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Ergodicity of stochastic Cahn-Hilliard equations with logarithmic potentials driven by degenerate or nondegenerate noises

Ludovic Goudenège, Bin

Introduction

The Cahn-Hilliard equation is initially introduced to describe the phase separation in a binary alloy comprising two species when the temperature is quenched from high temperature to low one [START_REF] Cahn | On spinodal decomposition[END_REF][START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF][START_REF] Cahn | Spinodal decomposition: A reprise[END_REF] and now plays a very important role in material science, tumor growth, population dynamics, thin films and so on. The deterministic Cahn-Hilliard equation has been extensively studied after [START_REF] Cahn | Free energy of a nonuniform system. i. interfacial free energy[END_REF], see [START_REF] Langer | Theory of spinodal decomposition in alloys[END_REF][START_REF] Novick-Cohen | Nonlinear aspects of the Cahn-Hilliard equation[END_REF] for the case of the polynomial free energy and [START_REF] Blowey | The Cahn-Hilliard gradient theory for phase separation with nonsmooth free energy. I. Mathematical analysis[END_REF][START_REF] Debussche | On the Cahn-Hilliard equation with a logarithmic free energy[END_REF] for the case of the logarithmic free energy (see (1.1) below for such energy). The phase separation, spinodal decomposition and nucleation are also studied by many researchers, see [START_REF] Bates | The dynamics of nucleation for the Cahn-Hilliard equation[END_REF][START_REF] Blömker | Spinodal decomposition for the Cahn-Hilliard-Cook equation[END_REF][START_REF] Blömker | Second phase spinodal decomposition for the Cahn-Hilliard-Cook equation[END_REF][START_REF] Maier-Paape | Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions. I. Probability and wavelength estimate[END_REF][START_REF] Novick-Cohen | Nonlinear aspects of the Cahn-Hilliard equation[END_REF] for instance. We refer the reader to [START_REF] Miranville | The Cahn-Hilliard equation and some of its variants[END_REF] and references therein for more studies on the deterministic case.

On the other hand, in the presence of thermal fluctuations, a noise term is naturally required and now the stochastic Cahn-Hilliard equation is commonly accepted for modeling. There are many articles which have been devoted to the mathematical study of the stochastic Cahn-Hilliard equation with a polynomial free energy [START_REF] Antonopoulou | Malliavin calculus for the stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion[END_REF][START_REF] Antonopoulou | Existence and regularity of solution for a stochastic Cahn-Hilliard/Allen-Cahn equation with unbounded noise diffusion[END_REF][START_REF] Cardon-Weber | Cahn-Hilliard stochastic equation: existence of the solution and of its density[END_REF][START_REF] Da Prato | Stochastic Cahn-Hilliard equation[END_REF]. On the other hand, in applications, the solution of the Cahn-Hilliard equation is explained as the rescaled density of atoms or concentration of one of material's components which takes values in [-1, 1]. The polynomial free energy can not ensure that the solution satisfies the constraint and usually the logarithmic free energy can remedy such problem. However, different from the deterministic case [START_REF] Debussche | On the Cahn-Hilliard equation with a logarithmic free energy[END_REF], for the stochastic case, owing to the impact of noise, the logarithmic free energy is not strong enough to prevent the solution from exiting [-1, 1]. To study it, reflection measures are required, see [START_REF] Debussche | Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections[END_REF][START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF].

From now on, let us introduce the stochastic Cahn-Hilliard equation with the logarithmic free energy. Let λ > 0 and define f by

f (u) =          + ∞, u ≤ -1, log 1 -u 1 + u + λu, u ∈ (-1, 1), -∞, u ≥ 1. 
(1.1)

Let (W (t)) t≥0 be a cylindrical Wiener process on a completed probability space (Ω, F , P). We formally consider the stochastic Cahn-Hilliard equation with singular nonlinearity and double reflections (1u(t, θ))η + (dtdθ) = 0, u(0, θ) =x(θ), θ ∈ (0, 1), (1.2) where the solution u(t, x) ∈ [-1, 1] a.s., is usually explained as the concentration of one species with respect to the other, η -, η + are two non-negative random measures and B denotes some operator which be stated clearly in Sections 2 and 3 respectively. It is well-known that the Cahn-Hilliard equation can be regarded as a gradient system in H -1 (0, 1) with the logarithmic free energy, which is called Ginzburg-Landau free energy

                           ∂u ∂t (t, θ) = - 1 2 ∂ 2 ∂θ 2 ∂ 2 u ∂θ 2 (t, θ) + f (u(t, θ)) + η -(t, θ) -η + (t, θ) + B Ẇ (t, θ), t > 0, θ ∈ (0, 1), u(t, 0) =u(t, 1) = ∂ 3 u ∂x 3 (t, 0) = ∂ 3 u ∂x 3 (t, 1) = 0, t ≥ 0,
E(u) = 1 0 1 2 |∇u(θ)| 2 + F (u(θ)) dθ,
where F denotes the primitive of -f with F (0) = 0, that is

F (u) = (1 + u) log(1 + u) + (1 -u) log(1 -u) - λ 2 u 2 , u ∈ (-1, 1).
Note that for λ > 2, F denotes a double well potential, which is important in application.

The stochastic PDE with reflecting measures like (1.2) is one kind of random obstacle problems [START_REF] Zambotti | Random obstacle problems[END_REF], which is first studied for stochastic reaction-diffusion equations [START_REF] Donati-Martin | White noise driven SPDEs with reflection[END_REF]. Such equation has been used to model the fluctuations for ∇φ interface models on a hard wall with or without conservation of the area [START_REF] Funaki | Fluctuations for ∇φ interface model on a wall[END_REF][START_REF] Zambotti | Fluctuations for a conservative interface model on a wall[END_REF] and hence it has attracted many researchers' attention. But, different from the stochastic reaction-diffusion equation, due to the lack of the maximum principle for the double Laplacian, there are few researches on stochastic Cahn-Hilliard equations with reflecting terms, see [START_REF] Debussche | Conservative stochastic Cahn-Hilliard equation with reflection[END_REF] for the case without nonlinear term f , [START_REF] Goudenège | Stochastic Cahn-Hilliard equation with singular nonlinearity and reflection[END_REF] for the case of logarithmic and negative power nonlinear terms with only one reflection at 0. The stochastic Cahn-Hilliard equation (1.2), the main object of this paper, is studied mainly in [START_REF] Debussche | Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections[END_REF] and [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF] for different noises.

Roughly speaking, the main goal is to establish various dimension-free Harnack inequalities for the Markov semigroup associated with (1.2) driven by two kinds of noises and then study ergodic behavior of the solution and others properties. The dimension-free Harnack inequality is initially introduced in [START_REF] Wang | Logarithmic Sobolev inequalities on noncompact Riemannian manifolds[END_REF] by F.-Y. Wang to study the log-Sobolev inequality of a diffusion process on Riemannian manifolds and then it becomes as a very powerful and effective tool to the study of various important properties of diffusion semigroups or semigroup relative to stochastic (functional) partial differential equations, such as, Li-Yau type heat kernel bound, hypercontractivity, ultracontractivity, strong Feller property, estimates on the heat kernels and Varadhan type small time asymptotics [START_REF] Bao | Hypercontractivity for functional stochastic differential equations[END_REF][START_REF] Da Prato | Singular stochastic equations on Hilbert spaces: Harnack inequalities for their transition semigroups[END_REF][START_REF] Liu | Harnack inequality and applications for stochastic evolution equations with monotone drifts[END_REF][START_REF] Röckner | Supercontractivity and ultracontractivity for (non-symmetric) diffusion semigroups on manifolds[END_REF][START_REF] Wang | Harnack inequality and applications for stochastic generalized porous media equations[END_REF][START_REF] Wang | Harnack inequalities for stochastic partial differential equations[END_REF][START_REF] Zhang | White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities[END_REF].

