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Abstract The effect of red blood cells and the undu-

lation of the endothelium on the shear stress in the mi-

crovasculature is studied numerically using the lattice

Boltzmann-immersed boundary method (LB-IBM). The

results demonstrate a significant effect of both the un-

dulation of the endothelium and red blood cells on wall

shear stress. Our results also reveal that morphologi-

cal alterations of red blood cells, as occur in certain

pathologies, can significantly affect the values of wall

shear stress. The resulting fluctuations in wall shear

stress greatly exceed the nominal values, emphasizing

the importance of the particulate nature of blood as

well as a more realistic description of vessel wall ge-

ometry in the study of hemodynamic forces. We find

that within the channel widths investigated, which cor-

respond to those found in the microvasculature, the
inverse minimum distance normalized to the channel

width between the red blood cell and the wall is pre-

dictive of the maximum wall shear stress observed in

straight channels with a flowing red blood cell. We find

that the maximum wall shear stress varies several fac-

tors more over a range of capillary numbers (dimen-
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sionless number relating strength of flow to membrane

elasticity) and reduced areas (measure of deflation of

the red blood cell) than the minimum wall shear stress.

We see that waviness reduces variation in minimum and

maximum shear stresses among different capillary and

reduced areas.

Keywords Hemodynamic Forces · Shear Stress ·
Endothelium · Red Blood Cells

1 Introduction

The fluid shear stress due to viscous blood flow is an im-

portant quantity in the study of the circulatory system.

In the endothelial cells lining the inner surfaces of blood

vessels, shear stress regulates important mechanotrans-
duction events that control vessel development during

embryogenesis (Culver and Dickinson 2010; Garćıa-Cardeña

and Slegtenhorst 2016; Roman and Pekkan 2015), reg-

ulates vascular tone (Davies 1995; Hahn and Schwartz

2009), and plays a role in the localization of atheroscle-

rotic lesions (Barakat 1999). Endothelial cells show sen-

sitivity to the details of the shear stress applied upon

them. In vitro experiments have shown that temporal

changes in applied shear stress patterns have an impor-

tant influence on endothelial cell phenotypic expression

(Uzarski et al. 2013). While the transient and space-

varying nature of shear stress is important to endothe-

lial cell function, a study of blood from a continuum

point of view will not suffice to bring out these impor-

tant time and spatial fluctuations due to RBCs. Thus,

studies are necessary in order to determine the shear

stresses present in the vessel taking into account the

particulate nature of the flowing blood.

Due to the fact that RBCs constitute 40-45% of the

total volume of blood under normal conditions, they
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play an important role in hemodynamics. Consequently

the presence of RBCs would be expected to have a sig-

nificant impact on the shear stress at the endothelial

cell surface. Furthermore, pathologies of RBCs can af-

fect their deformability and therefore their morpholo-

gies and dynamics in blood flow. To date, few studies

have addressed the interplay among RBC morphologi-

cal changes due to pathology, RBC dynamics, and the

stresses experienced at the vascular wall. Two partic-

ular cases of pathological RBC morphology have re-

ceived some attention, including the “schizont stage”

of malaria, known to lead to reduced RBC rigidity and

morphological changes whereby the RBC assumes a

spherical shape. In this stage, RBCs infected by the

Plasmodium falciparum (Pf-RBCs) parasite exhibit en-

hanced cytoadherence to vascular endothelium and other

healthy and infected RBCs, which may lead to capillary

occlusions (Dondorp et al. 2004). Fedosov et al. (2011)

developed an adhesion model of Pf-RBCs as a func-

tion of wall shear stress (WSS) and other parameters,

studying how WSS affects the propensity of Pf-RBC

to adhere to the vessel wall. Similarly, Barabino et al.

(1987) studied in vitro how wall shear rate, calculated

from the WSS, mediated adherence to the vessel wall

in sickle cells and normal RBCs and found that adher-

ence of sickle cells is enhanced at low shear rates but

is comparable to that of normal RBCs at high shear

rates. The wall shear rate calculated in the study is

calculated considering a homogeneous, Newtonian fluid,

and what our study suggests is that the RBCs them-

selves and the details of their shape and rigidity will

induce significant alterations in the WSS, especially in

the microvasculature. Other RBC pathologies include

spherocytosis and elliptocytosis which are caused by

genetic defects in intracellular proteins responsible for

the structural connections either between the lipid bi-

layer membrane and the cytoskeleton or within the cy-

toskeleton, respectively, and lead to altered cell shape.

These genetic defects result in morphologies with re-

duced surface-to-volume ratios, or higher reduced vol-

umes, through a shear stress-driven mechanism known

as vesiculation (Diez-Silva et al. 2010). Even below the

hemolytic threshold and independent of genetic abnor-

malities, shear stress has been shown to induce alter-

ations in RBC properties, most notably a deterioration

in cellular deformability (Baskurt 2012). Reduced RBC

deformability has also been observed in RBCs stored for

blood transfusions (Xu et al. 2018). RBC deformability,

in addition to hematocrit and RBC size, has been shown

to influence platelet adherence to vessel wall, an early

step in thrombus formation. This increase is said to be

due to increased platelet transport towards the vessel

wall induced by the red blood cells (Aarts et al. 1984).

Platelets thus being marginalized to the layer of fluid

closest to the wall will be exposed to shear stress gra-

dients generated at the vessel wall (Kroll et al. 1996).

Our results show that variation among extremal wall

shear stresses experienced among different reduced ar-

eas and RBC rigidities lead to important fluctuations

in wall shear stress values.

