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Abstract: Non orthogonal multiple access schemes with a grant free access have been recently1

highlighted as a prominent solution to meet the stringent requirements of mMTC. In particular,2

multi user shared access (MUSA) scheme has shown a great potential to allow grant free access to3

the available resources. For the sake of simplicity, MUSA is generally conducted with successive4

interference cancellation (SIC) receiver which offers a low decoding complexity. However, this5

family of receivers requires a sufficiently diversified received user powers in order to ensure the6

best performance and avoid the error propagation phenomenon. The power allocation has been7

considered as a complicated issue especially for a decentralized decision with a minimum signaling8

overhead. In this paper, we propose a novel algorithm for an autonomous power decision with a9

minimal overhead based on a tight approximation of the bit error probability (BEP) while considering10

the error propagation phenomenon. We investigate the efficiency of multi-armed bandit (MAB)11

approaches for this problem in two different reward scenarios: i) in scenario 1, each user reward only12

informs on its own packet whether it was successfully transmitted or not; ii) in scenario 2, each user13

reward may carry information about the other interfering users packets. The performances of the14

proposed algorithm and the MAB techniques are compared in terms of the successful transmission15

rate. The simulations results prove that the MAB algorithms show a better performance in the second16

scenario compared to the first one. However, in both scenarios, the proposed algorithm outperforms17

the MAB techniques with a lower complexity at user equipment.18

Keywords: Non orthogonal multiple access (NOMA); multi-user shared access (MUSA); successive19

interference cancellation (SIC); grant free access; bit error probability (BEP); power allocation;20

multi-armed bandit (MAB) algorithms.21

1. Introduction22

The future radio access network of the fifth generation is expected to support a variety of23

applications with different quality of service (QoS). These services are classified by the international24

telecommunications union and the third generation partnership project into three main use cases with25

different stringent requirements, namely enhanced mobile brodband (eMBB), ultra reliable and low26

latency communications (uRLLC) and massive machine type communications (mMTC). This latter is27

also known as massive IoT as it is designed to mainly deal with a massive number of connected devices28

[1], i.e., one million connected devices per km2. The mMTC use case is characterized by short packet29

communications, i.e., on the order of few bytes, low system complexity and low energy consumption30

which leads to a battery life on the order of ten years. The conventional orthogonal multiple access31

(OMA) schemes are limited by the restricted number of the available orthogonal resources and thereby32
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they may not be suitable to handle the huge number of devices to be connected in the mMTC scenario.33

However, the non orthogonal multiple access (NOMA) schemes have been underlined as a prominent34

solution to address the connectivity issue [2]. In fact, they allow multiple users to simultaneously and35

non-orthogonally share the same resources, which increases the system overload.36

In the existing technologies, users used to go through a contention based random access protocol37

for data transmission. For LTE/LTE-A network, the eNB initially broadcasts information about38

the available physical random access channel (PRACH) to all users. Then, each user launches a39

coordination process over the PRACH to ensure its alignment with the eNB. After that, for each40

transmission attempt, each user should send a grant acquisition request to the eNB to reserve its41

resource. The coordination random access channel (RACH) process is performed through four42

handshake steps [3]: 1) the preamble transmission; 2) the random access response; 3) the radio43

resource control (RRC) connection request and 4) the RRC connection setup. However, RACH and44

resource allocation processes may be very expensive in terms of signaling overhead, especially for45

mMTC devices.46

According to [4], the transmission of 100 bytes of useful data in the uplink while going through47

the RACH process, security procedures and connection release generates a signaling overhead of 5948

bytes on the uplink and 136 bytes on the downlink. This induces an excessive waste of resource, a high49

energy consumption and thus a shorter battery life for the transmission of small packets. Moreover, the50

very high number of devices may lead to unacceptable high latency for certain mMTC applications. In51

fact, a large number of simultaneous connections may imply the overuse of the resources and increase52

the decoding error probability. For instance, under ideal system conditions, the RACH process induces53

a latency of 9.5 ms, which would increase significantly in case of collision [3]. As a consequence, the54

random radio resource access strategy may be a bottleneck in some mMTC scenarios.55

In this context, NOMA with grant free access option has gained a lot of interest and it has been56

promoted by the scientific community as a promising solution to support mMTC scenarios with a57

minimum signaling overhead, which ensures a low energy consumption. Authors in [5] has presented58

the evolution steps towards the uplink NOMA schemes combined with the grant free access. They59

suggested two possible communication scenarios for grant free access in the uplink. Users can either60

go with RACH-based with grant free transmission or RACH-less with grant free transmission. In the61

first scenario, the RACH process allows one to establish a connection with the base station and ensure62

user synchronisations. Then, each user transmits its data without waiting for the allocated resources63

from the base station. This option has never been possible for OMA schemes since grant free access64

may yield to a severe system congestion when users transmit on the same resources. In the second65

scenario, users transmit their data without any beforehand communication with the base station, which66

significantly minimizes the signaling overhead but at the cost of non synchronized communications.67

Therefore, robust multi-user detection (MUD) receivers are required for signal detection.68

Since the announcement of the advent of 5G, several NOMA schemes have been emerged during69

the last few years, namely power domain NOMA (PD-NOMA) [6], sparse code multiple access (SCMA)70

[7], multi-user shared access (MUSA) [8], pattern division multiple access (PDMA) [9], to cite a few.71