Although recently dimension-free Harnack inequalities and their applications have also been studied for stochastic reaction-diffusion equations with reflections [START_REF] Niu | Wang's Harnack inequalities for space-time white noises driven SPDEs with two reflecting walls and their applications[END_REF][START_REF] Xie | Hypercontractivity for space-time white noise driven SPDEs with reflection[END_REF][START_REF] Zhang | White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities[END_REF], to our best knowledge, there is no publications on stochastic Cahn-Hilliard equations. Therefore, in the paper, we intend to the study on the dimension-free Harnack inequalities for the Markov semigroup generated by the solutions of (1.2) perturbed by two different noises Then we study other important properties of the Markov semigroup obtained as corollary of Harnack inequalities According to the characteristics of noises, both the asymptotic log-Harnack inequality and the Harnack inequality with power will be considered. More precisely, we first study the asymptotic log-Harnack inequality for the Markov semigroup relative to (1.2) driven by the highly degenerate colored noise under the so-called essentially elliptic conditions, see [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF] and [START_REF] Hairer | Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing[END_REF]. The asymptotic log-Harnack inequality is initially introduced in [START_REF] Xu | A modified log-Harnack inequality and asymptotically strong Feller property[END_REF] with an application to stochastic 2D Navier-Stokes equations. The most important property of the asymptotic log-Harnack inequality is that the asymptotic strong Feller property introduced in [START_REF] Hairer | Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing[END_REF] can be deduced from it. Hence, it has been established for various stochastic (partial) differential equations, see [START_REF] Bao | Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory[END_REF] for stochastic systems with infinite memory and see [START_REF] Li | Ergodicity of 3D Leray-α model with fractional dissipation and degenerate stochastic forcing[END_REF] for 3D Leray-α model.

However, as far as we know, there is no publication on the asymptotic log-Harnack inequality for stochastic Cahn-Hilliard equations like (1.2), even for stochastic reaction-diffusion equations with reflections. Since the degenerate noise is considered, as explained in [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF] and [START_REF] Hairer | Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing[END_REF], it seems impossible to obtain the strong Feller property. On the other hand, it is well-known that the log-Harnack inequality or the Harnack inequality with power implies the strong Feller property, see Theorem 1.4.1 [START_REF] Wang | Harnack inequalities for stochastic partial differential equations[END_REF]. Therefore, it seems impossible for us to establish the log-Harnack inequality in this case, and also the Harnack inequality with power. Instead of such strong inequalities, we will show the Markov semigroup associated with (1.2) satisfies the asymptotic log-Harnack inequality, which is a weaker version of dimension-free Harnack inequalities. Although the asymptotic strong Feller property for (1.2) has been proved in [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF], we give a new proof of the asymptotic strong Feller property under a weaker condition and cover partially the corresponding result obtained in [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF].

The second purpose of this paper is to establish the Harnack inequality with power and then in particular, the log-Harnack inequality, for the Markov semigroup corresponding to (1.2) with B = (-∆) 1 2 . It is known that in this case, the average of the solution u(t) in its spatial variable is conservative in time [START_REF] Debussche | Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections[END_REF]. But, the conservation of the average makes it more difficult to investigate the dimension-free Harnack inequalities via coupling by change of measures than the well-studied cases of stochastic partial differential equations drive by additive noises [START_REF] Liu | Harnack inequality and applications for stochastic evolution equations with monotone drifts[END_REF][START_REF] Niu | Wang's Harnack inequalities for space-time white noises driven SPDEs with two reflecting walls and their applications[END_REF][START_REF] Wang | Harnack inequality and applications for stochastic generalized porous media equations[END_REF][START_REF] Wang | Hypercontractivity and applications for stochastic Hamiltonian systems[END_REF][START_REF] Zhang | White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities[END_REF]. To overcome it, we make use of the strategy initially introduced in [START_REF] Wang | Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds[END_REF], in which the stochastic finite differential equation driven by multiplicative noise is investigated.

Let us now introduce some notations, which will be used throughout this paper. We denote by •, • and | • | the canonical inner product and the norm of L 2 (0, 1) respectively. Let A be the realization of ∂ 2 ∂θ 2 with homogeneous Neumann boundary condition in L 2 (0, 1), that is, Au = ∂ 2 u ∂θ 2 for any u ∈ D(A) := {u ∈ H 2 (0, 1) :

u ′ (0) = u ′ (1) = 0}. It is known that A is self-adjoint in L 2 (0, 1) with a complete orthonormal system {e n } ∞ n=0 in L 2 (0, 1), which satisfies e 0 (θ) ≡ 1, e n (θ) = √ 2 cos(nπθ), n = 1, 2, • • • and Ae n = -(nπ) 2 e n , n = 0, 1, • • • .
For any γ ∈ R, let us define (-A)

γ 2 u = ∞ n=1 (nπ) γ u n e n for any u = ∞ n=0
u n e n with its domain

V γ = D (-A) γ 2 := u = ∞ n=0 u n e n : ∞ n=0 (nπ) 2γ u 2 n < ∞ .
It will be endowed with the norm u γ = (|u| 2 γ + ū2 )

1 2
. Hereafter, ū denotes the average of u, that is ū = u, e 0 , and |u| γ denotes the seminorm, that is,

|u| γ = (-A) γ 2 u = ( ∞ n=1 (nπ) 2γ u 2 n ) 1 2 .
In addition, we will set (u, v) γ = (-A)

γ 2 u, (-A) γ 2 v
, which is the semiscalar product. For simplicity of notation, we set H = V -1 through-out this paper. Let us also denote by H c the affine space H c = {u ∈ H : ū = c}. It is easy to check that H c is a Polish space with the metric inherited form H.

The remainder of this paper is organized as follows. In Section 2, the asymptotic log-Harnack inequality for (1.2) driven by highly degenerate noise is established by using the asymptotic coupling method and as its application, the asymptotic heat kernel estimate and the asymptotic irreducibility are mainly stated. In Section 3, the Harnack inequality with power and the log-Harnack inequality for (1.2) with B = (-∆) 1 2 are obtained and some important applications also are described as example.

2 Asymptotic log-Harnack inequality for the case of highly degenerate colored noise

In this section, we intend to establish the asymptotic log-Harnack inequality relative to (1.2) driven by highly degenerate colored noise, which is studied in [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF], and then as its application, the asymptotic strong Feller property, the asymptotic gradient estimate and the asymptotic heat kernel estimate are studied. Moreover, our results can be partially applied to the (1.2) with the double-well potential F . Let us recall the definition of the asymptotic log-Harnack inequality precisely based on [START_REF] Bao | Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory[END_REF][START_REF] Xu | A modified log-Harnack inequality and asymptotically strong Feller property[END_REF]. Let (E, d) be a Polish space and let B b (E) be the family of bounded measurable functions on E. We denote by φ ∞ the uniform norm of φ ∈ B b (E). For a function φ on E, we denote by |∇φ|(x) its local Lipschitz constant at x, that is, ,y) .

|∇φ|(x) = lim sup y→x |φ(x) -φ(y)| d(x
In addition, here and in the sequel, ∇φ ∞ = sup x∈E |∇φ|(x).

Definition 2.1. Let (P t ) t≥0 be a Markov semigroup on (E, d). It is called that (P t ) t≥0 satisfies an asymptotic log-Harnack inequality if there exist two non-negative functions Φ(•,

•) on E × E and Ψ(•, •, •) on [0, ∞) × E × E satisfying Ψ(•, •, •) → 0 as t → ∞ such that P t log φ(y) ≤ log P t φ(x) + Φ(x, y) + Ψ(t, x, y) ∇ log φ ∞ , t > 0 holds for any x, y ∈ E and any positive φ ∈ B b (E) with ∇ log φ ∞ < ∞.
Thanks to the Jensen inequality, it is natural to set Φ(x, x) = Ψ(t, x, x) = 0 for any t ≥ 0 and x ∈ E. It is known that one of the important applications of the asymptotic log-Harnack inequality is that it implies the asymptotic strong Feller property, see Proposition 1.6 [START_REF] Xu | A modified log-Harnack inequality and asymptotically strong Feller property[END_REF] or Theorem 2.1 [START_REF] Bao | Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory[END_REF]. For the reader's convenience, let us recall the definition of the asymptotic strong Feller property according to the original paper [START_REF] Hairer | Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing[END_REF]. For a pseudo-metric d p on E and two probability measures µ 1 , µ 2 on E, let us define the transportation cost µ 1µ 2 dp by

µ 1 -µ 2 dp = inf µ∈C(µ 1 ,µ 2 ) E×E d p (x, y)µ(dx, dy),
where C(µ 1 , µ 2 ) denotes the collection of all probability measures on E × E with marginals µ 1 and µ 2 . We say that {d n } ∞ n=1 is a totally separating system of pseudometrics for E if for any m < n and x, y ∈ E, d m (x, y) ≤ d n (x, y), and for any x = y lim n→∞ d n (x, y) = 1. Definition 2.2 (Definition 3.1 [START_REF] Hairer | Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing[END_REF]). The Markov semigroup (P t ) t≥0 on (E, d) is said to be asymptotically strong Feller at point x ∈ E if there exist a totally separating system of pseudo-metrics {d n } ∞ n=1 for E and a positive sequence

{t n } ∞ n=1 such that inf B∈Bx lim sup n→∞ sup y∈B P tn 1 B (x) -P tn 1 B (y) dn = 0,
where B x denotes the family of all open sets including x. In addition, if this property holds for any x ∈ E, then (P t ) t≥0 is said to be asymptotically strong Feller.