In wishing to understand how different RBC mor-

phologies may affect the wall shear stress at the en-

dothelial surface, we acknowledge an additional com-

plexity in that the endothelium is not a flat surface.

Atomic force microscopy (AFM) has been used to im-

age the endothelial surface topography in vitro (Bar-

bee et al. 1994; Oberleithner et al. 2004). Barbee at al.

(1994) reported that unsheared cells had an aspect ra-

tio (length/width) of 1.12± 0.31 and a height of 3.39±
0.70µm. After exposure to flow, the cells elongated and

shrank in height so that the aspect ratio increased to

2.16± 0.53 and the height decreased to 1.77± 0.52µm.

Oberleithner et al. (2004) showed endothelial height

profiles of around 3µm for unsheared human umbili-

cal vein endothelial cells (HUVECs). Although these

experimental results clearly show the non-flat nature of

the endothelium, there have been a limited number of

theoretical or numerical studies taking into account the

waviness of the endothelial cell geometry. Satcher et al.

(1992) modeled the wavy surface as a two-dimensional

sinusoidal surface and showed through a linear per-

turbation analysis that the uneven endothelial surface

leads to a nonuniform shear stress distribution at the

cellular level. Their results showed that the perturba-

tion shear stress due to the wavy surface could reach

values as much as a third greater than the stresses ex-

perienced in the flat case, with the peak perturbations

occurring at the crests of the wavy surface, as would be

expected. Barbee et al. (1995) used their AFM measure-

ments to generate three-dimensional geometries of the

wavy endothelial surface that were subsequently used in

numerical simulations of the wall shear stress. Similar to

the findings of Satcher et al. (1992), their results showed

large subcellular gradients of wall shear stress. Further-

more, they demonstrated that flow-induced elongation

of the endothelial cells had the effect of significantly

reducing these gradients. Pontrelli et al. (2011) inves-

tigated the wall shear stress in wavy-walled channels

using 2D simulations. Although the effect of the par-

ticulate nature of blood on wall shear stress was only

slightly touched upon, the authors reported that the

mean effect of erythrocytes matches well with contin-

uum hydrodynamics, which logically follows since the

simulations involved a pressure-driven flow, thereby im-

posing the average shear stress along the walls. Interest-

ingly, they indicated that they did find that the instan-
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taneous wall shear stress distribution in the presence of

RBCs in the flow could not be recovered by a consider-

ation of blood as a continuous medium alone.

In the present work, we use a Lattice Boltzmann-

Immersed Boundary Method code where RBCs are sim-

ulated as discrete, deformable structures interacting with

the flow to investigate the interplay between flow in mi-

crovessels, RBC dynamics, and the wall shear stress on

both a flat and wavy endothelial surface. There have

been numerous previous computational studies which

focused on different aspects of normal and pathological

RBCs in flow, in addition to those mentioned above,

(Ye et al. 2015; Ye et al. 2014; Wu and Feng 2013; Fe-

dosov et al. 2011a; Bagchi 2007); however, the interac-

tion of pathological RBCs and the role of RBC rigidity

on vessel shear stress has yet to be widely investigated.

We show that RBC morphology has a profound effect

on the shear stress at the endothelial surface and that

endothelial waviness further amplifies these effects.

2 Modeling Methodology

2.1 Lattice Boltzmann Method (LBM) for Fluid

Dynamics

We performed flow simulations using the Lattice Boltz-

mann scheme with an immersed boundary method. The

Lattice Boltzmann method (LBM) has been shown to

recover with good approximation the Navier-Stokes equa-

tions, in the limit of small Mach (ratio of the speed

of a fluid particle in a medium to the speed of sound

in that medium) and Knudsen (ratio of the molecular

mean free path to the macroscopic characteristic length
scale) numbers (Krüger et al. 2009; Succi 2001). The

LBM has been widely used to simulate fluid flows due

to its straightforward implementation and its greater

amenability to parallel computing compared to direct

Navier Stokes simulations. The quantity of interest in

LBM is the particle distribution function, fi(x, t), which

represents the probability of finding a fluid particle trav-

elling with speed ci at node x at time t. In our sim-

ulations, we use the two-dimensional 9 speed lattice

(D2Q9) such that i = 0, 1, , 8. The evolution equation

of the distribution functions in time and space takes the

form:

fi(x + ci∆t, t+∆t)− fi(x, t) = Ωi(fi(x, t))

+Fext,i

(1)

where Fext,i is the external forcing term related to the

imposed pressure gradient and the membrane force.

The left-hand side of Eq. (1) represents free stream-

ing, while the right-hand side represents the effect of

collisions and external forces acting on the fluid popu-

lations. We use the Bhatnagar-Gross-Krook single re-

laxation time collision model (BGK SRT):

Ωi =
−(fi(x, t)− feqi )

tr
(2)

As we can see from Eq. (2), there is a single relaxation

time, tr, towards a local equilibrium, feqi , which is taken

as a second-order expansion of the Maxwell-Boltzmann

distribution:

feqi = ωiρ

[
1 +

u · ci
c2s

+
(u · ci)2

2c42
− u · u

c2s

]
(3)

where cs = 1/
√

3 is the speed of sound in the lattice, ωi

are weight factors; ω0 = 4/9 for the 0 velocity vector,

ω1−4 = 1/9 in the horizontal and vertical directions,

and ω5−8 = 1/36 in the diagonal directions, and ci are

the discretized velocities in each of the 9 lattice direc-

tions. The relaxation time, tr, is related to the kine-

matic viscosity of the fluid, ν, such that:

ν =
(c2s(2tr − 1))

2
(4)

The macroscopic quantities including the local density

and local fluid velocity are recovered from fi as:

ρ(x, t) =
∑
i

fi(x, t) (5)

u(x, t) =
1

ρ(x, t)

∑
i

fi(x, t)ci (6)

The halfway bounce-back boundary condition is of-

ten used to implement Dirichlet boundary conditions.

