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ABSTRACT Pneumocystis, a major opportunistic pathogen in patients with a broad
range of immunodeficiencies, contains abundant surface proteins encoded by a mul-
ticopy gene family, termed the major surface glycoprotein (Msg) gene superfamily.
This superfamily has been identified in all Pneumocystis species characterized to
date, highlighting its important role in Pneumocystis biology. In this report, through
a comprehensive and in-depth characterization of 459 msg genes from 7 Pneumocys-
tis species, we demonstrate, for the first time, the phylogeny and evolution of con-
served domains in Msg proteins and provide a detailed description of the classifica-
tion, unique characteristics, and phylogenetic relatedness of five Msg families. We
further describe, for the first time, the relative expression levels of individual msg
families in two rodent Pneumocystis species, the substantial variability of the msg
repertoires in P. carinii from laboratory and wild rats, and the distinct features of the
expression site for the classic msg genes in Pneumocystis from 8 mammalian host
species. Our analysis suggests multiple functions for this superfamily rather than just
conferring antigenic variation to allow immune evasion as previously believed. This
study provides a rich source of information that lays the foundation for the contin-
ued experimental exploration of the functions of the Msg superfamily in Pneumocys-
tis biology.

IMPORTANCE Pneumocystis continues to be a major cause of disease in humans
with immunodeficiency, especially those with HIV/AIDS and organ transplants, and is
being seen with increasing frequency worldwide in patients treated with immunode-
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pleting monoclonal antibodies. Annual health care associated with Pneumocystis
pneumonia costs �$475 million dollars in the United States alone. In addition to
causing overt disease in immunodeficient individuals, Pneumocystis can cause sub-
clinical infection or colonization in healthy individuals, which may play an important
role in species preservation and disease transmission. Our work sheds new light on
the diversity and complexity of the msg superfamily and strongly suggests that the
versatility of this superfamily reflects multiple functions, including antigenic variation
to allow immune evasion and optimal adaptation to host environmental conditions
to promote efficient infection and transmission. These findings are essential to con-
sider in developing new diagnostic and therapeutic strategies.

KEYWORDS classification, conserved domains, major surface glycoprotein,
phylogenetic analysis, Pneumocystis

Pneumocystis continues to be a major cause of disease in humans with immunode-
ficiencies, especially those with HIV/AIDS and organ transplants, and is being seen

with increasing frequency in patients treated with immunodepleting monoclonal an-
tibodies. As an atypical fungus, Pneumocystis has highly adapted to the mammalian
lung environment (1), with a high level of host specificity; P. jirovecii infects humans, P.
carinii infects Norway rats (Rattus norvegicus), and P. murina infects house mice (Mus
musculus). In addition, Pneumocystis cell walls are structurally unique and differ signif-
icantly from typical fungal cell walls that are composed of polysaccharides (mainly
glucan and chitin) and highly mannosylated proteins. Both genomic and experimental
analyses have shown the absence of chitin and outer chain N-mannans in Pneumocystis
cell walls (1). Furthermore, beta-1,3-glucan is absent in the trophic form but masked in
the cyst form of Pneumocystis (2).

An integral component of the Pneumocystis cell wall in both the cyst and trophic
forms is the major surface glycoprotein (Msg) (also known as gp95, gp115, gp120, and
gpA) (3–8). Ever since its identification in 1982 (9), Msg has been a focus of research, in
part because it is the most abundant Pneumocystis protein as assessed by SDS-PAGE.
Msg is present in all Pneumocystis species studied to date (3, 4, 6, 7, 10, 11) and appears
to play an important role in pathogen-host interactions as well as in evasion of host
immune responses. Based on studies of Pneumocystis in humans, rats, and mice, Msg is
encoded by a multicopy gene family with an estimated �30 to 100 copies per genome
(5, 6, 8, 10, 12). Msg genes (up to �3 kb each) are closely related to but clearly distinct
from each other and are clustered together in the subtelomeric regions of multiple
chromosomes (1, 13) (see Text S1 in the supplemental material). While there is no
apparent variation in the msg repertoire among laboratory-bred P. murina or P. carinii
isolates, extensive variation is present among P. jirovecii isolates (14).

Recently, we utilized long-read sequencing technology (15, 16) to identify the most
complete set to date of msg genes in three Pneumocystis species (P. jirovecii, P. carinii,
and P. murina) as part of the Pneumocystis genome project (1). Based on our studies,
each Pneumocystis genome harbors approximately 60 to 180 msg genes, depending on
the species, including the classical msg genes, msg-related (termed msr) genes, and
additional related genes. These genes are collectively termed the msg superfamily. We
previously reported on the first systematic classification of the msg superfamily (1) but
did not provide a detailed description of the unique characteristics and phylogenetic
relationships of individual domains and families or subfamilies. A recent report identi-
fied a small subset of msg genes in P. jirovecii from a single patient and described
potential mechanisms of recombination, but this report did not include any other
Pneumocystis species (17).

In the current report, we expanded our published analysis (1) to include msg genes
in Pneumocystis from other mammalian host species. The goals of the current report
were to (i) identify msg genes from P. oryctolagi (infecting rabbits), P. wakefieldiae
(infecting rats), Pneumocystis sp. “macacae” (infecting rhesus macaques), and Pneumo-
cystis sp. “canis” (infecting dogs); (ii) describe the characteristics and phylogenetic

Ma et al. ®

March/April 2020 Volume 11 Issue 2 e02878-19 mbio.asm.org 2

 on M
arch 7, 2020 by guest

http://m
bio.asm

.org/
D

ow
nloaded from

 

https://mbio.asm.org
http://mbio.asm.org/


evolution of individual msg domains; (iii) illustrate the characteristics, phylogenetic
evolution, and relative expression levels of individual msg families or subfamilies; (iv)
compare the variability of the msg repertoires in P. carinii from laboratory and wild
Norway rats; and (v) characterize the variation of the expression sites or upstream
conserved sequences (UCSs) of the classic msg genes in Pneumocystis from 11 mam-
malian host species.

RESULTS
Sources of Pneumocystis msg sequences. msg sequences for P. murina, P. carinii,

and P. jirovecii were obtained primarily from our previous msg and genome sequencing
studies (1, 15, 16). The accuracy of these sequences was maximized by integrating
Illumina high-throughput sequencing of genomic DNA, PacBio long-read sequencing of
msg repertoire amplicons, and Sanger sequencing of cloned msg genes. Additional msg
sequences were identified by Sanger sequencing of cloned msg amplicons and next-
generation sequencing of whole genomes of the following Pneumocystis species: P.
wakefieldiae, P. carinii (in wild rats), P. oryctolagi, Pneumocystis sp. “macacae,” and
Pneumocystis sp. “canis” (Table 1 and see Table S1 in the supplemental material). Due
to the low-throughput nature and high cost of Sanger sequencing of cloned msg
amplicons and the difficulty in assembling short reads from Illumina sequencing, only
a small number of full-length msg genes were obtained from these species (1 to 13
genes per species). As whole-genome assembly of these species is still in progress, the
msg genes reported for these species are only representative, not all inclusive. All msg
sequences are available from the Zenodo database (data sets 1 to 8 available at
https://zenodo.org/record/3523554#.XbpSjjd7mpo) as well as the BioProject database
with accession number (no.) PRJNA560924.