These schemes are different multiplexing techniques based on different keys such as user codebook,72

power or multiple domains. Authors in [10] aimed at handling the critical transmission latency issue73

for vehicle-to-vehicle services through a grant free access option with NOMA schemes. Two novel74

algorithms known as hyper-fraction and genetic algorithms were proposed to respectively reduce the75

system latency and improve the system throughput while guaranteeing a rate fairness between users.76

In [11], authors dealt with asynchronous transmissions due to grant free access. In order to improve the77

decoding process, multiple copies of the same message are transmitted and then used at the receiver78

with successive interference cancellation (SIC) technique as a kind of users diversity. The authors79

proposed closed-form expressions of the successful transmission probability, the battery lifetime and80

the energy efficiency. The proposed approach may be useful for short packet communications, but81

at the cost of a complex decoding process. In addition, one problem of the grant free access is the82
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estimation of the number of active users. This issue has been addressed in [12] by proposing a deep83

learning algorithm which uses the recorded user activities at the base station to predict their future84

behavior. This prediction is given as an input to a modified orthogonal matching pursuit algorithm85

to improve the multi-user detection and reduce the error probability. In [13], a sinusoidal code is86

proposed for the signals separation in the context of mMTC scenario with grant free access. The87

proposed spreading sequences permit to use non-iterative algorithms for multi-user detection without88

a prior knowledge of the channel state information and the number of active users. Authors in [14]89

dealt with the problem of packet collisions in a grant free access context without a re-transmission90

opportunity. A novel grant free access framework was proposed where the non-decoded users consider91

the occurred collisions as interference. Moreover, the system performance was evaluated analytically92

and authors provided simplified expressions of the outage probability and the system throughput.93

SCMA has particularly been studied with grant free access protocols. For instance, in [15],94

authors studied the application of SCMA with a faster than Nyquist signaling which improves the95

spectral efficiency, but at the expanse of a higher inter-symbol and inter-user interference. Therefore, a96

novel algorithm based on the expectation propagation was proposed for the channel estimation, the97

detection of user activities and the signal decoding. The work in [16] have investigated an iterative98

message passing algorithm for grant free access SCMA, based on the belief propagation. The proposed99

algorithm permits to jointly estimate the channel coefficients, identify the number of active users and100

detect the transmitted data while improving the bit error rate compared to the other techniques.101

Regarding the system design, MUSA has the potential to enable grant free access with minimum102

signaling overhead in the context of mMTC applications. Unlike the SCMA scheme which requires103

the assignment of codebook beforehand, in MUSA each user randomly and autonomously selects a104

spreading sequence within a predefined constellation. In other words, users can transmit their data105

at any moment without going through a resource allocation process with the base station, which106

minimizes the amount of signaling overhead. MUSA scheme is typically used with a SIC receiver107

for multi user detection, which provides a low decoding complexity. However, the SIC technique108

may suffer from the error propagation phenomenon when the received powers are similar [17]. The109

power allocation process is usually performed in a centralized manner [18,19] where the base station110

knows the channel state information of all users. For a grant free access, each user performs a blind111

transmission with no information about its propagation environment and interfering users, which112

makes the power determination more complex.113

Autonomous power decision for NOMA schemes with grant free access strategy has recently been114

investigated in several works. An interesting solution is to use multi-armed bandit (MAB) algorithms115

which belong to the global reinforcement learning paradigm [20,21]. MAB techniques can be applied116

to the problem of dynamic resource allocation by balancing between exploration and exploitation117

phases. At each time, each agent selects an arm, i.e., representing the physical resource to be shared,118

among a set according to a predefined policy in order to maximize its cumulative reward and hence119

minimize its regret. The MAB algorithms have been used in several applications such as marketing,120

advertising and cellular communications. For instance, authors in [22] applied the MAB algorithms121

to the autonomous power decision problem in order to maximize the user rates for the PD-NOMA122

scheme. The user rewards are their rates. However, these may be carried on many bits which increases123

the signaling overhead and hence it may not be really adapted for mMTC scenarios. MAB have also124

been merged with NOMA schemes in [23] where authors proposed a distributed NOMA-based MAB125

approach to handle the channel access problem in cognitive radio networks. Moreover, authors in126

[24] have performed the MAB algorithms in the LTE cellular network for an autonomous subcarriers127

allocation in a dense network while taking into consideration the dynamic resource occupation in each128

surrounding cell.129

To the best of our knowledge, no work has investigated the problem of autonomous power130

decision for grant free access with MUSA scheme. The characteristics of spreading sequences and the131

principle of SIC receiver make the power decision more complex. Therefore, in this paper, we deal132
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Figure 1. MUSA scheme system for J = 6 and K = 4.

with this issue with minimum signaling overhead to address the mMTC requirements. The goal is to133

improve the system performance measured with the successful transmission rate in order to achieve the134

performance of an optimal centralized power allocation. This latter is quite difficult to obtain, especially135

for SIC receivers with the error propagation problem. To do so, we start by proposing an approximated136

expression for the bit error probability (BEP) while considering the inter-user interference and the137

effect of error propagation. The optimal power value of users are obtained as the solution of the138

minimization of the global average BEP. Based on the derived BEP expression, we propose a novel139

algorithm for power selection for MUSA scheme with a reduced signaling overhead. The proposed140

algorithm is compared with known index-based MAB algorithms adapted to the power selection by141

each user. In this part, we propose to investigate two scenarios for selecting the best arm by each MAB142

algorithm. A scenario where the arm index computation by a user is only based on the decoding status143

of its own packet, i.e. success or failure, and another scenario where it depends on the decoding status144

of the other users’ packets in addition to its own packet decoding status.145

This paper is organized as follows. The system model and the fundamentals of MUSA are146

introduced in Section 2. SIC receiver is revisited in Section 3 while a closed-form expression for users’147

bit error probability is derived in Section 4. Then, the proposed algorithm for autonomous power148

decision is described in Section 5. The multi-armed bandit algorithms and the studied scenarios are149

introduced in Section 6. A comparison of all power decision approaches is provided in Section 7.150

