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Data Driven model for chaotic systems
Retrieving the invariants of a chaotic systems a-posteriori from a model obtained 
by data-driven strategies is important to: i) assess the underlying dynamical 
systems and ii) evaluate performances of new algorithms in machine learning

Aguirre, L. A., and S. A. Billings. "Retrieving 
dynamical invariants from chaotic data using 
NARMAX models." International Journal of 
Bifurcation and Chaos (1995)

Recover Poincaré section of modified 
van der Pol oscillator with NARMAX

Linear and approximately linear 
regions compared to quasi-
invariant sets. (HAVOK)

Brunton, S.L., et al. "Chaos as an intermittently 
forced linear system.”Nature 
communications (2017)

Lyapunov exponents in 
Kuramoto-Sivashinsky with 
RNN

Vlachas P.R., et al. "Backpropagation Algorithms 
and Reservoir Computing in Recurrent Neural 
Networks for the Forecasting of Complex 
Spatiotemporal Dynamics." (2019)
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Ergodic theory  
convergence criteria for dataset assessment
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I.I.D. assumption
Machine learning models are valid under the i.i.d. (independent identically 
distributed) assumption of the dataset. 


‣ sufficient but not necessary requirement to ensure consistency and error-
bounds of the model 


‣ a large i.i.d. dataset is representative of the whole data distribution

1
n

n

∑
i=1

Xi → 𝔼[X]

Low of large numbers

Shalizi, Cosma. "Advanced data analysis from an elementary point of view." 2013
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The Markov assumption states that: the future is independent of the past given the 
present. This assumption provides insights on the learnability of time series but does 
not provide insights on the amount of data required to learn.


In time-series, the i.i.d. assumption is substituted with the ergodic assumption:


‣ a single long time series becomes representative of the whole data-generating 
process

Ergodic assumption

1
n

n

∑
t=1

f(Xt+k−1
t ) → 𝔼[ f(Xk)]

Low of large numbers

for any reasonable function . Markov assumption is weaker than ergodic one.f
Shalizi, Cosma. "Advanced data analysis from an elementary point of view." 2013
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Ergodic time-series
The ergodic theorem asserts that for every continuous function , for (almost) all 
initial condition  with respect to the invariant measure . 


φ
x(0) ρ

lim
T→∞

1
T ∫

T

0
φ[ f tx(0)]dt = ∫ ρ(dx)φ(x)

We get ergodic convergence if


‣ Time-series are long enough to converge on the largest Lyapunov exponent 
independent to the initial condition . Require the Jacobian computation


‣ Time-series are long enough to converge the computation of the dimension of 
the probability measure . Fully data-driven 

‣ Time-series are long enough to converge he computation of the entropy  of 
the probability measure. Require partition of the support 

x(0)

ρ
h(ρ)

ρ

Ergodic theory says that 
a time average equals a 
space average. 

Eckmann, J-P., and David Ruelle. "Ergodic theory of chaos and strange attractors."  The theory of chaotic 
attractors. Springer, 1985.

Sensibility

Geometry

Information
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Correlation dimension
Measure of the dimensionality is defined by different, yet equivalent, criteria: fractal 
dimension, Hausdorff dimension, Lyapunov dimension (chaos theory) or intrinsic 
dimension (machine learning). 


Correlation dimension  estimates the dimension of the system as the effective 
space occupied by the time-series.

D2

C(ε) = lim
N→∞

1
N2

N

∑
i, j = 1
i ≠ j

Φ(ε − ∥xi − xj∥)

C(ε) = εD2

Correlation integral 
mean probability that the 
states at two different 
times are -closeε

Grassberger-Procaccia algorithm

Grassberger, Peter, and Itamar Procaccia. "Measuring the strangeness of strange attractors."  The Theory of 
Chaotic Attractors. Physica 9D, 1983
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Minimum length of the time-series

Eckmann, J-P., and David Ruelle. "Fundamental limitations for estimating dimensions and Lyapunov exponents in 
dynamical systems." Physica D: Nonlinear Phenomena (1992)

Given a precision , a time-series of known correlation dimension  requires N 
points for being fully explored

ε D2

N > ( D
ε )

D2/2
[1]

Baker, Gregory L., Gregory L. Baker, and Jerry P. Gollub. Chaotic dynamics: an introduction. Cambridge university 
press, 1996.

Essex, Christopher. "Correlation dimension and data sample size." Non-linear Variability in Geophysics. Springer, 
Dordrecht, 1991. 93-98.