While this works well when the wall is aligned with

the Cartesian mesh and located halfway between the

first solid node and its neighbor fluid node, it is insuf-

ficient on a curved boundary as is of interest here for a

wavy endothelial cell surface. In order to increase the

accuracy on a curved boundary, Bouzidi et al. (2001)

proposed a treatment of curved walls which involves the

bounce-back scheme and interpolations. The wall shear

stress, τ , is then found by:

τ = µ
∂(u · t̂)
∂n

(7)

where µ = νρ is the dynamic viscosity of the fluid, t̂

is the tangent to the curved surface, n is the normal,

and u is the velocity vector at an off-grid position close

to the wall. This interpretation involves only the inter-

polation of the velocity vector at the off-grid position.
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Since we have modeled the wavy surface as a sine func-

tion, the tangent can be found analytically. Although it

has been shown that the stress tensor can be calculated

at each lattice node (Krüger et al. 2009), applying this

equation properly would have led to the interpolation of

the 9 distribution functions, so instead, we chose to use

the macroscopic equation given by Eq. (7) implemented

with a finite-difference scheme.

2.2 RBC Model

We use a 2D vesicle model. Vesicles consisting of a

phospholipid bilayer enclosing an internal fluid share

the inextensibility and incompressibility of RBCs; how-

ever, they are fluid and lack shear elasticity. Vesicles

have been shown to exhibit many similar dynamics and

morphologies to red blood cells including equilibrium

shapes, slipperlike shapes, and lateral migration; and

thus have been used extensively in literature as a model

for red blood cells (Vlahovska et al. 2009; Vlahovska et

al. 2013). The model of the RBC in our simulations is

taken from the 2D spring model developed by Tsubota

et al. (Tsubota and Wada 2010; Tsubota et al. 2006).

In order to accurately model the inextensible bilipid

membrane of RBCs, constant perimeter is imposed and

incompressibility of the enclosed fluid is assured by im-

posing a constant enclosed area. The coupling of the

fluid flow and RBC dynamics is achieved using the im-

mersed boundary method whereby membrane forces are

distributed as point forces to nearby fluid nodes and

fluid forces are distributed to Lagrangian membrane

nodes using a discrete delta function (Kaoui et al. 2011;

Peskin 2002; Zhang et al. 2007). The validation of our
code can be found in Shen at al. (2017). The problem

is characterized by three dimensionless parameters. The

first dimensionless quantity is the capillary number de-

fined as:

Ca =
µR3

0γ̇

B
(8)

where R0 is the effective radius of the RBC and is given

by R0 =
√
ARBC/π where ARBC is the enclosed area of

the RBC, γ̇ is the shear rate found by γ̇ = R0U/(W/2)2,

where U is the maximum speed in the vessel and W is

the width of the channel, and B is the bending modulus

of the RBC, the details of which can be found in (Shen

et al. 2017). A Ca < 1 indicates that flow conditions are

weaker than the bending resistance of the cell, thus an

effectively rigid cell, whereas Ca > 1 indicates that flow

conditions are stronger than the bending resistance of

the cell, thus an effectively soft cell. The second dimen-

sionless parameter is the degree of confinement given

by:

Cn =
2R0

W
(9)

The final dimensionless quantity is the reduced area

given by:

α =
ARBC

Ac
=

4πARBC

P 2
(10)

which is the ratio of the area enclosed by the RBC,

ARBC , to that of a circle of area Ac, having the same

perimeter, P , as the RBC. A reduced area of 1 cor-

responds to a circle. The different equilibrium shapes

of RBCs under no flow conditions for various reduced

areas have been previously reported using the LBM

method (Kaoui et al. 2011).

2.3 Simulation Details

Simulations were carried out with a D2Q9 lattice grid

with periodic boundary conditions in the direction of

flow induced by imposing a pressure gradient across the

inlet and outlet of the channel and with the Dirichlet

no-slip boundary condition at the walls. The microves-

sel is first represented by a rigid, flat-walled channel

and later on by wavy walls given by sinusoidal func-

tions such that the positions of the bottom and top

walls are given, respectively, by:

ybwall =
A

2
sin

(
2πx

λ

)
+
A

2

ytwall = W −
(
A

2
sin

(
2πx

λ

)
+
A

2

) (11)

where A is the amplitude of the undulation and λ is

the wavelength. The RBC is modeled in 2D as an elas-

tic membrane filled with a viscous fluid as described

above. In our simulations, the fluids separated by the

membrane were taken to have the same density and vis-

cosity. In the absence of flow, with a reduced area of 0.7,

the RBC assumes an equilibrium biconcave shape with

a length along the major axis which is taken as ∼ 8µm

and a length along the minor axis of ∼ 3µm. In LBM

units, R0 = 3µm is represented by 15 discrete meshes

in consideration of both efficiency and accuracy. During

all simulations in this study, the Reynolds number was

held constant such that Re = UR0/ν = 0.1 to approx-

imate the Stokes flow in microcirculation. The channel

length is chosen as L = 50R0 in our simulations. We

have validated that this length is long enough to elimi-

nate artifacts due to periodic boundary conditions.
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3 Results

3.1 Single RBC in Flat-Walled Channel

We begin by considering an individual RBC flowing

through a 12µm-wide flat-walled channel and explore

the impact of the RBC on the wall shear stress. It has

been shown that in terms of the morphology and dy-

namics of a single RBC in Poiseuille flow, rich dynamics

can be seen (Tahiri et al. 2013). As has been previ-

ously reported, the morphology of RBCs in confined

Poiseuille flow is a function of the three dimension-

less parameters Ca, Cn, and α defined above. Among

the stable RBC morphologies, several are permanent

including the parachute. Therefore, we begin by ana-

lyzing the effect on the flow of a single RBC with this

morphology.