Numerical results and performance analysis are conducted in Section 8 and conclusions are drawn in151

Section 9.152

Notations: Vectors and matrices are denoted in lower and upper cases respectively and in bold font,153

while scalars use normal font weight. The complex and real number sets are denoted by C and R,154

respectively. Moreover (.)T and (.)H stand for transpose and hermitian operations. diag(a) represents155

the diagonal matrix created with the elements of vector a in the main diagonal.156

2. System Model157

An uplink communication system of J users transmitting over K orthogonal subcarriers is
considered. The active users share the available resources using the MUSA scheme with a grant
free access. Each user bits are mapped to a series of symbols through a M-ary modulation block. Then,
the modulated symbols are multiplied by the users spreading sequences and spread over the available
subcarriers, as illustrated in Figure 1. Users sequences sj, ∀j ∈ {1, · · · , J} are such that sj ∈ {a + jb}K,
where (a, b) ∈ {−1, 0, 1}2. The received signal on subcarrier k of each OFDM symbol is:

yk =
J

∑
j=1

√
pjhkjskjxj + nk (1)

where hkj and skj are the k-th component of the j-th user channel vector and spreading sequence,
i.e. hj and sj, respectively. Moreover xj, pj are the transmitted symbol and the transmission power of
the j-th user, respectively, and nk is the additive white Gaussian noise component on the k-th subcarrier
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with n ∼ CN (0, σ2IK), where IK is the K-by-K identity matrix. The multiplexed received signals on all
subcarriers can be written as:

y = GP
1
2 x + n (2)

where P = diag(p1, p2, ..., pJ) ∈ RJ×J
+ is the transmission power matrix, x =

[
x1, x2, ..., xJ

]T is the
transmitted users’ symbols with E[xxH ] = IJ and G is the equivalent channel matrix including the
spreading sequences such that:

G = H� S (3)

where H =
[
h1, · · · , hJ

]
, S =

[
s1, · · · , sJ

]
and � is the Hadamard product, i.e., gkj = hkjskj.158

3. Multi-user detection159

The SIC receiver offers a low decoding complexity compared to other MUD algorithms, namely
message passing algorithm or maximum a posteriori algorithm [25]. However, the SIC performance
depends on the user received powers and the receiver performs better when the received powers are
sufficiently different. MUSA is typically used with ordered-SIC jointly with a linear detection receiver
such as the minimum mean square error (MMSE). The MMSE matrix is calculated as in [26]:

WH = (P
1
2 GHGP

1
2 + σ2 I)−1P

1
2 GH . (4)

The main principle of the ordered-SIC technique is to successively estimate the user symbol, reconstruct
the generated interference and then subtract it from the received signal. Users symbols are decoded in
a descending order of their SINRs. Assuming that the received signal at the j-th iteration is:

yj =
√

pjgjxj +
J

∑
i=j+1

√
pigixi + nj, (5)

where gj is the j-th column of the matrix G. Then, the SINR of the picked user j to be decoded is

β j(p) =
pj|wH

j gj|2

∑J
i=j+1 pi|wH

j gi|2 + σ2‖wH
j ‖2

, (6)

where wj is the j-th column of the MMSE matrix W. After that, the user symbol is estimated by
multiplying the row vector wH

j by the received column signal as follows:

x̂j = wH
j y. (7)

The interference generated by the j-th user is reconstructed and then subtracted from the received
signal which is updated as follows:

y = y− gj x̂j. (8)

After each iteration, the j-th column of the matrix G, corresponding to the decoded user j, is removed160

and the MMSE matrix is recalculated as in (4). This process is repeated until all users are decoded.161

4. BEP analysis162

The error propagation is one of the critical issue of SIC receivers, which significantly deteriorates
the system performance and makes the derivation of the BEP expression more complicated. For a Gray
mapping, two adjacent symbols are different in only one single bit. Hence, assuming the inter-user
interference as noise, the erroneous detection often leads to the detection of an adjacent symbol with
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only one wrong bit compared to the correct symbol [27]. Therefore, the average system BEP is well
approximated as:

Pb,MMSE-SIC ≈
1

J log2(M)

J

∑
j=1

Pej (9)

where Pej is the symbol error probability (SEP) of the j-th user. In the following, we investigate the163

BEP of the MMSE-SIC receiver with two different hypotheses; i) Perfect SIC without error propagation;164

ii) Imperfect SIC with error propagation.165

4.1. Perfect SIC without error propagation166

In this case, since there is no error propagation in the receiver, the BEP is calculated similarly as
for the MMSE receiver while updating the MMSE matrix at each iteration and the SINRs are calculated
as in (6). For a QPSK modulation and assuming the inter-user interference as noise [28], the j-th user
SEP is approximated as [27]:

Pej ≈ 2Q
(√

βNEP
j (p)

) (
1− 0.5Q

(√
βNEP

j (p)
))

. (10)

4.2. Imperfect SIC with error propagation167

In that case, the BEP of each user depends on the previously decoded users. In this paper, we are
inspired by the proposed approach in [28] and thereby the SEP of the j-th user is calculated as:

