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Abstract

Autonomous vehicles (AV) offer new avenues for transportation applications and call for a
new understanding of traffic dynamics when both regular cars and AV coexist. Many works
looked at this question with a microscopic approach where both the AVs and the regular cars
are modelled as ODEs. Here, present a second order model describing the interaction between a
macroscopic traffic flow described by PDEs and autonomous vehicles (AV) described by ODEs.
This model is inspired by recent development on moving bottlenecks for scalar conservation
laws and is intrinsically multiscale. We give an analysis of this model and we show the existence
of weak solutions with bounded variations.
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Introduction

Traffic flows have been a natural subject of many mathematical studies for roughly as long as
cars exist. This can be explained by the tremendous interest of understanding traffic dynamics,
both from a theoretical and practical point of view. The interest of having a continuous macro-
model compared to a micromodel comes from the curse of dimensionality and the unbearable
computational weight when it comes to costly applications such as control design with a large
number of cars. Many celebrated macromodels were derived in the last decades, as for instance the
historical LWR [18, 21]. But traffic flow modeling has come to a new rise with the development of
second order models. Among the most celebrated one can cite the Paye-Whitham model [20, 25]
and the ARZ [2] model (see also its generalizations GARZ [10] and CGARZ [11]). As they consist
of hyperbolic equations, the most natural framework to consider is entropic BV solutions. Since
then, there have been hundreds of studies of these models that are relatively well understood. The
advent of AVs in the last few years changed the story. It calls for a deep understanding of the inter-
action between AV and traffic flows, as AVs are soon to be a reality that cannot be ignored. This
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question comes with a first modelling difficulty: how to look at the interaction between something
intrinsically microscopic with something intrinsically macroscopic? While some studies exist on the
effect of AV on traffic flows (see for instance [4] or [15]), an answer compatible with a macroscopic
theory was given only recently in [5, 6] (see also [12]) motivated by the following observation: when
a particular vehicle is in a traffic flow it has only two possibilities: it can either follow the flow or
go slower and in this case it has a local effect on the flow. Therefore understanding the interaction
between AVs and traffic flow is very much linked to understanding the effect of a moving bottle-
neck. While several works looked at the moving bottleneck problem in macromodels [13, 19] it is
only recently that some studies looked directly at the effect of a moving bottleneck whose dynamic
is given either by the flow or by the limiting speed that it imposes. In [5, 6, 8], Delle Monache
and Goatin derived a flux condition that couples a moving bottleneck with a traffic flow model
by a LWR equation. The resulting system consists of a PDE representing the bulk traffic coupled
with an ODE representing the moving bottleneck where the state of the ODE acts on the PDE
through the flux condition and the state of the PDE is involved in the ODE. In [12] the authors
illustrated that this framework could adapt to the interaction of the AV and a first order model
traffic flow. This system was proved to have BV solutions (coherent in some sense with the reality)
[16] and then to be well-posed [17]. Its application to the control of traffic flow was later studied
in [12]. Two things are worth to be noted: first, even though this model does not differentiate
between lanes, it is intrinsically multilane since a moving bottleneck only reduces the flow but do
not stop it. This means that the model takes into account the fact that the particles of the flow
can get around the bottleneck, for instance by overtaking. Second, and this is one of the most
surprising features of this class of model: the flux constraint can be in contradiction with the usual
entropy condition. This means that entropic solutions are not the right framework anymore. Even
though this may come as a surprise, it can easily be understood in practice: a single car can have
a macroscopic effect on the system, for instance if a particular car decides to stop in the middle
of the traffic flow it will create a wave with a low density of car propagating in front of it, and a
wave with a large density of cars propagating behind it. This is a nonentropic shock. This also
means that many of the classical tools that were developed for hyperbolic equations are useless
here. Consequently analysing this system raised new and non-incremental difficulties.

Unfortunately first order models cannot grasp important physical phenomena as stop and go
waves. Besides being interesting in themselves, stop and go waves (or jam) are paramount as they
are at the origin of high fuel consumptions (and therefore CO2 emissions) in congested traffic.
They occur because the uniform flow steady-state becomes unstable when the traffic is congested
enough. Both theoretical and experimental studies suggests In recent years AVs have been seen
as a new disruptive way of controlling traffic flow to dampen stop-and go waves with the hope
of reducing by up to 40% the fuel consumption and CO2 emission in congested flows [23, 14]. It
is therefore important to come up with a richer model capturing stop and go waves in order to
understand the interaction between traffic flows and AVs. In this paper we propose a second-order
ODE/PDE model consisting of a GARZ system coupled to a ”Delle Monache Goatin-like” condition
generalized and adapted to a second order model. Just like for the first order model, the correct
solutions are not entropic anymore, leading to potential nonclassical shocks and the impossibility
to apply the classical entropic theory. The main difficulties consist in dealing with the new family
of wave (so-called second family [24]) arising from the second order model. In particular, trying
to apply directly the strategy of the first-order model would fail as, even in the entropic parts
of the solution, the density of cars can both discontinuously increase or decrease because of this
new family of wavefronts. It is worth noting that in [24] the authors already looked at a similar
second order model based on ARZ equations and managed to define and characterize precisely
the Riemann problem and dealt with the numerical analysis. However, there did not address the
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question of existence of solutions outside of the framework of the Riemann problem. The second
order model we propose here can be seen as a generalization of their model and the analysis we
carry could be directly applied to their model as well. Finally, another difficulty consists in defining
the right notion of two dimensional weak-solution when the solution can be non entropic at the
moving constraint. Concerning this last problem, one can mention the remarkable paper [1] where
the authors consider a second-order model with a flux condition at a fixed boundary and where the
same type of question appears. This paper is organized as follows: in Section 1, we describe the
GARZ model coupled with a moving constraint, the different families of solutions, the properties
of the model and the wave-front tracking approximation. In Section 2 we discuss the definition of
a weak solution for this ODE/PDE system and we state the main result, namely the existence of a
solution to the Cauchy Problem. Finally in Section 3, we prove this result in three parts: we first
prove the convergence of the wave-front tracking approximation to a well defined BV state and an
absolutely continuous function for the location of the moving bottleneck; then we show that this
BV function is indeed a weak solution of the PDE; finally we show that the location of the moving
bottleneck is a solution of the ODE.

1 GARZ model with a moving constraint

1.1 A strongly coupled PDE-ODE

This paper deals with the following strongly coupled PDE-ODE

∂tρ+ ∂x (ρ V (ρ, w)) = 0, (1.1a)

∂t(ρw) + ∂x (ρw V (ρ, w)) = 0, (1.1b)

ρ (t, y(t)) (V (ρ(t, y(t)), w(t, y(t)))− ẏ(t)) 6 Fα(w(t, y(t)), ẏ(t)), (1.1c)

ẏ(t) = min (Vb, V (ρ(t, y(t)), w(t, y(t)))) (1.1d)

ρ(0, ·) = ρ0(·) and ẏ(0) = y0 (1.1e)

The PDE (1.1a)-(1.1b), introduced in [9], models the evolution of vehicular traffic and the ODE
(1.1d) represents the trajectory of a slow moving vehicle. The ODE influences the PDE through
the moving constraint on the flux (1.1d).

The function ρ ∈ [0, ρmax] is the traffic density, w ∈ [wmin, wmax] is a particular feature of each
driver and V (ρ, w) is the speed of cars. For every driver with feature w ∈ [wmin, wmax], Fα(w) is
defined by

Fα(w, ẏ) = α(w) max
ρ∈(0,ρmax)

F (ρ, w, ẏ),

with α ∈ C1([wmin, wmax]; (0, 1)) the reduction rate of the road capacity for a driver with feature
w and where

F (ρ, w, ẏ) = ρ(V (ρ, w)− ẏ). (1.2)

Fα(w, ẏ) represents the maximum flux at the position of the slow moving vehicle.
Our goal is to prove the existence of solution of (1.1). To that end, we impose the following

requirements on the velocity V (ρ, w) and the associated flow rate function f(ρ, w) = ρV (ρ, w):

A1. (p, w) 7→ V (ρ, w) is C2 ([0, ρmax]× [wmin, wmax]).

A2. V (ρ, w) > 0 for any (ρ, w) ∈ [0, ρmax]× [wmin, wmax], vehicles never drive backwards on the
road.

A3. V (0, w) = w for any w ∈ [wmin, wmax], w is each driver’s speed on an empty road.
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A4. ∂2Q
∂ρ2 (ρ, w) < 0 for any (ρ, w) ∈ [0, ρmax]× [wmin, wmax]. In particular, ∂V∂ρ (ρ, w) < 0.

A5. ∂V
∂w (ρ, w) > 0, more a driver will be fast on a empty road more he will be fast on a stuffed
road.

A6. V (ρmax, w) = 0 , at maximal density ρmax, the speed of each driver is zero.

A7. Vb < wmin, the maximum speed of the slow moving vehicle is slower than the minimum speed
of each driver.

Throughout the paper we will use the following notations. Let w ∈ [wmin, wmax], ρ̌(w) and ρ̂(w)
with ρ̌(w) < ρ̂(w) denote the two solutions of the equation Fα(w)+Vbρ = ρV (ρ, w) and ρ∗(w) is the
solution of Vbρ = ρV (ρ, w). Since f(·, w) is stricly concave, ρ̌(w), ρ̂(w) and ρ∗(w) are well-defined.

We denote by ρc(w) the maximum point of F (ρ, w). Thus, ∂f(ρc(w),w)
∂ρ = Vb. Moreover, V (ρ̌(w), w)

is denoted by v̌(w) and V (ρ̂(w), w) is denoted by v̂(w). We notice that ρ̌w < ρc(w) < ρ̂w < ρ∗w.

The function σ((ρl, w), (ρr, w)) := f(ρl,w)−f(ρr,w)
ρ−lρr

represents the Rankine-Hugoniot speed of the

1-wave ((ρL, w), (ρr, w)). For any BV function f , f(x) will always refer to the right limit, meaning
that f(x) stands for f(x+) = limy→x, y>x f(y). The left limit will be denoted f(x−), given by
f(x−) := limy→x, y<x f(y).

1.2 The GARZ model

We recall some basic properties associated to the PDE (1.1a)-(1.1b). Away from the vacuum,
the characteristic speeds of the GARZ model are λ1(ρ, w) = V (ρ, w) + ρ∂V∂ρ (ρ, w) and λ2(ρ, w) =

V (ρ, w). The first one is genuinely non linear and the second one is linearly degenerate. From A.4,
λ1(ρ, w) < λ2(ρ, w) for every ρ > 0. We list the waves that we will use for solving the Riemann
problem associated to (1.1a) and (1.1b).

• First family wave (1-wave): a wave connecting a left state (ρl, wl) with a right state (ρr, wr)
such that wl = wr.

• Second family wave (2-wave): a wave connecting a left state (ρl, wl) with a right state (ρr, wr)
such that V (ρl, wl) = V (ρr, wr).

• Vacuum wave (V-wave): a wave connecting a left state (ρl, wl) with a right state (ρr, wr)
such that ρl = ρr = 0 and wl < wr. Moreover, the speed of a V-wave s verifies wl < s < wr.

From A5. there exists an application R : {(v, w)\ 0 6 v 6 w, wmin 6 w 6 wmax} → [0, ρmax] such
that

ρ = R(v, w) with V (ρ, w) = v. (1.3)

We consider a Riemann problem associated to (1.1a) and (1.1b) with two states Ul := (ρl, wl) and
Ur = (ρr, wr).

• If wl < wr and ρr < R(V (ρl, wl), wr) then Ul is connected to Um1
:= (0, wl) by a 1-wave,

Um1 is connected to Um2 := (0, V (Ur)) by a V-wave and Um2 is connected to Ur by a 2-wave.

• Otherwise, Ul is connected to Um := (R(V (ρr, wr), wl), wl) ∈ [0, ρmax] × [wmin, wmax] by
a 1-wave and Um is connected to Ur by a 2-wave. Note that in the special case where
ρr = R(V (ρl, wl), wr), then Ul is directly connected to Ur by a 2-wave.

From now on, RS denotes the classical Riemann solver for the system of conservation laws in
(1.1a)-(1.1b). Moreover, RSρ((ρl, wl), (ρr, wr)(·)), RSw((ρl, wl), (ρr, wr)(·)) denotes respectively
the ρ and w components of the classical solution RS((ρl, wl), (ρr, wr)(·)).
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1.3 The constrained Riemann Problem

We consider the constrained Riemann problem for system (1.1) with initial data

ρ(0, x) =

{
ρl if x < 0,
ρr if x > 0,

and w(0, x) =

{
wl if x < 0,
wr if x > 0,

and y(0) = 0. (1.4)

for all states (ρl, wl), (ρr, wr) ∈ {(v, w)\ 0 6 v 6 w, wmin 6 w 6 wmax}. Fix (ρl, wl), (ρr, wr) ∈
{(v, w)\ 0 6 v 6 w, wmin 6 w 6 wmax}. The constrained Riemann solver RSα for (1.1) is defined
as follows.

i If f(RS((ρl, wl), (ρr, wr)(Vb)) > Fα(wl) + VbRSρ((ρl, wl), (ρr, wr)(Vb)), then

RSα ((ρl, wl), (ρr, wr)) (x/t) =

{
RS ((ρl, wl), (ρ̂(wl), wl)) (x/t) if x < y(t),
RS ((ρ̌(wl), wl), (ρr, wr)) (x/t) if x > y(t) ,

y(t) = Vbt.
(1.5)

ii If f(RS((ρl, wl), (ρr, wr)(Vb)) 6 Fα(wl) + VbRSρ((ρl, wl), (ρr, wr)(Vb)) and
Vb < V (RS((ρl, wl), (ρr, wr)(Vb))), then

RSα ((ρl, wl), (ρr, wr)) (x/t) = RS ((ρl, wl), (ρr, wr)) (x/t) ,
y(t) = Vbt.

(1.6)

iii If Vb > V (RS((ρl, wl), (ρr, wr)(Vb))), then

RSα ((ρl, wl), (ρr, wr)) (x/t) = RS ((ρl, wl), (ρr, wr)) (x/t) ,
y(t) = V (RS((ρl, wl), (ρr, wr)(Vb)))t.

(1.7)

Note that in the first case, the traffic is influenced by the slow vehicle which travels with its own
velocity. In the second case, the slow vehicle doesn’t influence the traffic flow. The third case refers
to a situation in which the traffic is so heavy that the slow vehicle has to adapt its speed.

Remark 1. The function Fα is taken at w = wl in the Riemann solver to avoid the slow vehicle
trajectory to interact with a 2-wave or a V-wave in front.

1.4 Wave-Front Tracking Approximate Solution and TV type functional

The initial data ρ0 and w0 are approximated by piecewise constant functions denoted by
ρn0 and wn0 using an appropriate sampling (see [16, Section 2.2]). Solving the associated con-
strained Riemann problem for (1.1a)-(1.1b) with initial data ((ρn0 , w

n
0 ), y0), the solution, denoted

by ((ρn, wn), yn), can be prolonged until a first time t1 is reached, when two wave-fronts interact.
Note that the slow moving vehicle trajectory yn(·) is regarded as a wavefront with speed given by
(1.5), (1.6) or (1.7) depending on the value of (wn, ρn) around y0. We recall that, in the wave-front
tracking method, the centered rarefaction waves are replaced by piecewise constant rarefaction
fans. Thus, ρn(t1, ·) and wn(t1, ·) are still piecewise constant functions, the corresponding Rie-
mann problems with initial data ((ρn(t1, ·), wn(t1, ·)), yn(t1)) can again be approximately solved
within the class of piecewise constant functions and so on. Thus, yn(·) is the solution of{

ẏ(t) = min (Vb, (ρ
n(t, y(t)), wn(t, y(t)))) ,

y(0) = y0, x ∈ IR.
(1.8)

where the couple (ρn(t), wn(t)) is an approximate solution of (1.1a)-(1.1b).
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2 The Cauchy Problem with Moving Constraints

In this section, we consider the Cauchy problem for the model (1.1) with initial data (ρ0, w0) :
IR → [0, ρmax] × [wmin, wmax] and y0 ∈ IR. Before stating the main result, we introduce the
definition of solution to the constrained Cauchy problem (1.1).

Definition 1. The couple

((ρ, w), y) ∈ C0
(
[0,+∞[;L1

loc(IR; [0, ρmax]× [wmin, wmax]
)
×W 1,1

loc ([0,+∞[; IR)

is a solution to (1.1) if

i. the function (ρ, w) is a weak solution of (1.1a)-(1.1b), i.e for all ϕ ∈ C1
c (IR2, IR) ;∫

R+

∫
IR

ρ [∂tϕ+ V (ρ, w)∂xϕ]

(
1
w

)
dx dt+

∫
IR

ρ0

(
1
w0

)
ϕ(0, x) = 0 (2.1)

ii. The function ρ is an entropy admissible solution of (1.1a)-(1.1b), i.e for every k ∈ [0, V (0, wmax)],
for all ϕ ∈ C1

c (IR2, IR+), it holds∫
IR+

∫
IR

Ek(v(t, x), w(t, x))∂tϕ+Qk(v(t, x), w(t, x))∂xϕdx dt

+

∫
IR

Ek(v0, w0)ϕ(0, x) dx

+

∫
IR+

R(v(t, y(t)), w(t, y(t)))(v(t, y(t))− ẏ)

[
k − ẏ

Fα(w(t, y(t)))
− 1

]+

ϕ(t, y(t))dt > 0,

(2.2)

where v, w = (V (ρ, w), w) and

Ek(v, w) =

{
0 if v 6 k

1− R(v,w)
R(k,w) , if v > k,

(2.3)

Qk(v, w) =

{
0 if v 6 k

k − R(v,w)v
R(k,w) , if v > k.

(2.4)

The entropy pairs (Ek,Qk) are taken from [1]. Here the term of the third line of (2.2)
compensate for the potential non-classical shocks that would occur at y(t). Note that all other
non-classical shocks are prohibited with this condition. Besides, the second term of (2.2) also
ensures that any solution maximize the flux when non-classical shock occurs, i.e. condition
(1.1c) becomes an equality. This is similar to the result of [1, Section 3], and is shown in
Appendix G.

iii. For a.e t ∈ IR+, ẏ(t) = min (Vb, V (ρ(t, y(t)), w(t, y(t)))) or for every t ∈ IR+,

y(t) = y0 +

∫ t

0

min (Vb, V (ρ(t, y(t)+), w(t, y(t)+))) ds . (2.5)

iv. the constraint in (1.1c) is verified, in the sense that for a.e. t ∈ IR+

lim
x→y(t)±

ρ (t, x) (V (ρ(t, x), w(t, x))− ẏ(t))− Fα(w, ẏ) 6 0 ; (2.6)
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We can now state the main result of the paper:

Theorem 1. We assume that Vb < wmin. Let y0 ∈ IR and (ρ0, w0) ∈ BV(IR; [0, ρmax] ×
[wmin, wmax]). Then the Cauchy problem (1.1) admits a solution (ρ, w) ∈ BV(IR; [0, ρmax] ×
[wmin, wmax]) in the sense of Definition 1.