Characteristics and phylogenetic relationships of individual Msg domains. We
identified a total of 9 conserved domains (Fig. 1 and Text S1). Classic Msg (Msg-A1)
proteins contain 5 domains that presumably arose by gene duplication. Based on
phylogenetic trees constructed using only these 5 domains, we found that each forms
its own cluster, regardless of the origin of the species of the domains (Fig. 2). This
strongly suggests that the most recent common ancestor to these Pneumocystis species
already had developed this Msg domain structure and organization and that, subse-
quently, these domains evolved with no further duplication or recombination among
domains across or within species. We also found that within each of these 5 Msg
domains, individual domains clustered according to Pneumocystis species, suggesting
that significant Msg family expansion occurred after the separation of Pneumocystis
species. In addition, P. carinii and P. murina form two separate clusters, with each cluster
containing both species, suggesting that those two clusters arose before separation of
these two species.

The 31 N-linked glycans from P. carinii Msg proteins previously identified by liquid
chromatography-tandem mass spectrometry (1) mapped to 4 domains, most com-
monly domains M4 and M5 (each with 13 glycans) and less commonly domains M2 (2
glycans) and M3 (3 glycans).

Unique characteristics of each Msg family and subfamily. Based on domain
structure, phylogeny analysis, and expression control mechanisms of the msg super-
family, we previously proposed a classification of five families, named Msg-A, Msg-B,
Msg-C, Msg-D, and Msg-E (1), as summarized in Table 1. According to the chromosome-
level assemblies of the P. murina, P. carinii, and P. jirovecii genomes, msg genes are
located almost exclusively in subtelomeric regions and are usually present in clusters
(Text S1). Different msg families differ in the numbers of members, distributions among
different Pneumocystis species, sequence structures (gene length, location and number
of introns, and number of conserved domains), and expression control mechanisms, as
summarized in Table 1. In addition, there is a bias of amino acid distribution among
different Msg families (see Fig. S1 and Text S1).

(i) Msg-A family. Msg-A family is by far the largest among the 5 families of the Msg
superfamily. This family is divided into three subfamilies: Msg-A1, Msg-A2, and Msg-A3
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(Fig. 3 and Fig. S2 and S3). In addition to differences in phylogenetic relationships, these
three subfamilies have significant differences in the expression control mechanisms
and sequence structures of the 5=-end leaders.

The Msg-A1 subfamily includes all classic msg genes. The most striking character-
istics of this subfamily are its dominance among all Msg families/subfamilies across all
Pneumocystis species (Table 1) and its unique expression control mechanism. It has
been well established that expression of this subfamily is controlled by a dedicated,
single-copy subtelomeric expression site, also known as the upstream conserved
sequence (UCS) (18–21) (Fig. 4). The UCS is expressed in fusion with an msg gene; the
region between UCS and its downstream msg gene is termed the conserved recombi-
nation joint element (CRJE), which is highly conserved among all msg-A1 genes and
potentially serves as an anchor for recombination (22). Available data suggest that
these msg genes are not expressed unless they are translocated downstream of and
in-frame with the UCS (18–21). This mechanism allows only one msg-A1 gene to be
expressed in a single organism at a given time, although multiple msg-A1 genes are
expressed at the population level in immunosuppressed hosts. In a phylogenetic
analysis of 183 full-length msg-A1 genes from 7 Pneumocystis species, these genes
clustered by species; as expected, genes from all three rodent Pneumocystis species
formed a strong monophyletic group (Fig. 3). As previously noted (14), the Msg-A1
family in P. jirovecii is composed of two phylogenetically distinct groups; such separa-
tion is also seen in P. murina and P. carinii.

The Msg-A2 subfamily represents the previously reported msr genes in P. carinii (23,
24) and differs from Msg-A1 as follows: (i) the abundant presence in rodent Pneumo-
cystis, but absence in all other species examined thus far (Table 1); (ii) the presence of
a short intron near the 5= end; (iii) the presence of a unique highly conserved exon 1;
and (iv) independent expression of each individual gene (not under the control of UCS).

FIG 1 Sequence logo showing the alignment of full-length Msg proteins in P. murina, P. carinii, and P. jirovecii. The known Pfam domains M1 to M5 (Pfam MSG)
and C1 (extended from Pfam Msg2_C to cover a longer conserved region), three new domains (N1, M6, and C2), and Pro- and Thr-rich regions are indicated.
The horizontal axis represents the position of the amino acids. The vertical axis indicates conservation of each position as measured by information content
(bits). This logo is adapted from Fig. 3 of reference 1, in which individual domains were shown separately without aligning with full-length proteins.
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FIG 2 Maximum likelihood tree based on aligned but not concatenated protein sequences of Pfam MSG domains M1 to M5 from Msg proteins longer than
900 amino acids in P. murina, P. carinii, and P. jirovecii. In the tree, different domains are indicated by different shapes on the right end of each branch, with
different species color coded as shown at the top left. The color of each domain bar is the same as in Fig. 1. Numbers on the branch nodes indicate bootstrap
support values.
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Alignment of 73 full-length msg-A2 genes from rodent Pneumocystis revealed two
groups of genes with sizes of �2 kb and �3 kb. The group with a larger size contains
all 9 Msg domains, while the other group lacks three of them (M5, M6, and C1). In a
phylogenetic analysis, all msg-A2 genes from P. carinii formed a strong clade (with 99%
bootstrap support), while msg-A2 genes from P. wakefieldiae were interspersed among
msg-A2 genes from P. murina (Fig. S2A). In P. carinii, 11 msg-A2 genes show higher
sequence identities to msg-A1 genes than other msg-A2 genes (53% to 63% versus 35%
to 44%) and are clustered together with msg-A1 genes from P. carinii in a phylogenetic
analysis (Fig. S2B). Similarly, one of the 6 msg-A2 genes in P. wakefieldiae shows higher
sequence identity to and is clustered with msg-A1 genes.