Pε j =

Nj−1

∑
i=0

P
{

ε j|b
j
i

}
P
{

bj
i

}
, (11)

where Nj = 2j−1 is the number of possible (j − 1)-dimensional binary sequences and bj
i =(

bj
i,1, bj

i,2, · · · , bj
i,j−1

)
∀i ∈

{
0, · · · , Nj − 1

}
and j ∈ {1, · · · , J}, with bj

i,k = 0 if the symbol of the
k-th decoded user is correctly detected and 1 otherwise. Each sequence refers to the state, correctly
decoded or not, of all the previously (j − 1) decoded users. The event ε j indicates an erroneous

detection of the j-th user symbol. Hence, P
{

ε j|b
j
i

}
is the error probability of the j-th user symbol

conditioned on the sequence bj
i. Considering an eventual error propagation occurrence, the received

signal at the j-th SIC iteration is represented as:

yj =
√

pjgjxj +
J

∑
i=j+1

√
pigixi +

j−1

∑
k=1

√
pkgk(xk − x̂k) + nj, (12)

where x̂k is the faulty estimation of xk. The additional term compared to (5), is generated
by the erroneous detection of the previous users. This may significantly affect the system
performance. Therefore, the experienced noise and the new interference term can be combined
in neq = ∑

j−1
k=1
√

pkgk(xk − x̂k) + nj. The resulting term is approximated as a centered Gaussian

random variable, where E
{

neq
}

= 0 and E
{

neqnH
eq

}
= (∑

j−1
k=1 pk ‖gk‖2 E

{
‖xk − x̂k‖2} + σ2)I =

(∑
j−1
k=1 pk ‖gk‖2 δkd + σ2)I. We define d as the square of the euclidean distance between the neighboring

symbols and δk = 1 if xk 6= x̂k and 0 otherwise. As a consequence, the SINR of the j-th user,
corresponding to the detection combination bj

i , is calculated as follows:

βEP
j,i (p) =

pj|wH
j gj|2

J
∑

i=j+1
pi|wH

j gi|2 + (
j−1
∑

k=1
pk ‖gk‖2 δkd + σ2)‖wH

j ‖2

(13)
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Two main terms should be calculated to obtain the user SEP. Starting by the conditional probability
which is calculated according to (10) and (13), we have:

P
{

ε j | bj
i

}
= 2Q

(√
βEP

j,i (p)
) (

1− 0.5Q
(√

βEP
j,i (p)

))
. (14)

However, the probability of the combination bj
i is readily calculated as:

P
{

bj
i

}
= P

{
∩j−1

n=1bj
i,n

}
=

j−1

∏
n=1

P
{

bj
i,n | ∩

n−1
m=1 bj

i,m

}
, (15)

where P
{

bj
i,n| ∩

n−1
m=1 bj

i,m

}
is the probability that the n-th symbol of user j is correctly decoded or not,

i.e., bj
i,n = 0 or bj

i,n = 1, conditioned on the estimation of the previously decoded (n− 1) symbols. It is
calculated as:

P
{

bj
i,n| ∩

n−1
m=1 bj

i,m

}
= (16) 1− 2Q

(√
βEP

n,i (p)
) (

1− 0.5Q
(√

βEP
n,i (p)

))
if bj

i,n = 0

2Q
(√

βEP
n,i (p)

) (
1− 0.5Q

(√
βEP

n,i (p)
))

otherwise.
(17)

For an uplink transmission, devices are restricted by a maximum transmission power, pU , imposed by
the regulation authorities and the equipment design restrictions. Therefore, an optimal centralized
power allocation popt, that minimizes the global average error probability, can be obtained by solving
the following problem:

OP1


min

p

1
J log2(M)

J

∑
j=1

Nj−1

∑
i=0

P
{

ε j|b
j
i

}
P
{

bj
i

}
pj ≤ pU ∀j ∈ J

(18a)

(18b)

where J = {1, 2, · · · , J} is the set of active users. The derived expression of user SEP is quite168

complicated to be analysed theoretically with the Karush–Kuhn–Tucker (KKT) conditions. Therefore,169

we use an advanced optimization algorithm, i.e. particle swarm optimization [29], to solve the power170

allocation problem above. This algorithm is known to be efficient for complex problem [30].171

5. Proposed autonomous power decision algorithm172

Each user has to decide its transmission power autonomously with no information about the173

propagation environment and the interference. In this section, we aim at proposing an autonomous174

power decision algorithm for uplink communication. It allows each user to select an adequate power175

value close to the optimal one, popt, obtained by solving OP1.176

The key idea is to perform an iterative algorithm that takes advantage from the natural base177

station acknowledgement (ACK). Each user gradually updates its transmitted power from the received178

ACK in order to converge toward the nearest power level from popt. For example, the j-th user initially179

transmits its data with a randomly selected power pj within the interval [pj
min, pj

max], where pj
min and180

pj
max are respectively the initial minimum and maximum power values memorized in the j-th user181

equipment (UE). Then, the base station detects the user signal and compares its transmission power182

with pj,opt, that base station has computed on its own. An acknowledgment will be sent back to each183

user to adjust its power. In order to minimize the signaling overhead, the acknowledgment is carried184

on two bits and can hence encode four possible states; 1) ACK = 3 if user should simply transmit with185

its maximum authorized power pU . This case may be gainful for the cell edge users that experience186

bad propagation conditions. 2) ACK = 2 if pj > pj,opt; 3) ACK = 1 if pj < pj,opt and 4) ACK = 0 if187



Version January 5, 2021 submitted to Journal Not Specified 8 of 18

pj = pj,opt. Each user updates its interval by shifting pj
min and pj

max values. After that, it picks up188

another random value in the new power interval for the next packet transmission until it arrives at189

the appropriate power value. However, the channel conditions may change along the way. Hence,190

the algorithm must take this into consideration in order to ensure its convergence and assure the best191

performance. For that reason, the base station may, sometimes, send another extra bit "Stat" to notify192

user by this occurrence. In this case, UE will try to initialize its power interval while taking advantage193

from the previous sent packets. This process is described in details in Algorithm 1.194

Algorithm 1: Autonomous power decision

Require: pj
max = pU , pj

min > 0 ∀j = 1, 2, · · · , J;
Ensure: p

1: Each user picks up its spreading sequences.
2: Each user selects a random power level pj ∈ [pj

min, pj
max].