Let us now explain our main goal of this section in detail. More precisely, we intend to establish the asymptotic log-Harnack inequality for the Markov semigroup associated with one of the limits of the sequence {u n } ∞ n=1 of the solutions of the stochastic partial differential equation studied in [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF] 

                ∂u n ∂t (t, θ) = - 1 2 ∂ 2 ∂θ 2 ∂ 2 u n ∂θ 2 (t, θ) -p n (u n (t, θ)) + λu n (t, θ) + B Ẇ (t, θ), t > 0, θ ∈ (0, 1), u n (t, 0) =u n (t, 1) = ∂ 3 u n ∂θ 3 (t, 0) = ∂ 3 u n ∂θ 3 (t, 1) = 0, t ≥ 0, u n (0, θ) =x(θ), θ ∈ (0, 1), (2.1) 
where

p n (u) = 2 n i=0 u 2i+1 2i + 1 , u ∈ R
is a non-decreasing (2n + 1)-degree polynomial. It is easy to show that -p n (u) + λu converges to f (u) for u ∈ (-1, 1).

In this part, we will assume that B is a Hilbert-Schmidt operator from L 2 (0, 1) to H, which it is equivalent to the fact that B(-A) -1 B * is a trace class on L 2 (0, 1). Indeed,

B 2 L HS = ∞ n=0 Be n 2 -1 = ∞ n=0 (-A) -1 2 Be n , (-A) -1 2 Be n = ∞ n=0 B * (-A) -1 Be n , e n = Tr(B(-A) -1 B * ),
where • 2 L HS denotes the norm of the Hilbert-Schmidt operator from L 2 (0, 1) to H, B * denotes the adjoint operator of B and Tr denotes the trace of an operator on L 2 (0, 1). In the following, we set Tr -1 = Tr(B(-A) -1 B * ). In addition, to consider the ergodic property, we assume (A1): B * e 0 = 0. Remark 2.1. To study the ergodic property, (A1) is necessary. In fact, it is easy to show that u n (t) = x + B * e 0 , W (t) . Thus, if (A1) fails, then there cannot be have a stationary solution. There is no fixed mass c and there is no invariant measure on H c . Using the notations introduced in Section 1, the SPDE (2.1) can be rewritten in its abstract form as below.

   du n (t) = - 1 2 A Au n (t) -p n (u n (t)) + λu n (t) dt + BdW (t), t > 0, u n (0) =x. (2.2)
It is known that for each n ∈ N, (2.1) has a unique mild (or weak) solution

u n satisfying u n ∈ C([0, ∞); H) ∩ L 2n+2 ((0, ∞) × (0, 1 
)) a.s., see [START_REF] Da Prato | Stochastic Cahn-Hilliard equation[END_REF] or [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF]. We also know that the average of u n (t) is conservative, that is, u n (t) = x a.s. because of the assumption (A1).

Hence, we know that (2.1) develops in the affine space H c if the average x of the initial datum x equals to c.

For each c ∈ R, let denote by (P n,c t ) t≥0 the Markov semigroup determined by (2.1), that is,

P n,c t φ(x) = E[φ(u n (t; x))], t ≥ 0, x ∈ H c , φ ∈ B b (H c
), Here and in the sequel, to specify the initial value x, we use u n (t; x) to denote the solution of (2.2).

The following theorem is summarized from Proposition 3.3 and Theorem 4.1 [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF].

Theorem 2.1. Under all of the above assumptions, for any c ∈ (-1, 1), the following results hold.

(i) There exists a subsequence {n k } and a Markov semigroup (P c t ) t≥0 such that

lim k→∞ P c,n k t φ(x) = P c t φ(x)
holds for any x ∈ H c and any φ ∈ B b (H c ).

(ii) (P c t ) t≥0 has an invariant probability measure μc . In the following, we will fix a converging subsequence P n k ,c t stated in Theorem 2.1. For simplicity, we will still use the notation P n,c t and u n (t) instead of P n k ,c t and u n k (t). Let us denote by u(t; x) the limit process of u n k (t), which is the Markov process associated with (P c t ) t≥0 . Formally speaking, the sequence {u n } ∞ n=1 converges to the solution of (1.2), see [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF]. But any limit of {u n } ∞ n=1 cannot be characterized as a solution of SPDEs, see Section 5, [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF] for more information. Here we show that the invariant measure μc is exponentially integrable. Theorem 2.2. Let c ∈ (-1, 1) and suppose the assumptions in Theorem 2.1 hold. For any ς > 0 satisfying π 4 > 2ς B * 2 , where B * denotes the operator norm of B * , then the invariant measure μc satisfies the exponential integrability

μc exp(ς| • | 2 -1 ) < ∞. (2.3)
If further π 4 > λ, then μc is the unique invariant measure and for any Lipschitz continuous function φ ∈ B b (H c ),

|P c t φ(x) -μc (φ)| ≤ ∇φ ∞ exp -(π 4 -λ)t (|x| -1 + μ(| • | -1 )) , x ∈ H c , t ≥ 0. (2.4)
Proof. According to the proof of Proposition 3.1 [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF], we have that for each n ∈ N, |u n (t)| -1 , t ≥ 0 is a continuous semimartingale with its local martingale part

M n (t) = 2 t 0 B * u n (s), dW (s) , t ≥ 0. (2.5)
Moreover, the estimate

d|u n (t)| 2 -1 ≤ -|u n (t)| 2 1 + P c (λ) dt + 2dM n (t), t ≥ 0 a.s.
is proved in the proof of Proposition 3.1 [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF], where P c (λ) is a positive constant depending on c, λ and Tr -1 , but independent of n.

Noting that |x| 1 ≥ π 2 |x| -1 , x ∈ V 1 , from the above inequality, it follows that d|u n (t)| 2 -1 ≤ -π 4 |u n (t)| 2 -1 + P c (λ) dt + 2dM n (t), t ≥ 0 a.s. (2.6) Let τ n m = inf{t ≥ 0 : |u n (t)| -1 ≥ m}, m
∈ N be the sequence of stopping times. Then it is easy to show lim m→∞ τ n m = ∞ a.s. and M n (t ∧ τ n m ), t ≥ 0 is a square integrable continuous martingale. Applying the Itô's formula and using (2.5) and (2.6), we have

d exp(ς|u n (t)| 2 -1 ) (2.7) ≤ς exp(ς|u n (t)| 2 -1 )(-π 4 |u n (t)| 2 -1 + P c (λ))dt + 2ς exp(ς|u n (t)| 2 -1 )dM n (t) + 2ς 2 exp(ς|u n (t)| 2 -1 )|B * u n (t)| 2 dt ≤ς exp(ς|u n (t)| 2 -1 ){(-π 4 + 2ς B * 2 )|u n (t)| 2 -1 + P c (λ)}dt + 2ς exp(ς|u n (t)| 2 -1 )dM n (t), t ≤ T ∧ τ n m .
Combining the fact that π 4 > 2ς B * 2 with (2.7), we obtain that there exists a positive constant K = K(ς, B * , P c (λ)) independent of m, n and t such that

d exp(ς|u n (t)| 2 -1 ) ≤ K -ς(π 4 -2ς B * 2 ) exp(ς|u n (t)| 2 -1 ) dt (2.8) + 2ς exp(ς|u n (t)| 2 -1 )dM n (t), t ≤ T ∧ τ n m .
To choose the constant K in the above inequality, the following fundamental inequality is utilized: Thus, integrating both sides of (2.8) form 0 to T ∧ τ n m , taking expectations, bounding nonpositive term, we obtain that

E T ∧τ n m 0 exp(ς|u n (t)| 2 -1 )dt ≤ exp(|x| 2 -1 ) + KT ς(π 4 -2ς B * 2 ) ,
which by letting m → ∞ gives that

E T 0 exp(ς|u n (t)| 2 -1 )dt ≤ exp(|x| 2 -1 ) + KT ς(π 4 -2ς B * 2 )
for all n ∈ N.