We construct a sequence of approximate solutions ((ρn, wn), yn)n∈IN of (1.1) using a wave-
front tracking algorithm, and we will prove its convergence. We deduce that the limit (ρ, w)
satisfies Definition 1 i. ii. and iv. from the convergence of (ρn, wn). We study the behavior
of (ρn, V (ρn, wn)) around the point (t, yn(t)) in order to prove that the limit (ρ, w, y) verifies
Definition 1 iii..

3 Proof of Theorem 1

Let ((ρn, wn), yn) be an approximate solution of (1.1) constructed by the wave-front tracking
method described in Section 1.4. For a function f ∈ C0(R+, BV (R)) we will sometimes drop the
notation in time and denote f(x) instead of f(t, x) to lighten the statements. The same will be
done for continuous function and we will denote yn instead of yn(t) and y instead of y(t) when
there is no ambiguity.

3.1 Convergence of the wave-front tracking approximate solution

Lemma 3.1. Let ((ρ0, w0), y0) ∈ BV((IR; [0, ρmax] × [wmin, wmax]) × IR and ((ρn, wn), yn) be a
wave-front approximate solution of (1.1). Then, there exists C > 0 such that, for any t ∈ IR+,

TV (wn(t, ·)) + TV (V (ρn(t, ·), wn(t, ·)) 6 C. (3.1)

To prove Lemma 3.1, we introduce the TV type functional Γ(·) defined in (3.4). Γ(·) may
vary only at times t when two waves interact or a wave hits the slow vehicle trajectory. After a
meticulous analysis of wave interactions, we will show that Γ(t) 6 Γ(0) which gives bounds on the
total variation of wn(t, ·) and V (ρn(t, ·), wn(t, ·)).
Lemma 3.2. w 7→ V (ρ̌(w), w) and w 7→ V (ρ̂(w), w) are continuously differentiable functions.

Proof. Since (p, w) 7→ V (ρ, w) is C2 ([0, ρmax]× [wmin, wmax]), it is enough to prove that w 7→ ρ̌(w)
and w 7→ ρ̂(w) are continuously differentiable functions. Since α ∈ C1([wmin, wmax]; (0, 1)) and
(p, w) 7→ V (ρ, w) is C2 ([0, ρmax]× [wmin, wmax]), we have ρ̌(w) < ρc(w) < ρ̂(w) and (ρ, w) 7→
Fα(w, ẏ) + Vbw − f(p, w) ∈ C2 ([0, ρmax]× [wmin, wmax]). Moreover, Vb − ∂f

∂ρ (ρ̌(w), w) < 0 and

Vb − ∂f
∂ρ (ρ̂(w), w) > 0. Thus, applying implicit function Theorem, we deduce that w 7→ ρ̌(w) and

w 7→ ρ̂(w) are at least continuously differentiable.

We introduce the two positive constant Cρ̌ and Cρ̂ defined by

Cρ̌ = sup
w∈[wmin,wmax]

d

dw
V (ρ̌(w), w) > 0, (3.2)

Cρ̂ = sup
w∈[wmin,wmax]

d

dw
V (ρ̂(w), w) > 0. (3.3)

Using Lemma 3.2, Cρ̌ < ∞ and Cρ̂ < ∞. Let C := 2(Cρ̂ + Cρ̌). For a.e. t > 0, we define the TV
type functional

Γ(t) = TV (wn(t, ·)) + TV (V (ρn(t, ·);wn(t, ·))) + γ(t) + CTV (wn(·, yn(·)), [t,+∞)), (3.4)

7



where γ is given by

γ(t) =

 −2|v̂(wn(t, y(t)−))− v̌(wn(t, y(t))), | if

 wn(t, yn(t)−) = wn(t, yn(t)),
ρn(t, yn(t)−) = ρ̂(wn(t, y(t)−)),
ρn(t, yn(t)) = ρ̌(wn(t, y(t)−)),

0 otherwise.

The term γ is added to control the behavior of TV (ρ, w) when a 1-wave interacts with slow
vehicle trajectory creating or canceling a non classical shock as in [7]. We introduce the term
TV (wn(·, yn(·)), [t,+∞)) to deal with the cases where a 2-wave or a V -wave interact with the slow
vehicle trajectory creating or canceling a non classical shock.

Lemma 3.3. Let ((ρ0, w0), y0) ∈ BV((IR; [0, ρmax] × [wmin, wmax]) × IR and ((ρn, wn), yn) be a
wave-front approximate solution of (1.1). Then, there exists C > 0 such that, for any t ∈ IR+,

Γ(t) 6 Γ(0) (3.5)

The proof of Lemma 3.3 is postponed in Appendix A.

Lemma 3.4. The total variation t 7→ TV (wn(t)) is constant. That is to say, TV (wn(t)) =
TV (wn0 ).

Proof. Considering a Riemann problem at time t associated to (1.1a) and (1.1b) with two states
Ul := (ρl, wl) and Ur = (ρr, wr):

• If wl < wr and ρr < R(wl, wr) then Ul is connected to Um1
:= (0, wl) by a 1-wave, Um1

is
connected to Um2 := (0, V (Ur)) by a V-wave and Um2 is connected to Ur by a 2-wave (see
Section 1). In this case, TV (w(t+))−TV (w(t−)) = wr −V (Ur) +V (Ur)−wl−wr +wl = 0.

• Otherwise, Ul is connected to Um := (R(V (ρr, wr), wl), wl) ∈ [0, ρmax]× [wmin, wmax] by a 1-
wave and Um is connected to Ur by a 2-wave. In this case, we have immediately TV (w(t+))−
TV (w(t−)) = 0.

Moreover, a non classical shock is a wave ((ρ̂(wl), wl), (ρ̌(wl), wl)).Thus, the variation of w is not
modified. We conclude that the total variation t 7→ TV (w(t)) is constant.

Lemma 3.5. For every t ∈ IR∗+,

TV (wn(·, yn(·)), [t,+∞)) 6 TV (wn0 )

Proof. The quantity wn(·, yn(·)) is modified only when the slow vehicle trajectory interacts with
a V -wave or a 2-wave. From Lemma 3.4, a interaction between two waves or a wave and the
slow vehicle trajectory does not modify the total variation of w. We claim that the slow vehicle
trajectory never interacts with a second family wave and a vacuum wave from the left.

• We assume that a second family wave ((ρl, wl), (ρr, wr)) interacts with the slow vehicle tra-
jectory from the right. The speed of the second family wave is V (ρl, wl) = V (ρr, wr) and
the speed of the slow vehicle is min(Vb, V (ρl, wl)). We have min(Vb, V (ρl, wl)) 6 V (ρl, wl).
Thus, the speed of the slow vehicle is slower than the speed of a second family wave, whence
the contradiction.

• We assume that a vacuum wave ((0, wl), (0, wr)) interacts with the slow vehicle trajectory
from the right. The speed of the vacuum wave s verifying wl < s < wr and the maximum
speed of the slow vehicle is Vb. Since, Vb < wmin the speed of the slow vehicle is slower than
the speed of a vacuum wave, whence the contradiction.
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Thus, the slow vehicle trajectory interacts at most once with a V -wave or 2-wave. We conclude
that TV (wn(·, yn(·)), [0,+∞)) 6 TV (wn0 (·), (−∞, y0]). More precisely, for every t ∈ IR∗+, there
exists x ∈ (−∞, y0) such that

TV (wn(·, yn(·)), [t,+∞)) 6 TV (wn0 (·), (−∞, x]) 6 TV (wn0 )

Proof of Lemma 3.1. From Lemma 3.3, we have

TV (wn(t, ·)) + TV (v(ρn(t, ·), wn(t, ·)))
6 TV (wn0 ) + TV (v(ρn0 , w

n
0 )) + γ(0)− γ(t) + CTV (wn(·, yn(·)), [0, t)),

6 TV (wn0 ) + TV (v(ρn0 , w
n
0 )) + 2wmax + CTV (wn(·, yn(·)), [0, t)).

Since (wn0 , v
n
0 ) ∈ BV((IR; [0, ρmax] × [wmin, wmax]) and from Lemma 3.5, there exists C > 0 such

that
TV (wn(t, ·)) + TV (V (ρn, wn)(t, ·)) 6 C.

We are now ready to prove the convergence of the sequence of approximate solutions ((ρn, wn), yn).

Lemma 3.6. Let ((ρn, wn), yn) be an approximate solution of (1.1) constructed by the wave-
front tracking method described in Section 1.4. Then, up to a subsequence, we have the following
convergences

(ρn, wn)→ (ρ, w), in L1
loc(IR+ × IR; [0, ρmax]× [wmin, wmax]), (3.6a)

yn(·)→ y(·), in L∞loc(IR+; IR), (3.6b)

ẏn(·)→ ẏ(·), in L1
loc(IR+; IR), (3.6c)

for some (ρ, w) ∈ C0(IR+;L1(IR; [0, ρmax] × [wmin, wmax])) and y ∈ W 1,1
loc (IR+; IR) with Lipschitz

constant Vb. Moreover, there exists C > 0 such that TV (ρ(t, ·)) < C and TV (w(t, ·)) < C for all
t > 0.

Proof. Let (ρ1, ρ2) ∈ [0, ρmax] such that ρ1 = R(V (ρ1, w1), w1) and ρ2 = R(V (ρ2, w2), w2) where
R ∈ C2([0, wmax]× [wmin, wmax]) is defined in (1.3). Then there exists C > 0 such that

|ρ1 − ρ2| 6 C (|V (ρ1, w1)− V (ρ2, w2)|+ |w1 − w2|) . (3.7)

From (3.7), we deduce that

TV (ρn(t, ·)) 6 C (TV (ρn(t, ·), wn(t, ·)) + TV (wn(t, ·)) . (3.8)

From (3.1) and (3.8), there exists C > 0 (independent of n) such that, for every t > 0,

TV (wn(t, ·)) < C and TV (ρn(t, ·)) < C. (3.9)

Combining (3.9) with the finite wave speed propagation, we show that∫
IR

|ρn(t, x)− ρn(s, x)|dx 6 L|t− s| for all t, s > 0,

and ∫
IR

|wn(t, x)− wn(s, x)|dx 6 L|t− s| for all t, s > 0,
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for some L independent of n. Helly’s Theorem, see [3, Theorem 2.4], implies the existence of (ρ, w) ∈
C0
(
IR+;L1 (IR; [0, ρmax]× [wmin, wmax])

)
and a subsequence of (ρn, wn)n, which for simplicity we

denote again by (ρn, wn)n. This implies that (3.6a) holds and there exists C > 0 such that
TV (ρ(t, ·)) < C and TV (w(t, ·)) < C for all t > 0.

Fix T > 0. From (1.8), we deduce that

0 ≤ ẏn(t) ≤ Vb (3.10)

for a.e. t > 0 and n ∈ IN \ {0}. Using Ascoli Theorem [22, Theorem 7.25], there exists a function
y ∈ C0 ([0, T ]; IR) and a subsequence of (yn)n, which for simplicity we denote again by (yn)n,
such that yn converges to y uniformly in C0 ([0, T ]; IR). By the arbitrariness of T , (3.6b) holds.
Moreover y is a Lipschitz continuous function with Vb as a Lipschitz constant.

To prove that ẏn(·) → ẏ(·) in L1
loc(IR+; IR), we show that TV (ẏn; [0, T ]) is uniformly bounded

for any T > 0. Since ‖ẏn‖L∞(0,T ) 6 Vb, it is sufficient to estimate the positive variation of ẏn over
[0, T ], denoted by PV (ẏn; [0, T ]). More precisely, we have

TV (ẏn; [0, T ]) 6 2PV (ẏn; [0, T ]) + ‖ẏn‖L∞ . (3.11)

Since ẏn satisfies (1.8), the speed of the MB cannot increase by interactions with a second family
waves. Thus, from [16], the speed of the MB is increased only by interactions with rarefaction
waves coming from the right of the MB trajectory. Since all rarefaction shocks start at t = 0, we
have PV (ẏn; [0, T ]) 6 TV (ρ0). From (3.11), we deduce that

TV (ẏn; [0, T ]) 6 2TV (ρ0) + Vb,

whence (3.6c) by arbitrariness of T .

3.2 The limit (ρ, w,y) satisfies Definition 1 i. ii. and iv.

Let us start by proving Definition i. and ii.. As (ρn, wn) ∈ L1
loc(IR+ × IR) is a weak solution of

(1.1a)-(1.1b), it satisfies Definition 1. This implies that for any test function ϕ ∈ C∞c (IR2, IR),∫
R+

∫
IR

ρn [∂tϕ+ V (ρn, wn)∂xϕ]

(
1
wn

)
dx dt+

∫
IR

ρn0ϕ(0, x)

(
1
wn0

)
dx = 0. (3.12)

Using the convergence proved in the previous section, and Lemma 3.6 we know that (ρn, wn) →
(ρ, w) in L1

loc(IR+× IR; [0, ρmax]× [wmin, wmax]) and therefore we can pass to the limit in (3.12) and
get Definition i.. We get Definition ii. similarly as one can define vn = v(ρn, wn) and therefore
vn → v in L1

loc(IR+ × IR; [0, V (0, wmax)] × [wmin, wmax]). Noting that (ρn, wn) satisfies for any
k ∈ [0, V (wmax)] and ϕ ∈ Cc(IR2, IR+),∫

IR+

∫
IR

Ek(vn(t, x), wn(t, x))∂tϕ+Qk(vn(t, x), wn(t, x))∂xϕdx dt

+

∫
IR

Ek(vn0 , w
n
0 )ϕ(0, x)dx dt

+

∫
IR+

R(vn, wn)(vn − ẏn)

[
k − ẏn(t)

Fα(wn, ẏn)
− 1

]+

ϕ(t, yn(t))dt > 0,

(3.13)
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we therefore get ∫
IR+

∫
IR

Ek(v(t, x), w(t, x))∂tϕ+Qk(v(t, x), w(t, x))∂xϕdx dt

+

∫
IR

Ek(v0, w0)ϕ(0, x)dx dt

+

∫
IR+

R(v, w)(v − ẏ)

[
k − ẏn(t)

Fα(w, ẏ)
− 1

]+

ϕ(t, y(t))dt > 0,

(3.14)

The convergence of the last line being obtained by dominated convergence together with the
convergence of R(vn, wn)(vn − ẏn) Fα(wn, ẏn) that is given in Appendix F. We now show that
(ρ, y) satisfies Definition iv.. Let (t0, x0) ∈ IR+ × IR, we denote

ρ(t0, x0+) = lim
x→x0,x>x0

ρ(t0, x),

ρ(t0, x0−) = lim
x→x0,x<x0

ρ(t0, x),
(3.15)

which exists given that ρ ∈ C0([0, T ], L1
loc(IR, [0, ρmax])). We define similarly w(t0, x0+) and

w(t0, x0−) and the analogous quantities for (ρn, wn). The idea will be to recover Definition iv. by
using (ii.) with appropriate test functions. Let ψ ∈ C∞c ((0, T )×IR, IR+). As ψ has compact support
in its space variable, there exists a ∈ IR such that for any (t, x) ∈ supp(ψ), x > a. This implies
that there exists ε0 > 0 for any x 6 a+ 2ε0 and any t ∈ (0, T ), ψ(t, x) = 0. We now set ε ∈ (0, ε0).
We define φ1,ε ∈ C1

c ((0, T ), IR+) such that φ1,ε ≡ 1 on [2ε, T −2ε]. This function φ1,ε is an approx-
imation of the constant function equal to 1. Similarly we define φn2,ε ∈ C1

c ((0, T ) × (−∞, yn(t)))
such that

φn2,ε =


0 if x 6 a

1 if x ∈ (a+ ε, yn(t)− 2ε)
yn(t)−x

ε − 1 if x ∈ (yn(t)− 2ε, yn(t)− ε)
0 if x > yn(t)− ε.

(3.16)

Therefore φn2,ε is an approximation of a stair function equal to 1 before yn(t) and 0 after. Setting
the test function ϕ = ψφn2,ε and applying Definition i., one has∫

IR+

∫
IR

ρn
[
∂tψφ

n
2,ε + ψ

ẏn

ε
(1x∈(yn(t)−2ε,yn(t)−ε))

+V (ρn, wn)φn2,ε∂xψ + V (ρn, wn)ψ

(−1

ε

)
1x∈(yn(t)−2ε,yn(t)−ε)

](
1
wn

)
dx dt = 0,

(3.17)

where we used that ψ(t, x) = 0 for t = 0 or x ∈ (−∞, a+ 2ε). This gives∫
IR+

∫
IR

ρn
[
∂tψφ

n
2,ε + V (ρn, wn)φn2,ε∂xψ

]( 1
wn

)
dx dt

=

∫
IR+

∫
IR

ρn [V (ρn, wn)− ẏn]ψ(
1

ε
1x∈(yn(t)−2ε,yn(t)−ε))

(
1
wn

)
dx dt.

(3.18)
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As ρn, wn, ẏ are all L1
loc functions and ψ is C∞ with compact support we can use Dominated

Convergence Theorem and let ε→ 0∫
IR+

∫ yn(t)

−∞
ρn [∂tψ + V (ρn, wn)∂xψ]

(
1
wn

)
dx dt

=

∫ T

0

ρn(t, yn(t)−) [V (ρn(t, yn(t)−), w(t, yn(t)−))− ẏn(t)]ψ(t, yn(t))

(
1

wn(t, yn(t)−)

)
dx dt.

(3.19)

The same can be done with (ρ, w, y) instead of (ρn, wn, yn) by defining φ2,ε just as φn2,ε but with
y(t) instead of yn and one has∫

IR+

∫ y(t)

−∞
ρ [∂tψ + V (ρ, w)∂xψ]

(
1
w

)
dx dt

=

∫ T

0

ρ(t, y(t)−) [V (ρ(t, y(t)−), w(t, y(t)−))− ẏ(t)]ψ(t, y(t))

(
1

w(t, y(t)−)

)
dx dt.