3: The BS detects users signals.
4: The BS calculates the optimal power pj,opt.
5: The BS compares each user power pj with the nearest power level from pj,opt.
6: BS send an acknowledgement to each user:

a) If pj,opt = pmax ⇒ ACK = 3
b) If pj > pj,opt ⇒ ACK = 2
c) If pj < pj,opt ⇒ ACK = 1
d) If pj = pj,opt ⇒ ACK = 0

7: If the propagation environment is changed, the BS sends one-bit ACK: Stat = 1.
8: Each user updates his pj

min or pj
max:

a) If ACK = 3⇒ pj = pu > 0
b) If ACK = 2⇒ pj

max = pj ≤ pU

• If Stat = 1⇒ pj
min = 0

c) If ACK = 1⇒ pj
min = pj > 0

• If Stat = 1⇒ pj
max = pU

d) If ACK = 0⇒ no update

9: Return to step 2

The channel should not change too fast in order to allow the convergence of the algorithm.195

However, as it will be seen in simulation results, the proposed algorithm converges to the near-optimal196

power value quite quickly. In addition, users transmission powers must be known at the BS to perform197

the proposed algorithm. However, these powers values are obviously needed in order to apply the198

SIC receiver properly. Therefore, a calibration phase between the BS and the UE should always be199

established.200

6. Power allocation with multi-armed bandits201

In this section, we revisit three known MAB algorithms, i.e. ε-greedy, upper confidence bound202

(UCB1) and Thompson sampling (THS), that we apply to our autonomous power selection problem. A203

MAB is a model with N resources, called arms, each of them being associated to a reward following204

a specific probability distribution. At each time slot t, each agent j plays an arm aj according to its205

policy. Then, it receives the corresponding reward rt
j(aj). Based on this and the number of time each206

arm has been played so far, nt
j(aj), each agent chooses the appropriate arm for the next time slot t + 1,207
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according to the calculated index that depends on each algorithm policy. Over time, these techniques208

will prioritize the arms showing the best performance and exclude the worst ones.209

All MAB algorithms search for the maximization of the cumulative rewards of each agent over the
time horizon T, i.e., ∑T

t=1 rt
j(aj) and thereby the minimization of its regret Rj defined as the difference

between the rewards obtained using the chosen policy and the expected reward we would obtain if
the best arm would always be played i.e. r∗j . The j-th user regret during a maximum period of T slots
is calculated as follows:

Rj = Tr∗j −
T

∑
t=1

E{rt
j(aj)} (19)

In our case, we consider a multi-agent system where the agent refers to the UE and the arms represent210

the power levels. At the t-th iteration, the successful transmission rate of the j-th user is defined as211

the ratio between the cumulative number of its correctly received packets during t time slots and the212

total number of plays so far. The MAB algorithms are investigated in two different scenarios detailed213

hereafter.214

a) Scenario 1:215

The base station acknowledgement at the t-th iteration is carried on 1 bit representing the216

corresponding user reward, i.e., rt
j ∈ {0, 1}. At each time slot t, rt

j(aj) = 1 if the packet of the217

j-th user is successfully decoded and rt
j(aj) = 0 otherwise. Therefore, the successful transmission rate218

of the j-th user at the t-th iteration is calculated as Qt
j =

∑t
i=1 ri

j(aj)

t . In this scenario, the reward of each219

user only depends on the decoding status of its own packet without any consideration to the other220

users. However, the successful decoding event of one packet depends on the successful decoding of221

the others, because of the SIC receiver. Hence every user has interest on good power selection for the222

other users and not only for itself. The scenario 2, we propose hereafter, takes into account this fact.223

b) Scenario 2:224

The base station acknowledgement at the t-th iteration is now carried on two bits {bt
2,jb

t
1,j}. The225

first bit informs whether all users are correctly decoded, bt
1,j = 1, or, at least, one packet is erroneously226

detected, bt
1,j = 0. The second bit notifies each user whether its own packet is correctly received,227

bt
2,j = 1, or not, bt

2,j = 0. For a picked power pj by user j, there are three possible states for the j-th user228

acknowledgement {bt
2,jb

t
1,j} ∈ {11, 10, 00} = {3, 2, 0}. The case where

{
bt

2,jb
t
1,j

}
= 01 is not possible229

because b1,j = 1 means that all packets have been correctly decoded, including the j-th user packet,230

and hence b2,j is automatically equal to 1. In order to meet the conditions of convergence theorems231

derived in [31], the rewards should be supported in [0, 1]. Therefore, users rewards are defined as a232

normalization of the associated acknowledgements, i.e., rt
j ∈ {1, 2

3 , 0}. The successful transmission rate,233

at the t-th iteration, of the j-th user is then calculated based only on the second bit bt
2,j, i.e., Qt

j =
∑t

i=1 bi
2,j

t .234

In this scenario, the inter-user dependence is involved in the associated rewards.235