(a)

(b)

−0.8

−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0.0

0.1

(u
−
u
R
B
C
)/
U

Fig. 1: (a) Streamlines and velocity flow field corre-

sponding to induced flow by a single RBC with a

parachute morphology (Cn = 0.45, Ca = 10, α = 0.7).

Colorbar corresponds to relative magnitude of stream-

wise velocity to maximal velocity, U , in the channel (b)

Velocity vectors in the co-moving frame with the RBC

showing zero velocity inside the RBC. Colorbar corre-

sponds to relative magnitude of streamwise velocity in

the co-moving frame to maximal velocity.

Figure 1a demonstrates the perturbation or induced

flow due to the presence of the parachute-shaped RBC.

In our simulations, the shapes of the RBCs are the re-

sult of an interplay between the bending and tension

forces of the RBC and hydrodynamic forces. For a sym-

metric parachute shape, there is no tank-treading or

normal displacement. Thus, when we plot the velocity

in the co-moving frame with the RBC in Fig 1b, we

see zero flow field inside, like a rigid particle having the

same shape. We investigate the sign of the induced flow

for information about how the flow is perturbed due to
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the presence of the RBC. The total flow (TF) is the

sum of the imposed flow (ImF) and the induced flow,

or the perturbation flow (PF) arising from the elastic

forces of the RBC membrane, such that

TF = ImF + PF (12)

The sign of PF (positive in the direction of the ImF

which is left to right; negative if against the ImF) indi-

cates how the flow is being perturbed by the presence

of the RBC. We see in Fig. 1a that the PF generally

acts to accelerate the flow near the wall, except at two

recirculation zones where the perturbation has resulted

in local reversal of the induced flow at the wall. These

two zones correspond to the point where the cell is clos-

est to the wall, an observation which was also previ-

ously reported in (Freund and Vermot 2014; Yin and

Zhang 2012; Xiong and Zhang 2010). These zones of

flow reversal are not observed in the unbounded geom-

etry (Ghigliotti et al. 2012).

Previous work has reported how changes in the de-

gree of confinement (value of Cn) in Poiseuille flow alter

RBC morphology (Tahiri et al. 2013). We varied Cn in

the range of 0.2− 0.7 and examined the effect of three

stable RBC morphologies, namely the unconfined slip-

per, the parachute, and the confined slipper, on the wall

shear stress. Figure 2 shows how the RBC morphology

affects the wall shear stress footprint normalized to the

Poiseuille solution of flow through parallel plates, such

that:

τ

τPois
=

τ

(dP/dx)imW/2
(13)

where τ is the wall shear stress measured along

the wall obtained from simulations, τPois is the wall

shear stress obtained from the Poiseuille solution of flow

through parallel plates, and (dP/dx)im is the imposed

pressure drop along the channel axis per unit length.

(a)

(b)
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(c)

Fig. 2: Effect of RBC morphology on the wall shear

stress footprint along the top and bottom walls of the

channel. (a) Large channel (small confinement) with

RBC exhibiting the unconfined slipper morphology

(Cn = 0.2, CaW/R0 = 15); (b) Intermediate confine-

ment with RBC exhibiting the parachute morphology.

Since the parachute is an axisymmetric shape, the wall

shear stress curves for the top and bottom walls lie on

top of each other (Cn = 0.45, CaW/R0 = 15); (c) Small

channel (large confinement) with RBC exhibiting the

confined slipper morphology (Cn = 0.7, CaW/R0 =

15). Note the different scales for shear stress for opti-

mal visibility of the effect. xcm denotes the x-position

of the center of mass of the RBC.

Figure 2 demonstrates that a “peak-valley-peak”

form of the wall shear stress generally emerges. This

form of the wall shear stress was previously observed in

(Yin and Zhang 2012; Xiong and Zhang 2010). Yin et

al. (2012) perform a lubrication analysis for a cylinder

moving close to a wall in order to investigate the wall

shear stress. In obtaining an expression for the pressure

along the wall, they find that it is the reverse pressure

gradient generated between the moving cell and wall

which results in the curious waveform observed in the

wall shear stress. In light of their analysis, we extracted

the pressure gradient along the wall for each of the three

morphologies investigated.

(a)

(b)

(c)

Fig. 3: Pressure gradient along the top and bottom walls

of the channel. (a) Large channel (small confinement)

with RBC exhibiting the unconfined slipper morphol-

ogy (Cn = 0.2, CaW/R0 = 15); (b) Intermediate con-

finement with RBC exhibiting the parachute morphol-

ogy. Since the parachute is an axisymmetric shape, the

curves for the top and bottom walls lie on top of each

other (Cn = 0.45, CaW/R0 = 15); (c) Small channel

(large confinement) with RBC exhibiting the confined

slipper morphology (Cn = 0.7, CaW/R0 = 15).
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In Fig 3, we see the features of the WSS are reflected

in the plots of the pressure gradient along the wall.