Recalling that we have fixed the converging subsequence and then letting n → ∞, we have

E T 0 exp(ς|u(t)| 2 -1 )dt ≤ exp(|x| 2 -1 ) + KT ς(π 4 -2ς B * 2 )
, which implies the desired result (2.3).

Let us now give the proof of (2.4). Under our assumptions, we can easily show the following 1-Lipschitz continuity of (u(t)) t≥0 on its initial data:

|u(t; x) -u(t; y)| -1 ≤ exp(-(π 4 -λ)t)|x -y| -1
(2.9) holds for any x, y ∈ H c , t ≥ 0. Here we omit its proof and refer the reader to Lemma 2.5 below for a similar discussion. Since μc is invariant for P c t , for any Lipschitz continuous function φ ∈ B b (H c ), we have

|P c t φ(x) -μc (φ)| =|P c t φ(x) -μc (P c t φ)| ≤ H c |P c t φ(x) -P c t φ(y)|μ c (dy) ≤ ∇φ ∞ H c |u(t; x) -u(t; y)| -1 μc (dy).
Consequently, we can easily complete the proof of (2.4) by (2.9) and (2.3).

From now on, let us establish the asymptotic log-Harnack inequality for P c t under the following highly degenerate condition:

(A2): There exists a non-negative sequence {b i } ∞ i=1 such that Bu = ∞ i=1 b i u, e i e i and there exists a big enough integer N such that b i > 0, i = 1, 2, • • • , N and (N + 1) 2 π 2 > λ.

(2.10)

From this assumption, it follows that span{e 1 , • • • , e N } ⊂ Rang(B) and such setting is known as the so-called essentially elliptic condition, see Section 4.5 [START_REF] Hairer | Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing[END_REF]. Let Π l be the projector from H c into the (N+1)-dimension space span{e 0 , e 1 , • • • , e N }, where N is the integer appearing in the above assumption (A2). Moreover, we know that B restricted on span{e 1 , e 2 , • • • , e N } is invertible and its inverse will be denoted by B -1 . Thus, the operator B -1 AΠ l is well-defined from H c to span{e 1 , e 2 , • • • , e N } and is bounded. Set

α = 1 2 min π 4 , (N + 1) 2 π 2 -λ (N + 1) 2 π 2 .
Now we can formulate the main result of this section.

Theorem 2.3. Suppose the assumptions (A1)-(A2) are satisfied. Then, for any c ∈ (-1, 1), the Markov semigroup (P c t ) t≥0 satisfies the asymptotic log-Harnack inequality. More precisely, we have that

P c t log φ(y) ≤ log P c t φ(x) + λ 8α (1 -exp(-2αt)) B -1 AΠ l 2 op |x -y| 2 -1
(2.11)

+ exp(-αt) ∇ log φ ∞ |x -y| -1 , t > 0 holds for any x, y ∈ H c and any positive φ ∈ B b (H c ) with ∇ log φ ∞ < ∞, where B -1 AΠ l op denotes the operator norm of B -1 AΠ l from H c to the N-dimensional space span{e 1 , e 2 , • • • , e N }.
The proof of Theorem 2.3 will be stated after Lemma 2.5 below. Here let us first state some applications of Theorem 2.3. As we have stated, the asymptotic strong Feller property can be immediately deduced from Theorem 2.3. Moreover, thanks to Theorem 2.1 [START_REF] Bao | Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory[END_REF], many other important properties of P c t φ, such as its gradient estimate, asymptotic heat kernel estimate and asymptotic irreducibility, can be deduced. 

|∇P c t φ| ≤ λ 4α 1 2 B -1 AΠ l op P c t φ 2 -(P c t φ) 2 + ∇φ ∞ exp(-αt). (iii) For any non-negative φ ∈ B b (H c ) with φ ∞ < ∞ and all x ∈ H c , lim sup t→∞ P c t φ(x) ≤ log μc (exp φ) H c exp(-λ 8α B -1 AΠ l 2 op |x -y| 2 -1 )μ c (dy)
, where μc the invariant probability measure of P c t . (iv) Suppose for some x ∈ H c and a measurable set A ⊂ H c , lim inf t→∞ P c t (x, A) > 0 holds. Then, for any y ∈ H c and ǫ > 0

lim inf t→∞ P c t (y, A ǫ ) > 0,
where A ǫ denotes the ǫ-neighborhood of A in H c .

Proof. For any x, y ∈ H c , let us set

Φ(x, y) = λ 8α B -1 AΠ l 2 op |x -y| 2 -1 and Ψ(t, x, y) = exp(-αt)|x -y| -1 .
Then, it is clear that

lim y→x Φ(x, y) |x -y| 2 -1 = λ 8α B -1 AΠ l 2 op and lim y→x Ψ(t, x, y) |x -y| -1 = exp(-αt).
Hence, the conditions in Theorem 2.1 (1) [START_REF] Bao | Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory[END_REF] are satisfied, and consequently (i) and (ii) can be shown by Theorem 2.1 (1) [START_REF] Bao | Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory[END_REF].

On the other hand, (iii) and (iv) are the direct results from Theorem 2.1 ( 2) and (4) [START_REF] Bao | Asymptotic Log-Harnack inequality and applications for stochastic systems of infinite memory[END_REF] respectively. Remark 2.2. (i) By analogy to the proof of Proposition 1.6 [START_REF] Xu | A modified log-Harnack inequality and asymptotically strong Feller property[END_REF], we can also show that for any Lipschitz continuous function φ ∈ B b (H c ),

|∇P c t φ|(x) ≤ λ 4α 1 2 B -1 AΠ l op φ ∞ + 2 ∇φ ∞ exp(-αt), (2.12) 
which is a sufficient condition for the asymptotical strong Feller property, see Proposition 3.12 [START_REF] Hairer | Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing[END_REF]. Although the asymptotic strong Feller property has been proved in Proposition 4.3 [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF], the estimate like (2.12) has not been proved. So a new proof is given for Proposition 4.3 [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF] by our result.

(ii) From the asymptotical strong Feller property, it follows that any two different ergodic invariant measures must have disjoint topological supports, see Theorem 3.16 [START_REF] Hairer | Ergodicity of the 2D Navier-Stokes equations with degenerate stochastic forcing[END_REF].

(iii) The uniqueness of invariant measures of P c t is proved by showing the asymptotical strong Feller property and weakly topological irreducibility in [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF]. From the proof of Theorem 2.3, we see that "N" in the assumption (A2) for the asymptotical strong Feller property can be chosen a little smaller than that in Proposition 4.3 [START_REF] Goudenège | Asymptotic properties of stochastic Cahn-Hilliard equation with singular nonlinearity and degenerate noise[END_REF] (because of the factor π 2 ) since their assumption was not completely optimal. In addition, the uniqueness of invariant measures can be also easily shown by (2.4) under the assumption of Theorem 2.2. Theorem 2.3 will be proved using the asymptotic coupling by change of measures. Let first us construct the asymptotic coupling. Let us consider the coupling stochastic partial differential equation

       dv n (t) = - 1 2 A Av n (t) -p n (v n (t)) + λΠ h v n (t) + λΠ l u n (t) dt + BdW (t), t > 0, v n (0) =y, (2.

