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Introduction {sec:intro}

Traffic flows have been a natural subject of many mathematical studies for roughly as long as cars exist. This can be explained by the tremendous interest of understanding traffic dynamics, both from a theoretical and practical point of view. The interest of having a continuous macromodel compared to a micromodel comes from the curse of dimensionality and the unbearable computational weight when it comes to costly applications such as control design with a large number of cars. Many celebrated macromodels were derived in the last decades, as for instance the historical LWR [START_REF] James | On kinematic waves ii. a theory of traffic flow on long crowded roads[END_REF][START_REF] Paul | Shock waves on the highway[END_REF]. But traffic flow modeling has come to a new rise with the development of second order models. Among the most celebrated one can cite the Paye-Whitham model [START_REF] Harold | Model of freeway traffic and control[END_REF][START_REF] Beresford | Linear and nonlinear waves[END_REF] and the ARZ [START_REF] Bechir | Resurrection of "second order" models of traffic flow[END_REF] model (see also its generalizations GARZ [START_REF] Fan | Comparative model accuracy of a data-fitted generalized aw-rascle-zhang model[END_REF] and CGARZ [START_REF] Shimao Fan | A collapsed generalized aw-rascle-zhang model and its model accuracy[END_REF]). As they consist of hyperbolic equations, the most natural framework to consider is entropic BV solutions. Since then, there have been hundreds of studies of these models that are relatively well understood. The advent of AVs in the last few years changed the story. It calls for a deep understanding of the interaction between AV and traffic flows, as AVs are soon to be a reality that cannot be ignored. This question comes with a first modelling difficulty: how to look at the interaction between something intrinsically microscopic with something intrinsically macroscopic? While some studies exist on the effect of AV on traffic flows (see for instance [START_REF] Davis | Effect of adaptive cruise control systems on traffic flow[END_REF] or [START_REF] Knorr | Reducing traffic jams via vanets[END_REF]), an answer compatible with a macroscopic theory was given only recently in [START_REF] Laura | A front tracking method for a strongly coupled pde-ode system with moving density constraints in traffic flow[END_REF][START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF] (see also [START_REF] Garavello | A controlled multiscale model for traffic regulation via autonomous vehicles[END_REF]) motivated by the following observation: when a particular vehicle is in a traffic flow it has only two possibilities: it can either follow the flow or go slower and in this case it has a local effect on the flow. Therefore understanding the interaction between AVs and traffic flow is very much linked to understanding the effect of a moving bottleneck. While several works looked at the moving bottleneck problem in macromodels [START_REF] Denos | The moving and "phantom" bottlenecks[END_REF][START_REF] Frank | A moving bottleneck[END_REF] it is only recently that some studies looked directly at the effect of a moving bottleneck whose dynamic is given either by the flow or by the limiting speed that it imposes. In [START_REF] Laura | A front tracking method for a strongly coupled pde-ode system with moving density constraints in traffic flow[END_REF][START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF][START_REF] Laura | Stability estimates for scalar conservation laws with moving flux constraints[END_REF], Delle Monache and Goatin derived a flux condition that couples a moving bottleneck with a traffic flow model by a LWR equation. The resulting system consists of a PDE representing the bulk traffic coupled with an ODE representing the moving bottleneck where the state of the ODE acts on the PDE through the flux condition and the state of the PDE is involved in the ODE. In [START_REF] Garavello | A controlled multiscale model for traffic regulation via autonomous vehicles[END_REF] the authors illustrated that this framework could adapt to the interaction of the AV and a first order model traffic flow. This system was proved to have BV solutions (coherent in some sense with the reality) [START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF] and then to be well-posed [START_REF] Liard | Well-posedness for scalar conservation laws with moving flux constraints[END_REF]. Its application to the control of traffic flow was later studied in [START_REF] Garavello | A controlled multiscale model for traffic regulation via autonomous vehicles[END_REF]. Two things are worth to be noted: first, even though this model does not differentiate between lanes, it is intrinsically multilane since a moving bottleneck only reduces the flow but do not stop it. This means that the model takes into account the fact that the particles of the flow can get around the bottleneck, for instance by overtaking. Second, and this is one of the most surprising features of this class of model: the flux constraint can be in contradiction with the usual entropy condition. This means that entropic solutions are not the right framework anymore. Even though this may come as a surprise, it can easily be understood in practice: a single car can have a macroscopic effect on the system, for instance if a particular car decides to stop in the middle of the traffic flow it will create a wave with a low density of car propagating in front of it, and a wave with a large density of cars propagating behind it. This is a nonentropic shock. This also means that many of the classical tools that were developed for hyperbolic equations are useless here. Consequently analysing this system raised new and non-incremental difficulties.

Unfortunately first order models cannot grasp important physical phenomena as stop and go waves. Besides being interesting in themselves, stop and go waves (or jam) are paramount as they are at the origin of high fuel consumptions (and therefore CO2 emissions) in congested traffic. They occur because the uniform flow steady-state becomes unstable when the traffic is congested enough. Both theoretical and experimental studies suggests In recent years AVs have been seen as a new disruptive way of controlling traffic flow to dampen stop-and go waves with the hope of reducing by up to 40% the fuel consumption and CO2 emission in congested flows [START_REF] Raphael E Stern | Dissipation of stop-and-go waves via control of autonomous vehicles: Field experiments[END_REF][START_REF] Hayat | A holistic approach to the energy-efficient smoothing of traffic via autonomous vehicles[END_REF]. It is therefore important to come up with a richer model capturing stop and go waves in order to understand the interaction between traffic flows and AVs. In this paper we propose a second-order ODE/PDE model consisting of a GARZ system coupled to a "Delle Monache Goatin-like" condition generalized and adapted to a second order model. Just like for the first order model, the correct solutions are not entropic anymore, leading to potential nonclassical shocks and the impossibility to apply the classical entropic theory. The main difficulties consist in dealing with the new family of wave (so-called second family [START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF]) arising from the second order model. In particular, trying to apply directly the strategy of the first-order model would fail as, even in the entropic parts of the solution, the density of cars can both discontinuously increase or decrease because of this new family of wavefronts. It is worth noting that in [START_REF] Villa | Moving bottlenecks for the Aw-Rascle-Zhang traffic flow model[END_REF] the authors already looked at a similar second order model based on ARZ equations and managed to define and characterize precisely the Riemann problem and dealt with the numerical analysis. However, there did not address the question of existence of solutions outside of the framework of the Riemann problem. The second order model we propose here can be seen as a generalization of their model and the analysis we carry could be directly applied to their model as well. Finally, another difficulty consists in defining the right notion of two dimensional weak-solution when the solution can be non entropic at the moving constraint. Concerning this last problem, one can mention the remarkable paper [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] where the authors consider a second-order model with a flux condition at a fixed boundary and where the same type of question appears. This paper is organized as follows: in Section 1, we describe the GARZ model coupled with a moving constraint, the different families of solutions, the properties of the model and the wave-front tracking approximation. In Section 2 we discuss the definition of a weak solution for this ODE/PDE system and we state the main result, namely the existence of a solution to the Cauchy Problem. Finally in Section 3, we prove this result in three parts: we first prove the convergence of the wave-front tracking approximation to a well defined BV state and an absolutely continuous function for the location of the moving bottleneck; then we show that this BV function is indeed a weak solution of the PDE; finally we show that the location of the moving bottleneck is a solution of the ODE.

1 GARZ model with a moving constraint The function ρ ∈ [0, ρ max ] is the traffic density, w ∈ [w min , w max ] is a particular feature of each driver and V (ρ, w) is the speed of cars. The function F α ( ẏ) is defined by

∂ t ρ + ∂ x (ρ V (ρ, w)) = 0, (1.1a) {eq:RPMa} {eq:RPMa} ∂ t (ρw) + ∂ x (ρw V (ρ, w)) = 0, (1.1b) {eq:RPMb} {eq:RPMb} ρ (t, y(t)) (V (ρ(t, y(t)), w(t, y(t))) -ẏ(t)) F α ( ẏ(t)), (1.1c) {eq:RPMc} {eq:RPMc} ẏ(t) = min (V b , V (ρ(t, y(t)+), w(t, y(t)+))) (1 
F α ( ẏ) = α max (ρ,w)∈(0,ρmax)×(wmin,wmax) F (ρ, w, ẏ),
with α ∈ (0, 1) the reduction rate of the road capacity and where

F (ρ, w, ẏ) = ρ(V (ρ, w) -ẏ). (1.2)
F α ( ẏ) represents the maximum flux that can be achieved at the position of the slow moving vehicle.

Our goal is to prove the existence of solution of (1.1). To that end, we impose the following requirements on the velocity V (ρ, w) and the associated flow rate function f (ρ, w) = ρV (ρ, w):

A1. (ρ, w) → V (ρ, w) is C 2 ([0, ρ max ] × [w min , w max ]).
{ass:A1} A2. V (ρ, w) 0 for any (ρ, w) ∈ [0, ρ max ] × [w min , w max ], vehicles never drive backwards on the road.

{ass:A2}

A3. V (0, w) = w for any w ∈ [w min , w max ], w is each driver's speed on an empty road.

{ass:A3} [TL: This is valid away from the vacuum. Check what happens at the vacuum for the Cauchy problem. We need probably an extension of the flux at 0 ( see [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF])] A priori OK because the flux is even defined in 0 in our case (otherwise extending it by 0 since V (0, w) = w that is uniformally bounded). To myself: check whether there is any problem in 2.2. We recall some basic properties associated to the PDE (1.1a)-(1.1b). Away from the vacuum, the characteristic speeds of the GARZ model are λ 1 (ρ, w) = V (ρ, w) + ρ ∂V ∂ρ (ρ, w) and λ 2 (ρ, w) = V (ρ, w). The first one is genuinely non linear and the second one is linearly degenerate. From A.4, λ 1 (ρ, w) < λ 2 (ρ, w) for every ρ > 0. We list the waves that we will use for solving the Riemann problem associated to (1.1a) and (1.1b).

• First family wave (1-wave): a wave connecting a left state (ρ l , w l ) with a right state (ρ r , w r ) such that w l = w r .

• Second family wave (2-wave): a wave connecting a left state (ρ l , w l ) with a right state (ρ r , w r ) such that V (ρ l , w l ) = V (ρ r , w r ).

• Vacuum wave (V-wave): a wave connecting a left state (ρ l , w l ) with a right state (ρ r , w r ) such that ρ l = ρ r = 0 and w l < w r . Moreover, the speed of a V-wave s verifies w l < s < w r s = w r From A5. there exists an application R :

{(v, w)\ 0 v w, w min w w max } → [0, ρ max ] such that ρ = R(v, w) with V (ρ, w) = v.
(1.4) {def:R} {def:R}

In the following we will continuously extend this function by R(k, w) = 0 if k w. We consider a Riemann problem associated to (1.1a) and (1.1b) with two states U l := (ρ l , w l ) and U r = (ρ r , w r ).

• If w l < w r and ρ r < R(V (ρ l , w l ), w r ) then U l is connected to U m1 := (0, w l ) by a 1-wave, U m1 is connected to U m2 := (0, V (U r )) by a V-wave and U m2 is connected to U r by a 2-wave.

• Otherwise, U l is connected to U m := (R(V (ρ r , w r ), w l ), w l ) ∈ [0, ρ max ] × [w min , w max ] by a 1-wave and U m is connected to U r by a 2-wave. Note that in the special case where ρ r = R(V (ρ l , w l ), w r ), then U l is directly connected to U r by a 2-wave.

From now on, RS denotes the classical Riemann solver for the system of conservation laws in (1.1a)-(1.1b). Moreover, RS ρ ((ρ l , w l ), (ρ r , w r )(•)), RS w ((ρ l , w l ), (ρ r , w r )(•)) denotes respectively the ρ and w components of the classical solution RS((ρ l , w l ), (ρ r , w r )(•)).

The constrained Riemann Problem {sec:MC}

We consider the constrained Riemann problem for system (1.1) with initial data

ρ(0, x) = ρ l if x < 0, ρ r if x > 0,
and

w(0, x) = w l if x < 0, w r if x > 0,
and y(0) = 0.

(1.5) {eq:RD} {eq:RD} for all states (ρ l , w l ), (ρ r , w r ) ∈ {(v, w)\ 0 v w, w min w w max }. Fix (ρ l , w l ), (ρ r , w r ) ∈ {(v, w)\ 0 v w, w min w w max }. The constrained Riemann solver RS α for (1.1) is defined as follows.

i If f (RS((ρ l , w l ), (ρ r , w r )(V b )) > F α ( ẏ) + V b RS ρ ((ρ l , w l ), (ρ r , w r )(V b )), then RS α ((ρ l , w l ), (ρ r , w r )) (x/t) = RS ((ρ l , w l ), (ρ(w l ), w l )) (x/t) if x < y(t), RS ((ρ(w l ), w l ), (ρ r , w r )) (x/t) if x > y(t) , y(t) = V b t. (1.6) {eq:RSM1} {eq:RSM1} ii If f (RS((ρ l , w l ), (ρ r , w r )(V b )) F α ( ẏ) + V b RS ρ ((ρ l , w l ), (ρ r , w r )(V b )) and V b < V (RS((ρ l , w l ), (ρ r , w r )(V b ))), then RS α ((ρ l , w l ), (ρ r , w r )) (x/t) = RS ((ρ l , w l ), (ρ r , w r )) (x/t) , y(t) = V b t. (1.7) {eq:RSM2} {eq:RSM2} iii If V b V (RS((ρ l , w l ), (ρ r , w r )(V b ))), then RS α ((ρ l , w l ), (ρ r , w r )) (x/t) = RS ((ρ l , w l ), (ρ r , w r )) (x/t) , y(t) = V (RS((ρ l , w l ), (ρ r , w r )(V b )))t. (1.8) {eq:RSM3} {eq:RSM3}
Note that in the first case, the traffic is influenced by the slow vehicle which travels with its own velocity. In the second case, the slow vehicle doesn't influence the traffic flow. The third case refers to a situation in which the traffic is so heavy that the slow vehicle has to adapt its speed.

Remark 1. The function F α is taken at w = w l in the Riemann solver to avoid the slow vehicle trajectory to interact with a 2-wave or a V-wave in front.

Wave-Front Tracking Approximate Solution and TV type functional {sec:wft}

The initial data ρ 0 and w 0 are approximated by piecewise constant functions denoted by ρ n 0 and w n 0 using an appropriate sampling (see [START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF]Section 2.2]). Solving the associated constrained Riemann problem for (1.1a)-(1.1b) with initial data ((ρ n 0 , w n 0 ), y 0 ), the solution, denoted by ((ρ n , w n ), y n ), can be prolonged until a first time t 1 is reached, when two wave-fronts interact. Note that the slow moving vehicle trajectory y n (•) is regarded as a wavefront with speed given by (1.6), (1.7) or (1.8) depending on the value of (w n , ρ n ) around y 0 . We recall that, in the wave-front tracking method, the centered rarefaction waves are replaced by piecewise constant rarefaction fans. Thus, ρ n (t 1 , •) and w n (t 1 , •) are still piecewise constant functions, the corresponding Riemann problems with initial data ((ρ n (t 1 , •), w n (t 1 , •)), y n (t 1 )) can again be approximately solved within the class of piecewise constant functions and so on. Thus, y n (•) is the solution of

ẏ(t) = min (V b , (ρ n (t, y(t)), w n (t, y(t)))) , y(0) = y 0 , x ∈ IR. (1.9) {eq3} {eq3}
where the couple (ρ n (t), w n (t)) is an approximate solution of (1.1a)-(1.1b).

The Cauchy Problem with Moving Constraints

{sec:CMC}

In this section, we consider the Cauchy problem for the model (1.1) with initial data (ρ 0 , w 0 ) : IR → [0, ρ max ] × [w min , w max ] and y 0 ∈ IR. Before stating the main result, we introduce the definition of solution to the constrained Cauchy problem (1.1).

{def:weak-solutio Definition 1. The couple 

((ρ, w), y) ∈ C 0 [0, +∞[; L 1 loc (IR; [0, ρ max ] × [w min , w max ] × W 1,
R+ I R ρ [∂ t ϕ + V (ρ, w)∂ x ϕ] 1 w dx dt + I R ρ 0 1 w 0 ϕ(0, x) = 0 (2.1)
[TL: See [1, Section 2.3]: an extension of the flux has to be done at 0. Moreover, in which variable we will write the Cauchy problem. In our proof we use (ρ, w) and (v, w)]

ii. The function ρ is an entropy admissible solution of (1.1a)-(1.1b), i.e for every k ∈ [0, V (0, w max )], for all ϕ ∈ C 1 c (IR 2 , IR + ), it holds {def:weak-solutio

I R+ I R E k (v(t, x), w(t, x))∂ t ϕ + Q k (v(t, x), w(t, x))∂ x ϕdx dt + I R E k (v 0 , w 0 )ϕ(0, x) dx + I R+ R(v(t, y(t)), w(t, y(t)))(v(t, y(t)) -ẏ) k - ẏ F α ( ẏ(t)) - 1 R(k, w) + ϕ(t, y(t))dt 0, (2.2) {eq:def-weak-ii} {eq:def-weak-ii}
where v, w = (V (ρ, w), w) and

E k (v, w) = 0 if v k 1 -R(v,w) R(k,w) , if v > k, (2.3) {def-entropy1} {def-entropy1} Q k (v, w) = 0 if v k k -R(v,w)v R(k,w) , if v > k. (2.4) {def-entropy2} {def-entropy2}
The entropy pairs (E k , Q k ) are taken from [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF]. Here the term of the third line of (2.2) compensate for the potential non-classical shocks that would occur at y(t). Note that all other non-classical shocks are prohibited with this condition. Besides, the second term of (2.2) also ensures that any solution maximize the flux when non-classical shock occurs, i.e. condition (1.1c) becomes an equality. This is similar to the result of [1, Section 3].

[TL: See [1, Section 2.3]: we may use the entropy pairs defined in [1, (2.13a) and (2.13b)]. Note that p -1 (wv) = R(v, w) and p -1 (wk) = R(v, k) in our case. We also have to add a compensation term of the form [1, (3.7)] and use the change of variable X = xy(t).