6.1. UCB1236

UCB1 has been inspired by the Agrawal’s index-based policy [31]. This algorithm has an uniformly
logarithmic regret over time. Generally, the UCB family algorithms rely to a confidence interval on
the average reward of each arm [32]. UCB1 index gathers two functions; the average reward and the
exploration term. This index refers to an estimation of the upper bound of the true expectation of the
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arm reward. It is an upper bound because the square root term is an estimation of the variance of the
expected return when playing the arm aj and is defined as follows, at time slot t:

1
nt

j(aj)

t

∑
i=1

ri
j(aj) +

√
θ log(t)
nt

j(aj)
(20)

where θ > 0 is the exploration parameter. Originally, UCB1 was proposed with θ = 2, however,237

authors in [32] have mentioned that θ = 0.5 performs better empirically although θ > 0.5 is strongly238

recommended for the theoretical analysis.239

At the initialization phase, UCB1 explores each arm once in order to have an estimation of the240

reward of each arm. Then, at each iteration, each user selects the arm with the highest index, as241

illustrated in Algorithm 2. The calculated index (20) ensures the balance between the exploration of242

the most uncertain arms and the exploitation of the best arm so far. UCB1 prescribes the principle of243

"optimism face uncertainty" which means that the less visited arm seems more uncertain and thereby244

it may optimistically be the best arm to play.245

Algorithm 2: UCB1 algorithm

Require: θ and N
Each user plays all the arms once during N plays:
for t = N + 1 : T do
for j = 1 : J do

Select the arm: argmax
aj

mt−1
j (aj) +

√
θ log(t−1)
nt−1

j (aj)

Update the following variables;

a) nt
j(aj) = nt−1

j (aj) + 1
b) mt

j(aj) =
1

nt
j(aj)

∑t
i=1 ri

j(aj)

end
end

6.2. ε-greedy246

This algorithm deals with the exploration and the exploitation dilemma randomly. At each
iteration, each user either explores arbitrarily a new arm with probability ε or it plays the best arm
corresponding to the highest average reward so far with a probability of 1− ε. However, for a constant
exploration parameter ε, the system regret evolves linearly overtime instead of being logarithmic. On
the one hand, for a high ε value, i.e., ε ≈ 1, user will continue to only explore random arms even if
it came out with the best arm, and on the other hand, for a low ε value, i.e., ε << 1, the algorithm
will tend to exploit all the time even if it has not sufficiently explored the other arms. In both cases,
an important performance loss will be experienced. Therefore, the ε value is a critical parameter.
A revised version called ε-decreasing greedy has been proposed, where the exploration probability
is decreasing toward zero over time with a rate of 1

t . This allows one to essentially explore at the
beginning of the learning and mostly to exploit the best arm found so far after a certain amount of
time. The new exploration probability is defined as [22,31]:

ε(t) = min
{

1,
CN
d2t

}
4
= min

{
1,

LN
t

}
. (21)

Where L > 0 is the exploration parameter. However, the main challenge of this policy is how to247

properly set the value of L. The ε-decreasing greedy algorithm is described in details in Algorithm 3.248
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Algorithm 3: ε-decreasing greedy algorithm

Require: L and N
for t = 1 : T do
for j = 1 : J do

Select a random arm with probability ε(t) = min
{

1, LN
t

}
Select with probability 1− ε(t) the best arm: argmax

aj

mt−1
j (aj)

Update the following variables:

a) nt
j(aj) = nt−1

j (aj) + 1
b) mt

j(aj) =
1

nt
j(aj)

∑t
i=1 ri

j(aj)

end
end

6.3. Thompson sampling algorithm249

This approach shows a robust performance for stochastic problems and sometimes outperforms250

other MAB algorithms. THS algorithm belongs to the Bayesian MAB family. The j-th user starts by a251

uniform prior beta distribution β(αj,k, γj,k) for all arms with initial values αj,k = γj,k = 2 ∀j ∈ {1, · · · , J}252

and ∀k ∈ {1, · · · , N}, where k refers to the arm index among N power levels. Then, inspired by the case253

where rewards follow a Binomial distribution [33] and based on the observed reward, the parameters254

of the posterior beta distribution are updated such that αj,k = αj,k + 3rt
j and γj,k = γj,k + 3(1− rt

j).255

At the next time slot, each user draws a sampled index from the updated beta distribution for each256

arm, i.e., ij,k ∼ β(αj,k, γj,k) ∀k ∈ 1, · · · , N and ∀j ∈ 1, · · · , J. The arm with the highest index, i.e.,257

îj,k = maxk∈N (ij,k) ∀j ∈ 1, · · · , J, is hence elected for this transmission attempt. Through time,258

Thompson sampling prioritizes the arm with the highest probability of being the optimal one and259

avoids other arms that have demonstrated poor performance so far.260

Algorithm 4: Thompson sampling algorithm

Require: N and αj,k = γj,k = 2 ∀k = 1...N and ∀j = 1...J
for t = 1 : T do
for j = 1 : J do

Select a sampled index from the beta distribution of each arm ij,k ∼ β(αj,k, γj,k)
∀k = 1, · · · , N
Play the arm aj with the highest index îj,q = maxk∈N (ij,k)
Update the following variables:

a) nt
j(aj) = nt−1

j (aj) + 1
b) mt

j(aj) =
1

nt
j(aj)