The Msg-A3 subfamily includes genes with substantial sequence identity to the
Msg-A1 and Msg-A2 subfamilies but without the CRJE element of the msg-A1 genes or
the highly conserved exon 1 of the msg-A2 genes (Fig. S3A). This subfamily has a
significant expansion in P. jirovecii with 33 copies but only 1 to 6 copies in other species
(Table 1). With an overall highly variable 5=-end leader, members of this subfamily are
expected to be expressed independently, similarly to the Msg-A2 subfamily. Neverthe-
less, 5 of the 6 msg-A3 genes in P. murina contain an �600-bp leader sequence with
significant identity and structural similarity to the UCS (termed UCS-like), including a

FIG 3 Phylogenetic tree and conserved domain structure of classic Msg genes (Msg-A1 subfamily). (A) A maximum likelihood (ML) tree constructed using
deduced full-length protein sequences of msg-A1 genes. Different Pneumocystis species are color coded as indicated at the bottom left. P. carinii isolates from
laboratory rats and wild rats are indicated by pink dots and pink triangles, respectively. Only one of the 13 Msg proteins from the wild rat (PCAR_WR5.13) was
nearly identical (one amino acid difference) to two Msg proteins in P. carinii from laboratory rats (T552_02425 and T552_01386), as shown in the red box with
a dashed line. Numbers on the branch nodes indicate bootstrap support values. All sequences shown are available from data set 1 at Zenodo database
(https://zenodo.org/record/3523554#.XjLZ7UBFyF4). (B) Schematic representations of conserved Msg domains. Different domains are color coded as indicated
at the top. Each row corresponds to the domain structure of the corresponding protein in panel A.
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relatively long intron (Fig. 5). These 5 genes are distributed in different chromosomes.
Based on reverse transcription-PCR studies, each of these 5 genes was expressed
independently (Text S1). Of note, the Msg-A3 subfamily encompasses both the Msg-II
and Msg-III families reported by others (17), as illustrated in Fig. S3B. Given the complex

FIG 4 Phylogeny and sequence structure of the expression sites or upstream conserved sequences (UCSs) of msg-A1 genes in Pneumocystis species from
different mammalian species. (A) Phylogenetic relationship based on protein sequences of UCSs. Numbers on the branches indicate bootstrap support values.
(B) Schematic representation of the UCS sequence structures. The number in each box is the sequence length (base pairs) for each region. The approximate
location of the tandem repeats in P. jirovecii, P. oryctolagi, and P. carinii are indicated by ovals, with more details on tandem repeat variation in P. oryctolagi
and P. carinii shown in Fig. 6. (C) Alignment of deduced protein sequences of UCSs. Asterisks indicate the KR site potentially for proprotein cleavage by
endoprotease. All sequences are available from GenBank with accession numbers or gene locus tag numbers indicated in parentheses, including P. murina
(PNEG_04309), P. carinii (T552_04149), P. wakefieldiae (AF164562), P. jirovecii (T551_00002), P. oryctolagi (MN509824), Pneumocystis sp. “macacae” (MN509821),
Pneumocystis sp. “canis” (MN509823), Pneumocystis sp. “fulvescens” (MN509819), Pneumocystis sp. “muelleri” (MN509817), Pneumocystis sp. “tanezumi”
(MN509820), and Pneumocystis sp. “exulans” (MN509818). Details about the nomenclature of Pneumocystis and its host species are available in Table S1 in the
supplemental material.
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clustering patterns in phylogenetic analysis and unknown functions of these genes, it
appears not meaningful to further divide the Msg-A3 subfamily.

(ii) Msg-B family. This represents the only Msg family completely absent in all
rodent Pneumocystis species sequenced to date but with exceptionally high abundance
in P. jirovecii (Table 1). With a highly variable 5=-end leader, members of this family are
expected to be expressed independently. In a phylogenetic analysis (see Fig. S4), the
family separated into two major groups, which also differ in size (1.3 kb and 1.6 kb).

(iii) Msg-C family. The prominent characteristics of this family are its significant
presence in P. murina and unique chromosomal organization (see Fig. S5). This family
consists of a tandem array of 6 genes in chromosome 17 of P. murina, which represents
the largest tandem array of genes of the same family identified so far in any Pneumo-
cystis species. In contrast, there are no more than two msg-C genes in other Pneumo-
cystis species. The two msg-C genes in P. wakefieldiae share similar sizes, intron-exon
structures, and domain compositions (N1, M2, and M3) with msg-C genes in P. murina.
However, in all other species examined, the msg-C genes are smaller (0.8 to 1 kb) with
different intron-exon structures and/or lack the highly conserved exon 1 sequence of P.
murina. In addition, they have different domain compositions and are only distantly
related to the 6 genes in P. murina by phylogenetic analysis (Fig. S5A). Furthermore, the

FIG 5 Five msg-A3 genes containing a UCS-like leader sequence in P. murina. (A) Schematic representations of msg genes, including 5 containing a UCS-like
sequence (PNEG_02240, PNEG_01104, PNEG_00002, PNEG_03453, and PNEG_03599) and the UCS gene (PNEG_04309) linked to one classical msg-A1 gene
(PNEG_04308). The numbers in the boxes represent the size (base pairs) of the regions indicated. The horizontal arrow at the top indicates the approximate
location of the reverse primer MSG.r2b conserved among all msg-A1 and msg-A3 genes and used to determine the expression of the 5 msg-A3 genes (Table S2
and Text S1). (B) Alignment of the UCS and UCS-like protein sequences, including all those shown in panel A and the UCSs in P. carinii (T552_04149), P.
wakefieldiae (with GenBank accession no. AF164562), and P. jirovecii (T551_00002). KR (red underlined) represents putative cleavage site by kexin-like
endoprotease. (C) Phylogenetic relationship of UCS and UCS-like proteins based on sequences shown in panel B. Numbers on the branches indicate bootstrap
support values. (D) Sequence identity among the msg genes shown in panel A (without including the first 4 characters of the gene identifiers [IDs]). Ref refers
to the UCS gene PNEG_04309 and the msg-A1 gene PNEG_04308 (linked downstream of PNEG_04309). Values in the table refer to the identity (percent) of
nucleotide and amino acid sequences in UCS (top right) and variable regions (lower left).
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chromosomal arrangement of the msg-C genes in P. jirovecii and Pneumocystis sp.
“macacae” is different from that in rodent Pneumocystis (Fig. S5C). It is likely that the
msg-C genes in P. carinii, P. jirovecii, and Pneumocystis sp. “macacae” represent degen-
erate genes or pseudogenes, as supported by the low-level transcription of this gene
in P. carinii (Table 2).

(iv) Msg-D family. This family is related to the previously reported A12 antigen
gene in P. murina (25). Like the Msg-A3 subfamily and Msg-B family, this family is rarely
present in rodent Pneumocystis but significantly expanded in P. jirovecii and perhaps in
Pneumocystis sp. “macacae” as well (Table 1 and Fig. S6). However, most of the Msg-D
members contain 6 conserved domains compared to 9 and 3 domains in Msg-A3 and
Msg-B, respectively. In a phylogenetic analysis, all single-copy Msg-D members in
rodent Pneumocystis tightly clustered into one clade, which is well separated from
Msg-D members in all other species. Consistent with the phylogenetic analysis, Msg-D
members in all rodent Pneumocystis species lack both N1 and M2 domains, which are
present in most of Msg-D members in other species.