Its role is to ensure that at y(t), the only admissible stationary discontinuities are the shocks corresponding to admissible fluxes (1.1d) and the non-classical shock corresponding to the flux F α ( ẏ)).]

iii. For a.e t ∈ IR + , ẏ(t) = min (V b , V (ρ(t, y(t)), w(t, y(t)))) or for every t ∈ IR + , We can now state the main result of the paper:

y(t) = y 0 + t 0 min (V b , V (ρ(
{thm:cauchy-probl Theorem 1. We assume that V b < w min . Let y 0 ∈ IR and (ρ 0 , w 0 ) ∈ BV(IR; [0, ρ max ] × [w min , w max ]). Then the Cauchy problem (1.1) admits a solution ((ρ, w), y) ∈ L ∞ (R + ,BV(IR; [0, ρ max ]× [w min , w max ]))×W 1,1 loc ([0, +∞); R) in the sense of Definition 1. We construct a sequence of approximate solutions ((ρ n , w n ), y n ) n∈IN of (1.1) using a wavefront tracking algorithm, and we will prove its convergence. We deduce that the limit (ρ, w) satisfies Definition 1 i. ii. and iv. from the convergence of (ρ n , w n ). We study the behavior of (ρ n , V (ρ n , w n )) around the point (t, y n (t)) in order to prove that the limit (ρ, w, y) verifies Definition 1 iii..

Proof of Theorem 1 {sec:proof}

Let ((ρ n , w n ), y n ) be an approximate solution of (1.1) constructed by the wave-front tracking method described in Section 1.4. For a function f ∈ C 0 (R + , BV (R)) we will sometimes drop the notation in time and denote f (x) instead of f (t, x) to lighten the statements. The same will be done for continuous function and we will denote y n instead of y n (t) and y instead of y(t) when there is no ambiguity.

Convergence of the wave-front tracking approximate solution

{lem:TVn} Lemma 3.1. Let ((ρ 0 , w 0 ), y 0 ) ∈ BV(IR; [0, ρ max ] × [w min , w max ]) × IR and ((ρ n , w n ), y n ) be a wave-front approximate solution of (1.1). Then, there exists C > 0 such that, for any t ∈ IR + , To prove Lemma 3.1, we introduce the TV type functional Γ(•) defined in (3.4). Γ(•) may vary only at times t when two waves interact or a wave hits the slow vehicle trajectory. After a meticulous analysis of wave interactions, we will show that Γ(t) Γ(0) which gives bounds on the total variation of w n (t, •) and V (ρ n (t, •), w n (t, •)). {diff} Lemma 3.2. w → V (ρ(w), w) and w → V (ρ(w), w) are continuously differentiable functions.

T V (w n (t, •)) + T V (V (ρ n (t, •), w n (t, •)) C. ( 3 
Proof. Since (p, w) → V (ρ, w) is C 2 ([0, ρ max ] × [w min , w max ]), it is enough to prove that w → ρ(w) and w → ρ(w) are continuously differentiable functions. Since α ∈ (0, 1) and (p, w)

→ V (ρ, w) is C 2 ([0, ρ max ] × [w min , w max ]), we have ρ(w) < ρ c (w) < ρ(w) and (ρ, w) → F α ( ẏ) + V b w - f (p, w) ∈ C 2 ([0, ρ max ] × [w min , w max ]). Moreover, V b -∂f
∂ρ (ρ(w), w) < 0 and V b -∂f ∂ρ (ρ(w), w) > 0. Thus, applying implicit function Theorem, we deduce that w → ρ(w) and w → ρ(w) are at least continuously differentiable.

We introduce the two positive constant C ρ and C ρ defined by

C ρ = sup w∈[wmin,wmax] d dw V (ρ(w), w) > 0, (3.2) {constantecheck} {constantecheck} C ρ = sup w∈[wmin,wmax] d dw V (ρ(w), w) > 0. (3.3) {constantehat} {constantehat} Using Lemma 3.2, C ρ < ∞ and C ρ < ∞. Let C := 2(C ρ + C ρ).
For a.e. t > 0, we define the TV type functional where γ is given by

Γ(t) = T V (w n (t, •)) + T V (V (ρ n (t, •); w n (t, •))) + γ(t) + CT V (w n (•, y n (•)), [t, +∞)), (3.4 
γ(t) =        -2|v(w n (t, y(t)-)) -v(w n (t, y(t)))|, if   
w n (t, y n (t)-) = w n (t, y n (t)), ρ n (t, y n (t)-) = ρ(w n (t, y(t)-)), ρ n (t, y n (t)) = ρ(w n (t, y(t)-)), 0 otherwise.

The term γ is added to control the behavior of T V (ρ, w) when a 1-wave interacts with slow vehicle trajectory creating or canceling a non classical shock as in [START_REF] Laura | Scalar conservation laws with moving constraints arising in traffic flow modeling: an existence result[END_REF]. We introduce the term T V (w n (•, y n (•)), [t, +∞)) to deal with the cases where a 2-wave or a V -wave interact with the slow vehicle trajectory creating or canceling a non classical shock.

{lem:interactionW Lemma 3.3. Let ((ρ 0 , w 0 ), y 0 ) ∈ BV((IR; [0, ρ max ] × [w min , w max ]) × IR and ((ρ n , w n ), y n ) be a wave-front approximate solution of (1.1). Then, there exists C > 0 such that, for any t ∈ IR + ,

Γ(t) Γ(0) (3.5)
The proof of Lemma 3.3 is postponed in Appendix A.

{var} Lemma 3.4. The total variation t → T V (w n (t)) is constant. That is to say, T V (w n (t)) = T V (w n 0 ).
Proof. Considering a Riemann problem at time t associated to (1.1a) and (1.1b) with two states U l := (ρ l , w l ) and U r = (ρ r , w r ):

• If w l < w r and ρ r < R(w l , w r ) then U l is connected to U m1 := (0, w l ) by a 1-wave, U m1 is connected to U m2 := (0, V (U r )) by a V-wave and U m2 is connected to U r by a 2-wave. In this case, T V (w(t

+ )) -T V (w(t -)) = w r -V (U r ) + V (U r ) -w l -w r + w l = 0.
• Otherwise, U l is connected to U m := (R(V (ρ r , w r ), w l ), w l ) ∈ [0, ρ max ] × [w min , w max ] by a 1wave and U m is connected to U r by a 2-wave. In this case, we have immediately T V (w(t + ))-T V (w(t -)) = 0.

Moreover, a non classical shock is a wave ((ρ(w l ), w l ), (ρ(w l ), w l )).Thus, the variation of w is not modified. We conclude that the total variation t → T V (w(t)) is constant.

{bobo} Lemma 3.5. For every t ∈ IR * + , T V (w n (•, y n (•)), [t, +∞)) T V (w n 0 )
Proof. The quantity w n (•, y n (•)) is modified only when the slow vehicle trajectory interacts with a V -wave or a 2-wave. From Lemma 3.4, an interaction between two waves or a wave and the slow vehicle trajectory does not modify the total variation of w. We claim that the slow vehicle trajectory never interacts with a second family wave and a vacuum wave from the left (in other words, the slow vehicle never catches a 2-wave or a V-wave).

• We assume that a second family wave ((ρ l , w l ), (ρ r , w r )) interacts with the slow vehicle trajectory from the right (i.e. it is catched by the slow vehicle). The speed of the second family wave is V (ρ l , w l ) = V (ρ r , w r ) and the speed of the slow vehicle is min(V b , V (ρ l , w l )). We have min(V b , V (ρ l , w l )) V (ρ l , w l ). Thus, the speed of the slow vehicle is slower than the speed of a second family wave, whence the contradiction.

• We assume that a vacuum wave ((0, w l ), (0, w r )) interacts with the slow vehicle trajectory from the right. The speed of the vacuum wave s verifying w l < s < w r and the maximum speed of the slow vehicle is V b . Since, V b < w min the speed of the slow vehicle is slower than the speed of a vacuum wave, whence the contradiction.

Thus, the slow vehicle trajectory interacts at most once with a given V -wave or 2-wave. We conclude that T V (w n (•,

y n (•)), [0, +∞)) T V (w n 0 (•), (-∞, y 0 ]). More precisely, for every t ∈ IR * + , there exists x ∈ (-∞, y 0 ) such that T V (w n (•, y n (•)), [t, +∞)) T V (w n 0 (•), (-∞, x]) T V (w n 0 )
Proof of Lemma 3.1. From Lemma 3.3, we have

T V (w n (t, •)) + T V (v(ρ n (t, •), w n (t, •))) T V (w n 0 ) + T V (v(ρ n 0 , w n 0 )) + γ(0) -γ(t) + CT V (w n (•, y n (•)), [0, t)), T V (w n 0 ) + T V (v(ρ n 0 , w n 0 )) + 2w max + CT V (w n (•, y n (•)), [0, t)). Since (w n 0 , v n 0 ) ∈ BV((IR; [0, ρ max ] × [w min , w max ]
) and from Lemma 3.5, there exists

C > 0 such that T V (w n (t, •)) + T V (V (ρ n , w n )(t, •)) C.
We are now ready to prove the convergence of the sequence of approximate solutions ((ρ n , w n ), y n ).

{po} Lemma 3.6. Let ((ρ n , w n ), y n ) be an approximate solution of (1.1) constructed by the wavefront tracking method described in Section 1.4. Then, up to a subsequence, we have the following convergences (1.4). Then there exists C > 0 such that

{convergence} (ρ n , w n ) → (ρ, w), in L 1 loc (IR + × IR; [0, ρ max ] × [w min , w max ]), (3.6a) {convergence-w} {convergence-w} y n (•) → y(•), in L ∞ loc (IR + ; IR), (3.6b) {convergence-y} {convergence-y} ẏn (•) → ẏ(•), in L 1 loc (IR + ; IR), (3.6c) {convergence-doty {convergence-doty for some (ρ, w) ∈ C 0 (IR + ; L 1 (IR; [0, ρ max ] × [w min , w max ])) and y ∈ W 1,1 loc (IR + ; IR) with Lipschitz constant V b . Moreover, there exists C > 0 such that T V (ρ(t, •)) < C and T V (w(t, •)) < C for all t 0. Proof. Let (ρ 1 , ρ 2 ) ∈ [0, ρ max ] such that ρ 1 = R(V (ρ 1 , w 1 ), w 1 ) and ρ 2 = R(V (ρ 2 , w 2 ), w 2 ) where R ∈ C 2 ([0, w max ] × [w min , w max ]) is defined in
|ρ 1 -ρ 2 | C (|V (ρ 1 , w 1 ) -V (ρ 2 , w 2 )| + |w 1 -w 2 |) .
(3.7) {ine:TV1} {ine:TV1}

From (3.7), we deduce that From (3.1) and (3.8), there exists C > 0 (independent of n) such that, for every t 0,

T V (ρ n (t, •)) C (T V (ρ n (t, •), w n (t, •)) + T V (w n (t, •)) . ( 3 
T V (w n (t, •)) < C and T V (ρ n (t, •)) < C. (3.9) {TVestimation} {TVestimation}
Combining (3.9) with the finite wave speed propagation, we show that

I R
|ρ n (t, x)ρ n (s, x)|dx L|t -s| for all t, s 0, and

I R |w n (t, x) -w n (s, x)|dx L|t -s| for all t, s 0,
for some L independent of n. Helly's Theorem, see [START_REF] Bressan | Hyperbolic systems of conservation laws: the one-dimensional Cauchy problem[END_REF]Theorem 2.4], implies the existence of (ρ, w)

∈ C 0 IR + ; L 1 (IR; [0, ρ max ] × [w min , w max ]
) and a subsequence of (ρ n , w n ) n , which for simplicity we denote again by (ρ n , w n ) n . This implies that (3.6a) holds and there exists C > 0 such that T V (ρ(t, •)) < C and T V (w(t, •)) < C for all t 0. Fix T > 0. From (1.9), we deduce that To prove that ẏn (•) → ẏ(•) in L 1 loc (IR + ; IR), we show that T V ( ẏn ; [0, T ]) is uniformly bounded for any T 0. Since ẏn

0 ≤ ẏn (t) ≤ V b ( 3 
L ∞ (0,T )
V b , it is sufficient to estimate the positive variation of ẏn over [0, T ], denoted by P V ( ẏn ; [0, T ]). More precisely, we have

T V ( ẏn ; [0, T ]) 2P V ( ẏn ; [0, T ]) + ẏn L ∞ . (3.11) {TV} {TV}
Since ẏn satisfies (1.9), the speed of the slow vehicle cannot increase by interactions with a second family waves. Thus, from [START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF], the speed of the slow vehicle is increased only by interactions with rarefaction waves coming from the right of the slow vehicle trajectory. Since all rarefaction shocks start at t = 0, we have P V ( ẏn ; [0, T ]) T V (ρ 0 ). From (3.11), we deduce that

T V ( ẏn ; [0, T ]) 2T V (ρ 0 ) + V b ,
whence (3.6c) by arbitrariness of T .

3.2

The limit (ρ, w,y) satisfies Definition 1 i. ii. and iv.

[TL: To prove Definition 1 i. and ii. we need to use the convergence of ((ρ n , w n ), y n ). To prove Definition 1 iv., we need to use Definition 1 i. and ii..AH: It seems to me that we only need point i. for point iv.?] Let us start by proving points i. of Definition 1. As (ρ n , w n ) ∈ L 1 loc (IR + × IR) is a weak solution of (1.1a)-(1.1b), it satisfies Definition 1. This implies that for any test function ϕ ∈ C ∞ c (IR 2 , IR),

R+ I R ρ n [∂ t ϕ + V (ρ n , w n )∂ x ϕ] 1 w n dx dt + IR ρ n 0 ϕ(0, x) 1 w n 0 dx = 0. (3.12) {weak-i-pr} {weak-i-pr}
Using the convergence proved in the previous section, and Lemma 3.6 we know that (

ρ n , w n ) → (ρ, w) in L 1 loc (IR + × IR; [0, ρ max ] × [w min , w max ]
) and therefore we can pass to the limit in (3.12) and get point i. of Definition 1.

For point ii. of Definition 1 similarly as one can define

v n = v(ρ n , w n ) and therefore v n → v in L 1 loc (IR + ×IR; [0, V (0, w max )]×[w min , w max ]). Noting that (ρ n , w n ) satisfies for any k ∈ [0, V (w max )] and ϕ ∈ C c (IR 2 , IR + ), I R+ I R E k (v n (t, x), w n (t, x))∂ t ϕ + Q k (v n (t, x), w n (t, x))∂ x ϕdx dt + I R E k (v n 0 , w n 0 )ϕ(0, x)dx dt + I R+ R(v n , w n )(v n -ẏn ) k -ẏn F α ( ẏn ) - 1 R(k, w n ) + ϕ(t, y n (t))dt CT V (v n (t, •), w n (t, •))2 -n , (3.13) {eq:to-conv} {eq:to-conv}
where C is a constant independent of (v n , w n ). This term on the right-hand side a consequence of the rarefaction shocks of the approximated solution obtained by the wave front tracking algorithm. Since the total variations of v n (t, •) and w n (t, •) are uniformly bounded in n (see (3.9)) we can pass to the limit in the right-hand side. We can also pass to the limit in the terms of the two first lines but we cannot a priori pass to the limit directly using a dominated convergence since we do not have the convergence of (v n (t, y n (t)), w n (t, y n (t)) to (v(t, y(t)), w(t, y(t)). Let us set

h( ẏn (t), w n ) = k -ẏn (t) F α ( ẏn (t)) - 1 R(k, w n ) + . (3.14) 
Note that since point iii. of Definition 1 holds for (ρ n , w

n ) = (R(v n , w n ), w n ), then for almost every t ∈ R + either ẏn (t) = v n (t, y n (t)) or ẏn (t) = V b . Since { ẏn (t) < V b } is measurable, we have I R+ R(v n , w n )(v n -ẏn )h( ẏn (t), w n (t, y n (t))ϕ(t, y n (t))dt = I R+ R(v n , w n )(v n -ẏn )h(V b , h( ẏn (t), w n (t, y n (t)))ϕ(t, y n (t))dt. (3.15)
With this transformation in mind, we can proceed as in [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] and observe that for any v n , w n such that (R(v n , w n ), w n ) is a weak solution of (1.1a)-(1.1b) (i.e. satisfying point i) of Definition 1) one has for any ξ ∈ C ∞ c (R) such that ξ(0) = 1. Indeed, one can check that, thanks to (3.16) with j : w → h(V b , w), one has