(3.20)

As (ρn, wn, yn) satisfies Definition iv. and ψ only takes values in IR+, one has, taking the first
component of (3.19) ∫

IR+

∫ yn(t)

−∞
ρn [∂tψ + V (ρn, wn)∂xψ] dx dt

6
∫ T

0

Fα(ωn(t, yn(t)), ẏn)ψ(t, yn(t))dx dt.

(3.21)

Note that, from Lemma 3.6, ẏn → ẏ ∈ L1
loc(0, T, IR) and there exists C > 0 independent of n such

that
TV (wn) < C (3.22)

which implies that again using dominated convergence and the convergence of Fα(wn, ẏn) Therefore
one can use dominated convergence again and get

lim
n→+∞

∫
IR+

∫ yn(t)

−∞
ρn [∂tψ + V (ρn, wn)∂xψ] dx dt =

∫
IR+

∫ y(t)

−∞
ρ [∂tψ + V (ρ, w)∂xψ] dx dt

lim
n→+∞

∫ T

0

Fα(ωn(t, yn(t)−), ẏn)ψ(t, yn(t))dx dt =

∫ T

0

Fα(ω(t, y(t)−), ẏ)ψ(t, y(t))dx dt.

(3.23)

Using (3.20) and (3.21) this means that∫ T

0

ρ(t, y(t)−) [V (ρ(t, y(t)−), w(t, y(t)−))− ẏ(t)]ψ(t, y(t)dx dt

6
∫ T

0

Fα(ω(t, y(t)−), ẏ)ψ(t, y(t))dx dt.

(3.24)

One can do exactly similarly to get∫ T

0

ρ(t, y(t)+) [V (ρ(t, y(t)+), w(t, y(t)+))− ẏ(t)]ψ(t, y(t))dx dt

6
∫ T

0

Fα(ω(t, y(t)+), ẏ)ψ(t, y(t))dx dt.

(3.25)

As ψ was an arbitrary function with compact support in (0, T ) × IR one has exactly (2.6) and
(ρ, w, y) satisfies Definition iv..
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3.3 The limit (ρ, y) satisfies Definition iii.

We begin with some preliminary Lemmas.

Lemma 3.7. Let t ∈ R+\{0} being fixed and (x1, x2) ∈ R2 with x1 < x2, suppose that no V-wave
occurs in (x1, x2) and that there exists c > 0 (independent of n) such that V (ρn(x1), wn(x1)) +
c 6 V (ρn(x2−), wn(x2−)). Suppose in addition that there is no non-classical shock occurring in
(x1, x2). Then there exists β > 0 such that, for n large enough,

|x2 − x1| > βt|V (ρn(x2−), wn(x2−))− V (ρn(x1), wn(x1)))| (3.26)

where β is a constant independent of t, x1 and x2.

This lemma gives a minimal distance of travel between two states of a wave-front tracking solu-
tion with different velocity when no V-waves and no non-classical shock occurs. First, a shock can
only increase the velocity and a 2-wave cannot change it. Since by assumption no V-wave occur
in (x1, x2), we deduce that the only possible waves to increase the velocity are rarefaction shocks
and this imply a minimal distance. This lemma will be the basic tool for all the following analysis.

Proof. To prove this lemma, we first prove that if x1 < x2 and V (ρn(x1), wn(x1))+c < V (ρn(x2−), wn(x2−))
for any n, there is a minimal amplitude of variation of ρn through rarefactions shocks. Then we
conclude using Lemma 3.8. Obviously 2-waves cannot change the velocity so the only waves that
can occur to change the velocity are shocks and rarefaction shocks. As there is a finite number
of discontinuities we can define Kn ∈ N and x1 =: z0 < z1 < ... < zKn−1 < zKn

:= x2 such that
there are only rarefaction shocks between (zk, zk+1) for any k ∈ {0, ...,Kn − 1}. In other words zk
are the points where a shock or a 2-wave occurs, and this implies that wn(zk) = wn(zk+1−)
for any k ∈ {0, ...,Kn − 1}. Note that when a shock occurs in zk, wn(zk−) = wn(zk) and
ρn(zk−) < ρn(zk) which implies that V (ρn(zk−), wn(zk−)) > V (ρn(zk), wn(zk)), as V is strictly
decreasing. So shocks have only a negative influence when trying to reach V (ρn(x2−), wn(x2−))
from V (ρn(x1), wn(x1)). As 2-waves do not change the velocity, for any k ∈ {1, ...,Kn − 1},

V (ρn(zk−), wn(zk−)) > V (ρn(zk), wn(zk)). (3.27)

Besides, as V (·, w) is C1([0, ρmax]) with w ∈ [wmin, wmax] and wn(zk) = wn(zk+1−) there exists a
constant c0 > 0 independent of n, ρn or wn, such that

0 6 V (ρn(zk+1−), wn(zk+1−))− V (ρn(zk), wn(zk)) 6 c0(ρn(zk+1−)− ρn(zk)). (3.28)

Now, we use the following lemma

Lemma 3.8. Let t ∈ R+\{0} and (x1, x2) ∈ R2 with x1 < x2, suppose that wn is constant between
(x1, x2) and there exists c > 0 (independent of n) such that ρn(x1) > ρn(x2−) + c. Suppose in
addition that there is no non-classical shock occurring in (x1, x2). Then there exists β′ > 0 such
that

|x2 − x1| > β′t|ρn(x1)− ρn(x2−)| (3.29)

where β′ is a constant independent of t, x1 and x2.

The proof of this Lemma fosters directly [16, Lemma 1] by observing that on (x1, x2), ρn is a
wave-front tracking solution of a LWR model with flux f given by f(ρ, v(ρ)) = ρV (ρ, w), as w is
constant, there is no V-wave or 2-wave and for n large enough ρn(x1) − ρn(x2) − ρmax2−n+1 >
ρn(x1)−ρn(x2)

2 .
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Using that w(zk) = w(zk+1−) and applying (3.28) becomes :

β′t(V (ρn(zk+1−), wn(zk+1−))− V (ρn(zk), wn(zk))) 6 c0|zk+1 − zk|. (3.30)

Thus overall, using (3.27) and (3.28),

β′t(V (ρn(x2−), wn(x2−))− V (ρn(x1), wn(x1))) 6 c0

Kn−1∑
k=0

|zk+1 − zk| = c0|x2 − x1|, (3.31)

and setting β = β′/c0 > 0 ends the proof of Lemma 3.7.

We now introduce a Lemma that gives the maximal amplitude of the variation of the velocity
through a rarefaction shock

Lemma 3.9. Let (ρn, wn) be a solution constructed by a wave-front tracking algorithm. Suppose
that a rarefaction shocks occur in x1 ∈ R, then there exists a constant C independent of x1, n, ρn,
wn and depending only on V such that

V (ρn(x1), wn(x1))− V (ρn(x1−), wn(x1−)) 6
C0ρmax

2n
(3.32)

Proof. The proof is straightforward : if there is a rarefaction shock only ρn is discontinuous through
the shock and by definition (ρn(x1) − ρn(x1−)) 6 ρmax/2

n. Then the result holds with C0 :=
max(ρ,w)∈[0,ρmax]×[wmin,wmax](|∂ρV |).

We are now ready to prove that the limit (ρ, y) satisfies Definition iii.. First, as (ρn, wn) are
approximate solutions of the problem (1.1) and from Lemma 3.6, we can define N0 a negligible
space such that for any t ∈ R \ N0,

• lim
n→+∞

(ρn(t, x), wn(t, x)) = (ρ(t, x), w(t, x)) for almost every x ∈ R.

• s→ y(s) is a differentiable function at time s = t,

• lim
n→+∞

yn(t) = y(t),

• ẏn = min(Vb, V (ρn(t, yn(t)), wn(t, yn(t)))) for any n ∈ N.

More precisely, it suffices to show that

lim
n→+∞

min(Vb, V (ρn(t, yn(t)), wn(t, yn(t)))) = min(Vb, V (ρ(t, y(t)), w(t, y(t)))). (3.33)

We define in the following ρ+ := limx→y(t)+ ρ(t, x), ρ− := limx→y(t)− ρ(t, x), and similarly w+ :=
limx→y(t)+ w(t, x) and w− := limx→y(t)− w(t, x). It would be very tempting to proceed as was done
in [16] to treat the LWR model, which can be seen as a simplified scalar version of this GARZ
model, and separate the proof in the cases

i (ρ+, ρ−) ∈ (ρ∗, ρmax], as no nonclassical shock can occur when ρ > ρ∗.

ii (ρ+, ρ−) ∈ [0, ρ∗], as V (ρ, w) > Vb when ρ 6 ρ∗ and thus the minimum of (3.33) is dominated
by Vb.

iii ρ+ 6 ρ∗ < ρ− or ρ− 6 ρ∗ < ρ+.
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However, as it is, this is doomed to failure as, ρ∗ depends on w which can be discontinuous as well
and thus ρ∗(w+) would not have the same value than ρ∗(w−). Besides, approximating ρ and w
by a wave-front tracking algorithm would give some (ρn, wn) and it could be that even if (ρn, wn)
is close to (ρ, w) for some x, it could be instantaneously be brought away by a 2-wave, trying to
show that ρn and wn are everywhere close to ρ and w is vain.

To deal with this problem we observe a fact from the conservation equations : almost everywhere
in time only two cases can occur w− = w+ or V (ρ+, w+) = V (ρ−, w−). In other words, there exists
a negligible space N ⊂ R+ such that for any t ∈ R+ \ N the velocity V (ρ(t, ·), w(t, ·)) and the
parameter w(t, ·) cannot be discontinuous in y(t) at the same time. This is shown in Appendix B.
In the following we will suppose without loss of generality that N0 is contained in N . Thus, for
any t ∈ R \ N0,

• V (ρ(t, y(t)), w(t, y(t))) = V (ρ(t, y(t)−), w(t, y(t)−)) or w(t, y(t)) = w(t, y(t)−) almost every-
where

In spirit, the first case where w− = w+ is similar to the case of the simplified LWR model treated
in [16], as the GARZ model would reduce to the LWR model is if w was constant on R. A new
difficulty would arise as the 2-waves and V-waves can induce more complicated behaviors. We will
come back to that in Subsection 3.3.2.
The second case, however, is specific to GARZ model and is a new feature. Thus, overall there are
two new difficulties : dealing with the influence of the 2-waves and V-waves in the first case and
treating this second case. We will start by a lemma that can be applied in these two cases, and
then deal with the two cases separately.

Lemma 3.10. Let t ∈ R+ \N and ε > 0. Let (ρ+, ρ−) ∈ ([0, ρmax])2 and (w+, w−) ∈ ([w−, w+])2.
There exists δ > 0 such that for n ∈ N large enough : if x ∈ (min(yn, y)− δ,min(yn, y)) two cases
can occur:

V (ρn(t, x), wn(t, x)) ∈ Bε(V (ρ−, w−)),

or V (ρn(t, x), wn(t, x)) ∈ [Vb − 2ε,+∞) and V (ρ−, w−) ∈ [Vb − ε,+∞).
(3.34)

And if x ∈ (max(yn, y),max(yn, y) + δ),

V (ρn(t, x), wn(t, x)) ∈ Bε(V (ρ+, w+)),

or V (ρn(t, x), wn(t, x)) ∈ [Vb − 2ε,+∞) and V (ρ+, w+) ∈ [Vb − ε,+∞).
(3.35)

where Br(a) stands for the ball centered in a of radius ε

In other words, this lemma shows that in a short range before min(yn, y) and after max(yn, y),
the approximated velocity V (ρn, wn) is everywhere close to V (ρ, w) or is also close to be larger
than Vb if V (ρ, w) is. Note that this is not obvious as the convergence in BV of (ρn, wn) gives
only information almost everywhere and this is precisely all our problem : we need to obtain some
convergence in a particular location y(t). An illustration of Lemma 3.10 is given in Figure 1. We
now prove this lemma.

Proof of Lemma 3.10. Let us assume without loss of generality that x < min(yn, y) (the other
case is similar by symmetry). From Lemma 3.6, for every ε > 0, there exists δ0 > 0 such that
TV (ρ(t, ·), w(t, ·))|(min(yn,y)−δ0,min(yn,y)) <

ε
2M withM the Lipschitz constant of V ∈ C2([0, ρmax]×

[wmin, wmax]). This implies that, for any x ∈ (min(yn, y)− δ0,min(yn, y)),

(ρ(t, x), w(t, x)) ∈ Bε/2M ((ρ−, w−)). (3.36)
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V (ρ, ω)

x

V (ρn, ωn) ∈
V (ρ, ω) ∈

y(t)yn(t)yn(t)− δ0 yn(t)− δ y(t) + δ y(t) + δ0

V (ρ+, ω+)

V (ρ−, ω−)

V (ρ+, ω+) + ε

V (ρ+, ω+)− ε

V (ρ−, ω−) + ε

V (ρ−, ω−)− ε

V (ρ−, w−) < Vb − ε and V (ρ+, w+) <
Vb − ε

V (ρ, ω)

x

V (ρn, ωn) ∈
V (ρ, ω) ∈

y(t)yn(t)yn(t)− δ0 yn(t)− δ y(t) + δ y(t) + δ0

V (ρ+, ω+)

V (ρ−, ω−)

V (ρ+, ω+) + ε

V (ρ+, ω+)− ε

V (ρ−, ω−) + ε

Vb

Vb − 2ε

V (ρ−, w−) > Vb − ε and V (ρ+, w+) <
Vb − ε

V (ρ, ω)

x

V (ρn, ωn) ∈
V (ρ, ω) ∈

y(t)yn(t)yn(t)− δ0 yn(t)− δ y(t) + δ y(t) + δ0

V (ρ−, ω−)

V (ρ+, ω+)

Vb − 2ε

V (ρ−, w−) > Vb − ε and V (ρ+, w+) >
Vb − ε

Figure 1: Illustration of Lemma 3.10; let t ∈ R+ \N , ε > 0, (ρ+, ρ−) ∈ ([0, ρmax])2 and (w+, w−) ∈
([w−, w+])2 with yn(t) < y(t). The approximate speed V (ρn(t, ·), wn(t, ·)) over [yn(t)− δ, yn(t)] ∪
[y(t), y(t) + δ] belongs to the area surrounded by the dotted lines (...) and ρ(t, ·) over [y(t) −
δ0, y(t) + δ0] belongs to the shaded zone.

We now treat the two cases V (ρ−, w−) < Vb − ε and V (ρ−, w−) > Vb − ε separately.

Step 1: if V (ρ−, w−) < Vb − ε. We now proceed by contradiction. Suppose by contradiction
that for any δ > 0 and for any n0 > 0 there exists n1 > n0 and x ∈ (min(yn, y) − δ,min(yn, y))
such that V (ρn1(x), wn1(x)) ∈ R \ Bε(V (ρ−, w−)). Then by selecting δ = δ0/n we can construct a
sequence (xn)n∈N such that

V (ρn(xn), wn(xn)) ∈ R \ Bε(V (ρ−, w−)) (3.37)

with

xn ∈ (min(yn, y)− δ,min(yn, y)) and lim
n→+∞

xn = y(t). (3.38)
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Then as we know that (ρn, wn)→ (ρ, w) in BV, we can build a sequence (zm)m∈N such that

zm < y(t), lim
m→+∞

zm = y(t) and lim
n→+∞

(ρn, wn)(zm) = (ρ, w)(zm). (3.39)

Besides, from (3.36), (ρ, w)(zm) ∈ Bε/2((ρ−, w−)). As zm → y(t), we can use a diagonal argument
to construct two sequences : (z1

n) and (z2
n) and n1 > n0 large enough such that for any n > n1,

lim
n→+∞

z1
n = lim

n→+∞
z2
n = y(t),

z1
n < xn < z2

n < min(yn, y),

(ρn, wn)(z1
n+) ∈ B3ε/4M (ρ−, w−) and (ρn, wn)(z2

n−) ∈ B3ε/4M (ρ−, w−)

V (ρn, wn)(z1
n+) ∈ B3ε/4(V (ρ−, w−)) and V (ρn, wn)(z2

n−) ∈ B3ε/4(V (ρ−, w−)).

(3.40)

Note that we used the Lipschitz continuity of V for this last point. (3.37) and (3.40) imply that
V (ρn, wn) has to reach B3ε/4(V (ρ−, w−)) from xn to z1

n and from xn to z2
n. As n can be chosen

large enough we suppose in addition that

|z1
n −min(yn, y)| < βt

12
ε. (3.41)

We denote x0 ∈ [z1
n, xn) the first point x such that V (ρn(x−), wn(x−)) reaches B3ε/4(V (ρ−, w−))

from V (ρn(xn), wn(xn)) (see Figure 2). In other words,

V (ρn(x0−), wn(x0−)) ∈ B3ε/4(V (ρ−, w−)),

V (ρn(x), wn(x)) ∈ R \ B3ε/4(V (ρ−, w−)), ∀x ∈ [x0, xn),
(3.42)

V (ρn, ωn)

x
xn

+

x0

+

z1n

+

z2n

+

min(yn, y)

V (ρ−, ω−)

V (ρ−, ω−)− 3ε
4

V (ρ−, ω−)− ε

V (ρ−, ω−)− 3ε
4

V (ρ−, ω−) + ε

Figure 2: Illustration of V (ρn, wn) if V (ρ−, w−) < Vb − ε and V (ρn(xn), wn(xn)) > V (ρ−, w−) + ε
with z1

n < x0 < xn < z2
n < min(yn, y) .