(v) Msg-E family. This family is related to two previously reported p55 antigen
genes (26–28). Unique among all Msg families, the Msg-E family is the smallest in
member size, molecular size, and number of conserved domains. It is relatively equally
distributed across all Pneumocystis species examined (Table 1) and among the most
highly expressed families in rodent Pneumocystis (Table 2). Members did not cluster by
species in a phylogenetic analysis (see Fig. S7). In P. murina, there are three members
with nearly identical sequences and molecular sizes (termed p57), which are located in
separate chromosomes (1, 29). Each of these 3 genes is present as a tandem array with
one msg-A2 gene and one msg-A1 gene downstream (1). Homologs to these 3 genes
are also present in three separate chromosomes of P. wakefieldiae, though their
downstream genes have not been identified, presumably due to incomplete genome
assembly. No other species sequenced to date have close homologs to these 3 genes.
These findings further suggest that duplication of the p57 gene in P. murina and P.
wakefieldiae occurred before separation of these two species or there was introgression.

(vi) Unclassified genes. In P. murina, P. carinii, and P. jirovecii, there are 8 to 13
genes related to Msg that are unable to be reliably classified due to their shorter length
(�970 bp on average), presence of multiple introns, or lack of unique sequences (CRJE,
KR site, or conserved leader sequences). The shorter length in most of them is not due
to incomplete sequencing, as they are present within well-covered contigs. Almost all
of these genes in P. murina and P. carinii have a low expression level (Table 2),
suggesting they are degenerate genes or pseudogenes.

Highly variable expression levels among different msg families in P. murina
and P. carinii. Transcriptome sequencing (RNA-Seq) data indicate that all msg genes in
P. murina and P. carinii are transcribed except for two unclassified msg genes in P.
murina and 5 msg-A2 genes in P. carinii (Table 2). Strikingly, the UCS genes in both P.
murina and P. carinii were the most highly expressed protein-coding genes of the

TABLE 2 Relative expression levels of the msg superfamily in P. murina and P. carinii

Genes

P. murina P. carinii

No. of genes FPKMa No. of genes FPKMa

msg-A1 22 670 (15–2,011) 65 141 (4–2,550)
msg-A2 14 252 (72–556) 53 205 (0–1,202)
msg-A3 6 725 (77–2,015) 3 112 (72–929)
msg-C 6 3,895 (662–9,382) 1 41
msg-D 1 1,385 1 2,154
msg-E 7 839 (100–4,270) 5 1,742 (122–8,010)
Unclassified 8 50 (0–90) 13 25 (8–158)
UCS 1 17,646 1 15,830
Genome 3,623 152 (0–17,646)b 3,646 148 (0–15,830)b

aFPKM, fragments per kilobase of exon per million fragments mapped based on RNA-Seq data as described
in reference (1). Data are expressed as median (minimum to maximum) for multicopy gene families.

bMedian values for all protein-coding genes in the genome.
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whole genome (with their fragments per kilobase of exon per million fragments
mapped [FPKM] values being more than 100 times higher than the median expression
level for the whole gene set); as expected, individual msg-A1 members were expressed
at lower levels. This high expression level is consistent with SDS-PAGE analysis of
Pneumocystis proteins, which demonstrates that Msg is the most abundant protein as
estimated by Coomassie blue staining (1). In P. murina, the highest expression level of
individual Msg genes was observed in the Msg-C family, followed by the Msg-D, Msg-E,
Msg-A3, and Msg-A1 families or subfamilies, all of which showed an expression level at least
3 times higher than the median of the whole gene set. The expression level of the Msg-A2
family was slightly higher than the median. In P. carinii, the highest expression level was
observed in the single Msg-D gene, followed by the Msg-E family, both of which showed
an expression level at least 11 times higher than the median. The expression level of the
Msg-A family (including all 3 subfamilies) was similar to the median.

Significant diversity of UCS in Pneumocystis from 10 mammalian host species.
UCS was previously reported for P. murina, P. carinii, P. wakefieldiae, and P. jirovecii
(18–21, 30). In the present study, we identified UCS in Pneumocystis species infecting
rhesus macaques, dogs, rabbits, chestnut white-bellied rats, Müller’s giant Sunda rats,
Asian house rats, and Polynesian rats. Details about the nomenclature of these mam-
malian species and Pneumocystis species are listed in Table S1. As shown in Fig. 4, the
Pneumocystis UCSs from all these animals show the sequence organization in known
UCSs, including two exons that are interrupted by a variably sized intron. While exon
1 is identical in size (97 bp) among all UCSs, exon 2 is highly variable in size, with the
shortest size present in P. oryctolagi (230 bp) and the longest in P. murina (314 bp).

The predicted UCS protein sequences vary in size from 110 to 138 amino acids, with
24% to 97% sequence identity (Fig. 4C). Despite these variations, all UCSs contain a pair
of basic amino acid residues in the carboxyl end, Lys-Arg, known as the KR site (19, 31,
32). Phylogenetic analysis showed a clear separation between the UCSs in Pneumocystis
species from rodents and those from other mammalian species (Fig. 4A). Consistent
with the phylogenetic relationships, the UCSs in all rodent Pneumocystis species have
an extra 13 to 15 amino acid residues at the beginning of exon 2 and a unique
hexapeptide of PGVDYF near the center of exon 2 compared to Pneumocystis species
from other mammalian species.

Similar to exon 2, the intron is also highly variable in size, with the shortest present
in P. carinii (150 bp) and the longest in P. oryctolagi (515 bp). In addition, different levels
of inter- or intrastrain sequence variation were observed in UCSs from P. carinii, P.
wakefieldiae, Pneumocystis sp. “macacae” and P. oryctolagi (Text S1 and Fig. 6). The
highest variation was observed in P. oryctolagi isolates, which displayed extensive inter-
and intrastrain variations, including two single nucleotide polymorphisms (SNPs) in
exon 2 and many SNPs, indels, and tandem repeat variations in the intron (Fig. 5).

Substantial variation of the msg-A1 gene repertoires in P. carinii from labora-
tory and wild rats. To compare the msg diversity between Pneumocystis from
laboratory-bred animals and that from wild animals, we analyzed the restriction frag-
ment length polymorphism (RFLP) patterns of the msg-A1 repertoires in P. carinii from
8 wild Norway rats collected in Ontario, Canada, in comparison with P. carinii from 8
laboratory Norway rats collected in three different animal facilities in United States. P.
carinii from all laboratory rats showed almost identical RFLP patterns, while substantial
variations in the RFLP patterns were observed within P. carinii isolates from wild rats
and between P. carinii from wild and laboratory rats (Fig. 7).