∂ t (R(v n , w n )) + ∂ x (R(v n , w n )v n ) = 0, ∂ t (R(v n , w n )w n ) + ∂ x (R(v n , w n )v n w n ) = 0, ∂ t (R(v n , w n )j(w n )) + ∂ x (R(v n , w n )v n j(w n )) = 0, ( 3 
(t)))(v n (t, y n (t)) -ẏn )h(V b , w n (t, y(t))))ϕ(t, y n (t))dt = R+ x<y n (t) R(v n , w n )(v n -ẏn )h(V b , w n )ϕ(t, y n (t))ξ (x -y n (t)) + R(v n , w n )h(V b , w n ) [∂ t ϕ(t, y n (t)) + ∂ x ϕ(t, y n (t)) ẏn (t)] ξ(x -y n (t))dxdt, (3.17 
R+ x<y n (t) R(v n , w n )v n h(V b , w n )ϕ(t, y n (t))ξ (x -y n (t)) + R(v n , w n )h(V b , w n ) [∂ t ϕ(t, y n (t)) + ∂ x ϕ(t, y n (t)) ẏn (t)] ξ(x -y n (t))dxdt = R+ R(v n (t, y n (t)), w n (t, y n (t)))v n (t, y n (t))h(V b , w n )ϕ(t, y n (t))dt - R+ x<y n (t) ∂ x (R(v n , w n )v n h(V b , w n ))ϕ(t, y n (t))ξ(x -y n (t))dxdt - R+ R ∂ t (1 x<y n (t) R(v n , w n )h(V b , w n ))ϕ(t, y n (t))ξ(x -y n (t))dxdt + R+ x<y n (t) R(v n , w n )h(V b , w n )ϕ(t, y n (t))ξ (x -y n (t)) ẏn (t)dxdt = R+ R(v n (t, y n (t)), w n (t, y n (t)))v n (t, y n (t))h(V b , w n )ϕ(t, y n (t))dt - R+ x<y n (t) [∂ x (R(v n , w n )v n h(V b , w n )) + ∂ t (R(v n , w n )h(V b , w n ))] ϕ(t, y n (t))ξ(x -y n (t))dxdt - R+ R(v n (t, y n ), w n (t, y n ))h(V b , w n )ϕ(t, y n (t)) ẏn (t)dt + R+ x<y n (t) R(v n , w n )h(V b , w n )ϕ(t, y n (t))ξ (x -y n (t)) ẏn (t)dxdt = R+ R(v n (t, y n (t)), w n (t, y n (t)))(v n (t, y n (t)) -ẏn (t))h(V b , w n )ϕ(t, y n (t))dt + R+ x<y n (t) R(v n , w n )h(V b , w n )ϕ(t, y n (t))ξ (x -y n (t)) ẏn (t)dxdt (3.18)
where, with a slight abuse of notation, the integrals in the computations refer in fact to a distribution product on D ((0, T ) × R) and D((0, T ) × R). We can now use a dominated convergence and obtain that lim

n→+∞ R+ x<y n (t) R(v n , w n )(v n -ẏn )h(V b , w n )ϕ(t, y n (t))ξ (x -y n (t)) + R(v n , w n )h(V b , w n ) [∂ t ϕ(t, y n (t)) + ∂ x ϕ(t, y n (t)) ẏn (t)] ξ(x -y n (t))dxdt = R+ x<y(t) R(v, w)(v -ẏ)h(V b , w)ϕ(t, y(t))ξ (x -y(t)) + R(v, w)h(V b , w) [∂ t ϕ(t, y(t)) + ∂ x ϕ(t, y(t)) ẏ(t)] ξ(x -y(t))dxdt. (3.19) {eq:comp21} {eq:comp21}
Moreover, since (ρ, w) also satisfies point i) of Definition 1, we get, together with (3.16) and (3.17)- (3.19),

lim n→+∞ I R+ R(v n , w n )(v n -ẏn ) k -ẏn F α ( ẏn ) - 1 R(k, w n ) + ϕ(t, y n (t))dt = I R+ R(v, w)(v -ẏ)h(V b , w(t, y(t)))ϕ(t, y(t))dt. (3.20)
This implies that

I R+ I R E k (v(t, x), w(t, x))∂ t ϕ + Q k (v(t, x), w(t, x))∂ x ϕdx dt + I R E k (v 0 , w 0 )ϕ(0, x)dx dt + I R+ R(v, w)(v -ẏ)h(V b , w(t, y(t)))ϕ(t, y(t))dt 0. (3.21) {eq:to-conv2} {eq:to-conv2}
which in particular implies that nonclassical shocks for (R(v, w), w) can only occur in y(t) (see [START_REF] Andreianov | A second-order model for vehicular traffics with local point constraints on the flow[END_REF] for more details).

In Section 3.3 we will show that point i. and (3.21) are enough to show point iii. of Definition 1 for (R(v, w), w). Thus we assume from now on that point iii. of Definition 1 holds for (R(v, w), w).

Then, since { ẏ(t) < V b } is measurable I R+ R(v, w)(v -ẏ)h(V b , w(t, y(t)))ϕ(t, y(t))dt = IR+ R(v, w)(v -ẏ)h( ẏ(t), w(t, y(t)))ϕ(t, y(t))dt, (3.22)
and given the definition of h, we obtain

I R+ I R E k (v(t, x), w(t, x))∂ t ϕ + Q k (v(t, x), w(t, x))∂ x ϕdx dt + I R E k (v 0 , w 0 )ϕ(0, x)dx dt + I R+ R(v, w)(v -ẏ) k -ẏ(t) F α ( ẏ) - 1 R(k, w) + ϕ(t, y(t))dt 0. (3.23) {eq:to-conv2-bis} {eq:to-conv2-bis}
We now show that (ρ, y) satisfies Definition iv.. Let (t 0 , x 0 ) ∈ IR + × IR, we denote

ρ(t 0 , x 0 +) = lim x→x0,x>x0 ρ(t 0 , x), ρ(t 0 , x 0 -) = lim x→x0,x<x0 ρ(t 0 , x), (3.24) 
which exists given that ρ ∈ C 0 ([0, T ], L 1 loc (IR, [0, ρ max ])). We define similarly w(t 0 , x 0 +) and w(t 0 , x 0 -) and the analogous quantities for (ρ n , w n ). The idea will be to recover Definition iv. by using point i. of Definition 1 with appropriate test functions. Let ψ ∈ C ∞ c ((0, T ) × IR, IR + ). As ψ has compact support in its space variable, there exists a ∈ IR such that for any (t, x) ∈ supp(ψ), x > a. This implies that there exists ε 0 > 0 for any x a + 2ε 0 and any t ∈ (0, T ), ψ(t, x) = 0. We now set ε ∈ (0, ε 0 ). We define

φ 1,ε ∈ C 1 c ((0, T ), IR + ) such that φ 1,ε ≡ 1 on [2ε, T -2ε]. This function φ 1,ε is an approximation of the constant function equal to 1. Similarly we define φ n 2,ε ∈ C 1 c ((0, T ) × (-∞, y n (t))) such that φ n 2,ε =          0 if x a 1 if x ∈ (a + ε, y n (t) -2ε) y n (t)-x ε -1 if x ∈ (y n (t) -2ε, y n (t) -ε) 0 if x y n (t) -ε. (3.25) Therefore φ n
2,ε is an approximation of a stair function equal to 1 before y n (t) and 0 after. Setting the test function ϕ = ψφ n 2,ε and applying Definition i., one has

I R+ I R ρ n ∂ t ψφ n 2,ε + ψ ẏn ε (1 x∈(y n (t)-2ε,y n (t)-ε) ) +V (ρ n , w n )φ n 2,ε ∂ x ψ + V (ρ n , w n )ψ -1 ε 1 x∈(y n (t)-2ε,y n (t)-ε) 1 w n dx dt = 0, (3.26) 
where we used that ψ(t, x) = 0 for t = 0 or x ∈ (-∞, a + 2ε). This gives

I R+ I R ρ n ∂ t ψφ n 2,ε + V (ρ n , w n )φ n 2,ε ∂ x ψ 1 w n dx dt = I R+ I R ρ n [V (ρ n , w n ) -ẏn ] ψ( 1 ε 1 x∈(y n (t)-2ε,y n (t)-ε) ) 1 w n dx dt.
(3.27)

As ρ n , w n , ẏ are all L 1 loc functions and ψ is C ∞ with compact support we can use Dominated Convergence Theorem and let ε → 0

I R+ y n (t) -∞ ρ n [∂ t ψ + V (ρ n , w n )∂ x ψ] 1 w n dx dt = R+ ρ n (t, y n (t)-) [V (ρ n (t, y n (t)-), w(t, y n (t)-)) -ẏn (t)] ψ(t, y n (t)) 1 w n (t, y n (t)-) dx dt. (3.28) {4-first-conv-dom {4-first-conv-dom
The same can be done with (ρ, w, y) instead of (ρ n , w n , y n ) by defining φ 2,ε just as φ n 2,ε but with y(t) instead of y n and one has

I R+ y(t) -∞ ρ [∂ t ψ + V (ρ, w)∂ x ψ] 1 w dx dt = R+ ρ(t, y(t)-) [V (ρ(t, y(t)-), w(t, y(t)-)) -ẏ(t)] ψ(t, y(t)) 1 w(t, y(t)-)
dt.

(3.29) {4-eq-r-w} {4-eq-r-w}

As (ρ n , w n , y n ) satisfies Definition iv. and ψ only takes values in IR + , one has, taking the first component of (3.28)

I R+ y n (t) -∞ ρ n [∂ t ψ + V (ρ n , w n )∂ x ψ] dx dt T 0 F α ( ẏn )ψ(t, y n (t)) dt. (3.30) {4-first-conv-dom {4-first-conv-dom
Note that, from Lemma 3.6, ẏn → ẏ ∈ L 1 loc (0, T, IR) and there exists

C > 0 independent of n such that T V (w n ) < C (3.31)
which implies that Therefore one can use dominated convergence and get (3.34)

lim n→+∞ I R+ y n (t) -∞ ρ n [∂ t ψ + V (ρ n , w n )∂ x ψ] dx dt = IR+ y(t) -∞ ρ [∂ t ψ + V (ρ, w)∂ x ψ] dx dt lim n→+∞ T 0 F α ( ẏn )ψ(t, y n (t)) dt = T 0 F α ( ẏ(t))ψ(t,
As ψ was an arbitrary function with compact support in (0, T ) × IR one has exactly (2.6) and (ρ, w, y) satisfies Definition iv..

3.3

The limit (ρ, y) satisfies Definition iii.

{ssec:proofiii}

We begin with some preliminary Lemmas.

Lemma 3.7. Let t ∈ R + \{0} being fixed and (x 1 , x 2 ) ∈ R 2 with x 1 < x 2 , suppose that no V-wave occurs in (x 1 , x 2 ) and that there exists c > 0

(independent of n) such that V (ρ n (x 1 ), w n (x 1 )) + c V (ρ n (x 2 -), w n (x 2 -))
. Suppose in addition that there is no non-classical shock occurring in (x 1 , x 2 ). Then there exists β > 0 such that, for n large enough,

|x 2 -x 1 | βt|V (ρ n (x 2 -), w n (x 2 -)) -V (ρ n (x 1 ), w n (x 1 )))| (3.35)
where β is a constant independent of t, x 1 and x 2 .

{lemmavitesse} This lemma gives a minimal distance of travel between two states of a wave-front tracking solution with different velocity when no V-waves and no non-classical shock occurs. First, a shock can only increase the velocity and a 2-wave cannot change it. Since by assumption no V-wave occur in (x 1 , x 2 ), we deduce that the only possible waves to increase the velocity are rarefaction shocks and this imply a minimal distance. This lemma will be the basic tool for all the following analysis.

Proof. [TL: The proof is false. From Lemma [15, Lemma 2.2], we have |x 2x 1 | > β t|ρ n (x 1 )ρ n (x 2 -)ρ max 2 -n+1 |. Thus, based on Amaury's proof we have K n ρ max 2 -n+1 which is a problem. To get around this problem we have to use that V (ρ n (x 1 ), w n (x 1 )) + c V (ρ n (x 2 -), w n (x 2 -)). The proof below is false too because we don't know that ρ n (z k )

ρ n (z k+1 -) + c ]AH to TL: I think you told me this had been corrected, do you confirm? To prove this lemma, we first prove that if x 1 < x 2 and V (ρ n (x 1 ), w n (x 1 ))+c < V (ρ n (x 2 -), w n (x 2 -)) for any n, there is a minimal amplitude of variation of ρ n through rarefactions shocks. Then we conclude using Lemma 3.8. Obviously 2-waves cannot change the velocity so the only waves that can occur to change the velocity are shocks and rarefaction shocks. As there is a finite number of discontinuities we can define K n ∈ N and x 1 =: z 0 < z 1 < ... < z Kn-1 < z Kn := x 2 such that there are only rarefaction shocks between (z k , z k+1 ) for any k ∈ {0, ..., K n -1}. In other words z k are the points where a shock or a 2-wave occurs, and this implies that w n (z k ) = w n (z k+1 -) for any k ∈ {0, ..., K n -1}. Note that when a shock occurs in

z k , w n (z k -) = w n (z k ) and ρ n (z k -) < ρ n (z k ) which implies that V (ρ n (z k -), w n (z k-)) > V (ρ n (z k ), w n (z k ))
, as V is strictly decreasing. So shocks have only a negative influence when trying to reach V (ρ n (x 2 -), w n (x 2 -)) from V (ρ n (x 1 ), w n (x 1 )). As 2-waves do not change the velocity, for any k ∈ {1, ..., K n -1},

V (ρ n (z k -), w n (z k -)) V (ρ n (z k ), w n (z k )). (3.36) {shockneg} {shockneg} Besides, as V (•, w) is C 1 ([0, ρ max ]) with w ∈ [w min , w max ] and w n (z k ) = w n (z k+1 -) there exists a constant c 0 > 0 independent of n, ρ n or w n , such that 0 V (ρ n (z k+1 -), w n (z k+1 -)) -V (ρ n (z k ), w n (z k )) c 0 (ρ n (z k+1 -) -ρ n (z k )). (3.37) {raref} {raref}
Now, we use the following lemma

{lem::minimaldist Lemma 3.8. Let t ∈ R + \{0} and (x 1 , x 2 ) ∈ R 2 with x 1 < x 2 , suppose that w n is constant between (x 1 , x 2 )
and there exists c > 0 (independent of n) such that ρ n (x 1 ) ρ n (x 2 -) + c. Suppose in addition that there is no non-classical shock occurring in (x 1 , x 2 ). Then there exists β > 0 such that

|x 2 -x 1 | > β t|ρ n (x 1 ) -ρ n (x 2 -)| (3.38)
where β is a constant independent of t, x 1 and x 2 .

{lemmavitesse0}

The proof of this Lemma fosters directly [15, Lemma 1] by observing that on (x 1 , x 2 ), ρ n is a wave-front tracking solution of a LWR model with flux f given by f (ρ, v(ρ)) = ρV (ρ, w), as w is constant, there is no V-wave or 2-wave and for n large enough

ρ n (x 1 ) -ρ n (x 2 ) -ρ max 2 -n+1 ρ n (x1)-ρ n (x2) 2
.

Using that w(z k ) = w(z k+1 -) and applying (3.37) becomes :

β t(V (ρ n (z k+1 -), w n (z k+1 -)) -V (ρ n (z k ), w n (z k ))) c 0 |z k+1 -z k |. (3.39)
Thus overall, using (3.36) and (3.37),

β t(V (ρ n (x 2 -), w n (x 2 -)) -V (ρ n (x 1 ), w n (x 1 ))) c 0 Kn-1 k=0 |z k+1 -z k | = c 0 |x 2 -x 1 |, (3.40) 
and setting β = β /c 0 > 0 ends the proof of Lemma 3.7.

We now introduce a Lemma that gives the maximal amplitude of the variation of the velocity through a rarefaction shock Lemma 3.9. Let (ρ n , w n ) be a solution constructed by a wave-front tracking algorithm. Suppose that a rarefaction shocks occur in x 1 ∈ R, then there exists a constant C 0 independent of x 1 , n, ρ n , w n and depending only on V such that

V (ρ n (x 1 ), w n (x 1 )) -V (ρ n (x 1 -), w n (x 1 -)) C 0 ρ max 2 n (3.41) {lemraref}
Proof. The proof is straightforward : if there is a rarefaction shock only ρ n is discontinuous through the shock and by definition (ρ n (x 1 )ρ n (x 1 -)) ρ max /2 n . Then the result holds with

C 0 := max (ρ,w)∈[0,ρmax]×[wmin,wmax] (|∂ ρ V |).
We are now ready to prove that the limit (ρ, y) satisfies Definition iii.. First, as (ρ n , w n ) are approximate solutions of the problem (1.1) and from Lemma 3.6, we can define N 0 a negligible space such that for any t ∈ R \ N 0 ,

• lim n→+∞ (ρ n (t, x), w n (t, x)) = (ρ(t, x), w(t, x)) for almost every x ∈ R. • s → y(s) is a differentiable function at time s = t, • lim n→+∞ y n (t) = y(t), • ẏn = min(V b , V (ρ n (t, y n (t)), w n (t, y n (t)))) for any n ∈ N.
More precisely, it suffices to show that

lim n→+∞ min(V b , V (ρ n (t, y n (t)), w n (t, y n (t)))) = min(V b , V (ρ(t, y(t)), w(t, y(t)))). (3.42) {goal} {goal}
We define in the following ρ + := lim x→y(t) + ρ(t, x), ρ -:= lim x→y(t) -ρ(t, x), and similarly w + := lim x→y(t) + w(t, x) and w -:= lim x→y(t) -w(t, x). Recall that ρ * (w) is the density such that

V b = V (ρ * (w), w). (3.43) {def-rhostar} {def-rhostar}
As V b < V (0, w) for any w ∈ [w min , w max ] by assumption, and V is a decreasing function with V (ρ max , w) = 0, (3.43) defines ρ * (w) uniquely.

It would be very tempting to proceed as was done in [START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF] to treat the LWR model, which can be seen as a simplified scalar version of this GARZ model, and separate the proof in the cases i (ρ + , ρ -) ∈ (ρ * , ρ max ], as no nonclassical shock can occur when ρ > ρ * .

ii (ρ + , ρ -) ∈ [0, ρ * ], as V (ρ, w) V b when ρ ρ * and thus the minimum of (3.42) is dominated by

V b . iii ρ + ρ * < ρ -or ρ -ρ * < ρ + .
However, as it is, this is doomed to failure as, ρ * depends on w which can be discontinuous as well and thus ρ * (w + ) would not have the same value as ρ * (w -). Besides, approximating ρ and w by a wave-front tracking algorithm would give some (ρ n , w n ) and it could be that even if (ρ n , w n ) is close to (ρ, w) for some x, it could be instantaneously be brought away by a 2-wave, trying to show that ρ n and w n are everywhere close to ρ and w is vain.

To deal with this problem we observe a fact from the conservation equations: since (ρ, w) satisfy point i. of Definition 1, then almost everywhere in time only two cases can occur w -= w + or V (ρ + , w + ) = V (ρ -, w -) provided that ρ + = 0 or ρ -= 0. In other words, there exists a negligible space N ⊂ R + such that for any t ∈ R + \ N the velocity V (ρ(t, •), w(t, •)) and the parameter w(t, •) cannot be discontinuous in y(t) at the same time unless ρ -= ρ + = 0. This is shown in Appendix B. In the particular case ρ -= ρ + = 0, min(V b , V (ρ + , ω + )) = V b and it is easy to show that ẏn = V b for n sufficiently large, hence the results hold. In the following we will suppose without loss of generality that ρ + = 0 or ρ -= 0 and N 0 is contained in N . Thus, for any t ∈ R \ N 0 ,

• V (ρ(t, y(t)), w(t, y(t))) = V (ρ(t, y(t)-), w(t, y(t)-)) or w(t, y(t)) = w(t, y(t)-) almost everywhere

In spirit, the first case where w -= w + is similar to the case of the simplified LWR model treated in [START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF], as the GARZ model would reduce to the LWR model is if w was constant on R. A new difficulty would arise as the 2-waves and V-waves can induce more complicated behaviors. We will come back to that in Subsection 3.3.2.

