i ], ēω :=diag[e ωi ], X t := [v ⊤ e ⊤ s ⊤ ] ⊤ and X r := [e ⊤ θ e ⊤ ω ]
⊤ . The rest of the proof consists in establishing uniform global asymptotic stability of the origin for (35). This may be accomplished by arguing as in the proof of the generalized Matrosov's theorem [START_REF] Loria | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems[END_REF]. First, we need to establish uniform global stability (namely, that the solutions are uniformly globally bounded and the origin is uniformly Lyapunov stable). This, in turn, may be accomplished in two separate steps, for (35a) and (35b). For the former, we use a Lyapunov-Krasovskiȋ functional that is reminiscent of the strict Lyapunov function proposed in [START_REF] Maghenem | Consensus-based formation control of nonholonomic robots using a strict Lyapunov function[END_REF] for the system (24)- [START_REF] Fridman | Tutorial on Lyapunov-based methods for time-delay systems[END_REF] subject to (e d , s d ) = (e, s), that is, without delays. Let

V (v, z, żt ) = v ⊤ K -1 pt v + z ⊤ Lz + 0 -T * t t+θ | ż(τ )| 2 dτ dθ.
(36) After [22, Lemma 1], we have

λ 2 (L)z ⊤ Lz ≤ |e| 2 + |s| 2 ≤ λ N (L)z ⊤ Lz, (37) 
so, in view of the inequality

0 -T * t t+θ | ż(τ )| 2 dτ dθ ≤ T * t t-T * | ż(τ )| 2 dτ,
it follows, according to [START_REF] Fridman | Tutorial on Lyapunov-based methods for time-delay systems[END_REF], that the functional V is positive definite and radially unbounded with respect to X t . Furthermore, the time-derivative of V along the trajectories of (35a) yields which is negative semidefinite. This establishes uniform global stability for (35a) and, integrating on both sides of V ≤ -v ⊤ K -1 pt K dt v, we also conclude that v and Y (z t ), consequently also κ d , tend to zero asymptotically. Note, moreover, that (35a) is input-to-state stable with respect to the converging input (v, κ d ), so uniform global stability follows.

V ≤ -v ⊤ K -1 pt K dt v -Y ( żt ) (38) 
Y ( żt ) := 1 2ā 2 N T * N j=1 N i=1 a 2 ij t t-Tij żi (τ )dτ
To establish uniform convergence, according to [START_REF] Loria | A nested Matrosov theorem and persistency of excitation for uniform convergence in stable non-autonomous systems[END_REF], we need to find a series of functions V i and ψ i such that Vi ≤ ψ i (t, X t , X r ) and having the properties that each ψ i ≤ 0 on the set where ψ j = 0 for all j ≤ i and the only point at which ψ i (t, X t , X r ) ≡ 0, ∀ i, is the origin. This property is verified as follows.

Let the first function V 1 , correspond to V (v, z, żt ) defined in (36). Then,

ψ 1 := -v ⊤ K -1 pt K dt v -Y ( żt ). Now, let V 2 (e, v) := e ⊤ v; its total derivative, V2 = v ⊤ Φ ⊤ LΦv + s ⊤ qκv -e ⊤ K dt v -e ⊤ K pt e -v ⊤ ēω s, satisfies V2 = -e ⊤ K pt e =: ψ 2 ≤ 0 on the set {ψ 1 = 0}.
Then, we introduce

V 3 (e θ , e ω ) = c 2 e ⊤ ω e ω + e ⊤ θ K pθ e θ + e ⊤ θ e ω . (39) 
Note that Y ( żt ) = 0 implies that κ d = 0 hence, the total derivative of V 3 , restricted to the set {Y ( żt ) = 0}, satisfies

V3 ≤ - c 2 4 e ⊤ ω K dθ e ω + 1 4 e ⊤ θ K pθ e θ + c 2 2 ēΦ ⊤ LΦv 2 + c 2 2 sΦ ⊥⊤ LΦv 2 , (40) 
That is,

V3 ≤ - 1 4 c 2 e ⊤ ω K dθ e ω + e ⊤ θ K pθ e θ ≤ 0
on the set {ψ 1 = 0} ∩ {ψ 2 = 0}, so we define ψ 3 := -1 4 c 2 e ⊤ ω K dθ e ω + e ⊤ θ K pθ e θ and we carry on. Let V 41 (t, e, s) := e ⊤ q(t)s; its total derivative yields V41 =e ⊤ qsv ⊤ Φ ⊤ LΦ qss ⊤ κ q2 s + e ⊤ q2 κe 

The last inequality follows from the property that q is persistently exciting. On the other hand, V42 =κ ⊤ 2 T t+T t q(s) 2 dsκ + κ ⊤ q(t) 2 κ + 2κ ⊤ Υ ēΦ ⊤ LΦv + sΦ ⊥⊤ LΦv and, by virtue of the fact that κ ⊤ q(t) 2 κ ≤ s ⊤ q(t) 2 κs + b 2 q λ N (L)V 2 K -1 pt e ⊤ K pt e, This controller applies in the common scenario in which a group of robots, equiped with global positioning sensors, establish a bidirectional communication over a wireless network. The communication, however, may be affected by diffent time-varying delays. Our main result, however, does not account for possible obstacles and it does not apply if some states are not measurable. Current research is being carried in this direction.
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