Step 2: there cannot be any V-waves between x0 and xn. Assume that a V-wave occurs between
xn and x0, this implies that for some x1 ∈ [x0, xn], ρn(x1−) = ρn(x1) = 0. As there is a finite

17



number of discontinuities, we can assume that x1 is the smallest x ∈ [x0, xn] where a V-wave
occurs. Thus V (ρn(x1−)), wn(x1−)) = wn(x1−) > wmin > Vb. From (3.42) and the fact that
V (ρ−, w−) 6 Vb − ε, this implies that

V (ρn(x1−)), wn(x1−)) > V (ρn(x0−)), wn(x0−)) + ε/4, (3.43)

and thus x0 < x1. Therefore the wave occuring in x0 is not a V-wave, and it is not a 2-wave either
as the velocity is discontinuous in x0 from (3.42). As xn < min(yn, y(t)) there cannot be any
nonclassical shock. Hence, so the wave in x0 is a rarefaction shock or a shock. A shock can only
increase the density ρn and therefore decrease the velocity V , and a rarefaction shock can increase
V at most by C0ρmax/2

n from Lemma 3.9. This implies that, for n ∈ N, C0ρmax/2
n 6 ε/24 and

large enough,

V (ρn(x0−), wn(x0−)) +
ε

24
> V (ρn(x0), wn(x0)) (3.44)

Thus, from (3.43) and (3.44), we deduce that

V (ρn(x1−)), wn(x1−)) > V (ρn(x0), wn(x0)) + 5ε/24. (3.45)

By definition there is no V-wave and no non-classical shock between x0 and x1 and x1 > x0. This
implies that we can use Lemma 3.7 and thus we have

|x1 − x0| > βt|V (ρn(x1−), wn(x1−))− V (ρn(x0), wn(x0))|
> 5βtε

24 .
(3.46)

The inequalities (3.41), (3.46) and z1
n 6 x0 < x1 < min(yn, y) lead to a contradiction. Thus there

is no V-wave between x0 and xn.
Assumption (3.37) implies that

V (ρn(xn), wn(xn)) > V (ρ−, w−) + ε,

or V (ρn(xn), wn(xn)) 6 V (ρ−, w−)− ε. (3.47)

Step 1.2: (3.47) doesn’t hold. Assume that V (ρn(xn), wn(xn)) > V (ρ−, w−) + ε. Since xn <
min(yn, y), there is no nonclassical shock in xn. Moreover, as we just showed, there is no V-wave
in xn. Thus, from Lemma 3.9, for n large enough, we have

V (ρn(xn−), wn(xn−)) > V (ρn(xn), wn(xn))− ε
24 ,

> V (ρ−, w−) + ε− ε
24 .

(3.48)

As there is no V-waves occuring in [x0, xn], this means, using (3.42), (3.44) and (3.48) that we can
apply Lemma 3.7 between x0 and xn similarly as previously and for n ∈ N large enough,

|xn − x0| > βt|V (ρn(xn−), wn(xn−))− V (ρn(x0), wn(x0))|
> βtε

6 .
(3.49)

The inequalities (3.41), (3.49) and z1
n 6 x0 < xn < min(yn, y) lead to a contradiction. Therefore

from (3.47)

V (ρn(xn), wn(xn)) 6 V (ρ−, w−)− ε. (3.50)

We will now show that this implies that there is no V-waves between xn and z2
n either, and then we

will get the final contradiction still using Lemma 3.7. Assume that there is a V-wave between xn
and z2

n. This implies that there exists x3 ∈ [xn, z
2
n] such that ρn(x3−) = ρn(x3) = 0. Without loss
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of generality, as previously we can assume that x3 is the smallest x ∈ [xn, z
2
n] such that a V-wave

appears. Since Vb < wmin, we know that

V (ρn(x3−), wn(x3−)) = w(x3−) > Vb. (3.51)

Moreover, using that V (ρ−, w−) < Vb − ε and (3.50), we deduce that

V (ρn(xn), wn(xn)) 6 V (ρ−, w−)− ε < Vb − 2ε. (3.52)

Therefore, x3 > xn. By definition there is no V-wave occurring between xn and x3 and since
x3 < min(yn, y), no nonclassical shock either. Thus we can use Lemma 3.7 with (3.51) and (3.52)
to prove that

|x3 − xn| > 2βtε (3.53)

which gives again a contradiction with (3.41) and z1
n < xn < x3 < min(yn, y). So no V-wave occurs

between xn and z2
n. Then exactly as before we can use Lemma 3.7 with (3.40) and (3.50) to show

that

|z2
n − xn| >

βtε

4
, (3.54)

which is in contradiction with (3.41) and z1
n < xn < z2

n < min(yn, y). So overall both cases of
(3.47) give a contradiction and this gives the result.

If V (ρ−, w−) > Vb − ε. We proceed again by contradiction. Suppose by contradiction that for
any δ > 0 and for any n0 > 0 there exists n1 > n0 and x ∈ (min(yn, y) − δ,min(yn, y)) such
that V (ρn1(x), wn1(x)) ∈ R \ [Vb − 2ε,+∞). Then by selecting δ = δ0/n we can again construct a
sequence (xn)n∈N such that

V (ρn(xn), wn(xn)) ∈ R \ [Vb − 2ε,+∞) (3.55)

with

xn ∈ (min(yn, y)− δ,min(yn, y)) and lim
n→+∞

xn = y(t). (3.56)

As previously we can build (z1
n) and (z2

n) and n1 > n0 large enough such that for any n > n1,

lim
n→+∞

z1
n = lim

n→+∞
z2
n = y(t),

z1
n < xn < z2

n < min(yn, y(t)),

(ρn, wn)(z1
n+) ∈ B3ε/4M (ρ−, w−) and (ρn, wn)(z2

n−) ∈ B3ε/4M (ρ−, w−),

V (ρn, wn)(z1
n+) ∈ B3ε/4(V (ρ−, w−)) and V (ρn, wn)(z2

n−) ∈ B3ε/4(V (ρ−, w−)),

(3.57)

with M the Lipschitz constant of V ∈ C2((0, ρmax)× (wmin, wmax)). As previously V (ρn, wn) has
to reach B3ε/4(V (ρ−, w−)) from xn to z1

n and from xn to z2
n. And we suppose again that n ∈ N is

large enough such that

|z1
n − z2

n| <
βt

12
ε. (3.58)

Using (3.55) and (3.57), there exists x0 ∈ (xn, z
2
n] such that

V (ρn(x0), wn(x0)) > Vb − 3ε/2,

V (ρn(x−), wn(x−)) < Vb − 3ε/2, ∀x ∈ (xn, x0].
(3.59)
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Note that there cannot be a V-wave in x0 as V (ρn(x0−), wn(x0−)) < Vb from (3.59). The wave in
x0 is not a 2-wave either as the velocity V is discontinuous in this point and is not a nonclassical
shock either as z2

n < min(yn, y). Thus, from Lemma 3.9 and for n ∈ N large enough we have

V (ρn(x0−), wn(x0−)) > V (ρn(x0), wn(x0))− ε

24
. (3.60)

We will show now that there cannot be any V-waves between xn and x0. Assume by con-
tradiction that a V-wave occurs between xn and x0, this implies that for some x1 ∈ (xn, x0],
V (ρn(x1−), wn(x1−)) > Vb, which is in contradiction with (3.59), thus no V-wave occurs between
x0 and xn. Therefore, using (3.55), (3.59) and (3.60), we can apply Lemma 3.7 and for n ∈ N large
enough,

|x0 − xn| >
11βtε

24
, (3.61)

which is in contradiction with (3.58) and z1
n < xn < x0 < min(yn, y) which ends the result.

We will start by this second case V (ρ+, w+) = V (ρ−, w−).

3.3.1 Case V (ρ+, w+) = V (ρ−, w−).

Lemma 3.11. Let t ∈ R+ \ N and ε > 0. Assume that V (ρ−, w−) = V (ρ+, w+), then for n ∈ N
large enough if x ∈ (min(yn(t), y(t)),max(yn(t), y(t))),

• If V (ρ+, w+) < Vb − ε/2, then

V (ρn(t, x), wn(t, x)) ∈ Bε(V (ρ+, w+)). (3.62)

• If V (ρ+, w+) > Vb − ε/2, then

V (ρn(t, x), wn(t, x)) ∈ [Vb − 2ε,+∞). (3.63)

Proof of Lemma 3.11. Let t ∈ R+ \ N and ε > 0.

If V (ρ+, w+) < Vb − ε/2 Suppose by contradiction that for any n0 > 0 there exists n > n0 such
that there exists xn ∈ (min(yn, y),max(yn, y)) such that

V (ρn(xn), wn(xn)) ∈ R \ Bε(V (ρ+, w+)). (3.64)

As n0 can be chosen large enough, we suppose that

|yn − y| < min

(
tβε

4
, min
w∈[wmin,wmax]

(ρ∗(w))

)
, (3.65)

which is possible as minw∈[wmin,wmax](ρ
∗(w)) > 0. We will obtain the contradiction by using that

(ρn(xn), wn(xn)) has to connect to the left part of the solution in (min(yn, y)− δ,min(yn, y)) and
to the right part of the solution in (max(yn, y),max(yn, y) + δ), and then using the information
we have on those two parts of the solution from Lemma 3.10. Let first look at what happens
for (ρn, wn) at min(yn, y) : Since by assumption V (ρ−, w−) = V (ρ+, w+) < Vb − ε

2 , we have
V (ρ−, w−) < Vb − ε

6 . Applying Lemma 3.10 with ε = ε
6 , for n0 large enough,

V (ρn(min(yn, y)−), wn(min(yn, y)−)) ∈ Bε/6(V (ρ−, w−)) = Bε/6(V (ρ+, w+)). (3.66)
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As V (ρ+, w+) + ε/6 < Vb this means that

ρn(min(yn, y)−) > ρ∗(wn(min(yn, y)−)) > ρ̂α(wn(min(yn, y)−)). (3.67)

Thus there cannot be any nonclassical shock or V-wave at min(yn, y) and therefore there can only
be a 2-wave, a rarefaction shock or a shock, which implies, together with (3.66), that

V (ρn(min(yn, y)), wn(min(yn, y))) 6 V (ρn(min(yn, y)−), wn(min(yn, y)−)) +
C0ρmax

2n

6 V (ρ+, w+) +
ε

6
+
C0ρmax

2n
,

(3.68)

where C0 given by Lemma 3.9 is the maximal amplitude of the velocity through of a rarefaction
shock. As n can be chosen large enough, we assume that

C0ρmax

2n
<
ε

6
(3.69)

Thus, from (3.68),

V (ρn(min(yn, y)), wn(min(yn, y))) 6 V (ρ+, w+) +
ε

3
. (3.70)

Similarly on the right-hand side, one gets

V (ρn(max(yn, y)−), wn(max(yn, y)−)) > V (ρ+, w+)− ε

3
. (3.71)

Now we know to which admissible values (ρn(xn), wn(xn)) has to connect on the left and on the
right and we will obtain a contradiction. We can now proceed exactly similarly as in the proof of
Lemma 3.10. From (3.64) and (3.66), there exists x1 ∈ [min(yn, y), xn] such that

V (ρn(x1−), wn(x1−)) ∈ Bε/3(V (ρ+, w+))

V (ρn(x), wn(x)) ∈ R \ Bε/3(V (ρ+, w+)), ∀x ∈ [x1, xn],
(3.72)

We will now show that no V-wave can occur between x1 and xn by contradiction. Assume there
exists x2 ∈ [x1, xn] such that ρn(x2−) = ρn(x2) = 0. As there is a finite number of discontinuities,
we can assume that x2 is the smallest x ∈ [x1, xn] where a V-wave occurs. Therefore

V (ρn(x2−), wn(x2−)) = wn(x2−) > wmin > Vb > V (ρ+, w+) +
ε

2
. (3.73)

which implies, together with (3.72), V (ρn(x2−), wn(x2−)) > V (ρn(x1−), wn(x1−)). Thus, x2 6= x1

and no V-wave can occur in [x1, x2). The wave occurring in x1 is not a 2-wave either as the velocity
is discontinuous in x1 by construction. Moreover, a non-classical shock cannot occur at x1 since
there cannot be a non-classical shock at min(yn, y) as seen in (3.67) and x1 ∈ [min(yn, y), xn] with
xn < min(yn, y). Thus, the wave in x1 is either a rarefaction wave or a shock. From Lemma 3.9
and (3.69), for n large enough,

V (ρn(x1−), wn(x1−)) +
ε

6
> V (ρn(x1), wn(x1)) (3.74)

Thus, we can apply Lemma 3.7 with (3.72), (3.73) and (3.74). Thus,

|x2 − x1| > βt|V (ρn(x2−), wn(x2−))− V (ρn(x1), wn(x1))|
> βtε

6 .
(3.75)
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which is in contradiction with (3.65) and min(yn, y) 6 x1 < x2 < max(yn, y). So there is no
V-waves between x1 and xn. From (3.64)

V (ρn(xn), wn(xn)) > V (ρ+, w+) + ε

or V (ρn(xn), wn(xn)) 6 V (ρ+, w+)− ε. (3.76)

The exact same proof as in the proof of Lemma 3.10 Step 2 can be done to show that (3.76) doesn’t
hold which gives the contradiction and ends the proof of Lemma 3.11 in the case V (ρ+, w+) <
Vb − ε/2.

If V (ρ+, w+) > Vb − ε/2. There are two possible situations : if there is a no nonclassical shock
at min(yn, y) and at max(yn, y), then the proof is exactly the same as the previous case and for
any x ∈ (min(yn, y),max(yn, y)),

V (ρn(x), wn(x)) ∈ Bε(V (ρ+, w+)) ⊂ [Vb − 2ε,+∞). (3.77)

If there is a nonclassical shock occurring at min(yn, y) or at max(yn, y). Suppose by contradiction
that for any n0 > 0 there exists n > n0 such that there exists xn ∈ (min(yn, y),max(yn, y)) such
that

V (ρn(xn), wn(xn)) ∈ R \ [Vb − 2ε,+∞). (3.78)

Suppose that the nonclassical shock occurs in min(yn, y). It means that min(yn, y) = yn and
thus no shock occurs on the right at max(yn, y) = y so a similar proof as previously can be done.
Roughly speaking, from Lemma 3.10 with ε = ε

2 we have V (ρn(y), wn(y)) > Vb − 3ε
2 . Since there

is not a nonclassical shock at y then only a rarefaction shock or a V-wave can increase V . If a
V-wave occur at y then V (ρn(y−), wn(y−)) > Vb. As n can be chosen large enough, we assume
that C0ρmax

2n < ε
6 . Thus, from Lemma 3.9 for n large enough, V (ρn(y−), wn(y−)) > Vb − 5ε

3 . As
previously, we show that only shocks, rarefactions and 2-shocks are allowed over [xn, y]. Thus, we
have

|y − xn| > βt|V (ρn(y−), wn(y−))− V (ρn(xn), wn(xn))|
> βtε

3 ,
(3.79)

which leads to a contradiction using (3.65) with yn 6 xn < y. Suppose now a non-classical shock
appears on the right at max(yn, y), this implies that max(yn, y) = yn and that

ρn(max(yn, y)−) = ρ̂α(w(max(yn, y)−)),

V (ρn(max(yn, y)−), w(max(yn, y)−)) > Vb.
(3.80)

Therefore, using this together with (3.78), there exists x5 ∈ (xn,max(yn, y)] such that

V (ρn(x5), wn(x5)) > Vb,

V (ρn(x), wn(x)) < Vb, ∀x ∈ [xn, x5).
(3.81)

Note that in fact x5 < max(yn, y) as

V (ρn(x5−), wn(x5−)) < Vb < V (ρn(max(yn, y)−), w(max(yn, y))). (3.82)

Now, we can fix n0 large enough such that

|yn − y| < Cβε. (3.83)

We show once again that there cannot be any V-wave between xn and x5 as if there existed
x6 ∈ [xn, x5] such that a V-wave occurs, then, as V (ρn(x6−), wn(x6−)) = V (0, wn(x6−)) > Vb
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this implies that x5 > x6, but V (ρn(x6), wn(x6)) = V (0, wn(x6)) > Vb and this would be in
contradiction with (3.81). Therefore there is no V-wave between xn and x5 and no nonclassical
shocks either (as x5 < yn). This implies that

V (ρn(x5−), wn(x5−)) > V (ρn(x5), wn(x5))− C0ρmax

2n
, (3.84)

where C0 is given by Lemma 3.9. Thus there exists n large enough such that

V (ρn(x5−), wn(x5−))− V (ρn(xn), wn(xn)) >
ε

2
, (3.85)

and we can apply Lemma 3.7 to get

|x5 − xn| >
βtε

2
, (3.86)

which is in contradiction with (3.83). Hence, for any x ∈ (min(yn, y),max(yn, y)),

V (ρn(x), wn(x)) ∈ [Vb − 2ε,+∞). (3.87)

This ends the proof of Lemma 3.11.

We can now prove the result in the case V (ρ−, w−) = V (ρ+, w+). Let ε > 0, from Lemma 3.10
wtih ε = ε/2 and Lemma 3.11, and using the fact that V (ρ−, w−) = V (ρ+, w+), there exists n0 > 0
such that for any n > n0 and any x ∈ (min(yn(t), y(t))− δ,max(yn(t), y(t)) + δ) \ {y(t), yn(t)}, if
V (ρ+, w+) < Vb − ε

2
V (ρn(x), wn(x)) ∈ Bε(V (ρ+, w+)), (3.88)

and if V (ρ+, w+) > Vb − ε
2 ,

V (ρn(x), wn(x)) > Vb − ε. (3.89)

As this is true for any x ∈ (min(yn(t), y(t))− δ,max(yn(t), y(t)) + δ) \ {y(t), yn(t)}, this is true at
the right limit of yn(t), namely yn(t)+ and hence this implies that

min(Vb, V (ρ+, w+))− ε > min(V (ρn(yn(t)+), wn(yn(t)+)), Vb) 6 min(Vb, V (ρ+, w+)) + ε. (3.90)

As ε > 0 was chosen arbitrarily (even though n0 depends on ε), this gives directly

lim
n→+∞

min(Vb, V (ρn(yn(t)), wn(yn(t)))) = min(V (ρ+, w+), Vb), (3.91)

which is the result we aim at showing. We now move on to the next subsection and the case
w− = w+.