∑t
i=1 ri

j(aj)

c) αj,k = αj,k + 3rt
j(aj)

d) γj,k = γj,k + 3(1− rt
j(aj))

end
end

7. Complexity and overhead analysis261

A quantitative comparison of all the examined techniques in the context of mMTC scenario is262

summarized in Table 1. The random power selection and the centralized allocation are taken as263
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reference scenarios. The centralized allocation is the reference in terms of performance and the random264

selection is the simplest one.265

Signaling overhead Complexity at UE Power decision
Centralized allocation O(J · k) if k bits (Depend on DCI) O(1) Attributed by BS
Random selection 1 bit O(1) Random
Proposed algorithm 2 or 3 bits O(1) Iterative decision
ε-decreasing greedy Scenario1: 1 bit O(N) Random with ε probability

Scenario2: 2 bits
UCB1 Scenario1: 1 bit O(N) Index-based

Scenario2: 2 bits
Thompson sampling Scenario1: 1 bit O (N) Bayesian distribution

Scenario2: 2 bits

Table 1. Quantitative comparison of the signaling overhead and the complexity at user equipment in
each iteration for all algorithms

The centralized power allocation algorithm computes, at the base station, the power to allocate266

to the users at each transmission attempt, based on the users received SINRs. All the complexity267

is located at the base station and users have to set their transmitting power at the values sent back268

from the BS, hence the algorithm complexity at the user side is O(1). The signaling overhead of this269

scheme cannot be assessed precisely since it strongly depends on the downlink control information270

(DCI) format. However, the power computed is quantized over k bits, which would likely be much271

larger than 1 or 2 bits, for each user. Hence, for a large number of users the signaling would be at least272

in O(J · k). Thus, it may be very expensive in terms of energy consumption leading to a significant273

reduction of battery lifetime.274

The random power selection does not manifest any algorithmic complexity since the power275

selection is realized randomly. Therefore, the generated signaling overhead is minimal, i.e. 1 bit, as it276

only relies on the acknowledgment sent by the BS for each user’s packet, whether it is successfully277

received or not.278

The proposed autonomous power decision algorithm is based on four acknowledgment levels,279

used to update the power at the user side, which can be carried with two bits. Moreover, one may add280

one additional bit if the BS detects a channel variation in order to notify the corresponding user of this281

event. The generated complexity is on the order of O(1) as no computation is required at UE during282

this process.283

All the MAB techniques have the same signaling overhead and algorithmic complexity for each284

transmission attempt. UCB1, ε-decreasing greedy and Thompson sampling can be seen as index-based285

policies. Hence, the algorithmic complexity consists in sorting N indexes, representing the rating of286

the arms w.r.t. the objective of the agent, and taking the arm that corresponds to the highest index.287

Therefore, their complexity is on the order of O(N). Furthermore, the generated signaling overhead288

depends particularly on the applied learning scenario. In scenario 1, the indexes update by an agent289

is only based on the processing output of its own packet using a given power, i.e. either the packet290

is successfully received or not, and hence it takes 1 bit. In scenario 2, the update of an agent index is291

made by taking into account the decoding status of the other users’ transmissions, in addition to that292

of its own packet, which is carried out with 2 bits. It is worth noting that the computational complexity293

is not considered here. Moreover, the complexity of calculating a sampled index from the beta function294

for each arm with the Thompson sampling algorithm is higher than that of UCB1 and ε-decreasing295

greedy indexes.296

8. Numerical results and analysis297

We consider an uplink system with 150% of overload, where J = 12 and K = 8. Users are298

uniformly scattered in the cell while experiencing an AWGN channel with different path-losses. Each299

user can pick its transmission power over a set of N = 10 possible power levels in the interest300
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of selecting the appropriate value ensuring the best performance in both scenarios 1 and 2. Users301

spreading sequences are normalized to unitary energy. The algorithms are investigated in term of302

the successful transmission rate, i.e. the total number of correctly decoded packets over the total303

number of sent packets. Simulations are averaged over 150 network realizations, i.e. the successful304

transmission rate is averaged over the path losses and the spreading sequences. Regarding UCB1305

algorithm, the exploration of new power values is conducted by the parameter θ. As mentioned above,306

this parameter is originally set to 2, but in the literature θ = 0.5 is admitted empirically as it provides307

better performance. In order to choose the optimal value of θ, the average transmission rate achieved308

by UCB1 has been investigated w.r.t. θ and the value θ = 0.5 is the one that allows to achieve the best309

transmission rate. The figure is not reported here not to clutter the exposure. The other simulation310

parameters are reminded in Table 2.311

Channel AWGN with path losses
Users J = 12

Subcarriers K = 8
Maximum individual power 20 dBm

N 10 levels
Noise power σ2 = −14 dBm

T 1000 slots
θ 0.5
Table 2. Simulation settings
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Figure 2. Performance comparison of the simulated BER and the analytical BEP for an AWGN channel
with different users path-loss and equal transmission powers.