The second case, however, is specific to GARZ model and is a new feature. Thus, overall there are two new difficulties : dealing with the influence of the 2-waves and V-waves in the first case and treating this second case. We will start by a lemma that can be applied in these two cases, and then deal with the two cases separately.

{suprhostar} Lemma 3.10. Let t ∈ R + \ N and ε > 0. Let (ρ + , ρ -) ∈ ([0, ρ max ]) 2 and (w + , w -) ∈ ([w -, w + ]) 2 .
There exists δ > 0 such that, for n ∈ N large enough, if x ∈ (min(y n , y)δ, min(y n , y)) two cases can occur:

V (ρ n (t, x), w n (t, x)) ∈ B ε (V (ρ -, w -)), or V (ρ n (t, x), w n (t, x)) ∈ [V b -2ε, +∞) and V (ρ -, w -) ∈ [V b -ε, +∞). ( 3 

.44)

And if x ∈ (max(y n , y), max(y n , y) + δ),

V (ρ n (t, x), w n (t, x)) ∈ B ε (V (ρ + , w + )), or V (ρ n (t, x), w n (t, x)) ∈ [V b -2ε, +∞) and V (ρ + , w + ) ∈ [V b -ε, +∞). (3.45) 
where B r (a) stands for the ball centered in a of radius ε.

{lemoutside}

In other words, this lemma shows that in a short range before min(y n , y) and after max(y n , y), the approximated velocity V (ρ n , w n ) is everywhere close to V (ρ, w) or is also close to be larger than V b if V (ρ, w) is. Note that this is not obvious as the convergence in BV of (ρ n , w n ) gives only information almost everywhere and this is precisely all our problem : we need to obtain some convergence in a particular location y(t). An illustration of Lemma 3.10 is given in Figure 1. We now prove this lemma.

Proof of Lemma 3.10. Let us assume without loss of generality that x < min(y n , y) (the other case is similar by symmetry). From Lemma 3.6, for every > 0, there exists δ 0 > 0 such that T V (ρ(t, •), w(t, •)) |(min(y n ,y)-δ0,min(y n ,y)) < 2M with M the Lipschitz constant of V ∈ C 2 ([0, ρ max ]× [w min , w max ]). This implies that, for any x ∈ (min(y n , y)δ 0 , min(y n , y)),

(ρ(t, x), w(t, x)) ∈ B ε/2M ((ρ -, w -)). ( 3 

.46) {vrhoomega} {vrhoomega}

We now treat the two cases

V (ρ -, w -) < V b -ε and V (ρ -, w -) V b -ε separately.
Step 1: if V (ρ -, w -) < V bε. We now proceed by contradiction. Suppose by contradiction that for any δ > 0 and for any n 0 > 0 there exists n 1 n 0 and x ∈ (min(y n , y)δ, min(y n , y)) such that V (ρ n1 (x), w n1 (x)) ∈ R \ B ε (V (ρ -, w -)). Then by selecting δ = δ 0 /n we can construct a sequence (x n ) n∈N such that 2 with y n (t) < y(t). The approximate speed V (ρ n (t, •), w n (t, •)) over [y n (t)δ, y n (t)] ∪ [y(t), y(t) + δ] belongs to the area surrounded by the dotted lines (...) and ρ(t, •) over [y(t)δ 0 , y(t) + δ 0 ] belongs to the shaded zone. (3.48)

V (ρ n (x n ), w n (x n )) ∈ R \ B ε (V (ρ -, w -)) (3.47) {assumcontra} {assumcontra} V (ρ, ω) x V (ρ n , ω n ) ∈ V (ρ, ω) ∈ y(t) y n (t) y n (t) -δ0 y n (t) -δ y(t) + δ y(t) + δ0 V (ρ + , ω + ) V (ρ -, ω -) V (ρ + , ω + ) + V (ρ + , ω + ) - V (ρ -, ω -) + V (ρ -, ω -) - V (ρ -, w -) < V b -and V (ρ + , w + ) < V b - V (ρ, ω) x V (ρ n , ω n ) ∈ V (ρ, ω) ∈ y(t) y n (t) y n (t) -δ0 y n (t) -δ y(t) + δ y(t) + δ0 V (ρ + , ω + ) V (ρ -, ω -) V (ρ + , ω + ) + V (ρ + , ω + ) - V (ρ -, ω -) + V b V b -2 V (ρ -, w -) V b -and V (ρ + , w + ) < V b - V (ρ, ω) x V (ρ n , ω n ) ∈ V (ρ, ω) ∈ y(t) y n (t) y n (t) -δ0 y n (t) -δ y(t) + δ y(t) + δ0 V (ρ -, ω -) V (ρ + , ω + ) V b -2 V (ρ -, w -) V b -and V (ρ + , w + ) V b - Figure 1: Illustration of Lemma 3.10; let t ∈ R + \ N , ε > 0, (ρ + , ρ -) ∈ ([0, ρ max ]) 2 and (w + , w -) ∈ ([w -, w + ])
Then as we know that (ρ n , w n ) → (ρ, w) in BV, we can build a sequence (z m ) m∈N such that 

z m < y(t), lim m→+∞ z m = y(t) and lim n→+∞ (ρ n , w n )(z m ) = (ρ, w)(z m ). ( 3 
z 1 n = lim n→+∞ z 2 n = y(t), z 1 n < x n < z 2 n < min(y n , y), (ρ n , w n )(z 1 n +) ∈ B 3ε/4M (ρ -, w -) and (ρ n , w n )(z 2 n -) ∈ B 3ε/4M (ρ -, w -) V (ρ n , w n )(z 1 n +) ∈ B 3ε/4 (V (ρ -, w -)) and V (ρ n , w n )(z 2 n -) ∈ B 3ε/4 (V (ρ -, w -)).
(3.50) {inclusion:zn} {inclusion:zn}

Note that we used the Lipschitz continuity of V for this last point. (3.47) and (3.50) imply that V (ρ n , w n ) has to reach B 3ε/4 (V (ρ -, w -)) from x n to z 1 n and from x n to z 2 n . As n can be chosen large enough we suppose in addition that 2). In other words,

|z 1 n -min(y n , y)| < βt 12 ε. (3.51) {nlarge} {nlarge} We denote x 0 ∈ [z 1 n , x n ) the first point x such that V (ρ n (x-), w n (x-)) reaches B 3ε/4 (V (ρ -, w -)) from V (ρ n (x n ), w n (x n )) (see Figure
V (ρ n (x 0 -), w n (x 0 -)) ∈ B 3ε/4 (V (ρ -, w -)), V (ρ n (x), w n (x)) ∈ R \ B 3ε/4 (V (ρ -, w -)), ∀x ∈ [x 0 , x n ), (3.52) {x0def} {x0def} V (ρ n , ω n ) x x n + x 0 + z 1 n + z 2 n + min(y n , y) V (ρ -, ω -) V (ρ -, ω -) -3ε 4 V (ρ -, ω -) -ε V (ρ -, ω -) -3ε 4 V (ρ -, ω -) + ε Figure 2: Illustration of V (ρ n , w n ) if V (ρ -, w -) < V b -ε and V (ρ n (x n ), w n (x n )) > V (ρ -, w -) + with z 1 n < x 0 < x n < z 2 n < min(y n , y) illlustrationnproof .
Step 2: there cannot be any V-waves between x 0 and x n . Assume that a V-wave occurs between x n and x 0 , this implies that for some

x 1 ∈ [x 0 , x n ], ρ n (x 1 -) = ρ n (x 1 ) = 0.
As there is a finite number of discontinuities, we can assume that x 1 is the smallest x ∈ [x 0 , x n ] where a V-wave occurs. Thus V (ρ n (x 1 -)), w n (x 1 -)) = w n (x 1 -) w min > V b . From (3.52) and the fact that and thus x 0 < x 1 . Therefore the wave occuring in x 0 is not a V-wave, and it is not a 2-wave either as the velocity is discontinuous in x 0 from (3.52). As x n < min(y n , y(t)) there cannot be any nonclassical shock. Hence, so the wave in x 0 is a rarefaction shock or a shock. A shock can only increase the density ρ n and therefore decrease the velocity V , and a rarefaction shock can increase V at most by C 0 ρ max /2 n from Lemma 3.9. This implies that, for n ∈ N, C 0 ρ max /2 n ε/24 and large enough, 

V (ρ -, w -) V b -ε, this implies that V (ρ n (x 1 -)), w n (x 1 -)) V (ρ n (x 0 -)), w n (x 0 -)) + ε/4, ( 3 
V (ρ n (x 0 -), w n (x 0 -)) + ε 24 V (ρ n (x 0 ), w n (x 0 )) ( 3 
V (ρ n (x 1 -)), w n (x 1 -)) V (ρ n (x 0 ), w n (x 0 )) + 5ε/24. (3.55)
By definition there is no V-wave and no non-classical shock between x 0 and x 1 and x 1 > x 0 . This implies that we can use Lemma 3.7 and thus we have

|x 1 -x 0 | βt|V (ρ n (x 1 -), w n (x 1 -)) -V (ρ n (x 0 ), w n (x 0 ))| 5βtε 24 .
(3.56) {distancemin} {distancemin}

The inequalities (3.51), (3.56) and z 1 n x 0 < x 1 < min(y n , y) lead to a contradiction. Thus there is no V-wave between x 0 and x n . Assumption (3.47) implies that

V (ρ n (x n ), w n (x n )) V (ρ -, w -) + ε, or V (ρ n (x n ), w n (x n )) V (ρ -, w -) -ε. (3.57) {bigorsmall} {bigorsmall} Step 1.2: (3.57) doesn't hold. Assume that V (ρ n (x n ), w n (x n )) V (ρ -, w -) + ε. Since x n < min(y n ,
y), there is no nonclassical shock in x n . Moreover, as we just showed, there is no V-wave in x n . Thus, from Lemma 3.9, for n large enough, we have

V (ρ n (x n -), w n (x n -)) V (ρ n (x n ), w n (x n )) -ε 24 , V (ρ -, w -) + ε -ε 24 .
(3.58) {vn-}

{vn-}

As there is no V-waves occuring in [x 0 , x n ], this means, using (3.52), (3.54) and (3.58) that we can apply Lemma 3.7 between x 0 and x n similarly as previously and for n ∈ N large enough,

|x n -x 0 | βt|V (ρ n (x n -), w n (x n -)) -V (ρ n (x 0 ), w n (x 0 ))| βtε 6 .
(3.59) {distancemin2} {distancemin2}

The inequalities (3.51), (3.59) and z 1 n x 0 < x n < min(y n , y) lead to a contradiction. Therefore from (3.57)

V (ρ n (x n ), w n (x n )) V (ρ -, w -) -ε.
(3.60) {another} {another}

We will now show that this implies that there is no V-waves between x n and z 2 n either, and then we will get the final contradiction still using Lemma 3.7. Assume that there is a V-wave between x n and z 2 n . This implies that there exists

x 3 ∈ [x n , z 2 n ] such that ρ n (x 3 -) = ρ n (x 3 ) = 0.
Without loss of generality, as previously we can assume that x 3 is the smallest x ∈ [x n , z 2 n ] such that a V-wave appears. Since V b < w min , we know that

V (ρ n (x 3 -), w n (x 3 -)) = w(x 3 -) > V b . (3.61) {vac-} {vac-}
Moreover, using that V (ρ -, w -) < V bε and (3.60), we deduce that which is in contradiction with (3.51) and z 1 n < x n < z 2 n < min(y n , y). So overall both cases of (3.57) give a contradiction and this gives the result.

V (ρ n (x n ), w n (x n )) V (ρ -, w -) -ε < V b -2 . ( 3 
If V (ρ -, w -) V b -ε.
We proceed again by contradiction. Suppose by contradiction that for any δ > 0 and for any n 0 > 0 there exists n 1 n 0 and x ∈ (min(y n , y)δ, min(y n , y)) such that V (ρ n1 (x),

w n1 (x)) ∈ R \ [V b -2ε, +∞).
Then by selecting δ = δ 0 /n we can again construct a sequence (x n ) n∈N such that

V (ρ n (x n ), w n (x n )) ∈ R \ [V b -2ε, +∞) (3.65) {assumcontra2} {assumcontra2} with
x n ∈ (min(y n , y)δ, min(y n , y)) and lim n→+∞

x n = y(t).

(3.66)

As previously we can build (z 1 n ) and (z 2 n ) and n 1 > n 0 large enough such that for any n n 1 ,

lim n→+∞ z 1 n = lim n→+∞ z 2 n = y(t), z 1 n < x n < z 2 n < min(y n , y(t)), (ρ n , w n )(z 1 n +) ∈ B 3ε/4M (ρ -, w -) and (ρ n , w n )(z 2 n -) ∈ B 3ε/4M (ρ -, w -), V (ρ n , w n )(z 1 n +) ∈ B 3ε/4 (V (ρ -, w -)) and V (ρ n , w n )(z 2 n -) ∈ B 3ε/4 (V (ρ -, w -)), (3.67) {whynot18} {whynot18}
with M the Lipschitz constant of V ∈ C 2 ((0, ρ max ) × (w min , w max )). As previously V (ρ n , w n ) has to reach B 3ε/4 (V (ρ -, w -)) from x n to z 1 n and from x n to z 2 n . And we suppose again that n ∈ N is large enough such that 

|z 1 n -z 2 n | < βt 12 ε. ( 3 
V (ρ n (x 0 ), w n (x 0 )) V b -3ε/2, V (ρ n (x-), w n (x-)) < V b -3ε/2, ∀x ∈ (x n , x 0 ]. (3.69) {x0def2} {x0def2}
Note that there cannot be a V-wave in x 0 as V (ρ n (x 0 -), w n (x 0 -)) < V b from (3.69). The wave in x 0 is not a 2-wave either as the velocity V is discontinuous in this point and is not a nonclassical shock either as z 2 n < min(y n , y). Thus, from Lemma 3.9 and for n ∈ N large enough we have

V (ρ n (x 0 -), w n (x 0 -)) V (ρ n (x 0 ), w n (x 0 )) - ε 24 . (3.70) {x0-b} {x0-b}
We will show now that there cannot be any V-waves between x n and x 0 . Assume by contradiction that a V-wave occurs between x n and x 0 , this implies that for some x 1 ∈ (x n , x 0 ],

V (ρ n (x 1 -), w n (x 1 -)) > V b , which is in contradiction with (3.69), thus no V-wave occurs between x 0 and x n . Therefore, using (3.65), (3.69) and (3.70), we can apply Lemma 3.7 and for n ∈ N large enough,

|x 0 -x n | 11βtε 24 , (3.71)
which is in contradiction with (3.68) and z 1 n < x n < x 0 < min(y n , y) which ends the result. Now we will consider the two cases V (ρ(t, y(t)), w(t, y(t))) = V (ρ(t, y(t)-), w(t, y(t)-)) or w(t, y(t)) = w(t, y(t)-) almost everywhere, starting by the second case V (ρ + , w + ) = V (ρ -, w -).