3.3.2 Case w− = w+

In spirit, this case is similar to the case treated in [16] with the LWR model as we can now
divide the situation in three cases :

i (ρ−, ρ+) ∈ [0, ρ∗(w)]2, where w = w+ = w−

ii (ρ−, ρ+) ∈ (ρ∗(w), ρmax]2

iii ρ− > ρ∗(w) > ρ+ or ρ+ > ρ∗(w) > ρ−.
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However, the possibility of 2-waves and V-waves complicate a lot this analysis and, in particular,
we cannot try to confine ρn and wn close to the set [ρ−, ρ+]×{w} as the 2-waves makes it doomed
to failure : (ρn, wn) could be much outside this set and become instantaneously close using a
2-wave. Instead, the idea will be to confine V (ρn, wn) and thus neutralise the 2-waves. In this
aim, we show the following lemma

Lemma 3.12. Let t ∈ R+ \ N and ε > 0. Assume that w− = w+, and let w denote this value,
then for n ∈ N large enough : if x ∈ (min(yn, y),max(yn, y))

• if (ρ−, ρ+) ∈ [0, ρ∗(w)]2, then

V (ρn, wn) ∈ [Vb − ε,+∞) (3.92)

• if (ρ−, ρ+) ∈ (ρ∗(w), ρmax]2, then

V (ρn, wn) ∈ [V (max(ρ−, ρ+), w)− ε, V (min(ρ−, ρ+), w) + ε] (3.93)

• if ρ− > ρ∗(w) > ρ+ or ρ+ > ρ∗(w) > ρ−, then

V (ρn, wn) ∈ [V (max(ρ−, ρ+), w)− ε, V (min(ρ−, ρ+), w) + ε] ∪ [Vb − ε,+∞) (3.94)

The proof is very similar to the proof of Lemmas 3.10 and 3.11 and will be given in the
Appendix C. As expected this lemma shows how we can confine V (ρn, wn) to the set of speed
generated by [ρ−, ρ+] × {w}. In two cases this confinement in imperfect as V (ρn, wn) could also
lie in [Vb,∞). This is due to the presence of nonclassical shock and the fact that the solution is
not entropic. However, this will not be a problem in the following. Indeed, what we aim to show
overall is formally the following min(V (ρn(yn(t)+), wn(yn(t)+)), Vb)→ min(V (ρ+, w+), Vb) so any
value above Vb will be canceled by the min operator. We can now prove the result in each of the
three cases listed above :

• If (ρ−, ρ+) ∈ [0, ρ∗(w)]2, then using Lemmas 3.10 and 3.12, for any ε > 0 there exists δ > 0
and n1 > 0 such that for any n > n1 and any x ∈ (min(yn(t), y(t)) − δ,max(yn(t), y(t)) +
δ) \ {yn(t), y(t)}

V (ρn(x), wn(x)) ∈ Bε(V (ρ−, w)) ∪ Bε(V (ρ+, w)) ∪ [Vb − ε,+∞), (3.95)

where w = w+ = w−. But as (ρ−, ρ+) ∈ [0, ρ∗(w)]2, then both V (ρ−, w) and V (ρ+, w) are
above Vb. This implies that

V (ρn(x), wn(x)) ∈ [Vb − ε,+∞), (3.96)

hence
Vb − ε 6 min(Vb, V (ρn(yn(t)), wn(yn(t)))) 6 Vb. (3.97)

Since Vb = min(Vb, V (ρ+, w+)), as ρ+ 6 ρ∗(w), and as ε was chosen arbitrarily we have using
(3.97)

lim
n→+∞

min(V (ρn(yn(t)+), wn(yn(t)+)), Vb) = min(V (ρ+, w+), Vb), (3.98)

which is the result we aimed at.
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• If (ρ−, ρ+) ∈ (ρ∗(w), ρmax]2 we can now proceed as in [16], provided that we look at 1-waves
and find a way to ignore 2-waves. Let us first exclude a simple case : if yn(t) > y(t) for
an infinite set of index, then extracting a subsequence we can assume that yn(t) > y(t) for
any n > n1. (ρ−, ρ+) ∈ (ρ∗(w), ρmax]2 implies that V (ρ+, w) < Vb and V (ρ−, w) < Vb. If
V (ρ+, w) < Vb − ε then from Lemma 3.10 we have, for any x ∈ (yn(t), yn(t) + δ),

V (ρn(x), wn(x)) ∈ Bε(V (ρ+, w)). (3.99)

If Vb − ε 6 V (ρ+, w) < Vb then (3.99) holds or V (ρn(x), wn(x)) ∈ [Vb − 2ε,∞). Thus, (3.98)
holds. So we can assume from now on that yn(t) < y(t) on an infinite set of index, and
extracting a subsequence we can assume that yn(t) < y(t) for any n > n1. We claim that

V (ρ−, w) > V (ρ+, w). (3.100)

To prove it, we argue by contradiction similarly to the proof of Lemma 3.10. Roughly
speaking, we assume that V (ρ−, w) < V (ρ+, w) then for ε small enough V (ρ−, w) + 13ε/6 <
V (ρ+, w) and V (ρ+, w) + ε < Vb. Therefore, from Lemmas 3.10 and 3.12, that there is no
non-classical shock and V-wave in (min(yn(t), y(t))− δ,max(yn(t), y(t)) + δ) and we have to
connect ρn(t,min(yn(t), y(t))−) ∈ [V (ρ−, w)− ε, V (ρ−, w) + ε] to ρn(t,max(yn(t), y(t))+) ∈
[V (ρ+, w)−ε, V (ρ+, w)+ε]. This leads to a contradiction using that yn(t)→ y(t) as n tends
to ∞ and V (ρ+, w)− ε− V (ρ−, w) + ε > ε

6 .

Let us define the triangle T0 by

T0 := {(s, x) ∈ [t, tf )× (wmax(s− t) + yn(t)− δ, ∂ρf(ρmax, wmax)(s− t) + y(t) + δ)}, (3.101)

and where tf is the closing point of the triangle defined by

tf =
y(t)− yn(t) + 2δ

wmax − ∂ρf(ρmax, wmax)
. (3.102)

Let us also define tyn > t the time at which yn(s) gets out of the triangle, i.e.

(s, yn(s)) ∈ T0, ∀s ∈ [t, tyn),

(tyn , y
n(tyn)) /∈ T0.

(3.103)

Obviously tyn 6 tf . Using the triangle T0 we will start from a point ξn(t) after yn(t),
where for any x ∈ (ξn(t), y(t) + δ(t)), V (ρn(t, x), wn(t, x)) ∈ Bε(V (ρ+, w+)) and propagate
to delimit a region (s, x) where V (ρn(t, x), wn(t, x)) ∈ Bε(V (ρ+, w+)). Then we will show
that there exists a time tn > t above which yn(s) is in this region which implies that after
this time, V (ρn(t, yn(t)), wn(t, yn(t))) ∈ Bε(V (ρ+, w+)). Finally, we will show that this time
tn goes to 0 when n goes to +∞ which will imply that for any s > t and for n large enough
V (ρn(s, yn(s)), wn(s, yn(s))) ∈ Bε(V (ρ+, w+)) and by letting n goes to infinity will give the
result (we will come back to this last point). This is summarized rigorously in the following
lemma :

Lemma 3.13. Let t ∈ R+ \ N and ε > 0. Assume that (ρ−, ρ+) ∈ (ρ∗(w), ρmax] with
ρ− 6= ρ+, that ε is small enough such that min(ρ−, ρ+) − ε > ρ∗(w), and that yn < y(t) for
any n > n1. Let δ > 0 be given by Lemma 3.10. Then for any n > n1, there exists tξn > t
and a piecewise linear function ξn such that

(s, ξn(s)) ∈ T0, ∀s ∈ [t, tξn), (3.104)
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and for any (s, x) ∈ {[t, tξn)× R|x > ξn(s)} ∩ T0

V (ρn(s, x), wn(s, x)) ∈ Bε(V (ρ+, w+)). (3.105)

Besides, if we denote tyn the time at which yn(·) exits the triangle, there exists c > 0 inde-
pendent of n such that min(tyn , tξn)− t > c and there exists tn > 0 such that ξ(tn) = yn(tn)
and lim

n→+∞
tn = t.

We will show this lemma right after, but first we show that we indeed get the result with
this Lemma. If ρ− = ρ+ then, from Lemma 3.10 and Lemma 3.12,

V (ρ+, w)− ε 6 min(Vb, V (ρn(yn(t)), wn(yn(t)))) 6 min(Vb, V (ρ+, w) + ε).

Therefore, as ε was chosen arbitrarily, (3.98) holds. Assuming that ρ− 6= ρ+. Let s ∈ (t, t+c)
where c is given in Lemma 3.13, there exists n2 > n1 such that for any n > n2, tn < s. Hence

V (ρn(s, yn(s)), wn(s, yn(s))) ∈ Bε(V (ρ+, w+)). (3.106)

Besides, as (ρn, wn, yn) satisfies (1.8) we have

yn(s)− yn(t) =

∫ s

t

min(Vb, V (ρn(τ, yn(τ)), wn(τ, yn(τ)))dτ. (3.107)

This implies with (3.106) that

min(Vb, V (ρ+, w+))− ε 6 yn(s)− yn(t)

s− t 6 min(Vb, V (ρ+, w+)) + ε. (3.108)

Using the convergence of yn to y we have

min(Vb, V (ρ+, w+))− ε 6 y(s)− y(t)

s− t 6 min(Vb, V (ρ+, w+)) + ε, (3.109)

and from the definition of N0, y is differentiable in t, thus, using the fact that ε > 0 can be
arbitrarily small.

ẏ = min(Vb, V (ρ+, w+)), (3.110)

which ends the result in the case where (ρ−, ρ+) ∈ (ρ∗(w), ρmax]2.

Proof of Lemma 3.13. This lemma is the analogous of Lemma 3.6 in [16] and the proof
will be similar, with two differences : other types of waves than 1-waves can appear, and
an interaction between two waves can result in several output wavefronts. To neutralize
these effects we will consider V (ρn, wn) instead of ρn and wn and when tracing the wavefront
forward in time we will ignore the 2-waves and follow the wavefronts of 1-waves. The structure
of the proof is illustrated in Figure 3.

Let t ∈ R \ N . Since (ρ−, ρ+) ∈ (ρ∗(w), ρmax] with ρ− 6= ρ+ and (3.100), for ε > 0 small
enough V (ρ+, w) < V (ρ−, w) < Vb − ε. Then, from the definition of T0 given in (3.101), for
any (s, x) ∈ T0, we claim that

V (ρn(s, x), wn(s, x)) ∈ {V (ρ+, w)− ε, V (ρ−, w) + ε}, (3.111)

Indeed, at s = t this is true from Lemma 3.10 and Lemma 3.12 as x ∈ (yn(t) − δ, y(t) + δ),
and for s ∈ (t, tf ) so no wave can reach the triangle T0 from outside given its definition.
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s

x
y(t)ξn(t)

t

yn(t) y(t) + δyn(t)− δ

tn

• •tξn

V (ρn(s, x), ωn(s, x)) ∈ Bε(V (ρ+, ω)).

(s, ξn(s))

(s, yn(s))T0

Figure 3: (ρ−, ρ+) ∈ (ρ∗(w), ρmax] with ρ− 6= ρ+ with yn(t) < y(t), n > n1

Thus, observing all the possible interactions described by Section 1, the set of accessible
velocity at time s is included in the set of accessible velocity at time t, which gives (3.111).
Note that, (3.111) implies that, for any (s, x) ∈ T0, V (ρn(s, x), wn(s, x)) < Vb. Thus, a
non-classical shock and a V-wave cannot appear in T0. Let us now denote by N(t, n) the
number of discontinuity points of the speed V (ρn(t, ·), wn(t, ·)) on [yn(t)− δ, y(t) + δ] and xnj
these discontinuity points. From Lemma 3.10 and Lemma 3.12 and ρ− 6= ρ+, there exists
j0 ∈ {1, ..., N(t, n)} such that xnj0 ∈ [yn(t), y(t)] satisfies

V (ρn(t, xnj0−), wn(t.xnj0−)) ∈ IR \ Bε(V (ρ+, w))

V (ρn(t, xnj ), wn(t, xnj )) ∈ Bε(V (ρ+, w)), ∀j > j0 such that xnj < y(t) + δ,
(3.112)

Note that, since ρ− 6= ρ+, for ε small enough, Bε(V (ρ−, w)) ∩ Bε(V (ρ+, w)) = ∅.

V (ρn(t, xnj ), wn(t, xnj )) ∈ Bε(V (ρ+, w+)). (3.113)

This comes directly from Lemma 3.10 and the fact that (ρn, wn) is piecewise constant. Note
that there cannot be a V-wave at x0 from (3.113) and the fact that V (ρ+, w+) + ε 6 Vb. We
construct now the piecewise constant function ξn that we are going to track forward in time
: let ξn(t) = xnj0 and

ξ̇(s) = σ
(
ρn(t, xnj0−), R(V (ρn(t, xnj0), wn(t, xnj0)), wn(t, xj0−))

)
, for s ∈ [t, s1], (3.114)

where the term at the right of (3.114) is the speed of the 1-wave created at xnj0 and s1 is
defined as the minimum between the time when ξn exits the triangle T0 and the time when it
interacts or attains another wavefront. Note that actually this cannot be a V-wave or a non-
classical shock as otherwise there would exists (s, x) in T0 such that V (ρn(s, x), wn(s, x)) > Vb
and this contradicts with (3.111). Assuming that ξn interacts with another wavefront at s1.
In that case, ξn can only interact with a 2-wave or a shock, or a rarefaction shock. Therefore,
there is exactly one 1-wave generated by this interaction. So, we define, for any ∈ [s1, s2],

ξ̇(s) = σ (ρn(s1, ξ
n(s1)−), R(V (ρn(s1, ξ

n(s1)), wn(s1, ξ
n(s1))), wn(s1, ξ

n(s1)−))) , (3.115)
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where the term at the right of (3.115) is the speed of the 1-wave generated by the interaction
and s2 is the minimum between the time when ξn exits the triangle T0 and the time when it
interacts with another wavefront with a discontinuous velocity. We then define s3,...,sk and
so on. As ξ sees only shocks and rarefaction shocks, the rest of the proof is similar to [16,
Appendix A]. Let tξn (resp. tyn) be the time when ξn(·) (resp. yn(·)) exits the triangle T0.
From (3.113) and by construction of ξn(·), for any (s, x) ∈ {[t, tξn)× R|x > ξn(t)} ∩ T0

V (ρn(s, x), wn(s, x)) ∈ Bε(V (ρ+, w+)). (3.116)

Thus, together with (3.111), for any s ∈ (0, tξn)

ξ̇n(s) 6 maxy∈[wmin,wmax] σ(f(R(V (ρ−, w) + ε, y), y), f(R(V (ρ+, w) + ε, y), y)),

minw∈[wmin,wmax] ∂ρf(R(V (ρ+ − ε, w), w)) 6 ξ̇n(s),

(3.117)

and for any s ∈ (0, tyn)

V (ρ+, w)− ε 6 ẏn(s) 6 V (ρ−, w) + ε (3.118)

Using (3.101), (3.117) and (3.118), there exits c > 0 (independent of n) such that min(tyn , tξn) >
t+ c. From (3.117) and (3.118), for every s ∈ (t, t+ c),

ẏn(s)− ξ̇n(s) > V (ρ−, w0) + ε−σ(f(R(V (ρ−, w0) + ε, w0), w0), f(R(V (ρ+, w0) + ε, w0), w0)),
(3.119)

with w0 = argmaxw∈[wmin,wmax]σ(f(R(V (ρ−, w)+ε, w), w), f(R(V (ρ+, w)+ε, w), w)). There-
fore, for every s ∈ (t, t+ c),

ẏn(s)− ξ̇n(s) > 0. (3.120)

Using (3.120), limn→∞ yn(t) = y(t) and yn(t) 6 ξn(t) 6 y(t), yn(·) interacts with ξn(·) at
time tn ∈ (t, t+ c) and tn → 0 as n→∞.

• If ρ− > ρ∗(w) > ρ+ or ρ+ > ρ∗(w) > ρ−. As previously let us first exclude a simple case : if
yn(t) > y(t) for an infinite set of index, then extracting a subsequence we can assume that
yn(t) > y(t) for any n > n1. From Lemma 3.10 we have, for any x ∈ (yn(t), yn(t) + δ),

V (ρn(x), wn(x)) ∈ Bε(V (ρ+, w+)),

or V (ρn(x), wn(x)) ∈ [Vb − 2ε,+∞) and V (ρ+, w+) ∈ [Vb − ε,+∞).
(3.121)

This implies that

min(Vb, V (ρ+, w+))− 2ε 6 min(Vb, V (ρn(t, yn(t)), wn(t, yn(t)))) 6 min(Vb, V (ρ+, w+)) + ε.
(3.122)

As ε > 0 was chosen arbitrarily provided n is large enough, this implies that

lim
n→+∞

min(Vb, V (ρn(t, yn(t)), wn(t, yn(t)))) = min(Vb, V (ρ+, w+)), (3.123)

and ends the results. So we can assume from now on that yn(t) < y(t) on an infinite set of
index, and extracting a subsequence we can assume that yn(t) < y(t) for any n > n1. We
will now use the following Lemma to eliminate one more case

Lemma 3.14. Let t ∈ R+ \ N , and suppose that ρ− > ρ∗(w) > ρ+ or ρ+ > ρ∗(w) > ρ− for
any n > n1. Then the only possible case is ρ+ > ρ∗(w) > ρ−.

28



This Lemma is proven in Appendix D.

We have the following Lemma

Lemma 3.15. Let t ∈ R+ \N and ε > 0. Assume that ρ+ > ρ∗(w) > ρ−, ε is small enough
such that V (ρ+, w+)− ε < Vband yn(t) < y(t) for any n > n1. Let δ > 0 be given by Lemma
3.10. Then for any n > n1, there exists tξn > t and a piecewise constant function ξn such
that

(s, ξ(s)) ∈ T0, ∀s ∈ [t, tξn), (3.124)

and for any (s, x) ∈ {[t, tξn)× R|x > ξn(s)} ∩ T0

V (ρn(s, x), wn(s, x)) ∈ Bε(V (ρ+, w+)). (3.125)

Besides, if we denote tyn the time at which yn(·) exits the triangle, there exists c > 0 inde-
pendent of n such that min(tyn , tξn)− t > c and there exists tn > 0 such that ξ(tn) = yn(tn)
and lim

n→+∞
tn = t.

This proof is analogous to the proof of Lemma 3.13 and will be given in the Appendix E.

A Proof of Lemma 3.3

Since Γ(·) may vary only at times t when two waves interact or a wave hits the slow vehicle
trajectory, we will consider different types of interactions separately. It is not restrictive to assume
that at any interaction time t = t either two waves interact or a wave hits the slow vehicle trajectory
(and not multiple interactions). We describe wave interactions by the type of the involved waves,
see Section 1. To simplify the notations, a i-wave interacting with a j-wave from the left is
represented by i-j with i, j ∈ {1, 2, V }. If a i-wave interacts with a j-wave producing a k-wave and
a wave of a l-family, we write i-j/ k-l. Here the symbol “/” divides the waves before and after the
interaction. Let us start with some basic results

Lemma A.1. The interactions V -V , V -2, 2-V and 2-2 cannot occur.