13)

where Π h = I -Π l . By the similar arguments to (2.2), one can show that (2.13) has a unique mild solution v n such that v n ∈ C([0, ∞); H) ∩ L 2n+2 ((0, ∞) × (0, 1)) a.s. Furthermore, we know that the mass of v n (t) is conservative in t ≥ 0 by considering the assumption (A1).

Lemma 2.5. The solution u n (t; x) of (2.2) and the solution v n (t; y) of (2.13) are asymptotically coupling in the following sense:

|u n (t; x) -v n (t; y)| -1 ≤ exp(-αt)|x -y| -1 , x, y ∈ H c .
(2.14)

Proof. By the density of L 2 (0, 1) in H, it is enough for us to show (2.14) holds for any x, y ∈ L 2 (0, 1) whenever x = ȳ = c. For simplicity of notations, we write u n (t) for u n (t; x) and respectively v n (t) for v n (t; y) in the following.

Let X n (t) = u n (t) -v n (t). Then it is clear that X n (t) satisfies    dX n (t) = - 1 2 A AX n (t) -[p n (u n (t)) -p n (v n (t))] + λΠ h X n (t) dt, X n (0) =x -y.
(2.15)

Let us first point out that X n (t) = 0 for any t ≥ 0 by the conservative properties of u n (t) and v n (t), which will be used below. Without loss of generality, we assume the integer K > N and let us set

X n,K (t) = K k=0 u n (t) -v n (t), e k e k .
Then it is known that X n,K (t) ∈ D(A) a.s. Therefore, by (2.15) and the spectral property of the operator A,

d dt |X n,K (t)| 2 -1 = AX n,K (t), X n,K (t) -p n (u n (t)) -p n (v n (t)), X n,K (t) (2.16) + λ Π h X n,K (t), X n,K (t) = -|X n,K (t)| 2 1 -p n (u n (t)) -p n (v n (t)), X n,K (t) + λ Π h X n,K (t), X n,K (t) .

Let us note that for any

u ∈ V 1 with ū = 0, |u| 2 1 ≥ π 2 |Π l u| 2 + (N + 1) 2 π 2 |Π h u| 2 .
Recalling that X n (t) = 0 and noting the increasing property of p n , then by (2.16), we obtain that

d dt |X n,K (t)| 2 -1 ≤ -π 2 |Π l X n,K (t)| 2 -{(N + 1) 2 π 2 -λ}|Π h X n,K (t)| 2 .
(2.17)

Hence, using (2.10) in the assumption (A2) and combining (2.17) with the next relations

|Π l u| 2 ≥ π 2 |Π l u| 2 -1 and |Π h u| 2 ≥ (N + 1) 2 π 2 |Π h u| 2 -1 , u ∈ L 2 (0, 1),
we have that

d dt |X n,K (t)| 2 -1 ≤ -π 4 |Π l X n,K (t)| 2 -1 -{(N + 1) 2 π 2 -λ}(N + 1) 2 π 2 |Π h X n,K (t)| 2 -1 ≤ -2α|X n,K (t)| 2 -1 .
Finally, letting K → ∞ in the above inequality, we have

d dt |X n (t)| 2 -1 ≤ -2α|X n (t)| 2 -1 ,
which obviously implies the desired result (2.14).

From now on, let us now formulate the proof of Theorem 2.3.

Proof of Theorem 2.3. Let us set

ξ(t) = ξ n (t) := λ 2 B -1 AΠ l (u n (t) -v n (t)), t ≥ 0.
Although ξ n (t) depends on n, we will omit the superscript n, because uniform estimates on n can be shown as below. By Lemma 2.5, it goes that

|ξ(t)| ≤ λ 2 B -1 AΠ l op |u n (t) -v n (t)| -1 (2.18) ≤ λ 2 B -1 AΠ l op exp(-αt)|x -y| -1 .
Therefore, by the Novikov condition, we have that

M(t) = exp t 0 ξ(s), dW (s) - 1 2 t 0 |ξ(s)| 2 ds
is a real-valued martingale and then by the Girsanov theorem,

W (t) = W (t) - t 0 ξ(s)ds, t ≥ 0
is a cylindrical Wiener process on L 2 (0, 1) under the probability P defined by

d P dP Ft = M(t).
According to the definition of ξ(t), we point out that M(t), W (t) and P are depending on n. For our goal, uniform estimates on n should be established. Now by using the stochastic processes ( W (t)) t≥0 and (ξ(t)) t≥0 , the coupling equation (2.13) can be rewritten as

   dv n (t) = - 1 2 A Av n (t) -p n (v n (t)) + λv n (t) dt + Bd W (t), t > 0,
v n (0) =y.

(2. [START_REF] Donati-Martin | White noise driven SPDEs with reflection[END_REF] In particular, by the uniqueness in law of the solution of (2.13), it is known that the distribution of v n (t) under P is same as that of u n (t; y) under P.

We first note that for any positive

φ ∈ B b (H c ) with ∇ log φ ∞ < ∞, P n,c t log φ(y) =E P [log φ(v n (t))] (2.20) =E P[log φ(u n (t; x))] + E P [log φ(v n (t))] -E P [log φ(u n (t; x))] :=I n 1 (t) + I n 2 (t),
where E P denotes the expectation with respect to P.

Using the definition of P and the martingale property of (M(t)) t≥0 , we have that

I n 1 (t) =E[M(t) log φ(u n (t; x))] (2.21) ≤E[M(t) log M(t)] -E[M(t)] log E[M(t)] + E[M(t)] log E[φ(u n (t; x))] =E[M(t) log M(t)] + E[M(t)] log E[φ(u n (t; x))] =E[M(t) log M(t)] + log P n,c t φ(x)
, where the Young inequality

E[XY ] ≤ E[X log X] -E[X] log E[X] + E[X] log E[e Y ] (2.22)
for any non-negative random variables X, Y ≥ 0 a.s. with E[X] > 0 has be used for the second line; see Lemma 2.4 [START_REF] Arnaudon | Gradient estimates and Harnack inequalities on noncompact Riemannian manifolds[END_REF] for its proof. On the other hand, using (2.18), we deduce that

E[M(t) log M(t)] =E P[log M(t)] =E P t 0 ξ(s), dW (s) - 1 2 t 0 |ξ(s)| 2 ds =E P t 0 ξ(s), d W (s) + 1 2 t 0 |ξ(s)| 2 ds = 1 2 E P t 0 |ξ(s)| 2 ds ≤ λ 4 E P t 0 B -1 AΠ l 2 op exp(-2αs)|x -y| 2 -1 ds = λ 8α (1 -exp(-2αt)) B -1 AΠ l 2 op |x -y| 2 -1 .
Hence, plugging this estimate into (2.21), we have

I n 1 (t) ≤ λ 8α (1 -exp(-2αt)) B -1 AΠ l 2 op |x -y| 2 -1 + log P n,c t φ(x). ( 2 

.23)

Let us now give the required estimate for I 2 (t), which is easier. In fact, by Lemma 2.5, we have that

|I n 2 (t)| ≤ ∇ log φ ∞ E P[|u n (t) -v n (t)| -1 ] (2.24) ≤ exp(-αt) ∇ log φ ∞ |x -y| -1 .
Inserting (2.23) and (2.24) into (2.20), we see that for any n ∈ N

P n,c t log φ(y) ≤ log P n,c t φ(x) + λ 8α (1 -exp(-2αt)) B -1 AΠ l 2 op |x -y| 2 -1 + exp(-αt) ∇ log φ ∞ |x -y| -1 , t > 0 holds for any x, y ∈ H c and any positive φ ∈ B b (H c ) with ∇ log φ ∞ < ∞.
Consequently, noting that B -1 AΠ l op is independent of n and then using Theorem 2.1, we can obtain the desired result (2.11) by letting n → ∞. Therefore, the proof of Theorem 2.3 is completed.