To further confirm these variations, we determined the full-length msg-A1 se-
quences in P. carinii from one wild rat by Sanger sequencing of cloned PCR products.
Sequence analysis of 28 random clones identified 13 unique msg sequences, with
identities of 78% to 96% at the nucleotide level and 63% to 95% at the amino acid level.
All but 1 of these 13 genes were clearly different from the 65 msg-A1 genes of P. carinii
from the laboratory rats. In a phylogenetic analysis, msg-A1 genes from wild and
laboratory rats were interspersed (Fig. 3). These findings suggest a closely related but
clearly distinct repertoire of msg-A1 genes in P. carinii from wild and laboratory rats.
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DISCUSSION

Over the past several decades, Msg has been the most extensively studied molecule
in Pneumocystis, primarily due to its abundance, its role in pathogen-host interactions,
and its potential as a target for diagnosis of Pneumocystis infection. In this report, we

FIG 6 Genomic sequence variation in the expression site (UCS) of the msg-A1 gene in P. oryctolagi, P. wakefieldiae, and P. carinii. (A) UCS in 4 P. oryctolagi
isolates. Five different sequence populations were identified and named types I to V indicated at the end of the sample codes, including RAB_M from MI, USA,
RAB_F from Tours, France, and PRAB1 and PRAB2 from Lille, France. The 3 types of sequences (III, IV, and V) in sample PRAB2 were obtained from sequencing
of 2, 6, and 3 plasmid clones, respectively, while the 2 types of sequences (II and III) in sample PRAB1 were obtained from 3 and 5 plasmid clones, respectively.
The other 2 samples showed no variation based on Illumina sequencing of genomic DNA; their PCR products showed homogeneous sequences in direct Sanger
sequencing and were not further subcloned. Three types of tandem repeats are indicated by colored lines. (B) UCS in 8 P. wakefieldiae isolates. Sequences for
the first two isolates were reported by Schaffzin et al. (24), with GenBank accession no. AF164574.1 and AF164569.1. Sequences for the other 6 isolates were
obtained in this study, as determined by next-generation sequencing (NGS; isolates Pw1A, Pw2A, Pw3A, and PwC1 from laboratory rats) and PCR (isolates P0025
and P0034 from wild rats). (C) UCS in P. carinii isolates. The first sequence is the P. carinii UCS gene from the P. carinii genome assembly (1). The last 3 sequences
indicated by GenBank accession no. D31910 to D31912 were reported by Wada et al. (21). Sequences B70_1 and B70_2 were assembled in this study using
previous NGS data from one rat (1). Sequences UC_1 and UC_2 were assembled in this study using Sanger sequence reads from http://pgp.cchmc.org (73). The
11-bp tandem repeat unit is underlined. Numbers at both sides of the alignments refer to the nucleotide positions relative to the predicted UCS translational
start site. The 3= end of exon 2 is not shown due to space limitation. The intron is indicated in red brackets. All new UCS sequences obtained in this study are
available from GenBank with accession no. MN509813 to MN509830.
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present an in-depth analysis of the msg domain structure and the characteristics of
each individual msg family or subfamily, including new msg genes identified from P.
oryctolagi, Pneumocystis sp. “macacae,” Pneumocystis sp. “canis,” P. wakefieldiae, and P.
carinii infecting wild rats. The results from our analysis demonstrate a much greater
complexity to this superfamily than was previously appreciated, expand the under-
standing of the primary structure, organization, phylogeny, and expression patterns of
the Msg superfamily, and provide a comprehensive basis for further investigation of the
role of the Msg superfamily in Pneumocystis biology.

The Msg superfamily, particularly, in P. jirovecii (179 members), represents the largest
surface protein family identified to date in the fungal kingdom (33), which is surprising
for an organism whose genome size is the smallest in the fungal kingdom sequenced
to date, after the intracellular Microsporidia (34). msg genes are unique to Pneumocystis
and account for 3% to 6% of the total genome, suggesting a critical role in the
organism’s survival (1). The vast majority of msg genes are clustered in subtelomeric
regions, which are presumably advantageous to foster DNA recombination and anti-
genic variation, as has been found for surface protein genes in other pathogens (35).
Their positioning is consistent with the notion that subtelomeric regions are favorable
locations for fungal pathogens to acquire novel genes and foster evolution (36, 37).

By domain structure, phylogenetic relationships, and expression control mecha-
nisms, we have been able to classify the Msg superfamily into discrete families and
subfamilies. Our classification based on exhaustive cataloging of �400 full-length msg
genes from seven Pneumocystis species is more comprehensive than the one described
in a recent report, which was based on 113 msg genes from a single species, P. jirovecii,
of which only 55 were full-length sequences (17). Thus, despite the consistency of four
families/subfamilies between these two systems (Msg-A1, -B, -D, and -E versus Msg-I,
-IV, -V, and -VI), two families (msg-A2 and msg-C), which are almost exclusively present
in rodent Pneumocystis, are absent in that report (17). We also elected not to subdivide
the msg-A3 subfamily due to the complex clustering patterns in the phylogenetic

FIG 7 Comparative restriction fragment length polymorphism (RFLP) analysis of msg-A1 of P. carinii
infecting laboratory and wild Norway rats. msg-A1 repertoire was amplified by PCR with genomic DNA
prepared from P. carinii-infected lung samples from 8 immunosuppressed laboratory Norway rats (with
three representatives show in lanes indicated Lab) and 8 wild Norway rats (in lanes indicated Wild). While
R22 is most clearly representative of a different RFLP pattern, more subtle differences are also apparent
in some of the other wild rats (e.g., R5 and R11) compared to that from laboratory rats. The PCR products
were digested with restriction enzyme DraI and separated in 2% agarose gels containing SYBR Safe. Lane
M, DNA size marker containing �DNA digested with HindIII and ØX174 DNA digested with HaeIII.
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analysis (see Fig. S4 in the supplemental material) and unknown functions of these
genes. This classification will likely be refined when our understanding of the function
of Msg is improved and this superfamily is better characterized for other Pneumocystis
species.

Based on our analysis, there is substantial conservation among most Msg families or
subfamilies across different Pneumocystis species, but there are also species-specific
expansions or contractions. Among the three Pneumocystis species with the most
complete data set, P. murina has the fewest number of genes in the Msg superfamily,
while P. jirovecii has the most. These differences may be related to the larger body and
therefore lung size, as well as the longer life span, in humans versus in rodents and the
consequent need for a higher degree of antigenic variation to avoid the longer
duration of immunologic memory in individual human hosts. The larger size of the Msg
superfamily in P. jirovecii is attributable in part to the expansion of the classic Msg-A1
subfamily as well as other families (including Msg-A3, Msg-B, and Msg-D), which have
no or limited representation in rodent Pneumocystis. Of note, P. murina possesses a set
of 6 msg genes (Msg-C family) that are clustered as a tandem array in one chromosome
and are the most highly expressed msg genes (Table 2).