Case

V (ρ + , w + ) = V (ρ -, w -).
Lemma 3.11. Let t ∈ R + \ N and ε > 0. Assume that V (ρ -, w -) = V (ρ + , w + ), then for n ∈ N large enough and x ∈ (min(y n (t), y(t)), max(y n (t), y(t))),

• if V (ρ + , w + ) < V b -ε/2, then V (ρ n (t, x), w n (t, x)) ∈ B ε (V (ρ + , w + )), (3.72) • and if V (ρ + , w + ) V b -ε/2, then V (ρ n (t, x), w n (t, x)) ∈ [V b -2ε, +∞). (3.73) {milieuV+V-} Proof of Lemma 3.11. Let t ∈ R + \ N and ε > 0. If V (ρ + , w + ) < V b -ε/2
Suppose by contradiction that for any n 0 0 there exists n n 0 such that there exists x n ∈ (min(y n , y), max(y n , y)) such that which is possible as min w∈[wmin,wmax] (ρ * (w)) > 0. We will obtain the contradiction by using that (ρ n (x n ), w n (x n )) has to connect to the left part of the solution in (min(y n , y)δ, min(y n , y)) and to the right part of the solution in (max(y n , y), max(y n , y) + δ), and then using the information we have on those two parts of the solution from Lemma 3.10. Let first look at what happens for (ρ n , w n ) at min(y n , y) : Since by assumption

V (ρ n (x n ), w n (x n )) ∈ R \ B ε (V (ρ + , w + )). ( 3 
V (ρ -, w -) = V (ρ + , w + ) < V b -ε 2 , we have V (ρ -, w -) < V b -ε 6 . Applying Lemma 3.10 with ε = ε 6 , for n 0 large enough, V (ρ n (min(y n , y)-), w n (min(y n , y)-)) ∈ B ε/6 (V (ρ -, w -)) = B ε/6 (V (ρ + , w + )). (3.76) {courage} {courage} As V (ρ + , w + ) + ε/6 < V b this means that ρ n (min(y n , y)-) > ρ * (w n (min(y n , y)-)) ρ(w n (min(y n , y)-)). (3.77) {nowaveshock} {nowaveshock}
Thus there cannot be any nonclassical shock or V-wave at min(y n , y) and therefore there can only be a 2-wave, a rarefaction shock or a shock, which implies, together with (3.76), that V (ρ n (min(y n , y)), w n (min(y n , y))) V (ρ n (min(y n , y)-), w n (min(y n , y)-))

+ C 0 ρ max 2 n V (ρ + , w + ) + ε 6 + C 0 ρ max 2 n , (3.78) {condgauche} {condgauche}
where C 0 given by Lemma 3.9 is the maximal amplitude of the velocity through of a rarefaction shock. As n can be chosen large enough, we assume that

C 0 ρ max 2 n < ε 6 (3.79) {nlarged} {nlarged}
Thus, from (3.78),

V (ρ n (min(y n , y)), w n (min(y n , y))) V (ρ

+ , w + ) + ε 3 . (3.80) 
Similarly on the right-hand side, one gets

V (ρ n (max(y n , y)-), w n (max(y n , y)-)) V (ρ + , w + ) - ε 3 . (3.81) 
Now we know to which admissible values (ρ n (x n ), w n (x n )) has to connect on the left and on the right and we will obtain a contradiction. We can now proceed exactly similarly as in the proof of Lemma 3.10. From (3.74) and (3.76), there exists

x 1 ∈ [min(y n , y), x n ] such that V (ρ n (x 1 -), w n (x 1 -)) ∈ B ε/3 (V (ρ + , w + )) V (ρ n (x), w n (x)) ∈ R \ B ε/3 (V (ρ + , w + )), ∀x ∈ [x 1 , x n ], (3.82) {x0def222} {x0def222} 
We will now show that no V-wave can occur between x 1 and x n by contradiction. Assume there exists

x 2 ∈ [x 1 , x n ] such that ρ n (x 2 -) = ρ n (x 2 ) = 0.
As there is a finite number of discontinuities, we can assume that x 2 is the smallest x ∈ [x 1 , x n ] where a V-wave occurs. Therefore

V (ρ n (x 2 -), w n (x 2 -)) = w n (x 2 -) w min > V b > V (ρ + , w + ) + ε 2 . (3.83) {leretour} {leretour}
which implies, together with (3.82), V (ρ n (x 2 -), w n (x 2 -)) > V (ρ n (x 1 -), w n (x 1 -)). Thus, x 2 = x 1 and no V-wave can occur in [x 1 , x 2 ). The wave occurring in x 1 is not a 2-wave either as the velocity is discontinuous in x 1 by construction. Moreover, a non-classical shock cannot occur at x 1 since there cannot be a non-classical shock at min(y n , y) as seen in (3.77) and x 1 ∈ [min(y n , y), x n ] with x n < min(y n , y). Thus, the wave in x 1 is either a rarefaction wave or a shock. From Lemma 3.9 and (3.79), for n large enough,

V (ρ n (x 1 -), w n (x 1 -)) + ε 6 V (ρ n (x 1 ), w n (x 1 )) (3.84) {ine:rarefactionl {ine:rarefactionl
Thus, we can apply Lemma 3.7 with (3.82), (3.83) and (3.84). Thus,

|x 2 -x 1 | βt|V (ρ n (x 2 -), w n (x 2 -)) -V (ρ n (x 1 ), w n (x 1 ))| βtε 6 . (3.85) {distancemin235} {distancemin235}
which is in contradiction with (3.75) and min(y n , y) x 1 < x 2 < max(y n , y). So there is no V-waves between x 1 and x n . From (3.74)

V (ρ n (x n ), w n (x n )) V (ρ + , w + ) + ε or V (ρ n (x n ), w n (x n )) V (ρ + , w + ) -ε. (3.86) {lafin} {lafin}
The exact same proof as in the proof of Lemma 3.10

Step 2 can be done to show that (3.86) doesn't hold, which gives the contradiction and ends the proof of Lemma 3.11 in the case V (ρ

+ , w + ) < V b -ε/2. If V (ρ + , w + ) V b -ε/2.
There are two possible situations : if there is no nonclassical shock at min(y n , y) and at max(y n , y), then the proof is exactly the same as the previous case and for any x ∈ (min(y n , y), max(y n , y)),

V (ρ n (x), w n (x)) ∈ B ε (V (ρ + , w + )) ⊂ [V b -2ε, +∞). (3.87)
If there is a nonclassical shock occurring at min(y n , y) or at max(y n , y). Suppose by contradiction that for any n 0 0 there exists n n 0 such that there exists x n ∈ (min(y n , y), max(y n , y)) such that

V (ρ n (x n ), w n (x n )) ∈ R \ [V b -2ε, +∞). (3.88) {contra3} {contra3}
Suppose that the nonclassical shock occurs in min(y n , y). It means that min(y n , y) = y n and thus no shock occurs on the right at max(y n , y) = y so a similar proof as previously can be done. Roughly speaking, from Lemma 3.10 with ε = ε 2 we have V (ρ n (y),

w n (y)) V b -3ε 2 .
Since there is no nonclassical shock at y then only a rarefaction shock or a V-wave can increase V . If a Vwave occur at y then V (ρ n (y-), w n (y-)) > V b . As n can be chosen large enough, we assume that C0ρmax 2 n < ε 6 . Thus, from Lemma 3.9 for n large enough, V (ρ n (y-), w n (y-)) V b -5ε 3 . As previously, we show that only shocks, rarefactions and 2-waves are allowed over [x n , y]. Thus, we have |y -

x n | βt|V (ρ n (y-), w n (y-)) -V (ρ n (x n ), w n (x n ))| βtε 3 , (3.89) {distance24} {distance24} 
which leads to a contradiction using (3.75) with y n x n < y. Suppose now a non-classical shock appears on the right at max(y n , y), this implies that max(y n , y) = y n and that, from the definition of ρ and (1.3),

ρ n (max(y n , y)-) = ρ(w n (max(y n , y)-)), V (ρ n (max(y n , y)-), w n (max(y n , y)-)) V b . (3.90) 
Therefore, using this together with (3.88), there exists x 5 ∈ (x n , max(y n , y)] such that

V (ρ n (x 5 ), w n (x 5 )) V b , V (ρ n (x), w n (x)) < V b , ∀x ∈ [x n , x 5 ). (3.91) {contrax5} {contrax5}
Note that in fact x 5 < max(y n , y) as

V (ρ n (x 5 -), w n (x 5 -)) < V b < V (ρ n (max(y n , y)-), w n (max(y n , y))). (3.92) 
Now, we can fix n 0 large enough such that

|y n -y| < Cβε. (3.93) {nlarge3} {nlarge3}
We show once again that there cannot be any V-wave between x n and x 5 as if there existed

x 6 ∈ [x n , x 5 ] such that a V-wave occurs, then, as V (ρ n (x 6 -), w n (x 6 -)) = V (0, w n (x 6 -)) > V b this implies that x 5 = x 6 , hence x 5 > x 6 , but V (ρ n (x 6 ), w n (x 6 )) = V (0, w n (x 6 
)) > V b and this would be in contradiction with (3.91). Therefore there is no V-wave between x n and x 5 and no nonclassical shocks either (as x 5 < y n ). This implies that

V (ρ n (x 5 -), w n (x 5 -)) V (ρ n (x 5 ), w n (x 5 )) - C 0 ρ max 2 n , (3.94) 
where C 0 is given by Lemma 3.9. Thus there exists n large enough such that

V (ρ n (x 5 -), w n (x 5 -)) -V (ρ n (x n ), w n (x n )) ε 2 , (3.95) 
and we can apply Lemma 3.7 to get

|x 5 -x n | βtε 2 , (3.96) 
which is in contradiction with (3.93). Hence, for any x ∈ (min(y n , y), max(y n , y)),

V (ρ n (x), w n (x)) ∈ [V b -2ε, +∞). (3.97)
This ends the proof of Lemma 3.11.

We can now prove the result (i.e. (3.42)) in the case V (ρ -, w -) = V (ρ + , w + ). Let ε > 0, from Lemma 3.10 with ε = ε/2 and Lemma 3.11, and using the fact that V (ρ -, w -) = V (ρ + , w + ), there exists n 0 > 0 such that for any n n 0 and any x ∈ (min(y n (t), y(t))δ, max(y n (t),

y(t)) + δ) \ {y(t), y n (t)}, if V (ρ + , w + ) < V b -ε 2 V (ρ n (x), w n (x)) ∈ B ε (V (ρ + , w + )), (3.98) 
and if

V (ρ + , w + ) V b -ε 2 , V (ρ n (x), w n (x)) V b -ε. (3.99)
As this is true for any x ∈ (min(y n (t), y(t))δ, max(y n (t), y(t)) + δ) \ {y(t), y n (t)}, this is true at the right limit of y n (t), namely y n (t) + and hence this implies that

min(V b , V (ρ + , w + ))-ε min(V (ρ n (y n (t)+), w n (y n (t)+)), V b ) min(V b , V (ρ + , w + ))+ε. (3.100) 
As ε > 0 was chosen arbitrarily (even though n 0 depends on ε), this gives directly

lim n→+∞ min(V b , V (ρ n (y n (t)), w n (y n (t)))) = min(V (ρ + , w + ), V b ), (3.101) 
which is the result we aim to show. We now move on to the next subsection and the case w -= w + .

Case w

-= w + {secw}
In spirit, this case is similar to the case treated in [START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF] with the LWR model as we can now divide the situation in three cases :

i (ρ -, ρ + ) ∈ [0, ρ * (w)] 2 , where w = w + = w - ii (ρ -, ρ + ) ∈ (ρ * (w), ρ max ] 2 iii ρ -ρ * (w) > ρ + or ρ + ρ * (w) > ρ -.
However, the possibility of 2-waves and V-waves complicate a lot this analysis and, in particular, we cannot try to confine ρ n and w n close to the set [ρ -, ρ + ]×{w} as the 2-waves make it doomed to failure : (ρ n , w n ) could be much outside this set and become instantaneously close using a 2-wave. Instead, the idea will be to confine V (ρ n , w n ) and thus neutralise the 2-waves. In this aim, we show the following lemma Lemma 3.12. Let t ∈ R + \ N and ε > 0. Assume that w -= w + , and let w denote this value, then for n ∈ N large enough : if x ∈ (min(y n , y), max(y n , y))

• if (ρ -, ρ + ) ∈ [0, ρ * (w)] 2 , then V (ρ n , w n ) ∈ [V b -ε, +∞) (3.102)
V (ρ -, w) V (ρ + , w).

(3.110) {ineV} {ineV}

To prove it, we argue by contradiction similarly to the proof of Lemma 3.10. Roughly speaking, we assume that V (ρ -, w) < V (ρ + , w) then for ε small enough V (ρ -, w) + 13ε/6 < V (ρ + , w) and V (ρ + , w) + ε < V b . Therefore, from Lemmas 3.10 and 3.12, that there is no non-classical shock and V-wave in (min(y n (t), y(t))δ, max(y n (t), y(t)) + δ) and we have to connect ρ n (t, min(y n (t), y(t))-) ∈ [V (ρ -, w)ε, V (ρ -, w) + ε] to ρ n (t, max(y n (t), y(t))+) ∈ [V (ρ + , w)ε, V (ρ + , w) + ε]. This leads to a contradiction using that y n (t) → y(t) as n tends to ∞ and V (ρ + , w)ε -V (ρ -, w) + ε > ε 6 . Let us define the triangle T 0 by

T 0 := {(s, x) ∈ [t, t f ) × (w max (s -t) + y n (t) -δ, ∂ ρ f (ρ max , w max )(s -t) + y(t) + δ)}, (3.111) {defT0} {defT0}
and where t f is the closing point of the triangle defined by Obviously t y n t f . Using the triangle T 0 we will start from a point ξ n (t) after y n (t), where for any x ∈ (ξ n (t), y(t) + δ(t)), V (ρ n (t, x), w n (t, x)) ∈ B ε (V (ρ + , w + )) and propagate to delimit a region (s, x) where V (ρ n (t, x), w n (t, x)) ∈ B ε (V (ρ + , w + )). Then we will show that there exists a time t n > t above which y n (s) is in this region. This implies that after this time, V (ρ n (t, y n (t)), w n (t, y n (t))) ∈ B ε (V (ρ + , w + )). Finally, we will show that this time t n goes to t when n goes to +∞ which will imply that for any s > t and for n large enough V (ρ n (s, y n (s)), w n (s, y n (s))) ∈ B ε (V (ρ + , w + )) and letting n goes to infinity will give the result (we will come back to this last point). This is summarized rigorously in the following lemma : Lemma 3.13. Let t ∈ R + \ N and ε > 0. Assume that (ρ -, ρ + ) ∈ (ρ * (w), ρ max ] with ρ -= ρ + , that ε is small enough such that min(ρ -, ρ + )ε > ρ * (w), and that y n < y(t) for any n n 1 . Let δ > 0 be given by Lemma 3.10. Then for any n n 1 , there exists t ξ n > t and a piecewise linear function ξ n such that (s, ξ n (s)) ∈ T 0 , ∀s ∈ [t, t ξ n ), (3.114) and for any (s,

t f = y(t) -y n (t) + 2δ w max -∂ ρ f (ρ max , w max ) . ( 3 
x) ∈ {[t, t ξ n ) × R|x > ξ n (s)} ∩ T 0 V (ρ n (s, x), w n (s, x)) ∈ B ε (V (ρ + , w + )). (3.115)
Besides, if we denote t y n the time at which y n (•) exits the triangle, there exists c > 0 independent of n such that min(t y n , t ξ n )t c and there exists t n > 0 such that ξ(t n ) = y n (t n ) and lim n→+∞ t n = t.

{lem7}

We will show this lemma right after, but first we show that we indeed get the expected result (i.e. (3.108)) with this lemma. If ρ -= ρ + then, from Lemma 3.10 and Lemma 3.12, for ε sufficiently small Besides, as (ρ n , w n , y n ) satisfies (1.9) we have

V (ρ + , w) -ε min(V b , V (ρ n (y n (t)), w n (y n (t)))) min(V b , V (ρ + , w) + ).
y n (s) -y n (t) = s t
min(V b , V (ρ n (τ, y n (τ )), w n (τ, y n (τ )))dτ. (3.117) This implies with (3.116) that min(V b , V (ρ

+ , w + )) -ε y n (s) -y n (t) s -t min(V b , V (ρ + , w + )) + ε. (3.118)
Using the convergence of y n to y we have

min(V b , V (ρ + , w + )) -ε y(s) -y(t) s -t min(V b , V (ρ + , w + )) + ε, (3.119) 
and from the definition of N 0 , y is differentiable in t, thus, using the fact that ε > 0 can be arbitrarily small. ẏ = min(V b , V (ρ + , w + )), (3.120) which ends the result in the case where (ρ -, ρ + ) ∈ (ρ * (w), ρ max ] 2 .

Proof of Lemma 3.13. This lemma is the analogous of Lemma 3.6 in [START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF] and the proof will be similar, with two differences : other types of waves than 1-waves can appear, and an interaction between two waves can result in several output wavefronts. To neutralize these effects we will consider V (ρ n , w n ) instead of ρ n and w n and this will allow us to ignore the 2-waves and follow the wavefronts of 1-waves when tracing the wavefront forward. The structure of the proof is illustrated in Figure 3.

Let t ∈ R \ N . Since (ρ -, ρ + ) ∈ (ρ * (w), ρ max ] with ρ -= ρ + and (3.110) holds, for ε > 0 small enough V (ρ + , w) < V (ρ -, w) < V bε. Then, from the definition of T 0 given in (3.111), for any (s, x) ∈ T 0 , we claim that

V (ρ n (s, x), w n (s, x)) ∈ [V (ρ + , w) -, V (ρ -, w) + ], (3.121) {lem7en}
{lem7en} Indeed, at s = t this is true from Lemma 3.10 and Lemma 3.12 as x ∈ (y n (t)δ, y(t) + δ), and for s ∈ (t, t f ) so no wave can reach the triangle T 0 from outside given its definition. Thus, observing all the possible interactions described by Section 1.2, the set of accessible velocities at time s is included in the set of accessible velocities at time t, which gives (3.121). Note that, (3.121) implies that, for any (s, x) ∈ T 0 , V (ρ n (s, x), w n (s, x)) < V b . Thus, a non-classical shock and a V-wave cannot appear in T 0 . Let us now denote by N (t, n) the number of discontinuity points of the speed V (ρ n (t, •), w n (t, •)) on [y n (t)δ, y(t) + δ] and x n j these discontinuity points. From Lemma 3.10 and Lemma 3.12 and ρ -= ρ + , there exists j 0 ∈ {1, ..., N (t, n)} such that x n j0 ∈ [y n (t), y(t)] satisfies 

V (ρ n (t, x n j0 -), w n (t.x n j0 -)) ∈ IR \ B ε (V (ρ + , w)) V (ρ n (t, x n j ), w n (t, x n j )) ∈ B ε (V (ρ + , w)),
ẏn (s) -ξn (s) V (ρ -, w 0 ) + ε -σ(f (R(V (ρ -, w 0 ) + ε, w 0 ), w 0 ), f (R(V (ρ + , w 0 ) + ε, w 0 ), w 0 )), ( 3 
(t) + δ), V (ρ n (x), w n (x)) ∈ B ε (V (ρ + , w + )), or V (ρ n (x), w n (x)) ∈ [V b -2ε, +∞) and V (ρ + , w + ) ∈ [V b -ε, +∞). (3.131) 
This implies that min(V b , V (ρ + , w + )) -2ε min(V b , V (ρ n (t, y n (t)), w n (t, y n (t)))) min(V b , V (ρ + , w + )) + ε.

(3.132) As ε > 0 was chosen arbitrarily provided n is large enough, this implies that lim n→+∞ min(V b , V (ρ n (t, y n (t)), w n (t, y n (t)))) = min(V b , V (ρ + , w + )), (3.133) and ends the results. So we can assume from now on that y n (t) < y(t) on an infinite set of index, and extracting a subsequence we can assume that y n (t) < y(t) for any n n 1 . We will now use the following Lemma to eliminate one more case Lemma 3.14. Let t ∈ R + \ N , and suppose that ρ -> ρ * (w) ρ + or ρ + > ρ * (w) ρ -for any n n 1 . Then the only possible case is ρ + > ρ * (w) ρ -.