3 Harnack inequality for the case of nondegenerate space-time white noise

In this section, we will intend to study the properties of the Markov semigroup generated by the SPDE (1.2) for the special case of B = d dθ (or equivalently B = (-A) 1 2 , see Remark 3.1 below) with its domain H 1 (0, 1), which is studied in [START_REF] Debussche | Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections[END_REF]. Let us recall the definition of solution of (1.2) according to Definition 1.1 [START_REF] Debussche | Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections[END_REF]. (1) The quadruplet (u(•), η + , η -, W ) defined on a filtered complete probability space (Ω, F , (F t ) t≥0 ; P) is said to be a weak solution of (1.2) with its initial value x if all of the following conditions are satisfied: (i) The stochastic process u(•) ∈ C((0, T ] × [0, 1]; [-1, 1]) ∩ C([0, 1]; H) a.s. with u(0) = x, and f (u) ∈ L 1 ([0, T ] × [0, 1]) a.s. for any T > 0. (ii) η + and η -are two positive random measures on [0, ∞) × [0, 1] satisfying the following property:

η ± ([δ, T ] × [0, 1]) < ∞ a.
s. for all δ ∈ (0, T ] and T > 0.

(iii) (W (t)) t≥0 is a cylindrical Wiener process on L 2 (0, 1). Moreover, the initial value x is independent of (W (t)) t≥0 and the stochastic process (u(t),

W (t)) t≥0 is (F t )-adapted. (iv) For all φ ∈ D(A 2 ) and 0 < δ < t, u(t), φ = u(δ), φ - 1 2 t δ u(s), A 2 φ ds - 1 2 t δ f (u(s)), Aφ ds (3.1) - 1 2 t δ 1 0 Aφ(θ)η + (dsdθ) + 1 2 t δ 1 0 Aφ(θ)η -(dsdθ) + t δ B * φ, dW (s) a.s. (v) The contact properties supp(η + ) ⊂ {(t, θ) ∈ [0, ∞) × [0, 1] : u(t, θ) = +1} and supp(η -) ⊂ {(t, θ) ∈ [0, ∞) × [0, 1] : u(t, θ) = -1} hold almost surely, that is, ∞ 0 1 0 (1 -u(t, θ))η + (dtdθ) = ∞ 0 1 0 (1 + u(t, θ))η -(dtdθ) = 0 a.s.
(2) A weak solution (u(•), η + , η -, W ) is said to be a strong one if the stochastic process (u(t)) t≥0 is adapted to the natural filtration (F t ) t≥0 generated by (W (t)) t≥0 .

The term f (u(s)), Ah appearing in the right hand side of (3.1) should be understood in a duality between L 1 and L ∞ . In fact, it is assumed that f (u(t)) ∈ L 1 ([0, T ] × [0, 1]) a.s. for any fixed T in (i). In addition, for the uniqueness of the solution, we mean the pathwise uniqueness, that is, for any two solutions (u i , η i + , η i -, W ), i = 1, 2 of (1.2) with same initial data defined on the same probability space with same W , then (u

1 , η 1 + , η 1 -) = (u 2 , η 2 + , η 2 
-) a.s. Now let us summarize main results obtained in [START_REF] Debussche | Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections[END_REF], which will be used in the following. For brevity, in this section, we will use the same notations introduced in Section 3. To emphasize the initial value, u(t; x) or u(t, •; x) will be used according to purposes in the sequel. Theorem 3.1. For any c ∈ (-1, 1) and

x ∈ K := {x ∈ L 2 (0, 1) : x ∈ [-1, 1]} with x = c, the SPDE (1.
2) has a unique strong solution (u(•; x); η + , η -, W ). Moreover, the following hold:

(i) The mass of u(t; x) is conservative in t, that is, ū(t; x) = x for all t > 0. (ii) (u(t; x); t ≥ 0, x ∈ K ∩ H c ) is a K ∩ H c -

valued continuous Markov process and its associated Markov transition semigroup

P c t is strong Feller on H c . (iii) For each c ∈ (-1, 1), ν c (dx) = 1 Z c exp - 1 0 F (x(θ))dθ 1 K (x)µ c (dx)
is the unique invariant measure of P c t , where µ c denotes the Gaussian measure N(ce 0 , (-A) -1 ) and Z c denotes the normalization constant. (iv) For any k ∈ N and

0 = t 0 < t 1 < t 2 < • • • < t k , (u n (t i ; x)) k i=1 converges weakly to (u(t i ; x)) k i=1 as n → ∞.
In particular, for any φ ∈ B b (H c ) and t ≥ 0, we have lim n→∞ P n,c t φ(x) = P c t φ(x). Hereafter, u n (t; x) and P n,c t denote the solution of (2.1) with B = d dθ and its associated Markov semigroup. Remark 3.1. (i) (-A) -1 appearing in (iii) denotes the inverse of -A from L 2 0 to L 2 0 . From Lemma 2.1 [START_REF] Debussche | Conservative stochastic Cahn-Hilliard equation with reflection[END_REF], it is known that µ c is the distribution of the Gaussian process (B(θ and(-A)

) -B + c) θ∈[0,1] on C([0, 1]), where (B(θ)) θ∈[0,1] denotes a standard Brownian motion and B = 1 0 B(θ)dθ. (ii) Noting that d dθ Ẇ (t, θ)
1
2 Ẇ (t, θ) have the same covariance structure, we see that it is equivalent for us to consider B = (-A)

1 2 in (1.2) instead of d
dθ and note that (-A) 1 2 is symmetric. So, for simplicity, we will consider B = (-A) 1 2 in the sequel and we know that Theorem 3.1 still holds.

Lemma 3.2. Let B = (-A) 1 2 . Then B is reversible on span{e i : i = 1, 2, • • • } and |B -1 z| 2 = |z| 2 -1 , z ∈ H 0 .
Proof. Recalling the definition of the operator A and the seminorm | • | γ , we can easily proof this lemma.

The following is the main result of this section. Since the mass of the solution to (1.2) is required to be conserved, the well-known approaches used for the stochastic partial differential equation with additive noise, see [START_REF] Wang | Harnack inequality and applications for stochastic generalized porous media equations[END_REF][START_REF] Wang | Hypercontractivity and applications for stochastic Hamiltonian systems[END_REF][START_REF] Xie | Hypercontractivity for space-time white noise driven SPDEs with reflection[END_REF][START_REF] Zhang | White noise driven SPDEs with reflection: strong Feller properties and Harnack inequalities[END_REF] for example, can not applied to our case. Moreover, the case of double-well potential is covered. To show our main result, we make use of the approach initially introduced in [START_REF] Wang | Harnack inequality for SDE with multiplicative noise and extension to Neumann semigroup on nonconvex manifolds[END_REF], in which the stochastic different equations with multiplicative noise is studied. Theorem 3.3. Suppose π 2 > λ. Then the Harnack inequality with power p > 1

|P c t φ| p (y) ≤ P c t |φ| p (x) exp p(π 2 -λ)π 2 |x -y| 2 -1 2(p -1)(e (π 2 -λ)π 2 t -1) (3.2)
holds for any φ ∈ B b (H c ), x, y ∈ K ∩ H c and t > 0. In particular, the log-Harnack inequality

P c t log φ(y) ≤ (π 2 -λ)π 2 |x -y| 2 -1 2(e (π 2 -λ)π 2 t -1) + log P c t φ(x) (3.3 
)

holds for any 0 < φ ∈ B b (H c ), x, y ∈ K ∩ H c and t > 0.
Proof. Let us fix T > 0 and let γ(t) be a continuously differentiable and strictly positive function on [0, T ) with γ(T ) = 0, which be specified later. Let ℵ denote the projection of H to span{e i : i = 1, 2, 3, • • • } and then consider the coupling stochastic partial differential equation

         dw n (t) = - 1 2 A Aw n (t) -p n (w n (t)) + λw n (t) dt + ℵ(u n (t) -w n (t)) γ(t) dt
+ BdW (t), t ∈ [0, T ), w n (0) =y, (3.4) where (u n (t)) t≥0 denotes the solution of (2.2) with B = (-A) 1 2 . Since ℵ is a bounded linear operator, by following the arguments used in [START_REF] Da Prato | Stochastic Cahn-Hilliard equation[END_REF], one can show that for each initial value y ∈ H, the SPDE (3.4) has a unique solution w n up to the explosion time σ n such that w n ∈ C([0, σ n ∧ T ); H) ∩ L 2n+2 ((0, σ n ∧ T ) × (0, 1)) a.s., where

σ n := lim k→∞ σ n k with σ n k = inf{t ∈ [0, T ) : |w n (t)| -1 ≥ k}.
Moreover, the conservation of the average of w n (t) holds for t ∈ [0, σ n ∧ T ). Indeed, considering the mild solution of (3.4), we have that for any x ∈ L 2 (0, 1) with x = c ∈ (-1, 1) and

t ≤ σ n k ∧ T , w n (t), e 0 = e -1 2 A 2 t x, e 0 + t 0 Ae -1 2 A 2 (t-s) p n (w n (s)) -λw n (s) , e 0 ds + t 0 e -1 2 A 2 (t-s) ℵ(u n (s) -w n (s)) γ(s) , e 0 ds + t 0 Be -1 2 A 2 (t-s) e 0 , dW (s) 
.