Similarly to Yin et al. (2012), we observe the largest

pressure gradient opposite to the RBC motion at the

narrowest part between the RBC and the wall. This

reverse pressure gradient generated between the RBC

and the wall impairs the flow velocity and the WSS,

consistent with the flow reversal at the narrowest gap

observed in Fig 1a of the induced flow. We find the be-

havior of the WSS captured in the profile of the pressure

gradient at the wall for the different morphologies. We

see that the pressure gradient and WSS variations are

more profound as the size of the channel is decreased,

also in accord with observations of Yin et al. (2012).

A summary of the characteristics of the wall shear

stress variation is given in Table 1 for the different

results presented in Fig. 2, where min(τ/τPois) corre-

sponds to the minimum wall shear stress observed along

either channel wall, while max(τ/τPois) corresponds to

the maximum wall shear stress observed in the chan-

nel, IR represents the influencing range, or the width

over which the WSS perturbation to the Poiseuille value

persists, such that |(τ(x) − τPois)/τPois| ≥ 0.02 from

the trailing and leading edges of the cell, corresponding

to a minimum of 2% perturbation from the nominal

shear stress, and T̃ is the time duration of the per-

turbation for a fixed point on the endothelium calcu-

lated by T̃ = IR/VRBC where VRBC is the velocity

of the RBC. We see that channel size has an inverse

effect on the amplitude of WSS perturbation. For the

largest channel (case a), we see the smallest variation

0.98− 1.01, while for the smallest channel (case c), we

see the largest variation 0.83 − 1.26. Considering that

the Poiseuille solution for shear stress in the small chan-

nel is higher than that in a wider channel with the same

mean flow velocity, the absolute variation of the shear

stress in the smaller channel is even more significant.

The influencing range IR cannot be defined in the case

of the unconfined slipper, case a, because the pertur-

bation is always below the threshold. It is largest for

the parachute morphology, since we see that its range

extends beyond the length of the cell (the second peak

is found well after the trailing edge of the cell in Fig.

2b)). The influencing range of the confined slipper is

different for the top and bottom walls, since the mor-

phology is not axisymmetric. Lastly, the RBCs travel at

roughly the same velocity so that the time duration re-

sults largely reflect the differences in influencing range.

In order to understand the effect of the morphology

of RBCs on the shear stress at the wall, we varied the

reduced area, which represents the degree of swollenness

of the cell. By varying the reduced area, we can simu-

late the morphologies of different potential pathological

conditions of RBCs. A relatively low confinement ves-

sel, Cn = 0.42, representing a vessel with a width of

12µm is investigated first. As illustrated in Fig. 4a, the

RBC shapes obtained are generally asymmetric.
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Shear Stress in the Microvasculature: Influence of Red Blood Cell Morphology and Endothelial Wall Undulation 9

Table 1: Minimum and maximum wall shear stress in the channel, influencing range R, and time duration T̃ for

the three different cases represented in Fig. 2. Lowercase and italicized t and b represent top and bottom wall,

respectively.

Case min(τ/τPois) max(τ/τPois) IR[µm] T̃ [ms]

a 0.98 (t) 1.01 (t) - -
b 0.91 1.18 15 5.80e-2
c 0.83 (b) 1.26 (t) 12.2 (t); 14.2 (b) 4.70e-2 (t); 5.50e-2 (b)

(c)

0.6 0.7 0.8 0.9 1.0

α

3.0

3.5

4.0

4.5

5.0

5.5

6.0

d−1min,botW

d−1min, topW

Fig. 4: Effect of reduced area on RBC morphology and

wall shear stress for Cn = 0.42 (W = 12 µm) and

Ca = 0.1. (a) Stationary shapes obtained for different

values of reduced area; (b) Maximum, τmax, and mini-

mum, τmin, shear stress experienced in the channel with

a single RBC normalized by the Poiseuille solution. The

values for both the top and bottom of the channel are

shown; (c) Plot of the normalized inverse minimum dis-

tance d−1
minW of the cell to the respective closest wall

Figure 4b suggests that the extremal wall shear stress

does not have a clear relationship to reduced area at

first glance. We also observe that the symmetry of the

cell with respect to the centerline determines whether

the values of the shear stress on the top and bottom

walls are equal or not. While the maximum shear stress

values can range from several to ∼ 30% greater than the

Poiseuille solution in the absence of the RBC; the mini-

mum wall shear stress values vary less than ∼ 11% over

the same range of reduced areas. We hypothesized that

the dependence of the maximum wall shear stress on

reduced area is determined by the extent of the cell in

the channel in the perpendicular streamwise direction.

To test this hypothesis, we determined the distance be-

tween the closest point of the cell and the channel wall.

In Fig. 4c, we plot a quantity related to the instanta-

neous cell-free layer, or the RBC-free layer of plasma

next to vessel walls, such as that previously reported in

(Oulaid and Zhang 2015). We calculate from the instan-

taneous cell-free layer, the minimum distance between

the RBC membrane and the wall, and plot the inverse of

this normalized quantity in Fig. 4c. We observe that the

inverse normalized minimum distance exhibits exactly

the same dependence on reduced area as the maximum

wall shear stress (cf: Fig. 4b).

To investigate how robust the results shown in Fig.