N > 2(D2 + 1)D2

[2]

N >
R(2 − Q)
2(1 − Q)

2D2+1
[3]

[1]

[2]

[3]

Regardless of the criteria,  always depends exponentially on N D2



9

Machine learning modelling 
Introduce invariants to go beyond the ergodic limit
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Lorenz system test case

(σ, β, ρ) = (10,8/3,28)

D2 = 2.06 N ≈ 27000

·x = σ(y − x),
·y = x(ρ − z) − y,
·z = xy − βz .

Eckmann & Ruelle 
D/ε = 5 ⋅ 10−4

Developed by Edward Lorenz in 1963 to 
describe the atmospheric convection. One of 
the simplest chaotic dynamical system.

Correlation dimension Minimum length
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Data driven model
Long Short Time Memory (LSTM ) architecture state-of-art in physics to learn 
sequential informations . Two LSTM layers with 50 neurons in each layer and one 
fully connected layer (  parameters) employed to learn Lorenz chaotic 
attractor

1

*
∼ 31000

A new algorithm is now used to handle sequential informations in Natural Language Processing (Attentional 
Neural Network) but it has been never tested for physical systems
*
Hochreiter, and Schmidhuber. "Long short-term memory." Neural computation 9.8 (1997)1

xt

yt

zt

xt+Δt

yt+Δt

zt+Δt

Input LSTM cells FC Output

LSTM uses past information to 
predict the future state. The past 
information is condensed in a 
vector (memory) and updated 
with new, incoming observations 
at each iteration.

Training  with Adam optimizer and adaptive learning ratemin
θ

∥NNθ(xt) − xt+Δt∥2
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Numerical experiment

 dataset with  randomly 
sampled traj.  and  
models with different initialisation 

of the NN parameters.

1 1
N = 3000 100

 dataset with 1 randomly 
sampled traj.  and  

model for each dataset.

100
N = 3000 1

Sampling Model Performance

 dataset with  ergodic traj. 
 and  model for 

each dataset.

100 1
N = 27000 1

prediction error 
propagating 
training traj.

prediction error 
on an unseen 

traj.

prediction error 
on an unseen 

traj.
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Random vs Ergodic sampling

LSTM-based model is able to predict a chaotic dynamics (prediction time horizon
) also when trained on non ergodic time-series ( ).> 1/λ1 ≈ 1.1 N < 27000
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Random vs Ergodic sampling

Comparison between true dynamics and 
predicted one. In this numerical experiment the 

NN is used to propagate the time-series 
observed in the training stage. Training data: 

random time-series with N = 3000

Same experiment 
repeated 100 times with 
random initialization of 

the NN parameters

Short w/ 
propagation
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Random vs Ergodic sampling

Short w/ 
propagation

Repeating the numerical experiment but without 
propagation of the training time series, the 

resulting models are no longer satisfactory

Even with a loss 
, many models 

are neither chaotic nor 
unsteady 

< 10−4

Short w/o 
propagation
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Random vs Ergodic sampling

Short w/ 
propagation

Short w/o 
propagation

With an ergodic time-series and w/o propagation, the model generalise  i.c.∀

Ergodic



M. A. BucciAPS DFD 2020/ 2314

Random vs Ergodic sampling

Short w/ propagation

100 models trained with different 
i.c. of the parameters and the 
same trajectory ( )N = 3000

Short w/o propagation

100 models trained with different 
i.c. of the parameters and 
different trajectories ( )N = 3000

Ergodic

100 models trained with different 
i .c. of the parameters and 
different trajectories ( )N = 27000

Without an ergodic dataset and w/o 
propagation, the model errors are an 

order of magnitude higher
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Introducing invariants in the dataset
An ergodic window of observation of the system is rarely guaranteed in real-life 
applications. The number of time-steps required to reconstruct an high 
dimensional dynamics ( ) rapidly increases to several order of magnitude. 
Furthermore the back propagation of the gradients through an infinitely long time-
series is affected by the vanishing gradient issue.

D2 > 7

IID assumption is a sufficient but not necessary condition to ensure error bounds.

Is there a way to sample a chaotic system which allows us to use less data?

“if  is an unstable fixed point of the evolution, then the  function at  is an 
invariant measure, …” Eckmann & Ruelle (1985)

x δ x

The dynamics around fix points is important to “interpret” chaotic behaviours .1,2

Kawahara G., Uhlmann M., & Van Veen, L. (2012). “The significance of simple invariant solutions in turbulent 
flows”. Annual Review of Fluid Mechanics
1

Cvitanović, Predrag, Ruslan L. Davidchack, and Evangelos Siminos. "On the state space geometry of the 
Kuramoto–Sivashinsky flow in a periodic domain." SIAM Journal on Applied Dynamical Systems (2010).
2
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Sampling strategy
System Sampling Model Performance

 dataset with  ergodic traj. 
 and  model for 

each dataset.