{contrarapide} This Lemma is proven in Appendix D. We have the following Lemma for the remaining case Lemma 3.15. Let t ∈ R + \ N and ε > 0. Assume that ρ + ρ * (w) > ρ -, ε is small enough such that V (ρ + , w + )ε < V b and y n (t) < y(t) for any n n 1 . Let δ > 0 be given by Lemma 3.10. Then for any n n 1 , there exists t ξ n > t and a piecewise constant function

ξ n such that (s, ξ(s)) ∈ T 0 , ∀s ∈ [t, t ξ n ), (3.134) 
and for any (s, This proof is analogous to the proof of Lemma 3.13 and will be given in the Appendix E.

x) ∈ {[t, t ξ n ) × R|x > ξ n (s)} ∩ T 0 V (ρ n (s, x), w n (s, x)) ∈ B ε (V (ρ + , w + )). ( 3 
[TL: ends the proof] done in Appendix for Lemma 3.15, to be done here for the main proof.

A Proof of Lemma 3.3

{app:interactionW

Since Γ(•) may vary only at times t when two waves interact or a wave hits the slow vehicle trajectory, we will consider different types of interactions separately. It is not restrictive to assume that at any interaction time t = t either two waves interact or a wave hits the slow vehicle trajectory (and not multiple interactions). We describe wave interactions by the type of the involved waves, see Section 1. To simplify the notations, a i-wave interacting with a j-wave from the left is represented by i-j with i, j ∈ {1, 2, V }. If a i-wave interacts with a j-wave producing a k-wave and a wave of a l-family, we write i-j/ k-l. Here the symbol "/" divides the waves before and after the interaction. Let us start with some basic results {base} Lemma A.1. The interactions V -V , V -2, 2-V and 2-2 cannot occur.

Proof. We argue by contradiction.

i We assume V -wave ((0, w l ), (0, w m )) interacts with the V -wave ((0, w m ), (0, w r )). By definition of vacuum waves, we have w l < w m < w r . Thus, the speed of the V -wave ((0, w l ), (0, w m )) is slower than the speed of the V -wave ((0, w m ), (0, w r )), whence the contradiction.

ii We assume V -wave ((0, w l ), (0, w m )) interacts with the 2-wave ((0, w m ), (ρ r , w r )). We have w l < w m = V (0, w m ) = V (ρ r , w r ). Thus, the speed of the V -wave ((0, w l ), (0, w m )) is slower than the speed of the 2-wave ((0, w m ), (ρ r , w r )), whence the contradiction.

iii We assume 2-wave ((ρ l , w l ), (0, w m )) interacts with the V -wave ((0, w m ), (0, w r )). We have V (ρ l , w l ) = V (0, w m ) = w m < w r . Thus, the speed of the 2-wave ((ρ l , w l ), (0, w m )) is slower than the speed of the V -wave ((0, w m ), (0, w r )), whence the contradiction.

iv We assume 2-wave ((ρ l , w l ), (ρ m , w m )) interacts with the 2-wave ((ρ m , w m ), (ρ r , w r )). We have V (ρ l , w l ) = V (ρ m , w m ) and V (ρ m , w m ) = V (ρ r , w r ). Thus, the speed of the 2-wave ((ρ l , w l ), (ρ m , w m )) is equal to the speed of the 2-wave ((ρ m , w m ), (ρ r , w r )). We conclude that no interaction occurs, whence the contradiction.

For the classical collision between two waves (away from the slow vehicle trajectory), we have the following result: {le:estim-funct-w Lemma A.2. Assume that the wave ((ρ l , w l ), (ρ m , w m )) interacts with the wave ((ρ m , w m ), (ρ r , w r )) at the point (t, x) with t > 0 and x ∈ R. Then Γ(t+) ≤ Γ(t-). The possible interactions are:

2- 1/1-2, 2-1/1-V -2, 2-1/V -2, 1-1/1, V -1/V -2, V -1/1-2.
Proof. We have RS((ρ l , w l ), (ρ(w l ), w l ))(V b ) = (ρ r , w l ) and ρ r ∈ (ρ(w l ), ρ max ]. The only possible interaction is N C-1/1-F V . Since V (ρ r , w r ) := V (ρ r , w l ) < v(w l ), we have:

           ∆T V (w) = 0, ∆T V (v) = |V (ρ r , w r ) -v(w l )| -|V (ρ r , w r ) -v(w l )| -|v(w l ) -v(w l )| = -2|v(w l ) -v(w l )|, ∆T V (w(•, y(•)), [t, +∞)) = 0, γ(t + ) -γ(t -) = 2|v(w l ) -v(w l )|.
We conclude that ∆Γ(t) = 0.

{Y7}

Lemma A.9. Assume that the second family wave ((ρ l , w l ), (ρ(w r ), w r )) interacts with the N C-wave ((ρ(w r ), w r ), (ρ(w r ), w r )) at the point (t, x) with t 0 and x ∈ R. We have the following cases:

i No wave is produced, 2-N C/1-F V -2, 2-N C/F V -1-2 or 2-N C/F V -1-V -2. Then ∆Γ(t) = 0.
ii The interaction are 2-N C/1-N C-1-2 and 2-N C/1-N C-1-V -2. Then ∆Γ(t) 0.

Proof. Since V (ρ l , w l ) = V (ρ(w r ), w r ) < V (ρ(w r ), w r ), we have ρ l > R(v(w r ), w l ). Thus,

RS((ρ l , w l ), (ρ(w r ), w r ))(V b ) =    (R(v(w r ), w l ), w l ) if v(w r ) < V (ρ c (w l ), w l ), (ρ l , w l ) if V (ρ c (w l ), w l ) < v(w r ), (ρ c (w l ), w l ) if v(w r ) V (ρ c (w l ), w l ) v(w r ). (A.1) {popo} {popo} i v(w r ) < v(w r ) v(w l ) < v(w l ): from (A.1
) and using v(w r ) < V (ρ c (w l ), w l ), RS((ρ l , w l ), (ρ(w r ), w r ))(V b ) = (R(v(w r ), w l ), w l ).

Since v(w r ) v(w l ), ρ(w l ) R(v(w r ), w l ). Thus, no wave is produced and the only interaction is 2-N C/1-F V -2; The second family wave hits the N C-wave producing a first family wave ((ρ l , w l ), (ρ r , w r )) and a second family wave ((R(v(w r ), w l ), w l ), (ρ(w r ), w r )). Since V (ρ l , w l ) = v(w r ) and V (R(v(w r ), w l ), w l ) = v(w r ) we have

       ∆T V (w) = 0, ∆T V (v) = |v(w r ) -v(w r )| -|v(w r ) -v(w r )| = 0, ∆T V (w(•, y(•)), [t, +∞)) = -C|w l -w r |, γ(t + ) -γ(t -) = 2|v(w r ) -v(w r )| (A.2) {dede} {dede} We conclude that ∆Γ(t) = 2|v(w r ) -v(w r )| -C|w l -w r |. Using v(w r ) < v(w r ) v(w l ), |v(w r ) -v(w r )| |v(w r ) -v(w l )|. From Lemma 3.2, we conclude that |v(w r ) -v(w r )| C ρ|w l -w r |.
Since C := 2(C ρ + C ρ), we obtain ∆Γ(t) 0.

ii v(w l ) < v(w l ) v(w r ) < v(w r ): from (A.1) and using V (ρ c (w l ), w l ) < v(w r ), RS((ρ l , w l ), (ρ(w r ), w r ))(V b ) = (ρ l , w l ).

Since v(w l ) v(w r ), we have ρ l ρ(w l ). Thus, no waves is produced and the possible interactions are 2-N C/F V -1-2 and 2-N C/F V -1-V -2;

• Case 2-N C/F V -1-2: (A.2) holds and we conclude that Since C := 2(C ρ + C ρ), we obtain ∆Γ(t) 0.

∆Γ(t) = 2|v(w r ) -v(w r )| -C|w l -w r |. Using v(w l ) v(w r ) < v(w r ), |v(w r ) -v(w
• Case 2-N C/F V -1-V -2: The second family wave hits the N C-wave producing a first family wave ((ρ l , w l ), (0, w l )), a vacuum wave ((0, w l ), (0, v(w r ))) and a second family wave ((0, v(w r )), (ρ(w r ), w r )). From Section 1, since a vacuum occurs then v(w r ) = V (ρ l , V (ρ l , w l )) V (0, w l ) = w l and w l v(w r ). Thus, we have iii Case v(w r ) v(w l ) v(w r ) v(w l ): from (A.1)

RS((ρ l , w l ), (ρ(w r ), w r ))(V b ) = (R(v(w r ), w l ), w l ) if v(w r ) < V (ρ c (w l ), w l ) (ρ c (w l ), w l ) if v(w r ) V (ρ c (w l ), w l ) v(w l ) v(w r )

Since v(w l ) v(w r ) v(w l ) we have R(v(w r ), w l ) ∈ (ρ(w l ), ρ(w l )). Thus, RS((ρ l , w l ), (ρ(w r ), w r ))(V b ) ∈ (ρ(w l ), ρ(w l )). The only interaction is 2-N C/1-N C-1-2; the second family wave hits the N Cwave producing a first family wave ((ρ l , w l ), (ρ(w l ), w l )), a NC-wave ((ρ(w l ), w l ), (ρ(w l ), w l )), a first family wave ((ρ(w l ), w l ), (R(v(w r ), w l ), w l )) and a second family wave ((R(v(w r ), w l ), w l ), (ρ(w r ), w r )). Since V (ρ l , w l ) = v(w r ) and V (R(v(w r ), w l ), w l ) = v(w r ) we have RS((ρ l , w l ), (ρ(w r ), w r ))(V b ) = (ρ l , w l ) if v(w r ) > V (ρ c (w l ), w l ) (ρ c (w 1 ), w 1 ) if v(w r ) V (ρ c (w l ), w l ) v(w l ) v(w r ) Since v(w l ) v(w r ) v(w l ), we have ρ l ∈ (ρ(w l ), ρ(w l )). Thus, RS((ρ l , w l ), (ρ(w r ), w r ))(V b ) ∈ (ρ(w l ), ρ(w l )). Thus, the possible interactions are 2-N C/1-N C-1-2 and 2-N C/1-N C-1-V -2;

• Case 2-N C/1-N C-1-2: from (A.3) and using v(w l ) v(w r ) v(w l ) v(w r ), we get ∆T V (v) = 2|v(w l )v(w r )| and γ(t + )γ(t -) = 2|v(w l )v(w r )| -2|v(w l )v(w r )|. We conclude that ∆Γ(t) = 2|v(w r )v(w l )| -C|w lw r |.

From Lemma 3.2, we get |v(w r )v(w l )| C ρ|w lw r |.

Since C := 2(C ρ + C ρ), we obtain ∆Γ(t) 0.

• Case 2-N C/1-N C-1-V -2: the second family wave hits the N C-wave producing a first family wave ((ρ l , w l ), (ρ(w l ), w l )), a NC-wave ((ρ(w l ), w l ), (ρ(w l ), w l )), a first family wave ((ρ(w l ), w l ), (0, w l )) a vacuum wave ((0, w l ), (0, v(w r ))) and a second family wave ((0, v(w r )), (ρ(w r ), w r )). From Section 1, since a vacuum occurs then v(w r ) = V (ρ l , w l ) V (0, w l ) = w l and w l v(w r ). Thus, we have v Case v(w l ) v(w r ) v(w r ) v(w l ): we have R(v(w r ), w l ) ∈ (ρ(w l ), ρ(w l )) and ρ l ∈ (ρ(w l ), ρ(w l )). Thus, RS((ρ l , w l ), (ρ(w r ), w r ))(V b ) ∈ (ρ(w l ), ρ(w l )). The only possible interaction is 2-N C/1-N C-1-2. From (A.3) and using v(w l ) v(w r ) v(w r ) v(w l ), we get ∆T V (v) = 2|v(w l )v(w r )| + 2|v(w l )v(w r )| and γ(t + )γ(t -) = -2|v(w l )v(w r )| -2|v(w l )v(w r )|. We conclude that ∆Γ(t) = -C|w lw r | < 0. zero measure and ξ ∈ L ∞ (R + ). As (ρ, w) is a solution to the weak equation ( Let ε > 0, as C ∞ c (R + ×R) can be seen as C ∞ c (R + ; C ∞ c (R)), it is therefore dense in C ∞ c (R + ; L 2 (R)). We can therefore construct an approximation of 1 [ξ(t)-ε,ξ(t)+ε] (x)d(t) where d ∈ C ∞ c (R + ) and 1 X stands for the characteristic function of X, in the following way : define interactions with y n (t) that leads to a single 1-wave. We can then proceed similarly and define s 0,k and s 1,k for k 2 until the times t ξ0 and t ξ1 where ξ 0 and ξ 1 respectively exit the triangle. Note that with this procedure, if ξ 0 and ξ 1 interact together at a time s, they merge and are identical for any time larger than s. Note also that y n can only interact at most once with ξ 1 , since y n propagates with a speed larger than ξ 1 . Indeed, for s t such that (s, y n (s)) ∈ T 0 , from Lemma 3.10 and 3.12, min(V b -2ε, V (ρ + , w)ε) ẏn (s) V b , (E. σ(f (R(V (ρ -, w) + ε, y), y), f (R(V (ρ + , w) + ε, y), y). 

φ n (t, x) = d(t)
(

{GARZdescription} 1 . 1 A

 11 strongly coupled PDE-ODE This paper deals with the following strongly coupled PDE-ODE {eq:RPM}

  .1d) {eq:RPMd} {eq:RPMd} ρ(0, •) = ρ 0 (•) and ẏ(0) = y 0 (1.1e) {eq:RPMe} {eq:RPMe} The PDE (1.1a)-(1.1b), introduced in [9], models the evolution of vehicular traffic and the ODE (1.1d) represents the trajectory of a slow moving vehicle. The ODE influences the PDE through the moving constraint on the flux (1.1d).

. 1 )

 1 {lem:TVine} {lem:TVine}

. 8 )

 8 {ine:TV2} {ine:TV2}

. 10 )

 10 {eq:bound_dot_y} {eq:bound_dot_y} for a.e. t > 0 and n ∈ IN \ {0}. Using Ascoli Theorem [21, Theorem 7.25], there exists a function y ∈ C 0 ([0, T ]; IR) and a subsequence of (y n ) n , which for simplicity we denote again by (y n ) n , such that y n converges to y uniformly in C 0 ([0, T ]; IR). By the arbitrariness of T , (3.6b) holds. Moreover y is a Lipschitz continuous function with V b as a Lipschitz constant.

  ) {eq:comp20} {eq:comp20}

  lem:illustration with x n ∈ (min(y n , y)δ, min(y n , y)) and lim n→+∞ x n = y(t).

  .53) {ine:vacuum} {ine:vacuum}

  .54) {ine:rarefaction} {ine:rarefaction} Thus, from (3.53) and (3.54), we deduce that

  {lem10}

  r )| |v(w r )v(w l )|. From Lemma 3.2, we conclude that |v(w r )v(w r )| C ρ|w lw r |.

  ∆T V (w) = |w rv(w r )| + |v(w r )w l | -|w rw l | = 0, ∆T V (v) = |v(w r )w l | + |w lv(w r )| -|v(w r )v(w r )| = 0.Thus, (A.2) holds and we conclude that∆Γ(t) = 2|v(w r )v(w r )| -C|w lw r |. Using v(w l ) v(w r ) v(w r ), |v(w r )v(w r )| |v(w r )v(w l )|. From Lemma 3.2, we conclude that |v(w r )v(w r )| C ρ|w lw r |.Since C := 2(C ρ + C ρ), we obtain ∆Γ(t) 0.

  ∆T V (v) = |v(w r )v(w l )| + |v(w l )v(w l )| + |v(w l )v(w r )| -|v(w r )v(w r )|, ∆T V (w(•, y(•)), [t, +∞)) = -C|w lw r |, γ(t + )γ(t -) = -2|v(w l )v(w l )| + 2|v(w r )v(w r )|. (A.3) {bibi} {bibi} Since v(w r ) v(w l ) v(w r ) v(w l ), we get ∆T V (v) = 2|v(w l )-v(w r )| and γ(t + )-γ(t -) = -2|v(w l )v(w r )| + 2|v(w l )v(w r )|. We conclude that ∆Γ(t) = 2|v(w r )v(w l )| -C|w lw r |.From Lemma 3.2, we get |v(w r )v(w l )| C ρ|w lw r |.Since C := 2(C ρ + C ρ), we obtain ∆Γ(t) 0.iv Case v(w l ) v(w r ) v(w l ) v(w r ): from (A.1)

  ∆T V (w) = |w rv(w r )| + |v(w r )w l | -|w rw l | = 0 ∆T V (v) = |v(w r )w l | + |w lv(w l )| + |v(w l )v(w l )| + |v(w l )v(w r )| -|v(w r )v(w r )| = |v(w r )v(w l )| + |v(w l )v(w l )| + |v(w l )v(w r )| -|v(w r )v(w r )|.Thus, (A.3) holds and similarly to the case 2-N C/1-N C-1-V -2 above we have ∆Γ(t) 0.

  (y -(ξ(t)ε)))nχ(n(y -(ξ(t) + ε)))dy (B.3) where χ ∈ C ∞ c (R) such that supp(χ) ⊂ (-1, 1) and R χ(x)dx = 1. (B.4) Defined this way φ n ∈ C ∞ c (R + × R) and therefore using the first equation of (B.2) we have+∞0 R ρ(t, x)nd(t)(-ξ(t)) x -∞ nχ (n(y -(ξ(t)ε)))nχ (n(y -(ξ(t) + ε)))dy + ρ(t, x)d (s) x -∞ nχ(n(y -(ξ(t)ε)))nχ(n(y -(ξ(t) + ε)))dy + d(s)ρ(t, x)V (ρ(t, x), w(t, x)) [nχ(n(x -(ξ(t)ε)))nχ(n(x -(ξ(t) + ε)))] dtdx = 0, (B.5)Thus integrating the first terms and using a change of variable in terms of the middle line,+∞ 0 R ρ(t, x)nd(t)(-ξ(t)) [χ(n(x -(ξ(t)ε)))χ(n(x -(ξ(t) + ε)))] + nd(s)ρ(t, x)V (ρ(t, x), w(t, x)) [χ(n(x -(ξ(t)ε)))χ(n(x -(ξ(t) + ε)))] dtdx + ∞ 0 R ρ(t, x)d (s) nx -∞ χ(y -(ξ(t)ε))χ(y -(ξ(t) + ε))dy dtdx = 0. (B.6)Now, this is true for any ε > 0 so we can choose ε = 1/n, and we get+∞ 0 R ρ(t, x)nd(t)(-ξ(t)) χ(n(x -(ξ(t) -1 n )))χ(n(x -(ξ(t) + 1 n )))+ nd(s)ρ(t, x)V (ρ(t, x), w(t, x)) χ(n(x -(ξ(t) -1 n )))χ(n(x -(ξ(

7 )

 7 and, by construction, just like in the proof of Lemma 3.13 ξ1 (s) max y∈[wmin,wmax] 

  .[START_REF] Liard | Well-posedness for scalar conservation laws with moving flux constraints[END_REF]) {eq:transform} {eq:transform} in a distributional sense for any borel function j on [ω min , ω max ]. Hence, since (R(v n , w n ), w n ) is a weak solution of (1.1a)-(1.1b) (i.e. satisfying point i) of Definition 1) we claim that

R+

R(v n (t, y n (t)), w n (t, y n

  y(t)) dt.