Proof. We argue by contradiction.

i We assume V -wave ((0, wl), (0, wm)) interacts with the V -wave ((0, wm), (0, wr)). By defini-
tion of vacuum waves, we have wl < wm < wr. Thus, the speed of the V -wave ((0, wl), (0, wm))
is slower than the speed of the V -wave ((0, wm), (0, wr)), whence the contradiction.

ii We assume V -wave ((0, wl), (0, wm)) interacts with the 2-wave ((0, wm), (ρr, wr)). We have
wl < wm = V (0, wm) = V (ρr, wr). Thus, the speed of the V -wave ((0, wl), (0, wm)) is slower
than the speed of the 2-wave ((0, wm), (ρr, wr)), whence the contradiction.

iii We assume 2-wave ((ρl, wl), (0, wm)) interacts with the V -wave ((0, wm), (0, wr)). We have
V (ρl, wl) = V (0, wm) = wm < wr. Thus, the speed of the 2-wave ((ρl, wl), (0, wm)) is slower
than the speed of the V -wave ((0, wm), (0, wr)), whence the contradiction.

iv We assume 2-wave ((ρl, wl), (ρm, wm)) interacts with the 2-wave ((ρm, wm), (ρr, wr)). We
have V (ρl, wl) = V (ρm, wm) and V (ρm, wm) = V (ρr, wr). Thus, the speed of the 2-wave
((ρl, wl), (ρm, wm)) is equal to the speed of the 2-wave ((ρm, wm), (ρr, wr)). We conclude
that no interaction occurs, whence the contradiction.
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For the classical collision between two waves (away from the slow vehicle trajectory), we have
the following result:

Lemma A.2. Assume that the wave ((ρl, wl), (ρm, wm)) interacts with the wave ((ρm, wm), (ρr, wr))
at the point (t, x) with t > 0 and x ∈ R. Then Γ(t+) ≤ Γ(t−). The possible interactions are: 2-
1/1-2, 2-1/1-V -2, 2-1/V -2, 1-1/1, V -1/V -2, V -1/1-2.

Next, we introduce the following notations:

• FV−wave: a wave denoting the slow vehicle trajectory without discontinuity in (ρn, wn).
The notation is to indicate a fictitious wave.

• NF−wave: a wave denoting the slow vehicle trajectory with discontinuity in (ρn, wn). The
notation is to indicate a non fictitious wave. A NF -wave is decomposed into three different
waves:

– NC−wave: a wave ((ρl, wl), (ρr, wr)) denoting the slow vehicle trajectory verifying
wl = wr, ρl = ρ̂(wl) and ρr = ρ̌(wl). The notation is to indicate a non classical shock.

– 1C−wave: A 1C−wave is decomposed into two waves:

∗ 1Ca−wave: a wave ((ρl, wl), (ρr, wr)) denoting the slow vehicle trajectory verifying
wl = wr and σ((ρl, wl), (ρr, wr)) = Vb with ρl ∈ [0, ρ̌(wl)] and ρr ∈ [ρ̂(wl), 1].

∗ 1Cb−wave: a wave((ρl, wl), (ρr, wr)) denoting the slow vehicle trajectory verifying
wl = wr, ρl = 0 and ρr > ρ∗(wl).

The notation 1C is to indicate a first family classical shock

– 2C−wave: a wave((ρl, wl), (ρr, wr)) denoting the slow vehicle trajectory verifying V (ρl, wl) =
V (ρr, wr) and ρl > ρ∗(wl) and ρr > ρ∗(wr). The notation is to indicate a second family
classical shock.

A.1 Interactions with a FV−wave.

Lemma A.3, Lemma A.4, Lemma A.5 and Lemma A.6 deal with interactions between a i-
wave with i ∈ {1, 2, V } and a FV−wave. Since min(Vb, V (ρ, w)) 6 V (ρ, w) and Vb < wmin, the
interactions FV -2 and FV -V can not occur. We only consider the interactions FV -1, 1-FV , 2-FV
and V -FV .

Lemma A.3. Assume that the the FV−wave interacts with the first family wave ((ρl, wl), (ρr, wr))
at the point (t, x) with t > 0 and x ∈ R. We have the following cases:

i No wave is produced, FV -1/1-FV . Then ∆Γ(t) = 0.

ii The interaction is FV -1/NC-1. Then ∆Γ(t) 6 0.

Proof. In this situation ρlV (ρl, wl) 6 Fα(wl) + Vbρl and wl = wr. We have two different cases.

i In this case, the first family wave hits the slow vehicle trajectory and no new wave is created.
It means that ρrV (ρr, wr) 6 Fα(wl) + Vbρr. Thus, we have:

∆Γ(t) = 0.

ii In this case, the first family wave ((ρ̂(wl), wl), (ρr, wl)) hits the slow vehicle trajectory produc-
ing a NC−wave ((ρ̂(wl), wl), (ρ̌(wl), wl)) and a first family wave ((ρ̂(wl), wl), (ρr, wl)), with
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positive speed. It means that ρrV (ρr, wr) > Fα(wr) + Vbρr and v̂(wl) 6 V (ρr, wr) 6 v̌(wl).
We have

∆TV (w) = 0,

∆TV (v) = |V (ρr, wr)− v̌(wl)|+ |v̌(wl)− v̂(wl)| − |V (ρr, wr)− v̂(wl)|
= 2|V (ρr, wr)− v̌(wl)|,

∆TV (w(·, y(·)), [t,+∞)) = 0.

Since γ(t+) − γ(t−) = −2|v̂(wl)− v̌(wl)| and 2|V (ρr, wr)− v̌(wl)| 6 2|v̂(wl)− v̌(wl)|, we
conclude that

∆Γ(t) = 2|V (ρr, wr)− v̌(wl)| − 2|v̂(wl)− v̌(wl)| 6 0.

Lemma A.4. Assume that the first family wave ((ρl, wl), (ρr, wr)) interacts with the FV−wave
at the point (t, x) with t > 0 and x ∈ R. We have the following cases:

i No wave is produced, 1-FV /FV -1. Then ∆Γ(t) = 0.

ii The interaction is 1-FV /1-NC. Then ∆Γ(t) 6 0,

Proof. In this situation ρrV (ρr, wr) 6 Fα(wr) + Vbρr and wl = wr. We have two different cases.

i In this case, the first family wave hits the slow vehicle trajectory and no new wave is created.
It means that ρlV (ρl, wl) 6 Fα(wl) + Vbρl. Thus, we have

∆Γ(t) = 0.

ii In this case, the first family wave hits the slow vehicle trajectory producing a first family wave
((ρl, wl), (ρ̂(wl), wl)) and a NC−wave ((ρ̂(wl), wl), (ρ̌(wl), wl)). It means that ρlV (ρl, wl) >
Fα(wl) + Vbρl and we have (ρr, wr) = (ρ̂(wl), wl) and v̂(wl) 6 V (ρl, wl) 6 v̌(wl). We have

∆TV (w) = 0,

∆TV (v) = |v̌(wl)− v̂(wl)|+ |v̂(wl)− V (ρl, wl)| − |V (ρl, wl)− v̌(wl)|
= 2|V (ρl, wl)− v̂(wl)|,

∆TV (w(·, y(·)), [t,+∞)) = 0.

Since γ(t+) − γ(t−) = −2|v̂(wl)− v̌(wl)| and 2|V (ρl, wl)− v̌(wl)| 6 2|v̂(wl)− v̌(wl)|, we
conclude that

∆Γ(t) = 2|V (ρl, wl)− v̂(wl)| − 2|v̂(wl)− v̌(wl)| 6 0.

Lemma A.5. Assume that the second family wave ((ρl, wl), (ρr, wr)) interacts with the FV−wave
at the point (t, x) with t > 0 and x ∈ R. We have the following cases:

i No wave is produced, 2-FV /FV -2. Then ∆Γ(t) = −C|wl − wr|.

ii The interaction is 2-FV /1-NC-1-2. Then ∆Γ(t) = −C|wl − wr|.
Proof. i In this case, the second family wave hits the slow vehicle trajectory and no new wave

is created. It means that ρlV (ρl, wl) 6 Fα(wl) + Vbρl. Thus, we have:

∆Γ(t) = −C|wl − wr|.
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ii In this case, the second family wave hits the slow vehicle trajectory producing a first family
wave ((ρl, wl), (ρ̂(wl), wl)), a NFV−wave ((ρ̂(wl), wl), (ρ̌(wl), wl)), a first family wave with
positive speed ((ρ̌(wl), wl), (ρl, wl)) and a second family wave ((ρl, wl), (ρr, wr)). It means
that ρlV (ρl, wl) > Fα(wl) + Vbρl. We have

∆TV (w) = |wr − wl| − |wr − wl| = 0,

∆TV (v) = |V (ρr, wr)− V (ρl, wl)|+ |V (ρl, wl)− v̌(wl)|+ |v̂(wl)− v̌(wl)|
+ |v̂(wl)− V (ρl, wl)| − |V (ρl, wl)− V (ρr, wr)|
= 2|v̂(wl)− v̌(wl)|.

Since γ(t+) − γ(t−) = −2|v̂(wl)− v̌(wl)| and TV (w(·, y(·)), [t,+∞)) = −|wl − wr|, we con-
clude that

∆Γ(t) = −C|wl − wr|.

Lemma A.6. Assume that the V-wave ((0, wl), (0, wr)) with wl < wr interacts with the FV−wave
at the point (t, x) with t > 0 and x ∈ R. We have a unique case: no wave is produced, V -FV /FV -
V . Then ∆Γ(t) = −C|wl − wr|.

Proof. The vacuum wave hits the slow vehicle trajectory and no new wave is created. It means
that ρlV (ρl, wl) = 0 6 Fα(wl) + Vbρl. Thus, we have immediately:

∆Γ(t) = −C|wl − wr|.

A.2 Interactions with a NC−wave.

Lemma A.7, Lemma A.8, Lemma A.9 deal with interactions between a i-wave with i ∈ {1, 2, V }
and a NC-wave. Since 0 6= ρ̌(w) < ρ̂(w), min(Vb, V (ρ, w)) 6 V (ρ, w) and Vb < wmin, the interac-
tions NC-2, NC-V and V -NC can not occur. We only consider the interactions NC-1, 1-NC and
2-NC.

Lemma A.7. Assume that the first family wave ((ρl, wl), (ρ̂(wl), wl)) interacts with the NC-wave
((ρ̂(wl), wl), (ρ̌(wl), wl)) at the point (t, x) with t > 0 and x ∈ R. The only interaction is 1-
NC/FV -1. Then ∆Γ(t) = 0.

Proof. We have RS((ρl, wl), (ρ̌(wl), wl))(Vb) = (ρl, wl) and ρl ∈ (0, ρ̌(wl)). The only possible
interaction is 1-NC/FV -1. Since V (ρl, wl) > v̌(wl), we have:

∆TV (w) = 0,
∆TV (v) = |v̌(wl)− V (ρl, wl)| − |v̌(wl)− v̂(wl)| − |v̂(wl)− V (ρl, wl)|

= −2|v̌(wl)− v̂(wl)|,
∆TV (w(·, y(·)), [t,+∞)) = 0,

γ(t+)− γ(t−) = 2|v̌(wl)− v̂(wl)|.

We conclude that
∆Γ(t) = 0.
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Lemma A.8. Assume that the a NC-wave ((ρ̂(wl), wl), (ρ̌(wl), wl)) from the left interacts with
the first family wave ((ρ̌(wl), wl), (ρr, wl)) at the point (t, x) with t > 0 and x ∈ R. The only
interaction is NC-1/1-FV . Then ∆Γ(t) = 0.

Proof. We have RS((ρl, wl), (ρ̌(wl), wl))(Vb) = (ρr, wl) and ρr ∈ (ρ̂(wl), ρmax]. The only possible
interaction is NC-1/1-FV . Since V (ρr, wr) := V (ρr, wl) < v̂(wl), we have:

∆TV (w) = 0,
∆TV (v) = |V (ρr, wr)− v̂(wl)| − |V (ρr, wr)− v̌(wl)| − |v̌(wl)− v̂(wl)|

= −2|v̌(wl)− v̂(wl)|,
∆TV (w(·, y(·)), [t,+∞)) = 0,

γ(t+)− γ(t−) = 2|v̌(wl)− v̂(wl)|.
We conclude that

∆Γ(t) = 0.

Lemma A.9. Assume that the second family wave ((ρl, wl), (ρ̂(wr), wr)) interacts with the NC−wave
((ρ̂(wr), wr), (ρ̌(wr), wr)) at the point (t, x) with t > 0 and x ∈ R. We have the following cases:

i No wave is produced, 2-NC/1-FV -2, 2-NC/FV -1-2 or 2-NC/FV -1-V -2. Then ∆Γ(t) =
0.

ii The interaction are 2-NC/1-NC-1-2 and 2-NC/1-NC-1-V -2. Then ∆Γ(t) 6 0.

Proof. Since V (ρl, wl) = V (ρ̂(wr), wr) < V (ρ̌(wr), wr), we have ρl > R(v̌(wr), wl). Thus,

RS((ρl, wl), (ρ̌(wr), wr))(Vb) =

 (R(v̌(wr), wl), wl) if v̌(wr) < V (ρc(wl), wl),
(ρl, wl) if V (ρc(wl), wl) < v̂(wr),
(ρc(wl), wl) if v̂(wr) 6 V (ρc(wl), wl) 6 v̌(wr).

(A.1)

i v̂(wr) < v̌(wr) 6 v̂(wl) < v̌(wl): from (A.1) and using v̌(wr) < V (ρc(wl), wl),

RS((ρl, wl), (ρ̌(wr), wr))(Vb) = (R(v̌(wr), wl), wl).

Since v̌(wr) 6 v̂(wl), ρ̂(wl) 6 R(v̌(wr), wl). Thus, no wave is produced and the only inter-
action is 2-NC/1-FV -2; The second family wave hits the NC-wave producing a first family
wave ((ρl, wl), (ρr, wr)) and a second family wave ((R(v̌(wr), wl), wl), (ρ̌(wr), wr)). Since
V (ρl, wl) = v̂(wr) and V (R(v̌(wr), wl), wl) = v̌(wr) we have

∆TV (w) = 0,
∆TV (v) = |v̌(wr)− v̂(wr)| − |v̌(wr)− v̂(wr)| = 0,

∆TV (w(·, y(·)), [t,+∞)) = −C|wl − wr|,
γ(t+)− γ(t−) = 2|v̂(wr)− v̌(wr)|

(A.2)

We conclude that

∆Γ(t) = 2|v̂(wr)− v̌(wr)| − C|wl − wr|.
Using v̂(wr) < v̌(wr) 6 v̂(wl), |v̂(wr)− v̌(wr)| 6 |v̂(wr)− v̂(wl)|. From Lemma 3.2, we
conclude that

|v̂(wr)− v̌(wr)| 6 Cρ̂|wl − wr|.
Since C := 2(Cρ̂ + Cρ̌), we obtain

∆Γ(t) 6 0.
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ii v̂(wl) < v̌(wl) 6 v̂(wr) < v̌(wr): from (A.1) and using V (ρc(wl), wl) < v̂(wr),

RS((ρl, wl), (ρ̌(wr), wr))(Vb) = (ρl, wl).

Since v̌(wl) 6 v̂(wr), we have ρl 6 ρ̌(wl). Thus, no waves is produced and the possible
interactions are 2-NC/FV -1-2 and 2-NC/FV -1-V -2;

• Case 2-NC/FV -1-2: (A.2) holds and we conclude that

∆Γ(t) = 2|v̂(wr)− v̌(wr)| − C|wl − wr|.

Using v̌(wl) 6 v̂(wr) < v̌(wr), |v̂(wr)− v̌(wr)| 6 |v̌(wr)− v̌(wl)|. From Lemma 3.2, we
conclude that

|v̂(wr)− v̌(wr)| 6 Cρ̌|wl − wr|.
Since C := 2(Cρ̂ + Cρ̌), we obtain

∆Γ(t) 6 0.

• Case 2-NC/FV -1-V -2: The second family wave hits the NC-wave producing a first
family wave ((ρl, wl), (0, wl)), a vacuum wave ((0, wl), (0, v̌(wr))) and a second family
wave ((0, v̌(wr)), (ρ̌(wr), wr)). From Section 1, since a vacuum occurs then v̂(wr) =
V (ρl, V (ρl, wl)) 6 V (0, wl) = wl and wl 6 v̌(wr). Thus, we have

∆TV (w) = |wr − v̌(wr)|+ |v̌(wr)− wl| − |wr − wl| = 0,

∆TV (v) = |v̌(wr)− wl|+ |wl − v̌(wr)| − |v̌(wr)− v̂(wr)| = 0.

Thus, (A.2) holds and we conclude that

∆Γ(t) = 2|v̂(wr)− v̌(wr)| − C|wl − wr|.
Using v̌(wl) 6 v̂(wr) 6 v̌(wr), |v̂(wr)− v̌(wr)| 6 |v̌(wr)− v̌(wl)|. From Lemma 3.2, we
conclude that

|v̂(wr)− v̌(wr)| 6 Cρ̌|wl − wr|.
Since C := 2(Cρ̂ + Cρ̌), we obtain

∆Γ(t) 6 0.

iii Case v̂(wr) 6 v̂(wl) 6 v̌(wr) 6 v̌(wl): from (A.1)

RS((ρl, wl), (ρ̌(wr), wr))(Vb) =

{
(R(v̌(wr), wl), wl) if v̌(wr) < V (ρc(wl), wl)
(ρc(wl), wl) if v̌(wr) > V (ρc(wl), wl) > v̂(wl) > v̂(wr)

Since v̂(wl) 6 v̌(wr) 6 v̌(wl) we haveR(v̌(wr), wl) ∈ (ρ̌(wl), ρ̂(wl)). Thus,RS((ρl, wl), (ρ̌(wr), wr))(Vb) ∈
(ρ̌(wl), ρ̂(wl)). The only interaction is 2-NC/1-NC-1-2; the second family wave hits the NC-
wave producing a first family wave ((ρl, wl), (ρ̂(wl), wl)), a NC-wave ((ρ̂(wl), wl), (ρ̌(wl), wl)),
a first family wave ((ρ̌(wl), wl), (R(v̌(wr), wl), wl)) and a second family wave ((R(v̌(wr), wl), wl), (ρ̌(wr), wr)).
Since V (ρl, wl) = v̂(wr) and V (R(v̌(wr), wl), wl) = v̌(wr) we have

∆TV (w) = 0,
∆TV (v) = |v̌(wr)− v̌(wl)|+ |v̌(wl)− v̂(wl)|+ |v̂(wl)− v̂(wr)| − |v̌(wr)− v̂(wr)|,

∆TV (w(·, y(·)), [t,+∞)) = −C|wl − wr|,
γ(t+)− γ(t−) = −2|v̂(wl)− v̌(wl)|+ 2|v̂(wr)− v̌(wr)|.