Now noting that e -1 2 A 2 t e 0 = e 0 and Be 0 = ℵe 0 = 0, we obtain that

w n (t), e 0 = x, e 0 = c, t ∈ [0, σ n k ∧ T ),
which clearly implies our claim by the density of L 2 in H. From now on, the proof will divided into three steps.

Step 1: The goal of this step is to construct a successful coupling up to time T . More precisely, we will show that w n (T ; y) = u n (T ; x) holds almost surely under a probability measure equivalent to P.

To show it, let us set Y n (t) = u n (t)w n (t), t ≤ σ n k ∧ T and let R ∈ (0, T ) be fixed. Then by the conservation of the mass, we have that Y n (t) = 0 whenever x, y ∈ H c and Y n (t) satisfies

           dY n (t) = - 1 2 A AY n (t) -[p n (u n (t)) -p n (w n (t))] + λY n (t) dt - ℵY n (t) γ(t) dt, t ∈ [0, σ n k ∧ r),
Y n (0) =xy.

(3.5)

Then, using the increasing property of p n and Y n (t) = 0, we can deduce analogously to (2.17) that

d|Y n (t)| 2 -1 ≤ -|Y n (t)| 2 1 dt + λ|Y n (t)| 2 dt - 2 (-A) -1 ℵY n (t), Y n (t) γ(t) dt (3.6) = -|Y n (t)| 2 1 dt + λ|Y n (t)| 2 dt - 2|ℵY n (t)| 2 -1 γ(t) dt ≤ -(π 2 -λ)|Y n (t)| 2 dt - 2|ℵY n (t)| 2 -1 γ(t) dt ≤ -(π 2 -λ)π 2 |Y n (t)| 2 -1 dt - 2|Y n (t)| 2 -1 γ(t) dt, t ∈ [0, σ n k ∧ R),
where the assumption π 2 > λ has been used for last inequality. Hence, (3.6) and the chain rule give that

d |Y n (t)| 2 -1 γ(t) ≤ - |Y n (t)| 2 -1 γ 2 (t) γ ′ (t) + (π 2 -λ)π 2 γ(t) + 2 dt, t ∈ [0, σ n k ∧ R], (3.7) 
where the strict positivity of γ(t) has been used. Now let us specify the function γ(t). Let α ∈ (0, 2) and γ(t) be the unique solution of the ordinary differential equation

γ ′ (t) + (π 2 -λ)π 2 γ(t) + 2 = α with γ(T ) = 0, that is, γ(t) = 2 -α (π 2 -λ)π 2 e (π 2 -λ)π 2 (T -t) -1 , t ∈ [0, T ]. (3.8)
It is easy to testify that γ(t), t ∈ [0, T ] has all of the properties stated at the beginning of the proof.

By noting that α ∈ (0, 2) and using (3.7), we easily see that

t 0 |Y n (s)| 2 -1 γ 2 (s) ds + |Y n (t)| 2 -1 αγ(t) ≤ |x -y| 2 -1 αγ(0) , t ∈ [0, σ n k ∧ R]. (3.9) 
Let us define the stochastic process N(t), t ∈ [0, σ n ∧ R] by

N(t) = exp - t 0 B -1 ℵ(u n (s) -w n (s)) γ(s) , dW (s) (3.10) - t 0 |B -1 ℵ(u n (t) -w n (t))| 2 2γ 2 (s) ds .
Thanks to (3.9) and Lemma 3.2, we have that for all x, y ∈ H c and t ∈ [0,

σ n k ∧ R] t 0 |B -1 ℵ(u n (s) -w n (s))| 2 2γ 2 (s) ds ≤ |x -y| 2 -1 2αγ(0) . (3.11) 
Let us now define the stochastic process

W (t), t ∈ [0, σ n ∧ R] by dW (t) = dW (t) + B -1 ℵ(u n (t) -w n (t)) γ(t) dt. (3.12) 
Then by the Novikov condition and the Girsanov theorem, we know that W (t), t ∈ [0, σ n k ∧ R] is a cylindrical Wiener process on L 2 (0, 1) under the probability measure N(σ n k ∧ T )P. By the definitions of N(t) and W (t) and by noting (3.11), we have log N(t)

= - t 0 B -1 ℵ(u n (s) -w n (s)) γ(t) , dW (s) + t 0 |B -1 ℵ(u n (t) -w n (t))| 2 2γ 2 (s) ds ≤ - t 0 B -1 ℵ(u n (s) -w n (s)) γ(t) , dW (s) + |x -y| 2 -1 2αγ(0) , t ∈ [0, σ n k ∧ R].
Therefore, by taking the expectations of both sides of the above inequality with respect to N(σ n k ∧ T )P, we obtain

E [N(σ n k ∧ R) log N(σ n k ∧ R)] ≤ |x -y| 2 -1 2αγ(0) . (3.13) Recalling that R ∈ [0, T ) is arbitrary, we have that N(σ n k ∧R), R ∈ [0, T ) is uniformly integrable and sup R∈[0,T ) sup k,n∈N E [N(σ n k ∧ R) log N(σ n k ∧ R)] ≤ |x -y| 2 -1 2αγ(0) . ( 3 

.14)

Then by the martingale convergence theorem and the Doob optional sampling theorem, it follows that N(t ∧ σ n ), t ∈ [0, T ] is a martingale and by letting k → ∞ in (3.13),

sup n∈N E [N(σ n ∧ t) log N(σ n ∧ t)] ≤ |x -y| 2 -1 2αγ(0) , t ∈ [0, T ]. (3.15) 
In addition, we known that (W (t)) is a cylindrical Wiener process on L 2 (0, 1) under the probability measure Q := N(σ n ∧T )P up to time σ n ∧R. By (3.9), in fact we can show that for all n ∈ N, σ n = T Q-a.s. Indeed, since (u n (t)) t≥0 is the global solution of (2.2), we see that 

τ n l = inf{t ≥ 0 : |u n (t)| -1 ≥ l} diverges to ∞ as l → ∞. Noting that γ(t) is decreasing with respect to t ∈ [0, T ] and |Y n (t ∧ τ n k ∧ σ n 2k )| -1 ≥ k, we have E Q 1 {σ n 2k ≤t<τ n k } |Y n (t ∧ τ n k ∧ σ n 2k )| 2 -1 γ(t ∧ τ n k ∧ σ n 2k ) ≥ k 2 γ(0) Q(σ n 2k ≤ t < τ n k ). ( 3 
Q(σ n ≤ t) = 0, t ∈ [0, T ), which clearly implies Q(σ n = T ) = 1.
Consequently, in the sequel, we can write dQ = N(T )dP and then we know that (W (t)) t∈[0,T ] defined by (3.12) is a cylindrical Wiener process on L 2 (0, 1) with respect to Q.

Using the cylindrical Wiener process (W (t)) t∈[0,T ] , we easily see that the SPDE (3.4) can be rewritten as follows:

   dw n (t) = - 1 2 A Aw n (t) -p n (w n (t)) + λw n (t) dt + BdW (t), t ∈ [0, T ), w n (0) =y ∈ H c , (3.17) 
Since under Q, W (t), t ∈ [0, T ] is a cylindrical Wiener process on L 2 (0, 1), similarly to (2.2), we know that (3.17) has global unique solution w n ∈ C([0, T ]; H) ∩ L 2n+2 ((0, T ) ×(0, 1)). Moreover, the distribution of w n (t) under Q is same as that of u n (t; x) under P by the uniqueness in law of solutions. Therefore, by the equivalence of Q and P, we know that (3.4) also has the global solution up to time T .