The functions of Msg remain unknown or poorly understood. To date, the best
studied genes of the Msg superfamily are those classical Msg genes in the Msg-A1
family, whose expression is regulated by the single-copy UCS expression site, which
allows antigenic variation through DNA recombination (14, 17, 38). Such variation can
potentially serve as a mechanism to facilitate evasion of host immune responses,
enabling the organism to persist longer in the host and transmit to a new host. This
mechanism evolved presumably to operate in immunocompetent hosts. The expres-
sion of multiple msg-A1 variants in the lungs of immunodeficient hosts presumably
results from ongoing recombination at the UCS in the absence of immune pressure. For
all three Pneumocystis species with nearly fully sequenced genomes, the msg-A1 genes
account for approximately 50% of all msg genes, supporting their potential to effi-
ciently generate a large number of variants allowing immune evasion. In support of this
hypothesis, our RNA-Seq analysis of P. murina and P. carinii revealed an exceptionally
high-level expression of UCSs and a variable level of expression of all individual msg-A1
genes (Table 2).

UCS is known to have a highly variable number of tandem repeats in the intron in
P. jirovecii (19, 39, 40). In this study, we demonstrated for the first time the presence of
inter- and intrastrain variations in tandem repeats in the intron of UCSs in P. carinii and
P. oryctolagi. UCS in P. oryctolagi appears to have a higher degree of variation in tandem
repeats as well as SNPs than P. jirovecii UCS. The intron in UCS (150 to 515 bp) is among
the longest introns in Pneumocystis species studied to date. The retention of such a
long intron with high variability in these species in an otherwise highly reduced
genome suggests a critical role in organism survival, e.g., transcriptional regulation by
a recursive splicing mechanism (41, 42).

Of note, while the UCS is present as a single-copy gene per genome in all Pneu-
mocystis species, there are 5 msg-A3 genes in P. murina, each of which contains a
UCS-like leader sequence (Fig. 5) and is expressed at a relatively high level independent
of the classic UCS (Table 2). These may have arisen from gene duplication in P. murina;
alternatively, it is possible that a common ancestor of Pneumocystis had multiple UCSs,
which have been gradually lost as a result of evolving an efficient recombination
system involving only a single UCS (for the msg-A1 family).

Previous studies have demonstrated a conservation of the msg-A1 repertoires in
Pneumocystis in colony-bred laboratory rats and mice in contrast to the highly variable
msg repertoires in P. jirovecii (14), suggesting a homogeneous population of rodent
Pneumocystis due to closed breeding conditions. In support of this, we observed
substantial variations in the RFLP patterns among P. carinii isolates from wild rats and
between P. carinii from wild and laboratory rats, supporting the former possibility. The
absence of clustering of Msg-A1 variants based on geographic origin of the isolates
suggests that the repertoire variation was not driven by geographic isolation of the
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organisms. These variations may reflect the difference in immune system development
and modulation in wild animals, as they are continuously exposed to high levels of
immune challenges in an open environment and experience high levels of infection
with a wide range of pathogens (43–45). We hypothesize that this diversity is driven in
part by a need for antigenic variation in response to T cell- rather than B cell-mediated
immune responses and potential adaptation to the diverse HLA repertoire that would
be present in a natural community of host species (46) versus the limited diversity
present in inbred communities.

Domains M1 to M5 of msg-A1-encoded proteins likely arose by gene duplication
given their conserved pattern of cysteine residues, and in fact, only a single M domain
is categorized in Pfam. However, more detailed analysis clearly allows the identification
of 5 related but unique domains. It is noteworthy that by phylogenetic analysis (Fig. 2),
individual domains are observed as more closely related to each other across species
than to other M domains in the same species, which suggests that there is a critical
function for each domain and its evolution is restricted by negative selection. Further-
more, given that msg-A1-encoded proteins with these domains have been identified in
all Pneumocystis species studied to date, this gene organization appears to have
developed in an ancestor common to all Pneumocystis species and may have been a
critical factor that allowed Pneumocystis to successfully infect mammalian hosts.

Unlike P. jirovecii, and perhaps Pneumocystis sp. “macacae,” Pneumocystis sp. “canis,”
and P. oryctolagi, rodent Pneumocystis species (P. murina, P. carinii, and P. wakefieldiae)
have a large number of msg-A2 genes, which are only slightly less frequent than
msg-A1 genes. Previous studies of P carinii have shown that msg-A2 genes are ex-
pressed independent of the UCS (23, 24). Nevertheless, the possibility of homologous
recombination between msg-A2 and msg-A1 genes cannot be ruled out due to their
high sequence identities, as previously suggested (13, 47). Eleven msg-A2 genes in P.
carinii show higher identities to msg-A1 genes than to other msg-A2 genes in this
organism. It is likely that these 11 msg-A2 genes (the second exons) have arisen as a
result of reciprocal recombination with msg-A1 genes (through a mechanism unrelated
to UCS or CRJE). While it appears that msg-A2 expression is not regulated by UCS,
nothing is known yet about what mechanisms control msg-A2 expression or whether
the msg-A2 family contributes to antigenic variation in response to immune pressure,
environmental changes, or life cycle phases. The presence of a long monoguanosine
repeat in some msg-A2 genes has raised the possibility that variation in the length of
this repeat may cause frameshifts, thus altering the amino sequence downstream of the
repeat (13, 47). However, based on the high-throughput genome sequencing data with
at least 150� coverage (1), sequence reads for the monoguanosine repeat region in all
involved msg-A2 genes appeared highly uniform, though a small number of reads
(�5%) showed different numbers of repeats. We could not determine if this was caused
by sequence errors or in vivo changes. The presence of such a small number of variable
reads does not seem to support an involvement of this repeat in altering the antige-
nicity or other functions of the msg-A2 genes. Of note, a polyguanosine repeat encodes
a polyglycine peptide, which has been shown in other organisms to play various critical
roles, such as in protein-to-protein interactions, cell wall plasticity, and modulation of
developmental stages (48–50). Whether the polyglycine peptide in Msg-A2 proteins has
these functions awaits future investigation.