300 1
N = 27000 1

 dataset with  randomly 
sampled traj.  and  

model for each dataset.

300 9
N = 3000 1

 dataset with  traj. 
 initialised from fix 

points (  for each fixed point) 
and  model for each dataset.

300 9
N = 3000

3
1

{E1, E2, E3} = {(0,0,0), ( β(ρ − 1), β(ρ − 1), (ρ − 1)), (− β(ρ − 1), − β(ρ − 1), (ρ − 1))}
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Model quality
Ergodic Random Structured

Outliers: models out 
D2 = 2.06 ± 0.3

Ergodic Random Structured

16% 42% 6%
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Dataset assessment

0.12 0.13 0.14 0.15 0.16 0.17 0.18

entropy

0

5

10

15

20

25

Ergodic

Random

Structured

The SVD entropy of the trajectories 
in the three dataset strategies 
reveals how the Structured dataset 
has the lowest entropy.

Varshavsky, Roy, et al. "Novel unsupervised feature filtering of biological data." Bioinformatics 22.14 (2006)1

The entropy for a time series is 
defined on the probability 
transition between embedded 
(through SVD) states. Low entropy:


‣ high predictability


‣ less information
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Model parameter assessment
The NN parameters are initialised with a 
gaussian distribution. After the training 
stage the parameters move to fit the data 
distribution. 


The parameter vector  with  
is projected in  with t-SNE .


Each point corresponds to a model and 
the point size is proportional to the  
error.


Homogeneous distribution of the 
embedded parameters in the azimuthal 
direction …

ℝn n = 31000
ℝ2 = (γ1, γ2) 1

D2

φ

Van Der Maaten, Laurens. "Learning a parametric embedding by preserving local structure."  Artificial 
Intelligence and Statistics. 2009.
1
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Model parameter assessment

PDF of the radial distribution of the 
models. Ergodic and Structured dataset 
have almost the same distribution with a 
peak at . 


The Random dataset has a complete 
different distribution. Non-gaussianity of 
the parameter distribution is symptomatic 
of biased models .


With Structured dataset, high  errors 
occur with models in the tail distribution.

r ≈ 0.3

1

D2

Géron, Aurélien. Hands-on machine learning with Scikit-Learn, Keras, and TensorFlow: Concepts, tools, and techniques 
to build intelligent systems. O'Reilly Media, 2019
1
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Smaller dataset

The linear region has 
redundant informations 
(exponential amplification of 
the same eigenvector).


In order to provide more 
effective dataset the linear 
part might be reduced 
increasing the entropy of the 
dataset.


Until  ( ) 
the model is not overfitting 
prone with low probability to 
recover biased models.

N = 18000 −33 %
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Discussion
Ergodic assumption Low dimensionality assumption

The dataset is representative of the 
data distribution and we might be sure 

on the model generalisation

high probability to recover 
biased models 

We can apply manifold reduction 
techniques to project the problem in 
the “effective dimension”, then apply 
regression for the temporal dynamics

If the assumption is wrong If the assumption is wrong

manifold reduction filters out 
useful informations

H
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Our work Physical 
constraints1

Loiseau, Jean-Christophe, and Steven L. Brunton. "Constrained sparse Galerkin regression.” JFM (2016)1
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Conclusions

“if  is an unstable fixed point of the evolution, then the  function at  is an 
invariant measure, …” Eckmann & Ruelle (1985)

x δ x

Introducing information in the dataset on the invariant measures of the system it is 
possible to design smart dataset which engender more robust learning process:
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Introducing information in the dataset on the invariant measures of the system it is 
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invariant measure, but is not observed.” Eckmann & Ruelle (1985)

x δ x
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Introducing information in the dataset on the invariant measures of the system it is 
possible to design smart dataset which engender more robust learning process:

“if  is an unstable fixed point of the evolution, then the  function at  is an 
invariant measure, but is not observed.” Eckmann & Ruelle (1985)

x δ x

Unstable fixed points are never observed and recover them is not straightforward 
(e.g. non-linear systems requires Newton’s iterations).
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Conclusions
Introducing information in the dataset on the invariant measures of the system it is 
possible to design smart dataset which engender more robust learning process:

“if  is an unstable fixed point of the evolution, then the  function at  is an 
invariant measure, but is not observed.” Eckmann & Ruelle (1985)

x δ x

Unstable fixed points are never observed and recover them is not straightforward 
(e.g. non-linear systems requires Newton’s iterations).

In many problems the equations are known but their solution is computationally 
demanding. In this scenario machine learning models can be a solution to recover 
real-time predictions or optimal control policy (i.e. reinforcement learning 
framework). 


Tackle invariants to explore the manifold of the equation is a way to get less 
data-hungry machine leanrning models