4 are, we increased the value of Ca by a factor of 100

(from 0.1 to 10), effectively creating a softer cell and

repeated the simulations for the same confinement.
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Fig. 5: Effect of reduced area on RBC morphology and

wall shear stress for Cn = 0.42 (W = 12µm) and

Ca = 10. (a) Stationary shapes obtained for different

values of reduced area; (b) Maximum and minimum

shear stress experienced in the channel with a single

RBC normalized by the Poiseuille solution. The values

for both the top and bottom of the channel are shown;

(c) Plot of the inverse minimum distance d−1
minW of the

cell to the respective closest wall.

Figure 5a demonstrates that the RBC morphologies

for all reduced areas are axisymmetric, thus leading to

equal values of the extremal shear stresses and inverse

distance along the top and bottom walls. As illustrated

in Fig. 5b and c, the dependence of the maximum wall

shear stress on reduced area matches exactly that of

the inverse of the minimum distance. Thus, this mini-

mum distance is the physical parameter that drives the

maximum shear stress regardless of RBC rigidity. We

see that the point closest to the wall is further from the

wall for larger reduced areas, shown in Fig. 5c. We again

observe a larger variation in maximum wall shear stress,

∼ 17%, while the minimum wall shear stress varies only

at most ∼ 10% from the no-cell Poiseuille solution.

Comparing Figs. 4b and 5b, we observe that for the

same confinement, the wall shear stress is lower for a

softer RBC (except for α ≈ 1 in which case the mor-

phologies are the same and therefore the distance to

the wall equal). Freund et al. (2014) also observe that

rigid cells induce greater perturbations to the wall shear

stress. In our analysis, we show that the morphologies

adopted for a larger capillary number have minimum

distances that are further from the wall than those ob-

served for the morphologies adopted in the case of a

smaller capillary number. The cells become more elon-

gated in the perpendicular flow-wise direction in the

case of the smaller capillary number and therefore the

distances between the cell and the wall are smaller.
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Shear Stress in the Microvasculature: Influence of Red Blood Cell Morphology and Endothelial Wall Undulation 11

Finally, we examine the effect of confinement by

considering a smaller vessel of 7µm in width.

(a)

(b)
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(c)
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Fig. 6: Effect of reduced area on RBC morphology and

wall shear stress for Cn = 0.72 (W = 7µm) and Ca =

10. (a) Stationary shapes obtained for different values of

reduced area; (b) Maximum and minimum shear stress

experienced in channel with one RBC normalized by

the Poiseuille solution. The values for both the top and

bottom of the channel are shown; (c) Plot of the inverse

of the normalized minimum distance, d−1
minW , of the

cell to the respective closest wall.
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Figure 6a demonstrates that an asymmetric slipper

shape is observed for α < 0.80. At α = 0.80, the slip-

per shape becomes axisymmetric, and for all reduced

areas beyond this value, symmetric morphologies are

obtained. The difference in RBC morphology behavior

above and below α = 0.80 leads to the branches found

in the plots of the maximum and minimum wall shear

stresses observed in Fig. 6b, where the maximum shear

stress along the top wall is identical to that along the

bottom wall for α > 0.80 but not so for reduced ar-

eas below this cutoff. Again, the maximum shear stress

shows more variation, greater than 50%, while the min-

imum wall shear stress varies at most ∼ 21% for the

same range of reduced areas. Finally, Fig. 6c demon-

strates that here again, (dmin/W )−1 is the physical de-

terminant of the wall shear stress behavior observed in

Fig. 6b. Comparing Fig. 6b to Figs. 4b and 5b, we see

that the maximum shear stresses are higher in a smaller

vessel than in a larger vessel. We also see again that

RBCs are closer to the wall in the case of the smaller

channel. Interestingly, we see that among the reduced

areas, that corresponds the most to a circle exhibits

the smallest maximal wall shear stress fluctuation in

the case of the 12µm channel; however, in the case of

the smaller 7µm channel, it exhibits a much larger wall

shear stress than all the other reduced areas due to

its greater extension into the channel than the other

RBCs which instead elongate in the streamwise direc-

tion. This behavior could be of interest in the study of

the schizont stage in malaria.

We recast the results in Figs. 4, 5, and 6 onto a

single graph plotting τmax/τPois vs (dmin/W )−1.

3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0

dmin
−1W

1.0

1.1

1.2

1.3

1.4

1.5

1.6

τ m
ax
/τ

P
oi
s

12µm,Ca=0. 1

12µm,Ca=10

7µm,Ca=10

Fig. 7: Recasting results from Figs. 4c, 5c, and 6c such

that τmax/τPois vs d−1
minW .

The inverse minimum distance normalized to the width

of channel appears to be an accurate predictor of the

normalized maximal wall shear stress in the channel,

irregardless of cell rigidity and channel size. We note

one possible cause of variation from a strictly linear

relationship could be from the different resistance pro-

duced by different morphologies of RBCs which would

result in different nominal shear stresses in the chan-

nel for a given imposed pressure gradient for which our

model does not take into account.

3.2 Effect of a Wavy Wall on Wall Shear Stress

At the scale of the microcirculation, the endothelium’s

wavy topography becomes important, and a pertinent

question then becomes what effect the vessel waviness

has on the flow field. Sinusoidal curves are implemented

as boundaries. The magnitude of shear stress can be ex-

tracted from simulations using bilinear interpolation of

velocities located on grid points close to the wall, as ex-

plained in the Modeling Methodology section. For the

time being, we will keep the sine curves on the top and

bottom boundaries in phase. The effect of dephasing

will be studied later. We simulate a channel with wavy

walls, with effective width of 12µm and amplitude and

wavelength of undulation A = 2µm and λ = 30µm, re-

spectively. Figure 8 depicts the magnitude of wall shear

stress at the wavy wall normalized to the Poiseuille so-

lution for a straight channel with the same width as

the effective width of the wavy channel, where effective

width is the mean width over one period.