Despite their potential importance in Pneumocystis’ survival, the functions of the
vast majority of members of the msg superfamily remain poorly understood or unchar-
acterized. Even for the most extensively studied msg-A1 genes, while it has been
generally believed that their primary function is to confer antigenic variation and
immune evasion, there are only limited experimental data supporting this potential
function (46). There are also multiple studies showing an involvement of Msg proteins
in mediating adherence of Pneumocystis organisms to host alveolar epithelial cells and
macrophages (51–53), though it is unknown if the Msg proteins involved in these
studies represent Msg-A1 or other Msg proteins, especially Msg-A2 and Msg-A3 pro-
teins, which are highly similar to Msg-A1 proteins in sequence and length. The
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functions of all non-msg-A1 genes remains unknown. Given that the Pneumocystis
genome is highly compacted and that the DNA recombination system associated with
msg-A1 genes is presumably sufficient for antigenic variation and immune evasion,
there seems no reason to assume other msg genes perform the same function. We
speculate that non-msg-A1 genes may perform other functions, such as mediating
developmental states, optimizing mobility and adhesion ability, and adapting to spe-
cific host niches or environmental conditions. In support of this hypothesis, one such
gene of the msg-E family in P. murina, termed p57, has been shown to be a stage-
specific antigen that is expressed exclusively on intracystic bodies and young trophic
forms, suggesting a role in the Pneumocystis life cycle development (29).

In conclusion, despite a highly reduced genome, Pneumocystis is equipped with a
large complex superfamily of msg genes. These genes exhibit conservation among msg
families and subfamilies across different Pneumocystis species as well as species-specific
expansions or contractions. The versatility of these genes may mirror their association
with a wide variety of functions rather than just conferring antigenic variation to allow
immune evasion as previously believed. Our results provide a rich source of information
that lays the foundation for the continued experimental exploration of the function of
the Msg superfamily in Pneumocystis biology.

MATERIALS AND METHODS
Sources of Pneumocystis msg sequences. The primary source of msg sequences for P. murina, P.

carinii, and P. jirovecii was from our previous studies (1, 15, 16), which are available from the NCBI
Umbrella project PRJNA223519 at https://www.ncbi.nlm.nih.gov/bioproject/?term�PRJNA223519. In this
study, we obtained additional Pneumocystis msg and UCS sequences from various animals as listed in
Table S1 in the supplemental material, which includes new tentative names for Pneumocystis organisms
not reported previously. The methods to obtain these new sequences are described below.

Pneumocystis sample sources and DNA extraction. Agarose gel blocks containing P. wakefieldiae
and P. carinii were obtained from 4 Norway rats immunosuppressed once per week by 4 mg/kg of
methylprednisolone acetate (Depo-Medrol; Pharmacia and Upjohn Co. a division of Pfizer, Inc.) at the
animal facility of the University of Cincinnati, OH, USA (54). Genomic DNA in gel blocks was extracted
using the Zymoclean Gel DNA Recovery kit (Zymo Research).

P. carinii-infected lung tissues were obtained from 8 immunosuppressed Sprague Dawley rats
collected between 1986 and 2013 from the animal facilities at NIH, Bethesda, MD (14, 55), Indiana
University, Indianapolis, IN (56), and Louisiana State University Health Science Center, New Orleans, LA.
Genomic DNA was isolated by use of either a QIAamp DNA minikit (Qiagen) or a traditional method
utilizing proteinase K digestion, phenol-chloroform extraction, and ethanol precipitation (14). In addition,
P. carinii-infected lung tissues were obtained from 8 wild Norway rats (R. norvegicus) from 5 different pig
farms in Ontario, Canada, in 2015 as previously described (57); exact locations and names of these farms
were kept anonymous based on agreement with farm owners. Genomic DNA was extracted using the
MasterPure Yeast DNA purification kit (Epicentre). All wild rats appeared to be healthy upon capture and
were confirmed to be infected by P. carinii alone based on PCR and sequence analysis of two
Pneumocystis mitochondrial genes, including the large subunit of rRNA (mtLSU) and ATPase subunit 6
genes (unpublished data). The P. carinii mtLSU sequence in all rats was identical to that in the laboratory
Norway rats (GenBank JX499145).

DNA samples for Pneumocystis species infecting other wild rat species in Southeast Asia, including
chestnut white-bellied rats, Müller’s giant Sunda rats, Asian house rats, and Polynesian rats, were
obtained from previous studies (58). All animals appeared to be healthy upon capture.

Pneumocystis sp. “macacae”-infected lungs were obtained from two simian immunodeficiency virus
(SIV)-infected rhesus macaques at the NIH Animal Center, Bethesda, MD, USA (59, 60). Genomic DNA was
extracted following a Pneumocystis DNA enrichment protocol as described previously (1). An additional
two Pneumocystis sp. “macacae” samples were obtained as formalin-fixed paraffin-embedded (FFPE)
tissue sections prepared from SIV-infected rhesus macaques at the Tulane National Primate Research
Center, Covington, LA (61), and the UC Davis California National Primate Research Center, Davis, CA, USA.
Genomic DNA was extracted using the AllPrep DNA/RNA FFPE kit (Qiagen).

Pneumocystis sp. “canis” DNA samples were obtained from one Cavalier King Charles Spaniel dog at
the University of Helsinki, Finland (62, 63), and one Whippet dog at the University of Veterinary Medicine,
Vienna, Austria (64).

Four P. oryctolagi DNA samples were obtained from previous studies of one rabbit with severe
combined immunodeficiency at the University of Michigan, Ann Arbor, MI, USA (65), and three immu-
nosuppressed rabbits at the Institut Pasteur de Lille (66) and the Institut National de la Recherche
Agronomique de Tours Pathologie Aviaire et Parasitologie, Tours (67), France.

Animal experimentation guidelines of the National Institutes of Health were followed in the conduct
of these studies.

Illumina sequencing. DNA extracts for 4 P. wakefieldiae, 4 Pneumocystis sp. “macacae,” 2 Pneumo-
cystis sp. “canis,” and 4 P. oryctolagi samples were subjected to whole-genome sequencing commercially
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in an Illumina HiSeq platform using a 150-bp paired-end library and/or a 250-bp paired-end library.
Genome assembly was performed essentially as previously described (1, 68); detailed analyses of these
genomes will be published separately.

RNA-Seq analysis of different msg families in P. murina and P. carinii. The relative expression
level for each gene was estimated using RNA-Seq data from three heavily infected laboratory animals
each for P. murina and P. carinii as previously described (1). RNA-Seq reads from each of the three
samples were aligned to the coding DNA sequences (CDSs) using bowtie (69). The alignment bam files
were then used to quantify transcript abundances by RSEM (70). The relative expression level for each
gene was expressed as fragments per kilobase of exon per million fragments mapped (FPKM).

msg sequences of P. wakefieldiae. To amplify the repertoire of the classical msg-A1 genes in full
length, the forward primer (WSG.f3) was designed from the 3= end of the previously reported UCS (within
CRJE) of P. wakefieldiae (GenBank accession no. AF164562) (30). The reverse primer (WSG.r5) was
designed from the highly conserved 3=-end coding region near the stop codon based on an alignment
of more than 3,000 Illumina HiSeq reads. Primer sequences are listed in Table S2. Both primers were
specific for P. wakefieldiae, with no cross-amplification of P. carinii. PCR was performed using P.
wakefieldiae genomic DNA and the AccuPrime Pfx SuperMix kit (Thermo Fisher Scientific) with the
following cycling conditions: 95°C for 5 min and then 35 cycles at 95°C for 15 s, 55°C for 30 s, and 68°C
for 3 min, with a final extension at 68°C for 5 min. The PCR product was subcloned into the pCR2.1 TOPO
vector by use of the TOPO TA Cloning kit (Invitrogen, Carlsbad, CA). Two clones containing the full-length
msg-A1 gene were sequenced commercially by Sanger sequencing.