Figure 2 compares the simulated average BER, i.e., averaged over the spreading sequences and312

positions, and the analytical average BEP obtained by the proposed expression in (9) for an AWGN313

channel and uniformly distributed users over the cell w.r.t the global received SNR. We remark that314

the expression that takes into account the error propagation phenomenon almost matches with the315

simulated BER. However, removing the error propagation effect induces a wide gap in the performance316

because it is too optimistic. In addition, we notice that, for high SNR values, the BEP with EP gets317

closer to the simulated BER. This can be explained by the fact that the QPSK approximation in (10) is318

more robust for high SNR.319

The performance of the ε-decreasing greedy algorithm depends on the ε value which in turn320

depends on the coefficient L. It is important to choose the coefficient that allows the algorithm to321

achieve its best performance. Therefore, the main challenge of the ε-decreasing greedy approach is to322

handle the exploration and the exploitation dilemma by properly set the value of L in (21). Figure 3323

investigates the performance of this algorithm for different L in scenario 1 after T = 1000 iterations.324

We note that L = 0.1 gives the best performance in term of average transmission rate and hence it is325
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Figure 3. Performance comparison of ε-decreasing greedy for different L values after T = 1000
iterations in scenario 1.
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Figure 4. Successful transmission rate comparison for all algorithms in scenario 1.

kept for the rest of the simulations. The same behaviour is observed in scenario 2 but not reported326

here to limit the redundancy.327

Figures 4 and 5 compare the successful transmission rate of the algorithms under study, i.e. the328

centralized power allocation, the proposed algorithm, the MAB algorithms (ε-decreasing greedy, UCB1329

and THS) and the random power selection in scenarios 1 and 2, respectively. The proposed algorithm330

outperforms all the MAB techniques with a faster convergence to the optimal power in both scenarios.331

We also remark in Fig. 4 that the ε-decreasing greedy algorithm converges faster than THS and UCB1332

algorithms. This can be explained by the optimal selection of L value that ensures a trade-off between333

the exploration and the exploitation phases in order to achieve the best performance. The ε-decreasing334

greedy and THS algorithms converge to the same successful transmission rate after 400 iterations.335

However, the gap between ε-decreasing greedy and THS is less important in scenario 2 in Fig. 5.336

In fact, after T = 100 iterations, THS is slightly better than ε-decreasing greedy. THS seems to take337

advantage of the additional information carried by the feedback whether there is a decoding error338

among the users or not. However, both algorithms, i.e. ε-decreasing greedy and THS, are far better339

than UCB1 in both scenarios. UCB1 takes more time to explore suboptimal powers which slows down340

its convergence to the optimal power values and thereby induces more packet losses. The random341

power allocation presents the lowest performance bound in both scenarios since no strategy is applied342

for an adequate power selection which induces error propagation and hence packet losses.343

For a given number of iterations T, the figures represent the average successful transmission344

rate achieved after averaging over the network realizations and the spreading sequences, i.e. 150345

realizations, and T being the number of packets sent, a.k.a. the number of iterations in each algorithm.346

The performance achieved by the algorithms under fast variations of the propagation environment347

is directly obtained from Figures 4 and 5 by shortening them to the desired value of T. In other348
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Figure 5. Successful transmission rate comparison for all algorithms in scenario 2.
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Figure 6. Successful transmission rate comparison for all algorithms in scenarios 1 and 2.

words, if one would want to obtain the achievable successful rate of the different algorithms when the349

environment changes every 100 packets, then one should collect the points at T = 100 in each figure350

above. Moreover, a fading channel could have been considered also, however, this would only affect351

the absolute performance, as the statistic of the rewards would have been changed, but not the relative352

behaviors of the algorithms. Therefore, in this paper and for the sake of simplicity, we consider only an353

AWGN channel with different path losses among users and we show the behavior of the investigated354

techniques as the number of iterations increases averaged over several network realizations.355

Figure 6 shows a performance comparison of all algorithms in scenarios 1 and 2 for 30 ≤ T ≤ 300.356

One can remark that all MAB techniques achieve better performances in scenario 2 compared to357

scenario 1. For instance, after T = 50 iterations, the Thompson sampling algorithm achieves a358

successful transmission rate of ≈ 0.94 in scenario 2, whereas, in scenario 1, it attains the value of 0.91.359

This may be explained by the fact that scenario 2 conveys more information compared to scenario360

1 to select the best set of powers. In other words, the reward a user gets in scenario 2 is not only a361

function of the successful decoding of its own packet, but also whether all other users succeeded in362

their transmissions or not. This strategy allows each user to take into account a kind of global interest in363

the selection of its power. In addition, the successful transmission rate achieved with the proposed364

algorithm converges to the one obtained with the optimal centralized solution after a few number365

of iterations compared to the MAB techniques. For example, after T = 30 iterations, the proposed366

algorithm achieves a rate of 0.99 of correctly received packets whereas the ε-decreasing greedy has367

a rate of 0.93. It should be noted that, after a large number of iterations, the performances of MAB368

algorithms in scenario 1 converge to those in scenario 2.369
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9. Conclusion370

The autonomous power decision for NOMA schemes with a grant free access strategy has been371

an issue to satisfy the mMTC requirements. To the best of our knowledge, no work has been granted372

on this problem for MUSA scheme in order to enhance users performance with a minimal signaling373

overhead. In this paper, we addressed this issue by proposing a novel algorithm for autonomous374

power decision based on the proposed BEP approximation and the base station acknowledgements.375

Moreover, we studied the efficiency of some MAB algorithms for the power allocation with two376

different implementation scenarios, i.e. one where the rewards of a user are only dependent on the377

decoding output status of its own packet and another one where they depend also whether all users378

have successfully transmitted their packets or not. The proposed algorithm converges very fast to the379

obtained solution with a centralized resource allocation that is considered as a baseline. Moreover, the380

MAB algorithms have an acceptable performance but at the cost of a larger convergence time and a381

higher UE complexity compared to the proposed algorithm. This latter shows the best performance382

with a faster convergence rate but also with a slightly higher signaling overhead compared to the MAB383

algorithms, particularly for a variant propagation environment.384
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