Fig. 8: Normalized wall shear stress along a channel

with a boundary given by a sinusoidal function where

λ = 30µm and A = 2µm.

In agreement with previous studies (Satcher et al. 1992;

Barbee et al 1995), the simulations demonstrate that

the maximal shear stress can be > ±30% that of the

Poiseuille value for a straight channel with the same ef-

fective width, the extremes corresponding to the crests

and valleys of the wall.

bhogan
Texte surligné 

bhogan
Texte surligné 

bhogan
Texte surligné 



Shear Stress in the Microvasculature: Influence of Red Blood Cell Morphology and Endothelial Wall Undulation 13

3.3 RBC in a Wavy-Walled Channel

We examined the effect of confinement for two Ca num-

bers in wavy-walled channels where the waviness of the

top wall was in-phase with that of the bottom wall. As

the RBC travels across one wavy period, changes in the

local flow field result in changes to its morphology. We

examined the morphologies obtained and the extremal

wall shear stresses. Fig. 9 presents for the lowest and

highest reduced areas investigated, the wall shear stress

and its extremal values along one period of the wall

undulation such that τmax = max(τ(x)/τw,nocell(x))

and τmin = min(τ(x)/τw,nocell(x)) where τw,nocell is

the wall shear stress obtained in the wavy-walled chan-

nel in the absence of RBC.
(a)

(b)

(c)

Fig. 9: (a) One period of the wall geometry (b) Average,

maximum, and minimum wall shear stress averaged in

time a for channel containing a flowing RBC with either

α = 0.6 (c) or α ≈ 1 and Ca = 0.1 and Ca = 10. The

corresponding morphologies as the RBC transverses the

undulating wall are shown in Fig 10a and 11a and Fig

10e.

We see that the average shear stress is roughly equal

to the steady-state, continuum solution in the absence

of the RBC. However, the time-averaged minimum and

maximum shear stresses reveal important differences in

subcellular extremal wall shear stress values. In the case

of α ≈ 1, the variation over one period is greatest,

the maximum varying greater than 20% over one pe-

riod, while in the case of α = 0.6, there is less than a

10% difference in extremal values over one period. It

has been speculated that subcellular gradients are po-

tentially important in mechanotransduction processes,

and our results show that different reduced areas of cells

lead to different time-averaged subcellular gradients in

extremal wall shear stress values (Satcher et al. 1992;

Barbee et al. 1994).

As we did in the case of the flat-walled channel (cf:

Figs. 4-6), we examine the behavior of the extremal

shear stress as the reduced area is varied. This is per-

formed for the case of a relatively rigid RBC (Ca = 0.1)

and a relatively soft RBC (Ca = 10). The extremal wall

shear stresses are plotted as a function of reduced area

in Fig 10a.
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Fig. 10: (a) Maximum and minimum wall shear stress

along the top and bottom walls of a wavy-walled

channel as a function of reduced area with Cn =

0.42 (Weff = 12µm ) and Ca = 0.1 and Ca = 10;

(b) The inverse of the normalized minimum distance as

a function of reduced area.

Figure 10a shows that the maximum wall shear stress

in the wavy wall case is less sensitive to changes in

reduced area than in the flat wall case. In extreme,

the maximum wall shear stress only varies by ∼ 10%,

whereas in the flat wall case it can vary by ∼ 30%

among reduced areas. Waviness reduces the variation

in maximum shear stresses observed for different re-

duced areas; however, the values are in general higher

than the equivalent in the straight case. The inverse of

the minimum distance normalized to the effective width

of the channel is not predictive of the maximum wall

shear stress as is suggested by Fig 7.
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Fig. 11: Six snapshots of the morphological changes of

a single RBC as it passes over one wall undulation for

different values of reduced area (a) α = 0.6 (b) α =

0.7 (c) α = 0.8 (d) α = 0.9 (e) α ≈ 1 with Cn =

0.42 (Weff = 12µm) and Ca = 0.1

Figure 11 shows snapshots of one RBC as it flows over

one period of wall undulation. We see that what would

be a stationary morphology in the case of a flat-walled

channel is no longer so due to the variation of the flow

field along the undulation. Because the RBC is effec-

tively rigid, it does not undergo a noticeable deforma-

tion in either the streamwise or perpendicular stream-

wise directions as it passes through the constriction and

expansion of one wall undulation. Instead, we see that

the tilt angle of the RBC changes over one period. As

the cell approaches the maximal constriction of the two

walls, the RBC tilts towards the horizontal axis, and as

the cell exits the constriction, the tilt moves toward the

vertical axis.
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The results above were for a rigid RBC (Ca=0.1).

For Ca=10, representing a softer cell, all morpholo-

gies obtained are axisymmetric, so the maximum shear

stress along the top and bottom walls are identical, as

shown in Fig. 12.
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Fig. 12: Snapshots at 6 instants in time showing the

morphological changes of a single RBC as it passes over

one wall undulation for different values of reduced area

(a) α = 0.6 (b) α = 0.7 (c) α = 0.8 (d) α = 0.9 (e)

α ≈ 1 with Cn = 0.42 (Weff = 12µm) and Ca = 10.