From now on, we claim that the coupling of (2.2) and (3.4) is made successfully up to time T . Let τ denote the coupling time, that is,

τ = inf{t ∈ [0, T ] : u n (t) = w n (t) in H c }.
with the convention inf ∅ = ∞. Then we can show τ ≤ T a.s. by contradiction. In fact, if τ (ω) > T , then inf

t∈[0,T ] |u n (t, ω) -w n (t, ω)| 2 -1
is strictly positive, since both u n and w n are continuous stochastic processes with values in H c . Hence, we obtain that the integral of

|u n (t,ω)-w n (t,ω)| 2 -1 γ(t)
on [0,T] diverges, by noting that On the other hand, noting that (π 2λ)π 2 > 0, we obtain by (3.6) that

t 0 |Y n (s)| 2 -1 γ(s) ds ≤ |x -y| 2 -1 2 , t ∈ [0, σ n k ∧ R],
which contradicts with (3.18). Consequently, our claim is proved. In particular, we have w n (T ; y) = u n (T ; x) Q-a.s.

Based on the above preparations, this theorem can be shown in the usual way [START_REF] Wang | Harnack inequalities for stochastic partial differential equations[END_REF]. For the reader's convenience, we give the outline of the proof.

Step 2: Let us formulate the proof of (3.2). We first show for any q > 1,

E[|N(t)| q ] ≤ exp (q -1)q|x -y| 2 -1 2αγ(0) , t ≤ T. (3.19) 
By the definitions of N(t) and W (t), it follows easily that for any q > 1,

E[|N(t)| q ] =E Q [|N(t)| q-1 ] (3.20) =E Q exp -(q -1) t 0 B -1 ℵ(u n (s) -w n (s)) γ(s) , dW (s) -(q -1) t 0 |B -1 ℵ(u n (t) -w n (t))| 2 2γ 2 (s) ds =E Q exp -(q -1) t 0 B -1 ℵ(u n (s) -w n (s)) γ(s) , dW (s) 
+ (q -1) Recalling the representation of γ, see (3.8), and minimizing the first term in (3.22) with respect to α ∈ (0, 2), we see that

P n,c T log φ(y) ≤ (π 2 -λ)π 2 |x -y| 2 -1
2(e (π 2 -λ)π 2 T -1) + log P n,c T φ(x). Now thanks to Theorem 3.1, we can easily complete the proof of (3.3) with t = T by letting n → ∞ in the above inequality. n } ∞ n=1 is bounded, then B satisfies the assumptions stated above.

According to Theorem 1.4.1 [START_REF] Wang | Harnack inequalities for stochastic partial differential equations[END_REF], many important properties of P c t can be deduced from Theorem 3.3. For example, uniqueness of invariant probability measures can be easily known. As we stated in Theorem 3.1, the existence and uniqueness of invariant measures has been proved in [START_REF] Debussche | Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections[END_REF] by a different approach. Here, it is valuable to know that it can be reproved as the application of Harnack inequalities. Moreover, we also know that P c t is absolutely continuous with respect to its invariant measure ν c and the following results hold for the density p c (t, x, y) of P c t with respect to ν c . Corollary 3.4. Under the assumptions of Theorem 3.3, the following heat kernel inequalities are fulfilled for any t > 0, x, y ∈ H c and p > 1 2(p -1) 2 (e (π 2 -λ)π 2 t -1) , 2(e (π 2 -λ)π 2 t -1) .

  For any fixed a, b > 0, there exists a constant c = c(a, b) > 0, such that (-ax + b)e x ≤ -ae x + c, x ≥ 0. Now, noting ς > 0 and then taking a = π 4ς B * 2 , b = P c (λ), we can choose the proper constant K.

Corollary 2 . 4 .

 24 Under the assumptions of Theorem 2.3, for any c ∈ (-1, 1) the following assertions hold: (i) (P c t ) t≥0 is asymptotically strong Feller. (ii) For any Lipschitz continuous function φ ∈ B b (H c ),

Definition 3 . 1 .

 31 Let the initial datum x be a continuous function defined on [0, 1] with its values in [-1, 1], i.e., x ∈ C([0, 1]; [-1, 1]).

T 0 1 γ

 1 (t) dt = ∞. Therefore, we have that on the set {τ > T },

t 0 |B - 1 ℵ|B - 1 ℵ 2 - 1 2αγB - 1 ℵ 0 |B - 1 ℵ 0 (q - 1 ) 0 (q - 1 ) 2 - 1 2αγy| 2 - 1 2α

 0112110101012121 (u n (t)w n (t))| 2 2γ 2 (s) ds , t ≤ T. (u n (s)w n (s))| 2 2γ 2 (s)ds ≤ exp (q -1)q|x -y| (u n (s)w n (s)) γ(s) , dW (s)-(q -1) 2 t (u n (s)w n (s))| 2 2γ 2 (s) ds , t ≤ Tis an exponential martingale under Q. Then, by (3.21), we haveE[|N(t)| q ] =E Q U(t) exp t q|B -1 ℵ(u n (s)w n (s))| 2 2γ 2 (s) ds ≤E Q U(t) sup t∈[0.T ] exp t q|B -1 ℵ(u n (s)w n (s))| 2 2γ 2 (s) ds ≤ exp (q -1)q|x -y| where (3.11) has been used for the second inequality. Therefore, the proof of (3.19) is completed. Let us now formulate the proof (3.2). According to the relation between w n (t; y) and u n (t; x), we have that for any p > 1, any φ ∈ B b (H) and any x, y ∈K ∩ H c |P n,c T φ| p (y) =|E Q [φ(w n (T ; y))]| p =|E Q [φ(u n (T ; x))]| p =|E[N(T )φ(u n (T ; x))]| p ≤E[N(T ) p p-1 ] p-1 P n,c T |φ| p (x)≤P n,c T |φ| p (x) exp p|x -(p -1)γ(0) , where (3.19) with q = p-1 p has been used for the last inequality. Consequently, we can complete the proof of (3.2) by letting α = 1 and then n → ∞ thanks to Theorem 3.1.Step 3: Let us finally give the proof(3.3) in brief. By the definition of Q, the Young inequality (2.22) and the estimate (3.15), it follows that P n,c T log φ(y) =E Q [log φ(w n (T ; y))] (3.22) =E[N(T )φ(u n (T ; x))] ≤E[N(T ) log N(T )] + log E[φ(u n (T ; x))]

Remark 3 . 2 . 1 2.

 321 If we consider B = d dθ with Dom(B) = H 1 (0, 1) as that in the original paper[START_REF] Debussche | Stochastic Cahn-Hilliard equation with double singular nonlinearities and two reflections[END_REF], then we can show the following equation|B * (BB * ) -1 z| 2 = |z| 2 -1 , z ∈ H 0 ,by noting that BB * = -A. Thus, we can replace B in the definition of N(t), see (3.10), by B * (BB * ) -1 and then obtain the same results as those in Theorem 3.3.In addition, the method used in Theorem 3.3 can be also applied to the SPDE (1.2) with more general B instead of B = d dθ or B = (-A) In fact, if BB * is reversible restricted on span{e n : n = 1, 2, • • • } and |B * BB * z| ≤ C|z| -1 , z ∈ H for some C > 0 and (i), (ii), (iv) in Theorem 3.1 hold, then the Harnack equalities similar as those in Theorem 3.3 can be established. For example, if there exists a strictly positive sequence {b n } ∞ n=1 such that Be n = b n e n , n = 1, 2, • • • and the sequence {nb -1

  H c p c (t, x, z) p c (t, x, z) p c (t, y, z) 1 p-1 ν c (dz) ≤ exp p(π 2λ)π 2 |x -y| 2 -1

  H c p c (t, x, z) log p c (t, x, z) p c (t, y, z) ν c (dz) ≤ (π 2λ)π 2 |x -y| 2 -1
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