(A.3)
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Since v̂(wr) 6 v̂(wl) 6 v̌(wr) 6 v̌(wl), we get ∆TV (v) = 2|v̌(wl)−v̌(wr)| and γ(t+)−γ(t−) =
−2|v̌(wl)− v̌(wr)|+ 2|v̂(wl)− v̂(wr)|. We conclude that

∆Γ(t) = 2|v̂(wr)− v̂(wl)| − C|wl − wr|.

From Lemma 3.2, we get
|v̂(wr)− v̂(wl)| 6 Cρ̂|wl − wr|.

Since C := 2(Cρ̂ + Cρ̌), we obtain
∆Γ(t) 6 0.

iv Case v̂(wl) 6 v̂(wr) 6 v̌(wl) 6 v̌(wr): from (A.1)

RS((ρl, wl), (ρ̌(wr), wr))(Vb) =

{
(ρl, wl) if v̂(wr) > V (ρc(wl), wl)
(ρc(w1), w1) if v̂(wr) 6 V (ρc(wl), wl) 6 v̌(wl) 6 v̂(wr)

Since v̂(wl) 6 v̂(wr) 6 v̌(wl), we have ρl ∈ (ρ̌(wl), ρ̂(wl)). Thus,RS((ρl, wl), (ρ̌(wr), wr))(Vb) ∈
(ρ̌(wl), ρ̂(wl)). Thus, the possible interactions are 2-NC/1-NC-1-2 and 2-NC/1-NC-1-V -2;

• Case 2-NC/1-NC-1-2: from (A.3) and using v̂(wl) 6 v̂(wr) 6 v̌(wl) 6 v̌(wr), we get
∆TV (v) = 2|v̂(wl) − v̂(wr)| and γ(t+) − γ(t−) = 2|v̌(wl) − v̌(wr)| − 2|v̂(wl) − v̂(wr)|.
We conclude that

∆Γ(t) = 2|v̌(wr)− v̌(wl)| − C|wl − wr|.
From Lemma 3.2, we get

|v̌(wr)− v̌(wl)| 6 Cρ̌|wl − wr|.

Since C := 2(Cρ̂ + Cρ̌), we obtain

∆Γ(t) 6 0.

• Case 2-NC/1-NC-1-V -2: the second family wave hits the NC-wave producing a first
family wave ((ρl, wl), (ρ̂(wl), wl)), a NC-wave ((ρ̂(wl), wl), (ρ̌(wl), wl)), a first family
wave ((ρ̌(wl), wl), (0, wl)) a vacuum wave ((0, wl), (0, v̌(wr))) and a second family wave
((0, v̌(wr)), (ρ̌(wr), wr)). From Section 1, since a vacuum occurs then v̂(wr) = V (ρl, wl) 6
V (0, wl) = wl and wl 6 v̌(wr). Thus, we have

∆TV (w) = |wr − v̌(wr)|+ |v̌(wr)− wl| − |wr − wl| = 0

∆TV (v) = |v̌(wr)− wl|+ |wl − v̌(wl)|+ |v̌(wl)− v̂(wl)|+ |v̂(wl)− v̂(wr)| − |v̌(wr)− v̂(wr)|
= |v̌(wr)− v̌(wl)|+ |v̌(wl)− v̂(wl)|+ |v̂(wl)− v̂(wr)| − |v̌(wr)− v̂(wr)|.

Thus, (A.3) holds and similarly to the case 2-NC/1-NC-1-V -2 above we have ∆Γ(t) 6
0.

v Case v̂(wl) 6 v̂(wr) 6 v̌(wr) 6 v̌(wl): we have R(v̌(wr), wl) ∈ (ρ̌(wl), ρ̂(wl)) and ρl ∈
(ρ̌(wl), ρ̂(wl)). Thus, RS((ρl, wl), (ρ̌(wr), wr))(Vb) ∈ (ρ̌(wl), ρ̂(wl)). The only possible inter-
action is 2-NC/1-NC-1-2. From (A.3) and using v̂(wl) 6 v̂(wr) 6 v̌(wr) 6 v̌(wl), we get
∆TV (v) = 2|v̌(wl) − v̌(wr)| + 2|v̂(wl) − v̂(wr)| and γ(t+) − γ(t−) = −2|v̌(wl) − v̌(wr)| −
2|v̂(wl)− v̂(wr)|. We conclude that

∆Γ(t) = −C|wl − wr| < 0.
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vi Case v̂(wr) 6 v̂(wl) 6 v̌(wl) 6 v̌(wr): from (A.1)

RS((ρl, wl), (ρ̌(wr), wr))(Vb) = (ρc(wl), wl) ∈ (ρ̌(wl), ρ̂(wl)).

Thus, the possible interactions are 2-NC/1-NC-1-2 and 2-NC/1-NC-1-V -2;

• Case 2-NC/1-NC-1-2: From (A.3) and using v̂(wr) 6 v̂(wl) 6 v̌(wl) 6 v̌(wr), we get
∆TV (v) = 0 and γ(t+)−γ(t−) = 2|v̌(wl)− v̌(wr)|+ 2|v̂(wl)− v̂(wr)|. We conclude that

∆Γ(t) = 2|v̌(wl)− v̌(wr)|+ 2|v̂(wl)− v̂(wr)| − C|wl − wr|.

From Lemma 3.2, we get

|v̌(wl)− v̌(wr)|+ |v̂(wl)− v̂(wr)| 6 (Cρ̌ + Cρ̂)|wl − wr|.

Since C := 2(Cρ̂ + Cρ̌), we obtain

∆Γ(t) 6 0.

• Case 2-NC/1-NC-1-V -2: From Section 1, since a vacuum occurs then v̂(wr) = V (ρl, wl) 6
V (0, wl) = wl and wl 6 v̌(wr). Thus, we have

∆TV (w) = |wr − v̌(wr)|+ |v̌(wr)− wl| − |wr − wl| = 0

∆TV (v) = |v̌(wr)− v̌(wl)|+ |v̌(wl)− v̂(wl)|+ |v̂(wl)− v̂(wr)| − |v̌(wr)− v̂(wr)|.

So, (A.3) holds and similarly to the case 2-NC/1-NC-1-2 above, we conclude that

∆Γ(t) 6 0.

A.3 Interactions with a 1C−wave.

Lemma A.10, Lemma A.11 and Lemma A.12 deal with interactions between a i-wave with
i ∈ {1, 2, V } and a 1Ca−wave. Since ρ∗(w) > 0 and min(Vb, V (ρ, w)) 6 V (ρ, w), the interactions
1Ca-V and 1Ca-2 can not occur. We only consider the interactions 1-1Ca, 1Ca-1, 2-1Ca and
V -1Ca.

Lemma A.10. • Assume that the first family wave ((ρl, wl), (ρm, wl)) interacts with the 1Ca-
wave (ρm, wl), (ρr, wl)) from the left at the point (t, x) with t > 0 and x ∈ R. The possible
interactions are 1-1Ca/FV -1 and 1-1Ca/1-FV . Then ∆Γ(t) = 0.

• Assume that the 1Ca-wave ((ρl, wl), (ρm, wl)) interacts with the first family wave (ρm, wl), (ρr, wl))
from the left at the point (t, x) with t > 0 and x ∈ R. The possible interactions are 1Ca-
1/FV -1 and 1Ca-1/1-FV . Then ∆Γ(t) = 0.

Proof. • Since the first family wave interacts with the slow vehicle trajectory coming from the
left, we have ρl ∈ (0, ρr). Thus,

RS((ρl, wl), (ρr, wl))(Vb) =

{
(ρl, wl) if ρl ∈ (0, ρm),
(ρr, wl) if ρl ∈ (ρm, ρr).

(A.4)

Using that ρm ∈ [0, ρ̌(wl)] and ρr ∈ [ρ̂(wl), ρ
∗(wl)], we conclude thatRSρ((ρl, wl), (ρr, wl))(Vb) ∈

[0, ρ̌(wl)]∪[ρ̂(wl), ρ
∗(wl)]; no waves is produced and the possible interactions are 1-1Ca/FV -1

and 1-1Ca/1-FV . From Lemma A.2, ∆Γ(t) = 0.
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• Since the first family interacts with the slow vehicle trajectory coming from the right, we
have ρr ∈ (ρl, ρmax). Thus,

RS((ρl, wl), (ρr, wl))(Vb) =

{
(ρl, wl) if ρr ∈ (ρl, ρm)
(ρr, wl) if ρr ∈ (ρm, ρmax)

(A.5)

Using that ρl ∈ [0, ρ̌(wl)] and ρr ∈ [ρ̂(wl), ρ
∗(wl)], we conclude thatRSρ((ρl, wl), (ρr, wl))(Vb) ∈

[0, ρ̌(wl)]∪[ρ̂(wl), ρ
∗(wl)]; no waves is produced and the possible interactions are 1Ca-1/FV -1

and 1Ca-1/1-FV . From Lemma A.2, ∆Γ(t) = 0.

Lemma A.11. Assume that the second family wave ((ρl, wl), (ρm, wm)) interacts with the 1Ca−wave
((ρm, wm), (ρr, wr)) at the point (t, x) with t > 0 and x ∈ R. We have the following cases:

i No wave is produced, 2-1Ca/1-FV -2, 2-1Ca/FV -1-2 or 2-1Ca/FV -1-V -2. Then ∆Γ(t) =
−C|wl − wr|.

ii The interaction are 2-1Ca/1-NC-1-2 and 2-1Ca/1-NC-1-V -2. Then ∆Γ(t) = −C|wl−wr|.

Proof. We have V (ρl, wl) = V (ρm, wm), wm = wr and σ((ρm, wm), (ρr, wr)) = Vb. Moreover, ρm ∈
[0, ρ̌(wr)] and ρr ∈ [ρ̂(wr), ρ

∗(wr)]. Since V (ρl, wl) = V (ρm, wm) > V (ρr, wr) = V (R(V (ρr, wr), wl), wl),
we have ρl < R(V (ρr, wr), wl), wl). Thus,

RS((ρl, wl), (ρr, wr))(Vb) =

{
(ρl, wl) if Vb 6 σ(ρl, R(V (ρr, wr), wl))
(R(ρr, wl), wl) if σ(ρl, R(V (ρr, wr), wl)) < Vb

(A.6)

i Case v̂(wl) 6 v̌(wl) 6 V (ρr, wr) 6 V (ρm, wm): in this case, 0 6 ρl < R(V (ρr, wr), wl) 6
ρ̌(wl) then Vb 6 σ(ρl, R(V (ρr, wr), wl)). Thus, we have RS((ρl, wl), (ρr, wr))(Vb) = (ρl, wl)
and ρl ∈ [0, ρ̌(wl)]. So, no wave is produced and the possible interactions are 2-1Ca/FV -1-2
and 2-1Ca/FV -1-V -2. From Lemma A.2, ∆Γ(t) = −C|wl − wr|.

ii Case v̂(wl) 6 V (ρr, wr) 6 v̌(wl) 6 V (ρm, wm): in this case ρl 6 ρ̌(wl) 6 R(V (ρr, wr), wl) 6
ρ̂(wl). Thus, Vb 6 σ(ρl, R(ρr, wl)) and then RS((ρl, wl), (ρr, wr))(Vb) = (ρl, wl) with ρl ∈
[0, ρ̌(wl)]. So, no wave is produced and the only possible interaction is 2-1Ca/FV -1-2. From
Lemma A.2, ∆Γ(t) = −C|wl − wr|.

iii V (ρr, wr) 6 v̂(wl) 6 v̌(wl) 6 V (ρm, wm): in this case ρl 6 ρ̌(wl) 6 ρ̂(wl) 6 R(V (ρr, wr), wl).
From (A.6), RSρ((ρl, wl), (ρr, wr))(Vb) ∈ [0, ρ̌(wl)] ∪ [ρ̂(wl), ρmax]. No wave is produced
and the possible interactions are 2-1Ca/FV -1-2 and 2-1Ca/1-FV -2. From Lemma A.2,
∆Γ(t) = −C|wl − wr|.

iv V (ρr, wr) 6 V (ρm, wm) 6 v̂(wl) 6 v̌(wl): in this case ρ̌(wl) 6 ρ̂(wl) 6 ρl 6 R(V (ρr, wr), wl).
No wave is produced and the possible interactions are 2-1Ca/FV -1-2 and 2-1Ca/1-FV -2.
From Lemma A.2, ∆Γ(t) = −C|wl − wr|.

v V (ρr, wr) 6 v̂(wl) 6 V (ρm, wm) 6 v̌(wl): in this case ρ̌(wl) 6 ρl 6 ρ̂(wl) 6 R(V (ρr, wr), wl).
Thus, σ(ρl, R(ρr, wl)) 6 Vb and then, from (A.6), RS((ρl, wl), (ρr, wr))(Vb) = (R(ρr, wl), wl)
with R(ρr, wl) ∈ [ρ̂(wl), ρmax]. No wave is produced and the only possible interaction is
2-1Ca/1-FV -2. From Lemma A.2, ∆Γ(t) = −C|wl − wr|.
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vi v̂(wl) 6 V (ρr, wr) 6 V (ρm, wm) 6 v̌(wl): in this case ρ̌(wl) 6 ρl 6 R(V (ρr, wr), wl) 6 ρ̂(wl).
From (A.6), RS((ρl, wl), (ρr, wr))(Vb) ∈ (ρ̌(wl), ρ̂(wl)). The only possible interaction is 2-
1Ca/1-NC-1-2. We have

∆TV (w) = 0,
∆TV (v) = |v̌(wl)− V (ρr, wr)|+ |v̌(wl)− v̂(wl)|

+|v̂(wl)− V (ρm, wm)| − |V (ρm, wm)− V (ρr, wr)|,
∆TV (w(·, y(·)), [t,+∞)) = −C|wr − wl|,

γ(t+)− γ(t−) = −2|v̌(wl)− v̂(wl)|.

Since v̂(wl) 6 V (ρr, wr) 6 V (ρm, wm) 6 ρ̌(wl), ∆TV (v) = 2|v̌(wl)− v̂(wl)|. We conclude
that

∆Γ(t) = −C|wr − wl|.

Lemma A.12. Assume that the vacuum family wave ((0, wl), (0, wr)) interacts with the 1Ca−wave
((0, wr), (ρr, wr)) at the point (t, x) with t > 0 and x ∈ R. The possible interactions are V -
1Ca/1Ca-2. Then ∆Γ(t) = −C|wl − wr|.

Proof. By definition of vacuum waves, wl < wr and by definition of 1Ca-wave, ρr = ρ∗(wr).
The only possible interaction is V -1Ca/1Ca-2. Since V (ρ∗(wr), wr) = V (ρ∗(wl), wl), we have
immediately that ∆Γ(t) = −C|wl − wr|.

Lemma A.13, Lemma A.14, Lemma A.15 deal with interactions between a i-wave with i ∈
{1, 2, V } and a 1Cb−wave. Since min(Vb, V (ρ, w)) 6 V (ρ, w) and Vb < wmin, the interactions
1Cb-2 and 1Cb-V can not occur. We only consider the interactions 1Cb-1, 1-1Cb, 2-1Cb and
V -1Cb.

Lemma A.13. • Assume that the first family wave ((ρl, wl), (0, wl)) interacts with the 1Cb-
wave (0, wl), (ρr, wl)) from the left at the point (t, x) with t > 0 and x ∈ R. The possible
interactions are 1-1Cb/FV -1 and 1-1Cb/1-FV . Then ∆Γ(t) = 0.

• Assume that the 1Cb-wave ((0, wl), (ρm, wl)) interacts with the first family wave (ρm, wl), (ρr, wl))
from the left at the point (t, x) with t > 0 and x ∈ R. The possible interactions are 1Cb-
1/FV -1 and 1Cb-1/1-FV . Then ∆Γ(t) = 0.

Proof. • We have ρl ∈ (0, ρr). Thus, using that ρr > ρ∗(wl), RS((ρl, wl)(ρr, wl))(Vb) =
(ρr, wr). Thus, no wave is produced and the only possible interaction is 1-1Cb/1-FV . From
Lemma A.2, ∆Γ(t) = 0.

• We have

RS((0, wl), (ρr, wl))(Vb) =

{
(0, wl) if ρr < ρ∗(wl)
(ρr, wl) if ρr > ρ∗(wl)

(A.7)

We conclude that RSρ((ρl, wl), (ρr, wl))(Vb) ∈ [0, ρ̌(wl)] ∪ [ρ̂(wl), ρ
∗(wl)]; no waves is pro-

duced and the possible interactions are 1Cb-1/FV -1 and 1Cb-1/1Cb. From Lemma A.2,
∆Γ(t) = 0

Lemma A.14. Assume that the second family wave ((ρl, wl), (ρm, wm)) interacts with the 1Cb−wave
((0, wr), (ρr, wr)) at the point (t, x) with t > 0 and x ∈ R. No wave is produced, the only possible
interaction is 2-1Cb/1-FV -2. Then ∆Γ(t) = −C|wl − wr|.
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Proof. Since the speed of the first family ((ρl, wl), (R(V (ρr, wr), wl), wl)) is slower than the speed
Vb, we haveRS((ρl, wl), (ρr, wr))(Vb) = (R(V (ρr, wr), wl), wl). Besides, using that V (R(V (ρr, wr), wl), wl) =
V (ρr, wr) and ρr > ρ∗(wr), R(V (ρr, wr), wl) > ρ∗(wl). Thus, no wave is produced, the only pos-
sible interaction is 2-1Cb/1-FV -2. Then, from Lemma A.2, ∆Γ(t) = −C|wl − wr|

Lemma A.15. Assume that the vacuum family wave ((0, wl), (0, wr)) interacts with the 1Cb−wave
((0, wr), (ρr, wr)) at the point (t, x) with t > 0 and x ∈ R. The possible interactions are V -
1Cb/1Cb-2C. Then ∆Γ(t) = −C|wl − wr|.

Proof. Since wl < wr and ρr > ρ∗(wr) we have V (ρr, wr) 6 V (ρ∗(wr), wr) = V (ρ∗(wl), wl) 6 wl
Thus, the only possible interaction is V -1Cb/1-2C. Then, from Lemma A.2, ∆Γ(t) = −C|wl −
wr|.

A.4 Interactions with a 2C−wave.

Using Lemma A.1, min(Vb, V (ρ, w)) 6 V (ρ, w) and Vb < wmin, the interactions 1-2C, V -2C,
2C-V , 2C-2 and 2-2C can not occur. Thus, Lemma A.16 deals with only the interaction 2C-1.