The morphologies of the RBC as it passes over one

wall undulation are always axisymmetric as shown in

Fig. 12. We can analyze the passage of the cell over

one wall undulation. Before entering the constriction,

the cell is stretched. The cell is squashed in the middle

of the constriction. Upon exiting, the cell experiences

a rebound, whereby the rear-end of the RBC moves

faster than the front end so that we see stretching in

the perpendicular streamwise direction. The RBC elon-

gates along the streamwise direction in the constriction

and expands in the perpendicular streamwise direction

in the valley. These same dynamics were also observed

for capsules passing through constrictions (Rorai et al.

2015).

All the wavy wall results presented thus far were for

the case where the undulations in the top and bottom

walls are in phase. In this case, RBCs pass periodi-

cally through areas of strong confinement (at peaks)

and weak confinement (at valleys). This scenario is un-

likely to be the most representative configuration in real

situations. This has naturally led us to study the effect

of dephasing between the two walls. We dephased the

sine curves at the top and the bottom walls of the chan-

nel and examined the maximum shear stresses experi-

enced as a function of the dephasing angle such that one

of the boundaries was shifted according to the following

expression:

ywall =
A

2
sin

(
2πx

λ
+ 2πn

)
+
A

2
(14)

where n is a fraction from [0, 1]. The morphologies of

one cell as it passes over one wall undulation are shown

in Fig. 13.
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Fig. 13: Five snapshots of the morphology of a single

RBC as it passes over one wall undulation for different

dephasing angles between the top and bottom walls (a)

n = 0 (b) n = 1/5 (c) n = 2/5 (d) n = 3/5.

We see the effect of dephasing on the morphology

of the RBCs in this case where Ca = 10. For this case,

when the walls were in-phase, the RBC maintained
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axisymmetric morphology at all times while passing

over the length of one period; however, now the RBC

shows asymmetric morphologies when the top and bot-

tom walls are out-of-phase. The trailing edge of the

parachute elongates in the direction of the further wall.

In order to see what effect the dephasing has on the wall

shear stress, we plot the maximum wall shear stress as

a function of the dephasing angle in Fig. 14.

Fig. 14: Maximum wall shear stress normalized to the

Poiseuille solution (for a flat-walled channel having the

same effective width) along the channel walls as a func-

tion of the degree of dephasing, n.

The maximum wall shear stress takes its largest

value when the top and bottom walls are in-phase and

its smallest value when the walls are half a wavelength

out-of-phase. We observe that the effect of dephasing

can decrease the maximum wall shear stress in the chan-

nel by nearly 30%. Although the properties of the RBCs

are held constant as is the applied pressure gradient and

the effective width of the channel, the local changes to

the flow field resulting from undulation dephasing have

a significant effect on the observed wall shear stress.

Thus, even small changes to the geometry of the en-

dothelial surface have important ramifications on RBC

morphology and the resulting wall shear stress.

4 Discussion

We have studied the effect of morphological changes

in RBCs, confinement, capillary number, reduced area,

and vessel wall geometry on the wall shear stresses

in microvessels. We have computed the possible shear

stress fluctuations that each of these physical param-

eters might induce using a simulation model for flow

in the microvasculature with the idea that these fluc-

tuations could be important in mechanotransduction

events. Our results have demonstrated that the pres-

ence of RBCs has a significant effect on the wall shear

stress. Not surprisingly, the effect of RBCs on wall shear

stress becomes more pronounced with increased con-

finement (i.e. smaller vessels), and the effect becomes

more dynamic under conditions that induce fluctua-

tions in RBC morphology. Interestingly, we have deter-

mined that the maximum wall shear stress is correlated

to the minimum distance between the cell and the adja-

cent wall in small confinements. This observation runs

counter to previous notions that the wall shear stress is

directly proportional to the local distance between the

RBC and the wall (i.e. τ = µVRBC/δ where δ is the lo-

cal distance between the RBC and the wall) (Namgung

et al. 2011).

Another important result of the present work stems

from accounting for the waviness of the endothelial sur-

face. We determined that in the case of wavy walls, the

exact geometry of the endothelium changes RBC dy-

namics and hence has a significant impact on the shear

stresses experienced along the wall, highlighting the im-

portance of experimental studies focusing on the topog-

raphy of confluent endothelial monolayers (Chtcheglova

et al. 2010) so that a more realistic geometry could be

incorporated into future modeling. We have also seen

that in the cases studied, the effect of waviness is to re-

duce the variation in maximal wall shear stress among

different reduced areas when compared to the flat wall

counterpart.

Our results demonstrating the significance of inter-

actions between RBCs and endothelial cell topography

in determining the wall shear stress on the endothelial

surface have significant implications for studies of flow-

mediated endothelial mechanobiology. The vast major-

ity of studies of endothelial responses to flow do not

account for the impact of RBCs. In light of the present

findings of the highly dynamic nature of RBC morphol-

ogy as they flow within microvessels, one would expect

the incorporation of RBCs would lead to a local shear

stress environment that constantly changes in time. The

implications of such rapid dynamics on endothelial cell

structure and function certainly merit investigation.

A limitation of the present work is that it has fo-

cused on a single RBC within a microvessel. Naturally,

future investigations need to account for multiple RBCs

flowing in a disordered manner and the effect of inter-

actions among RBCs on the wall shear stress within

the vessel. 3D simulations would lead us to a map of

wall shear stress for the entire vessel wall, although

these 2D simulations do give us a qualitative framework

to approach more complex, realistic models. We note,

however, that in smaller microvessels, RBCs often flow

in a single file, in which case the present results be-

come more directly physiologically relevant. However,

we believe that these results provide useful qualitative

information to be applied to more complex and realistic

bhogan
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cases of many RBCs flowing in a disordered manner in

channel flow.
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