	(3.32)
	Using (3.29) and (3.30) this means that
	(3.33)
	One can do exactly similarly to get

T 0 ρ(t, y(t)-) [V (ρ(t, y(t)-), w(t, y(t)-))ẏ(t)] ψ(t, y(t)dx dt T 0 F α ( ẏ(t))ψ(t, y(t))dx dt. T 0 ρ(t, y(t)+) [V (ρ(t, y(t)+), w(t, y(t)+))ẏ(t)] ψ(t, y(t))dx dt

T 0 F α ( ẏ)ψ(t, y(t))dx dt.

  .62) {pkjh} {pkjh} Therefore, x 3 > x n . By definition there is no V-wave occurring between x n and x 3 and since x 3 < min(y n , y), no nonclassical shock either. Thus we can use Lemma 3.7 with (3.61) and(3.62) 

	to prove that				
	(3.63) n < x n < x 3 < min(y n , y). So no V-wave occurs |x 3 -x n | 2βtε which gives again a contradiction with (3.51) and z 1 between x n and z 2 n . Then exactly as before we can use Lemma 3.7 with (3.50) and (3.60) to show
	that	|z 2 n -x n |	βtε 4	,	(3.64)

  .112) Let us also define t y n > t the time at which y n (s) gets out of the triangle, i.e.(s, y n (s)) ∈ T 0 , ∀s ∈ [t, t y n ), (t y n , y n (t y n )) /

	∈ T 0 .	(3.113)

  Therefore, as ε was chosen arbitrarily, (3.108) holds. Assuming that ρ -= ρ + . Let s ∈ (t, t+c) where c is given in Lemma 3.13, there exists n 2 > n 1 such that for any n n 2 , t n < s. Hence V (ρ n (s, y n (s)), w n (s, y n (s))) ∈ B ε (V (ρ + , w + )).

	(3.116) {estim7} {estim7}

  Thus, together with (3.121), for any s ∈ (0, t ξ n ) ξn (s) max y∈[wmin,wmax] σ(f (R(V (ρ -, w) + ε, y), y), f (R(V (ρ + , w) + ε, y), y)),

				(3.127) {deriveexn} {deriveexn}
	min w∈[wmin,wmax] ∂ ρ f (R(V (ρ + -ε, w), w))	ξn (s),
	and for any s ∈ (0, t y n )		
	V (ρ + , w) -ε	ẏn (s) V (ρ -, w) + ε	(3.128) {deriveeyn} {deriveeyn}
	Using (3.111), (3.127) and (3.128), there exists c > 0 (independent of n) such that min(t y n , t ξ n )
	t + c. From (3.127) and (3.128), for every s ∈ (t, t + c),
			∀j j 0 such that x n j < y(t) + δ,	(3.122) {tracking} {tracking}

  (•) interacts with ξ n (•) at time t n ∈ (t, t + c) and t n → 0 as n → ∞. • If ρ -ρ * (w) > ρ + or ρ + ρ * (w) > ρ -.As previously let us first exclude a simple case : if y

	.129) {diffynxin} {diffynxin}
	with w 0 = argmax w∈[wmin,wmax] σ(f (R(V (ρ -, w) + ε, w), w), f (R(V (ρ + , w) + ε, w), w)). There-fore, for every s ∈ (t, t + c), (3.130) {diffynxin2} {diffynxin2} ẏn (s) -ξn (s) > 0. Using (3.130), lim n→∞ y n (t) = y(t) and y n (t) ξ n (t) y(t), y n

n (t) y(t) for an infinite set of index, then extracting a subsequence we can assume that y n (t) y(t) for any n n 1 . From Lemma 3.10 we have, for any x ∈ (y n (t), y n

  .135)Besides, if we denote t y n the time at which y n (•) exits the triangle, there exists c > 0 independent of n such that min(t y n , t ξ n )t c and there exists t n > 0 such that ξ(t n ) = y n (t n ) and lim

n→+∞ t n = t.

  1.1), we have for any testfunction φ ∈ C ∞ c (R + × R), ∂ t φ(t, x)ρ(t, x) + ρ(t, x)V (ρ(t, x), w(t, x))∂ x φ(t, x)dtdx = 0,

		+∞		
	+∞	0	R	(B.2) {weak} {weak}
		∂ t φ(t, x)ρ(t, x)w(t, x) + ρ(t, x)w(t, x)V (ρ(t, x), w(t, x))∂ x φ(t, x)dtdx = 0.	
	0	R		

  E.8)Therefore there exists a constant d > 0 depending on ε but independent of n such that ẏn (t) -ξ1 (s) d.(E.9) {def-d} {def-d}Let us denote t y n the time at which y n exits the triangle. Exactly as in the proof of Lemma 3.13 there exists c independent of n such that min(t ξ1 , t y n (t) ) t + c. Besides, from (E.9), if n is large enough,

		y n -y(t) d	c,	(E.10) {estim-tn} {estim-tn}
	and therefore there exists t n	y	

n -y(t) d such that ξ n 1 (t n ) = y n (t n ) and for any s ∈ [t n , t + c] y n (s) > ξ n

1 (s). Finally, from (E.10), lim b→+∞ t n = 0. Therefore Lemma 3.15 holds with ξ = ξ 1 .

• if (ρ -, ρ + ) ∈ (ρ * (w), ρ max ] 2 , then V (ρ n , w n ) ∈ [V (max(ρ -, ρ + ), w)ε, V (min(ρ -, ρ + ), w) + ε] (3.103)

• if ρ -ρ * (w) > ρ + or ρ + ρ * (w) > ρ -, then

The proof is very similar to the proof of Lemmas 3.10 and 3.11 and will be given in the Appendix C. As expected this lemma shows how we can confine V (ρ n , w n ) to the set of speed generated by [ρ -, ρ + ] × {w}. In two cases this confinement in imperfect as V (ρ n , w n ) could also lie in [V b , +∞). This is due to the presence of nonclassical shock and the fact that the solution is not entropic. However, this will not be a problem in the following. Indeed, what we aim to show overall is formally the following min(V (ρ n (y n (t)+), w n (y n (t)+)), V b ) → min(V (ρ + , w + ), V b ) so any value above V b will be canceled by the min operator. We can now prove the result in each of the three cases listed above :

• If (ρ -, ρ + ) ∈ [0, ρ * (w)] 2 , then using Lemmas 3.10 and 3.12, for any ε > 0 there exists δ > 0 and n 1 > 0 such that for any n n 1 and any x ∈ (min(y n (t), y(t))δ, max(y n (t), y(t)) + δ) \ {y n (t), y(t)}

where w = w + = w -. But as (ρ -, ρ + ) ∈ [0, ρ * (w)] 2 , then both V (ρ -, w) and V (ρ + , w) are above V b . This implies that

hence V bε min(V b , V (ρ n (y n (t)), w n (y n (t)))) V b .

(3.107) {lim01} {lim01}

Since V b = min(V b , V (ρ + , w)), as ρ + ρ * (w), and as ε was chosen arbitrarily we have using (3.107) lim n→+∞ min(V (ρ n (y n (t)+), w n (y n (t)+)), V b ) = min(V (ρ + , w), V b ), (3.108) {final007} {final007} which is the result we aimed for.

• If (ρ -, ρ + ) ∈ (ρ * (w), ρ max ] 2 we can now proceed as in [START_REF] Liard | On entropic solutions to conservation laws coupled with moving bottlenecks[END_REF], provided that we look at 1-waves and find a way to ignore 2-waves. Let us first exclude a simple case : if y n (t) y(t) for an infinite set of index, then extracting a subsequence we can assume that y n (t) y(t) for any n n 1 . Since (ρ -, ρ + ) ∈ (ρ * (w), ρ max ] 2 , this implies that V (ρ + , w) < V b and V (ρ -, w) < V b . If V (ρ + , w) < V bthen from Lemma 3.10 we have, for any x ∈ (y n (t), y n (t) + δ), V (ρ n (x), w n (x)) ∈ B ε (V (ρ + , w)).

(3.109) {ohoh} {ohoh} If V bε V (ρ + , w) < V b then (3.109) holds or V (ρ n (x), w n (x)) ∈ [V b -2ε, ∞). Thus, (3.108) holds and the result is shown. Thus, we can assume from now on that y n (t) < y(t) on an infinite set of index, and extracting a subsequence we can assume that y n (t) < y(t) for any n n 1 . We claim that

This comes directly from Lemma 3.10 and the fact that (ρ n , w n ) is piecewise constant. Note that there cannot be a V-wave at x j from (3.123) and the fact that V (ρ + , w + ) + ε V b . We construct now the piecewise constant function ξ n that we are going to track forward in time: let ξ n (t) = x n j0 and

where the term at the right of (3.124) is the speed of the 1-wave created at x n j0 and s 1 is defined as the minimum between the time when ξ n exits the triangle T 0 and the time when it interacts or attains another wavefront. Note that actually this cannot be a V-wave or a nonclassical shock as otherwise there would exists (s, x) in T 0 such that V (ρ n (s, x), w n (s, x)) > V b and this contradicts with (3.121). Assuming that ξ n interacts with another wavefront at s 1 , in that case, ξ n can only interact with a 2-wave or a shock, or a rarefaction shock. Therefore, there is exactly one 1-wave generated by this interaction. So, we define, for any

where the term at the right of (3.125) is the speed of the 1-wave generated by the interaction and s 2 is the minimum between the time when ξ n exits the triangle T 0 and the time when it interacts with another wavefront with a discontinuous velocity. We then define s 3 ,...,s k and so on. As ξ sees only shocks and rarefaction shocks, the rest of the proof is similar to [15, Appendix A]. Let t ξ n (resp. t y n ) be the time when ξ n (•) (resp. y n (•)) exits the triangle T 0 . From (3.123) and by construction of ξ n (•), for any (s,

(3.126)

Next, we introduce the following notations:

• F V -wave: a wave denoting the slow vehicle trajectory without discontinuity in (ρ n , w n ). The notation is to indicate a fictitious wave.

• N F -wave: a wave denoting the slow vehicle trajectory with discontinuity in (ρ n , w n ). The notation is to indicate a non fictitious wave. A N F -wave is decomposed into three different waves:

-N C-wave: a wave ((ρ l , w l ), (ρ r , w r )) denoting the slow vehicle trajectory verifying w l = w r , ρ l = ρ(w l ) and ρ r = ρ(w l ). The notation is to indicate a non classical shock.

-1C-wave: A 1C-wave is decomposed into two waves: * 1Ca-wave: a wave ((ρ l , w l ), (ρ r , w r )) denoting the slow vehicle trajectory verifying w l = w r and σ((ρ l , w l ), (ρ r , w r )) = V b with ρ l ∈ [0, ρ(w l )] and ρ r ∈ [ρ(w l ), ρ max ]. * 1Cb-wave: a wave((ρ l , w l ), (ρ r , w r )) denoting the slow vehicle trajectory verifying w l = w r , ρ l = 0 and ρ r > ρ * (w l ).

The notation 1C is to indicate a first family classical shock 2C-wave: a wave((ρ l , w l ), (ρ r , w r )) denoting the slow vehicle trajectory verifying V (ρ l , w l ) = V (ρ r , w r ) and ρ l ρ * (w l ) and ρ r ρ * (w r ). The notation is to indicate a second family classical shock.

A.1 Interactions with a F V -wave.

Lemma A.3, Lemma A.4, Lemma A.5 and Lemma A.6 deal with interactions between a iwave with i ∈ {1, 2, V } and a F V -wave. Since min(V b , V (ρ, w))

V (ρ, w) and V b < w min , the interactions F V -2 and F V -V can not occur. We only consider the interactions F V -1, 1-F V , 2-F V and V -F V .

{Y4}

Lemma A.3. Assume that the the F V -wave interacts with the first family wave ((ρ l , w l ), (ρ r , w r )) at the point (t, x) with t > 0 and x ∈ R. We have the following cases:

ii The interaction is F V -1/N C-1. Then ∆Γ(t) 0.

Proof. In this situation ρ l V (ρ l , w l ) F α ( ẏ) + V b ρ l and w l = w r . We have two different cases.

i In this case, the first family wave hits the slow vehicle trajectory and no new wave is created.

It means that ρ r V (ρ r , w r ) F α ( ẏ) + V b ρ r . Thus, we have:

ii In this case, the first family wave ((ρ(w l ), w l ), (ρ r , w l )) hits the slow vehicle trajectory producing a N C-wave ((ρ(w l ), w l ), (ρ(w l ), w l )) and a first family wave ((ρ(w l ), w l ), (ρ r , w l )), with positive speed. It means that

Assume that the first family wave ((ρ l , w l ), (ρ r , w r )) interacts with the F V -wave at the point (t, x) with t > 0 and x ∈ R. We have the following cases:

ii The interaction is

Proof. In this situation ρ r V (ρ r , w r ) F α ( ẏ) + V b ρ r and w l = w r . We have two different cases.

i In this case, the first family wave hits the slow vehicle trajectory and no new wave is created.

ii In this case, the first family wave hits the slow vehicle trajectory producing a first family wave ((ρ l , w l ), (ρ(w l ), w l )) and a N C-wave

Assume that the second family wave ((ρ l , w l ), (ρ r , w r )) interacts with the F V -wave at the point (t, x) with t > 0 and x ∈ R. We have the following cases:

Proof.

i In this case, the second family wave hits the slow vehicle trajectory and no new wave is created. It means that ρ l V (ρ l , w l ) F α ( ẏ) + V b ρ l . Thus, we have:

ii In this case, the second family wave hits the slow vehicle trajectory producing a first family wave ((ρ l , w l ), (ρ(w l ), w l )), a N F V -wave ((ρ(w l ), w l ), (ρ(w l ), w l )), a first family wave with positive speed ((ρ(w l ), w l ), (ρ l , w l )) and a second family wave ((ρ l , w l ), (ρ r , w r )). It means that

{Y6}

Lemma A.6. Assume that the V-wave ((0, w l ), (0, w r )) with w l < w r interacts with the F V -wave at the point (t, x) with t > 0 and x ∈ R. We have a unique case: no wave is produced,

Proof. The vacuum wave hits the slow vehicle trajectory and no new wave is created. It means that ρ l V (ρ l , w l ) = 0 F α ( ẏ) + V b ρ l . Thus, we have immediately:

A.2 Interactions with a N C-wave.

Lemma A.7, Lemma A.8, Lemma A.9 deal with interactions between a i-wave with i ∈ {1, 2, V } and a NC-wave. Since 0 = ρ(w) < ρ(w), min(V b , V (ρ, w)) V (ρ, w) and V b < w min , the interactions N C-2, N C-V and V -N C can not occur. We only consider the interactions N C-1, 1-N C and 2-N C.

{Y8}

Lemma A.7. Assume that the first family wave ((ρ l , w l ), (ρ(w l ), w l )) interacts with the N C-wave ((ρ(w l ), w l ), (ρ(w l ), w l )) at the point (t, x) with t > 0 and x ∈ R. The only interaction is 1-

Proof. We have RS((ρ l , w l ), (ρ(w l ), w l ))(V b ) = (ρ l , w l ) and ρ l ∈ (0, ρ(w l )). The only possible interaction is 1-N C/F V -1. Since V (ρ l , w l ) > v(w l ), we have:

We conclude that ∆Γ(t) = 0.

{Y9}

Lemma A.8. Assume that the a N C-wave ((ρ(w l ), w l ), (ρ(w l ), w l )) from the left interacts with the first family wave ((ρ(w l ), w l ), (ρ r , w l )) at the point (t, x) with t > 0 and x ∈ R. The only interaction is N C-1/1-F V . Then ∆Γ(t) = 0.

vi Case v(w r ) v(w l ) v(w l ) v(w r ): from (A.1)

Thus, the possible interactions are 2-N C/1-N C-1-2 and 2-N C/1-N C-1-V -2;

• Case 2-N C/1-N C-1-2: From (A.3) and using v(w r ) v(w l ) v(w l ) v(w r ), we get ∆T V (v) = 0 and γ(t

From Lemma 3.2, we get

From Section 1, since a vacuum occurs then v(w r ) = V (ρ l , w l ) V (0, w l ) = w l and w l v(w r ). Thus, we have

So, (A.3) holds and similarly to the case 2-N C/1-N C-1-2 above, we conclude that ∆Γ(t) 0.

A.3 Interactions with a 1C-wave.

Lemma A.10, Lemma A.11 and Lemma A.12 deal with interactions between a i-wave with i ∈ {1, 2, V } and a 1Ca-wave. Since ρ * (w) > 0 and min(V b , V (ρ, w)) V (ρ, w), the interactions 1Ca-V and 1Ca-2 can not occur. We only consider the interactions 1-1Ca, 1Ca-1, 2-1Ca and V -1Ca.

{Y10}

Lemma A.10.

• Assume that the first family wave ((ρ l , w l ), (ρ m , w l )) interacts with the 1Cawave (ρ m , w l ), (ρ r , w l )) from the left at the point (t, x) with t > 0 and x ∈ R. The possible interactions are 1-1Ca/F V -1 and 1-1Ca/1-F V . Then ∆Γ(t) = 0.