To sequence the P. wakefieldiae homologue of the 6-gene cluster of the msg-C family in P. murina,
we first used the Illumina reads of P. wakefieldiae (mixed with P. carinii reads) to assemble the P.
wakefieldiae homologues of PNEG_03432 and PNEG_03438, which are flanking the 6-gene cluster in P.
murina. Subsequently, we designed a primer set (3432.f1 and 3438.r1) (Table S2) specific for these two
genes in P. wakefieldiae. With these two primers, we amplified an 8-kb fragment from P. wakefieldiae DNA
and sequenced its full length by Sanger sequencing with primer walking. From a draft P. wakefieldiae
genome assembly, we identified members of the msg-A2, msg-A3, msg-D, and msg-E families or
subfamilies based on homology to known genes in P. murina, P. carinii and P. jirovecii (1). Full-length
msg-A1 genes sequences were unable to be assembled from the short HiSeq reads (16).

msg-A1 sequences of P. carinii from wild rats. To determine whether the msg-A1 repertoires are
identical in P. carinii from wild and laboratory Norway rats, we performed RFLP analysis of P. carinii
isolates from 8 wild rats in comparison with those from 8 laboratory rats. The msg-A1 repertoires were
amplified by PCR using primers RSG.f10 and RSG.r8 (Table S2), which are located in the highly conserved
regions at the beginning and end of the msg coding regions, respectively, among 57 known full-length
msg-A1 genes in P. carinii (1). Amplification was performed using the LongAmp Master Mix (New England
Biolabs) with the following parameters: 94°C for 2 min and then 35 cycles at 94°C for 15 s, 55°C for 30 s,
and 68°C for 3 min, with a final extension at 68°C for 5 min. PCR products were purified and subjected
to restriction digestion with DraI (New England BioLabs) at 37°C for 2 h. The resulting digests were
purified and separated in 2% E-gel containing ethidium bromide (Invitrogen, Carlsbad, CA).

The msg-A1 repertoire from one wild rat (no. R5), which showed a distinct RFLP pattern compared
to those of laboratory rats, was chosen for sequencing after PCR amplification using the primer pair
RSG.f10-RSG.r8 and the LiSpark Max SuFi PCR Master Mix kit (LifeSct LLC, Rockville, MD). The PCR product
was subcloned into the pCR-XL-2 TOPO vector by use of the TOPO XL-2 Complete PCR Cloning kit
(Invitrogen, Carlsbad, CA). A total of 28 clones containing the full-length msg-A1 gene were sequenced
commercially by Sanger sequencing.

msg sequences of Pneumocystis sp. “macacae,” Pneumocystis sp. “canis,” and P. oryctolagi.
Illumina HiSeq reads from one Pneumocystis sp. “macacae” sample were aligned to all known full-length
msg-A1 genes of P. jirovecii (1), resulting in at least 1,000 reads for the very 5= and 3= ends of the msg-A1
coding regions. Two primers (KSG.f3 and KSG.r2) (Table S2) were designed from highly conserved regions
based on alignment of these reads. The full-length msg-A1 repertoire in Pneumocystis sp. “macacae” was
amplified using these two primers and the LiSpark Max SuFi PCR Master Mix kit, followed by subcloning
into the pCR-XL-2 TOPO vector as described above. Two clones containing the full-length msg-A1 gene
were sequenced commercially by Sanger sequencing.

For other msg families and subfamilies, we identified a small number of representative genes from
a partial genome assembly of Pneumocystis sp. “macacae” based on homology to known genes in P.
murina, P. carinii, and P. jirovecii (1).

For Pneumocystis sp. “canis” and P. oryctolagi, a small number of genes representing each msg family
were identified from a partial genome assemblies of Pneumocystis sp. “canis” and P. oryctolagi, respec-
tively.

UCSs of msg-A1 genes in Pneumocystis from various mammalian host species. The UCS and its
5= untranscribed region (UTR) sequences in Pneumocystis sp. “macacae,” Pneumocystis sp. “canis,” and P.
oryctolagi were first obtained by assembling Illumina HiSeq reads from whole-genome sequencing as
described above, followed by confirmation by PCR amplification and Sanger sequencing of genomic
DNA. Based on sequence alignment of these UCSs and know UCSs of P. murina, P. carinii, P. wakefieldiae,
and P. jirovecii, we designed one forward primer (5UTR) from the conserved region in the 5= UTR and one
reverse primer (CRJE.r3) from the conserved region in the CRJE (Table S2). This primer set was used to
amplify the UCS along with its 5= UTR in Pneumocystis species from other mammal species, including
dogs, rabbits, chestnut white-bellied rats, Müller’s giant Sunda rats, Asian house rats, and Polynesian rats
(Fig. 4 and Table S1). To study the variability of UCSs and downstream msg-A1 coding regions in different
P. oryctolagi isolates, PCR was performed using a pair of primers, OSG.f3 and OSG.r9, which are located
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at the very 5= end of UCS and one highly conserved region near the 5= end of the msg-A1 coding region
(Table S2). All PCR products were sequenced directly and/or after subcloning into the pCR2.1 TOPO
vector as described above.

Phylogenetic analysis. To analyze phylogenetic relationships, deduced protein sequences were
aligned using MUSCLE (71), and phylogenetic trees were constructed based on maximum likelihood (ML)
using RAxML (v8.2.5) (72) with 100 bootstraps as support values. The best amino acid model was
estimated using the PROTGAMMAAUTO option.

Data availability. Annotated genomic sequences of all new msg genes identified in this study are
available from the BioProject database (https://www.ncbi.nlm.nih.gov/bioproject) under accession no.
PRJNA560924. All new UCS sequences obtained in this study are available from GenBank with accession
no. MN509813 to MN509830. Coding DNA sequences (CDSs) and deduced amino sequences for all msg
genes according to the family/subfamily are available at https://zenodo.org/record/3523554
#.XjLZ7UBFyF4 (excel file for data sets 1 to 8). Hidden Markov models (HMMs) for Msg domains are
available at https://zenodo.org/record/3515473#.XjLaaEBFyF4.
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