Lemma A.16. Assume that the a 2C-wave ((ρl, wl), (ρm, wr)) interacts with the first family wave
((ρm, wr), (ρr, wr)) at the point (t, x) with t > 0 and x ∈ R. The two possible interactions are
2C-1/1-FV -2 and 2C-1/1-2C. Then ∆Γ(t) = 0.

Proof. We have ρl > ρ∗(wl) and ρm > ρ∗(wr).

• if ρm > ρr (that is to say the first family is a shock) then RS((ρl, wl), (ρr, wr))(Vb) = (ρr, wl).
Thus, the only possible interaction is 2C-1/1-2C and no wave is produced. Then, from
Lemma A.2, ∆Γ(t) = −C|wl − wr|.

• if ρm < ρr the first family wave ((ρm, wr), (ρr, wr)) is a rarefaction. Thus, ρr > ρ̂(wr) and
R(V (ρr, wr), wl) > ρ̂(wl). Besides,

RS((ρl, wl), (ρr, wr))(Vb) =

{
(R(V (ρr, wr), wl), wl) if Vb < V (ρr, wr)
(ρr, wr) if Vb > V (ρr, wr)

Thus, no wave is produced. From Lemma A.2, ∆Γ(t) = −C|wl − wr|.

B Proof that V (ρ(t, y(t)+), w(t, y(t)+)) = V (ρ(t, y(t)−), w(t, y(t)−))
or w(t, y(t)+) = w(t, y(t)−) almost everywhere.

In this appendix we prove the following claim : there exists N a space of zero measure such
that for any t ∈ R+ \ N ,

V (ρ(t, y(t)+), w(t, y(t)+)) = V (ρ(t, y(t)−), w(t, y(t)−)) or w(t, y(t)+) = w(t, y(t)−). (B.1)

The argument we use is very similar to the one generally used to derive the Rankine-Hugoniot
condition, except that we would like it to be true along the curve y(t) instead of along a shock
curve. Let ξ be a continuous function on R+ and differentiable on R+ \ N0, where N0 is a set of
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zero measure and ξ̇ ∈ L∞(R+). As (ρ, w) is a solution to the weak equation (1.1), we have for any
test function φ ∈ C∞c (R+ × R),∫ +∞

0

∫
R
∂tφ(t, x)ρ(t, x) + ρ(t, x)V (ρ(t, x), w(t, x))∂xφ(t, x)dtdx = 0,∫ +∞

0

∫
R
∂tφ(t, x)ρ(t, x)w(t, x) + ρ(t, x)w(t, x)V (ρ(t, x), w(t, x))∂xφ(t, x)dtdx = 0.

(B.2)

Let ε > 0, as C∞c (R+×R) can be seen as C∞c (R+;C∞c (R)), it is therefore dense in C∞c (R+;L2(R)).
We can therefore construct an approximation of 1[ξ(t)−ε,ξ(t)+ε](x)d(t) where d ∈ C∞c (R+) and 1X
stands for the characteristic function of X, in the following way : define

φn(t, x) = d(t)

∫ x

−∞
nχ(n(y − (ξ(t)− ε)))− nχ(n(y − (ξ(t) + ε)))dy (B.3)

where χ ∈ C∞c (R) such that supp(χ) ⊂ (−1, 1) and∫
R
χ(x)dx = 1. (B.4)

Defined this way φn ∈ C∞c (R+ × R) and therefore using the first equation of (B.2) we have∫ +∞

0

∫
R
ρ(t, x)nd(t)(−ξ̇(t))

(∫ x

−∞
nχ′(n(y − (ξ(t)− ε)))− nχ′(n(y − (ξ(t) + ε)))dy

)
+ ρ(t, x)d′(s)

(∫ x

−∞
nχ(n(y − (ξ(t)− ε)))− nχ(n(y − (ξ(t) + ε)))dy

)
+ d(s)ρ(t, x)V (ρ(t, x), w(t, x)) [nχ(n(x− (ξ(t)− ε)))− nχ(n(x− (ξ(t) + ε)))] dtdx = 0,

(B.5)

Thus integrating the first terms and using a change of variable in terms of the middle line,∫ +∞

0

∫
R
ρ(t, x)nd(t)(−ξ̇(t)) [χ(n(x− (ξ(t)− ε)))− χ(n(x− (ξ(t) + ε)))]

+ nd(s)ρ(t, x)V (ρ(t, x), w(t, x)) [χ(n(x− (ξ(t)− ε)))− χ(n(x− (ξ(t) + ε)))] dtdx

+

∫ ∞
0

∫
R
ρ(t, x)d′(s)

(∫ nx

−∞
χ(y − (ξ(t)− ε))− χ(y − (ξ(t) + ε))dy

)
dtdx = 0.

(B.6)

Now, this is true for any ε > 0 so we can choose ε = 1/n, and we get∫ +∞

0

∫
R
ρ(t, x)nd(t)(−ξ̇(t))

[
χ(n(x− (ξ(t)− 1

n
)))− χ(n(x− (ξ(t) +

1

n
)))

]
+ nd(s)ρ(t, x)V (ρ(t, x), w(t, x))

[
χ(n(x− (ξ(t)− 1

n
)))− χ(n(x− (ξ(t) +

1

n
)))

]
dtdx

+

∫ ∞
0

∫
R
ρ(t, x)d′(s)

(∫ nx

−∞
χ(y − (ξ(t)− 1

n
))− χ(y − (ξ(t) +

1

n
))dy

)
dtdx = 0.

(B.7)
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Dividing the first integral and performing again a change of variables in each of the divided parts,
we have∫ +∞

0

[∫
R
ρ(t,

x

n
+ (ξ(t)− 1

n
))d(t)(−ξ̇(t))χ(x)dx−

∫
R
ρ(t,

x

n
+ (ξ(t) +

1

n
))d(t)(−ξ̇(t))χ(x)dx

+

∫
R
d(s)ρ(t,

x

n
+ (ξ(t)− 1

n
))V (ρ(t,

x

n
+ (ξ(t)− 1

n
)), w(t,

x

n
+ (ξ(t)− 1

n
)))χ(x)dx

−
∫
R
d(s)ρ(t,

x

n
+ (ξ(t) +

1

n
))V (ρ(t,

x

n
+ (ξ(t) +

1

n
)), w(t,

x

n
+ (ξ(t) +

1

n
)))χ(x)dx

]
dt

+

∫ ∞
0

∫
R
ρ(t, x)d′(s)

(∫ nx

−∞
χ(y − (ξ(t)− 1

n
))− χ(y − (ξ(t) +

1

n
))dy

)
dtdx = 0.

(B.8)

We will now justify that we can use a dominated convergence theorem in each of the integrals to
conclude. Note first that as supp(χ) ⊂ (−1, 1), we have for the last integral∫ nx

−∞
χ(y− (ξ(t)− 1

n
))−χ(y− (ξ(t)+

1

n
))dy = 0 for nx ∈ (−∞,−1+ξ(t)− 1

n
]∪ [1+ξ(t)+

1

n
,+∞),

(B.9)
thus this function is compactly supported and, as (ρ, w) is bounded and d′ ∈ C∞c (R+), we have by
dominated convergence

lim
n→+∞

∫ ∞
0

∫
R
ρ(t, x)d′(s)

(∫ nx

−∞
χ(y − (ξ(t)− 1

n
))− χ(y − (ξ(t) +

1

n
))dy

)
dtdx = 0. (B.10)

Now, observe that as supp(χ) ⊂ (−1, 1), the integration bounds of the first four integrals in x in
(B.8) can be limited to (−1, 1). Besides for any x ∈ (−1, 1), x/n− 1/n < 0 and x+ 1/n > 0, thus,
as x → (ρ(t, x), w(t, x)) is a BV function with a left and right limit that exists for any x ∈ R, we
have for any x ∈ (−1, 1)

lim
n→+∞

ρ(t,
x

n
+ (ξ(t)± 1

n
)) =ρ(t, ξ(t)±) and

lim
n→+∞

ρ(t,
x

n
+ (ξ(t)± 1

n
))V (ρ(t,

x

n
+ (ξ(t)± 1

n
)), w(t,

x

n
+ (ξ(t)± 1

n
))) =ρ(t, ξ(t)±)V (ρ(t, ξ(t)±), w(t, ξ(t)±)).

(B.11)

Therefore, as (ρ(t, x), w(t, x)) and ξ̇(t) are uniformally bounded function, and d ∈ C∞c (R+), we
can apply the dominated convergence theorem and using also (B.10) we have∫ +∞

0

d(t)
(
ξ̇(t)[ρ(t, ·)]ξ(t)+ξ(t)− − [(ρV (ρ, w))(t, ·)]ξ(t)+ξ(t)−

)
dt = 0, (B.12)

where [f ]a+
a− denotes limx→a+ f − limx→a− f . As this is true for any d ∈ C∞c (R+), then the

function in the integrand is equal to 0 almost everywhere which implies that for almost every

t ∈ R+, ξ̇(t)[ρ(t, ·)]ξ(t)+ξ(t)− = [(ρV (ρ, w))(t, ·)]ξ(t)+ξ(t)− . Doing similarly for the second equation of (B.2),

there exists a space N of zero measure such that for all t ∈ R+ \ N

ξ̇(t)[ρ(t, ·)]ξ(t)+ξ(t)− = [(ρV (ρ, w))(t, ·)]ξ(t)+ξ(t)−,

ξ̇(t)[ρ(t, ·)w(t, ·)]ξ(t)+ξ(t)− = [(ρwV (ρ, w))(t, ·)]ξ(t)+ξ(t)−.
(B.13)
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Using the second equation in the first one and using that [fg]a+
a− = [f ]a+

a−g(a+) + f(a−)[g]a+
a−, we

finally get that for any t ∈ N

V (ρ(t, ξ(t)+), w(t, ξ(t)+)) = V (ρ(t, ξ(t)−), w(t, ξ(t)−)) or w(t, ξ(t)+) = w(t, ξ(t)−). (B.14)

Now, as y is continuous, differentiable up to a zero measure space and y′ ∈ R+, we can take ξ = y
and this ends the proof of the claim.

C Proof of Lemma 3.12

D Proof of Lemma 3.14

In this Appendix we show Lemma 3.14

Proof. Suppose by contradiction that ρ− > ρ∗(w) > ρ+. Since ρ− > ρ∗(w), for ε small enough,
we have V (ρ−, w) − 4ε < Vb. From Lemma 3.10, for any x ∈ (min(yn, y) − δ,min(yn, y)),
V (ρn(t, x), wn(t, x)) ∈ Bε(ρ−, w)). In particular, V (ρn(t,min(yn, y)−), wn(t,min(yn, y)−)) <
Vb − 3ε. In min(yn, y), we cannot have a V-wave or a non-classical shock since V (ρ−, w) < Vb.
Thus, only shocks and rarefaction waves are allowed at min(yn, y). Using Lemma 3.9, for n large
enough,

V (ρn(t,min(yn, y)+), wn(t,min(yn, y)+)) < Vb −
8ε

3
. (D.1)

From ρ∗(w) > ρ+ and Lemma 3.10, for any x ∈ (max(yn, y)−δ,max(yn, y)), V (ρn(t, x), wn(t, x)) ∈
[Vb − 2ε,+∞). In particular, V (ρn(t,max(yn, y)−), wn(t,max(yn, y)−)) > Vb − 2ε. In max(yn, y),
a 1-wave, a 2-wave and and V-wave are allowed. Note that the speed of a V-wave and the speed
of a non classical shock is greater than Vb. Thus, to decrease the speed from Vb − 2ε, the only
possible way is to use a rarefaction wave. Therefore, from Lemma 3.9, for n large enough,

V (ρn(t,max(yn, y)−), wn(t,max(yn, y)−)) > Vb −
7ε

3
(D.2)

To go from Vb − 8ε
3 to Vb − 7ε

3 in V (ρn, wn), there are only shocks and rarefaction waves. From
Lemma 3.9, (D.1) and (D.2), for n large enough,

|y(t)− yn(t)| > |V (ρn(max(yn, y)−), wn(max(yn, y)−))− V (ρn(min(yn, y)+), wn(min(yn, y)+))|
> tβε

3 .

The convergence of yn to y and the arbitrariness of ε leads to a contradiction which conclude the
proof.

E Proof of Lemma 3.15

Proof. This proof is similar to the proof of Lemma 3.13. The main difference with Lemma 3.13
is that ρ− < Vb which means that there could be some interaction with the AV that result in a
non-classical shock. Let t ∈ R \ N . Once again, given the definition of T0 a wavefront inside the
triangle cannot interact with wavefronts out of the triangle. Let us denote by N(t, n) the number
of discontinuity points of the speed V (ρn, ωn) on [yn(t) − δ, y(t) + δ] and xnj these points. As
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V (ρ+, w) + ε < Vb 6 V (ρ−, w), from Lemma 3.10 and 3.12 , there exists j0 and j1 such that
xj0 ∈ [yn(t), y(t)] and xj1 ∈ [yn(t), y(t)] and

V (ρn(t, xnj1−), wn(t, xnj1−)) ∈ IR \ Bε(V (ρ+, w))

V (ρn(t, xnj ), wn(t, xnj )) ∈ Bε(V (ρ+, w)), ∀ j > j1

V (ρn(t, xnj0−), wn(t, xnj0−)) ∈ [Vb − 2ε,+∞),

V (ρn(t, xnj ), wn(t, xnj )) ∈ [V (ρ+, w)− ε, Vb), ∀ j0 6 j 6 j1.

(E.1)

Note that a priori xj1 could be equal to xj0 and xj0 might not be unique. Now, we define similarly
as previously the trajectories ξn0 and ξn1 by

ξnj0(0) = xnj0

ξ̇n0 = σ(ρn(t, xnj0−), R(V (ρn(t, xnj0), wn(t, xnj0)), w(t, xnj0−))) on [0, s0],
(E.2)

where the right-hand side is the speed of the 1-wave propagating from the discontinuity in xj0
(note that it cannot be a 2-wave since xj0 is a discontinuity point of the velocity), and where s0 is
the minimum between the time where ξj0 exit the triangle or interact with another wavefront. We
also set

ξnj1(0) = xnj1

ξ̇nj1 = σ(ρn(t, xnj0−), R(V (ρn(t, xnj0), wn(t, xnj0)), w(t, xnj0−))) on [0, s1],
(E.3)

where s1 is the minimum between the time where ξj1 exits the triangle or interact with another
wavefront. Given that ξj0 does not interact with another wavefront before s0 and ξj1 before s1, we
have that

V (ρn(s, x), wn(s, x)) ∈ Bε(V (ρ+, w)) for any (s, x) ∈ T0 ∩ {ξ1(s) 6 x}
V (ρn(s, x), wn(s, x)) ∈ [V (ρ+, w)− ε, Vb) for any (s, x) ∈ T0 ∩ {ξ0(s) 6 x 6 ξ1(s)}. (E.4)

Assume that ξj1 interact with another wavefront at time s1, then there are only three possibilities:
a 2-wave, a shock, a rarefaction shock or a non-classical shock if ξj0(s0) = yn(t). If there is a
2-wave, a shock or a rarefaction shock there is again only one 1-wave generated by this interaction.
If ξj1 interact with yn(t) at s1, then, as V (ρ(s1)+, w(s1)) < Vb from (E.4) the only possible case
(Lemmas A.3, A.4, A.7 and A.8) is that the interaction give rise to a 1-wave and a FV-wave, which
is a wave denoting the slow vehicle trajectory without discontinuity in (ρn, wn). Note that yn(t)
can only come from the left as xj1 > yn(t) by definition. This implies that there is again only one 1-
wave generated by this interaction. The same holds for ξj0)(s0) as V (ρ(ξj0(s0)+), w(ξj0(s0))) 6 Vb.
Therefore we can follow this 1-wave and set

ξ̇0(s) = σ(ρn(s0, ξ
n
0 (s0)−), R(V (ρn(s0, ξ

n
0 (s0)), wn(s0, ξ

n(s1))), wn(s0, ξ
n
0 (s0)−))

, for any s ∈ [s0, s0,2],
(E.5)

where s0,2 is the minimum between the time when ξ0 exits the triangle and the time when ξ0
interact with another wavefront. Similarly we set

ξ̇1(s) = σ(ρn(s1, ξ
n
1 (s1)−), R(V (ρn(s1, ξ

n
1 (s1)), wn(s1, ξ

n
1 (s1))), wn(s1, ξ

n
1 (s1)−)),

for any s ∈ [s1, s1,2],
(E.6)

where the right-hand side is the speed of the 1-wave generated by the interaction and where
s1,2 is the minimum between the time when ξ1 exits the triangle and the time when ξ1 interact
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with another wavefront. Again the only interactions are 2-waves, shocks, rarefaction shocks, or
interactions with yn(t) that leads to a single 1-wave. We can then proceed similarly and define s0,k

and s1,k for k > 2 until the times tξ0 and tξ1 where ξ0 and ξ1 respectively exit the triangle. Note
that with this procedure, if ξ0 and ξ1 interact together at a time s, they merge and are identical
for any time larger than s. Note also that yn can only interact at most once with ξ1, since yn

propagates with a speed larger than ξ1. Indeed, for s > t such that (s, yn(s)) ∈ T0, from Lemma
3.10 and 3.12,

min(Vb − 2ε, V (ρ+, w)− ε) 6 ẏn(s) 6 Vb, (E.7)

and, by construction, just like in the proof of Lemma 3.13

ξ̇1(s) 6 max
y∈[wmin,wmax]

σ(f(R(V (ρ−, w) + ε, y), y), f(R(V (ρ+, w) + ε, y), y). (E.8)

Therefore there exists a constant d > 0 depending on ε but independent of n such that

ẏn(t)− ξ̇1(s) > d. (E.9)

Let us denote tyn the time at which yn exits the triangle. Exactly as in the proof of Lemma 3.13
there exists c independent of n such that min(tξ1 , tyn(t)) > t+ c. Besides, from (E.9), if n is large
enough,

yn − y(t)

d
6 c, (E.10)

and therefore there exists tn 6 yn−y(t)
d such that ξn1 (tn) = yn(tn) and for any s ∈ [tn, t + c]

yn(s) > ξn1 (s). Finally, from (E.10), lim
b→+∞

tn = 0. Therefore Lemma 3.15 holds with ξ = ξ1.

F Convergence of Fα(w
n, ẏn) and R(vn, wn)(vn − ẏn)

G The second term of (2.2) maximize the flux at nonclassical
shocks
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