• Assume that the 1Ca-wave ((ρ l , w l ), (ρ m , w l )) interacts with the first family wave (ρ m , w l ), (ρ r , w l ))

from the left at the point (t, x) with t > 0 and x ∈ R. The possible interactions are 1Ca-1/F V -1 and 1Ca-1/1-F V . Then ∆Γ(t) = 0.

Proof.

• Since the first family wave interacts with the slow vehicle trajectory coming from the left, we have ρ l ∈ (0, ρ r ). Thus,

Using that ρ m ∈ [0, ρ(w l )] and ρ r ∈ [ρ(w l ), ρ * (w l )], we conclude that RS ρ ((ρ l , w l ), (ρ r , w l ))(V b ) ∈ [0, ρ(w l )]∪[ρ(w l ), ρ * (w l )]; no waves is produced and the possible interactions are 1-1Ca/F V -1 and 1-1Ca/1-F V . From Lemma A.2, ∆Γ(t) = 0.

• Since the first family interacts with the slow vehicle trajectory coming from the right, we have ρ r ∈ (ρ l , ρ max ). Thus,

Using that ρ l ∈ [0, ρ(w l )] and ρ r ∈ [ρ(w l ), ρ * (w l )], we conclude that RS ρ ((ρ l , w l ), (ρ r , w l ))(V b ) ∈ [0, ρ(w l )]∪[ρ(w l ), ρ * (w l )]; no waves is produced and the possible interactions are 1Ca-1/F V -1 and 1Ca-1/1-F V . From Lemma A.2, ∆Γ(t) = 0.

{YWR}

Lemma A.11. Assume that the second family wave ((ρ l , w l ), (ρ m , w m )) interacts with the 1Ca-wave ((ρ m , w m ), (ρ r , w r )) at the point (t, x) with t 0 and x ∈ R. We have the following cases:

ii The interaction are

Proof. We have

we have ρ l < R(V (ρ r , w r ), w l ), w l ). Thus,

. Thus, we have RS((ρ l , w l ), (ρ r , w r ))(V b ) = (ρ l , w l ) and ρ l ∈ [0, ρ(w l )]. So, no wave is produced and the possible interactions are 2-1Ca/F V -1-2 and 2-1Ca/F V -1-V -2. From Lemma A.2, ∆Γ(t) = -C|w lw r |.

ii Case v(w l ) V (ρ r , w r ) v(w l ) V (ρ m , w m ): in this case ρ l ρ(w l ) R(V (ρ r , w r ), w l ) ρ(w l ). Thus, V b σ(ρ l , R(ρ r , w l )) and then RS((ρ l , w l ), (ρ r , w r ))(V b ) = (ρ l , w l ) with ρ l ∈ [0, ρ(w l )]. So, no wave is produced and the only possible interaction is 2-1Ca/F V -1-2. From Lemma A.2, ∆Γ(t) = -C|w lw r |.

iii V (ρ r , w r ) v(w l ) v(w l ) V (ρ m , w m ): in this case ρ l ρ(w l ) ρ(w l ) R(V (ρ r , w r ), w l ).

From (A.6), RS ρ ((ρ l , w l ), (ρ r , w r ))

No wave is produced and the possible interactions are 2-1Ca/F V -1-2 and 2-1Ca/1-F V -2. From Lemma A.2,

No wave is produced and the possible interactions are 2-1Ca/F V -1-2 and 2-1Ca/1-F V -2.

Thus, σ(ρ l , R(ρ r , w l )) V b and then, from (A.6), RS((ρ l , w l ), (ρ r , w r ))

No wave is produced and the only possible interaction is 2-1Ca/1-F V -2. From Lemma A.2, ∆Γ(t) = -C|w lw r |.

vi v(w l ) V (ρ r , w r ) V (ρ m , w m ) v(w l ): in this case ρ(w l ) ρ l R(V (ρ r , w r ), w l ) ρ(w l ). From (A.6), RS((ρ l , w l ), (ρ r , w r ))(V b ) ∈ (ρ(w l ), ρ(w l )). The only possible interaction is 2-1Ca/1-N C-1-2. We have

{YV1}

Lemma A.12. Assume that the vacuum family wave ((0, w l ), (0, w r )) interacts with the 1Ca-wave ((0, w r ), (ρ r , w r )) at the point (t, x) with t > 0 and x ∈ R. The possible interactions are V -1Ca/1Ca-2. Then ∆Γ(t) = -C|w lw r |.

Proof. By definition of vacuum waves, w l < w r and by definition of 1Ca-wave, ρ r = ρ * (w r ). The only possible interaction is V -1Ca/1Ca-2. Since V (ρ * (w r ), w r ) = V (ρ * (w l ), w l ), we have immediately that ∆Γ(t) = -C|w lw r |.

Lemma A.13, Lemma A.14, Lemma A.15 deal with interactions between a i-wave with i ∈ {1, 2, V } and a 1Cb-wave. Since min(V b , V (ρ, w))

V (ρ, w) and V b < w min , the interactions 1Cb-2 and 1Cb-V can not occur. We only consider the interactions 1Cb-1, 1-1Cb, 2-1Cb and V -1Cb. {Yb1} Lemma A. [START_REF] Hayat | A holistic approach to the energy-efficient smoothing of traffic via autonomous vehicles[END_REF].

• Assume that the first family wave ((ρ l , w l ), (0, w l )) interacts with the 1Cbwave (0, w l ), (ρ r , w l )) from the left at the point (t, x) with t > 0 and x ∈ R. The possible interactions are 1-1Cb/F V -1 and 1-1Cb/1-F V . Then ∆Γ(t) = 0.

• Assume that the 1Cb-wave ((0, w l ), (ρ m , w l )) interacts with the first family wave (ρ m , w l ), (ρ r , w l ))

from the left at the point (t, x) with t > 0 and x ∈ R. The possible interactions are 1Cb-1/F V -1 and 1Cb-1/1-F V . Then ∆Γ(t) = 0.

Proof.

• We have ρ l ∈ (0, ρ r ). Thus, using that ρ r > ρ * (w l ), RS((ρ l , w l )(ρ r , w l ))(V b ) = (ρ r , w r ). Thus, no wave is produced and the only possible interaction is 1-1Cb/1-F V . From Lemma A.2, ∆Γ(t) = 0.

; no waves is produced and the possible interactions are 1Cb-1/F V -1 and 1Cb-1/1Cb. From Lemma A.2, ∆Γ(t) = 0 {YWRb} Lemma A.14. Assume that the second family wave ((ρ l , w l ), (ρ m , w m )) interacts with the 1Cb-wave ((0, w r ), (ρ r , w r )) at the point (t, x) with t 0 and x ∈ R. No wave is produced, the only possible interaction is 2-1Cb/1-F V -2. Then ∆Γ(t) = -C|w lw r |.

Proof. Since the speed of the first family ((ρ l , w l ), (R(V (ρ r , w r ), w l ), w l )) is slower than the speed V b , we have RS((ρ l , w l ), (ρ r , w r ))(V b ) = (R(V (ρ r , w r ), w l ), w l ). Besides, using that V (R(V (ρ r , w r ), w l ), w l ) = V (ρ r , w r ) and ρ r > ρ * (w r ), R(V (ρ r , w r ), w l ) > ρ * (w l ). Thus, no wave is produced, the only possible interaction is 2-1Cb/1-F V -2. Then, from Lemma A.2, ∆Γ(t) = -C|w lw r | {YV1b} Lemma A.15. Assume that the vacuum family wave ((0, w l ), (0, w r )) interacts with the 1Cb-wave ((0, w r ), (ρ r , w r )) at the point (t, x) with t > 0 and x ∈ R. The possible interactions are V -1Cb/1Cb-2C. Then ∆Γ(t) = -C|w lw r |.

Proof. Since w l < w r and ρ r > ρ * (w r ) we have V (ρ r , w r ) V (ρ * (w r ), w r ) = V (ρ * (w l ), w l ) w l Thus, the only possible interaction is V -1Cb/1-2C. Then, from Lemma A.2, ∆Γ(t) = -C|w lw r |.

A.4 Interactions with a 2C-wave.

Using Lemma A.1, min(V b , V (ρ, w)) V (ρ, w) and V b < w min , the interactions 1-2C, V -2C, 2C-V , 2C-2 and 2-2C can not occur. Thus, Lemma A.16 deals with only the interaction 2C-1. {Y9d} Lemma A. [START_REF] Liard | Well-posedness for scalar conservation laws with moving flux constraints[END_REF]. Assume that the a 2C-wave ((ρ l , w l ), (ρ m , w r )) interacts with the first family wave ((ρ m , w r ), (ρ r , w r )) at the point (t, x) with t > 0 and x ∈ R. The two possible interactions are 2C-1/1-F V -2 and 2C-1/1-2C. Then ∆Γ(t) = 0.

Proof. We have ρ l ρ * (w l ) and ρ m ρ * (w r ).

• if ρ m > ρ r (that is to say the first family is a shock) then RS((ρ l , w l ), (ρ r , w r ))(V b ) = (ρ r , w l ).

Thus, the only possible interaction is 2C-1/1-2C and no wave is produced. Then, from Lemma A.2, ∆Γ(t) = -C|w lw r |.

• if ρ m < ρ r the first family wave ((ρ m , w r ), (ρ r , w r )) is a rarefaction. Thus, ρ r ρ(w r ) and R(V (ρ r , w r ), w l ) ρ(w l ). Besides,

Thus, no wave is produced. From Lemma A.2, ∆Γ(t) = -C|w lw r |.

B Proof that V (ρ(t, y(t)+), w(t, y(t)+)) = V (ρ(t, y(t)-), w(t, y(t)-)) or w(t, y(t)+) = w(t, y(t)-) almost everywhere.

{Appendixneg}

In this appendix we prove the following claim : there exists N a space of zero measure such that for any t ∈ R + \ N , V (ρ(t, y(t)+), w(t, y(t)+)) = V (ρ(t, y(t)-), w(t, y(t)-)) or w(t, y(t)+) = w(t, y(t)-).

(B.1)

The argument we use is very similar to the one generally used to derive the Rankine-Hugoniot condition, except that we would like it to be true along the curve y(t) instead of along a shock curve. Let ξ be a continuous function on R + and differentiable on R + \ N 0 , where N 0 is a set of Dividing the first integral and performing again a change of variables in each of the divided parts, we have

We will now justify that we can use a dominated convergence theorem in each of the integrals to conclude. Note first that as supp(χ) ⊂ (-1, 1), we have for the last integral

(B.9) thus this function is compactly supported and, as (ρ, w) is bounded and d ∈ C ∞ c (R + ), we have by dominated convergence

Now, observe that as supp(χ) ⊂ (-1, 1), the integration bounds of the first four integrals in x in (B.8) can be limited to (-1, 1). Besides for any x ∈ (-1, 1), x/n -1/n < 0 and x + 1/n > 0, thus, as x → (ρ(t, x), w(t, x)) is a BV function with a left and right limit that exists for any x ∈ R, we have for any x ∈ (- 

where [f ] a+ a-denotes lim x→a+ flim x→a-f . As this is true for any d ∈ C ∞ c (R + ), then the function in the integrand is equal to 0 almost everywhere which implies that for almost every

ξ(t)-. Doing similarly for the second equation of (B.2), there exists a space N of zero measure such that for all t ∈ R + \ N

Using the second equation in the first one and using that [f g] a+ a-= [f ] a+ a-g(a+) + f (a-)[g] a+ a-, we finally get that for any t ∈ N V (ρ(t, ξ(t)+), w(t, ξ(t)+)) = V (ρ(t, ξ(t)-), w(t, ξ(t)-)) or w(t, ξ(t)+) = w(t, ξ(t)-).

(B.14)

Now, as y is continuous, differentiable up to a zero measure space and y ∈ R + , we can take ξ = y and this ends the proof of the claim.

C Proof of Lemma 3.12 {Appendix1} D Proof of Lemma 3.14 {Appendixcontrara Proof. Suppose by contradiction that ρ -> ρ * (w) ρ + . Since ρ -> ρ * (w), for ε small enough, we have V (ρ -, w) -4ε < V b . From Lemma 3.10, for any x ∈ (min(y n , y)δ, min(y n , y)), V (ρ n (t, x), w n (t, x)) ∈ B ε (ρ -, w)). In particular, V (ρ n (t, min(y n , y)-), w n (t, min(y n , y)-)) < V b -3ε. In min(y n , y), we cannot have a V-wave or a non-classical shock since V (ρ -, w) < V b . Thus, only shocks and rarefaction waves are allowed at min(y n , y). Using Lemma 3.9, for n large enough, V (ρ n (t, min(y n , y)+), w n (t, min(y n , y)+)) < V b -8ε 3 .

(D.1) {app:1} {app:1}

From ρ * (w) ρ + and Lemma 3.10, for any x ∈ (max(y n , y)-δ, max(y n , y)), V (ρ n (t, x), w n (t, x)) ∈ [V b -2 , +∞). In particular, V (ρ n (t, max(y n , y)-), w n (t, max(y n , y)-)) > V b -2ε. In max(y n , y), a 1-wave, a 2-wave and and V-wave are allowed. Note that the speeds involved on the left and right limit of a V-wave (resp. of a non classical shock) is greater than V b . Thus, to decrease the speed from V b -2ε, the only possible way is to use a rarefaction wave. Therefore, from Lemma 3.9, for n large enough, To go from V b -8ε 3 to V b -7ε 3 in V (ρ n , w n ), there are only shocks and rarefaction waves. From Lemma 3.9, (D.1) and (D.2), for n large enough,

|V (ρ n (max(y n , y)-), w n (max(y n , y)-)) -V (ρ n (min(y n , y)+), w n (min(y n , y)+))| tβε 3 .

The convergence of y n to y and the arbitrariness of ε leads to a contradiction which conclude the proof.

E Proof of Lemma 3.15 {Appendix36}

Proof. This proof is similar to the proof of Lemma 3.13. The main difference with Lemma 3.13 is that ρ -< V b which means that there could be some interaction with the slow vehicle that results in a non-classical shock. Let t ∈ R \ N . Once again, given the definition of T 0 , a wavefront inside the triangle cannot interact with wavefronts out of the triangle. Let us denote by N (t, n) the number of discontinuity points of the speed V (ρ n , w n ) on [y n (t)δ, y(t) + δ] and x n j these points. As V (ρ+, w) + ε < V b V (ρ -, w), from Lemma 3.10 and 3.12 , there exists j 0 and j 1 such that x j0 ∈ [y n (t), y(t)] and x j1 ∈ [y n (t), y(t)] and

Note that a priori x j1 could be equal to x j0 and x j0 might not be unique. Now, we define similarly as previously the trajectories ξ n 0 and ξ n 1 by ξ n j0 (0) = x n j0 ξn 0 = σ(ρ n (t, x n j0 -), R(V (ρ n (t, x n j0 ), w n (t, x n j0 )), w(t, x n j0 -))) on [0, s 0 ],

where the right-hand side is the speed of the 1-wave propagating from the discontinuity in x j0 (note that it cannot be a 2-wave since x j0 is a discontinuity point of the velocity), and where s 0 is the minimum between the time where ξ j0 exit the triangle or interact with another wavefront. We also set ξ n j1 (0) = x n j1 ξn j1 = σ(ρ n (t, x n j0 -), R(V (ρ n (t, x n j0 ), w n (t, x n j0 )), w(t, x n j0 -))) on [0, s 1 ],

where s 1 is the minimum between the time where ξ j1 exits the triangle or interact with another wavefront. Given that ξ j0 does not interact with another wavefront before s 0 and ξ j1 before s 1 , we have that V (ρ n (s, x), w n (s, x)) ∈ B ε (V (ρ + , w)) for any (s, x) ∈ T 0 ∩ {ξ 1 (s) x} V (ρ n (s, x), w n (s, x)) ∈ [V (ρ + , w)ε, V b ) for any (s, x) ∈ T 0 ∩ {ξ 0 (s) x ξ 1 (s)}. (E.4) {eq:inside_triang {eq:inside_triang

Assume that ξ j1 interact with another wavefront at time s 1 , then there are only three possibilities: a 2-wave, a shock, a rarefaction shock or a non-classical shock if ξ j0 (s 0 ) = y n (t). If there is a 2wave, a shock or a rarefaction shock there is again only one 1-wave generated by this interaction. If ξ j1 interact with y n (t) at s 1 , then, as V (ρ(s 1 )+, w(s 1 )) < V b from (E.4) the only possible case (see Lemmas A.3, A.4, A.7 and A.8) is that the interaction give rise to a 1-wave and a FV-wave, which is a wave denoting the slow vehicle trajectory without discontinuity in (ρ n , w n ). Note that y n (t) can only come from the left as x j1 y n (t) by definition. This implies that there is again only one 1wave generated by this interaction. The same holds for ξ j0 (s 0 ) as V (ρ(ξ j0 (s 0 )+), w(ξ j0 (s 0 ))) V b . Therefore we can follow this 1-wave and set ξ0 (s) = σ(ρ n (s 0 , ξ n 0 (s 0 )-), R(V (ρ n (s 0 , ξ n 0 (s 0 )), w n (s 0 , ξ n (s 1 ))), w n (s 0 , ξ n 0 (s 0 )-)), for any s ∈ [s 0 , s 0,2 ], (E.5) where s 0,2 is the minimum between the time when ξ 0 exits the triangle and the time when ξ 0 interact with another wavefront. Similarly we set ξ1 (s) = σ(ρ n (s 1 , ξ n 1 (s 1 )-), R(V (ρ n (s 1 , ξ n 1 (s 1 )), w n (s 1 , ξ n 1 (s 1 ))), w n (s 1 , ξ n 1 (s 1 )-)), for any s ∈ [s 1 , s 1,2 ], (E.6)

where the right-hand side is the speed of the 1-wave generated by the interaction and where s 1,2 is the minimum between the time when ξ 1 exits the triangle and the time when ξ 1 interacts with another wavefront. Again the only interactions are 2-waves, shocks, rarefaction shocks, or